WO2013013513A1 - 一种色散补偿光纤 - Google Patents

一种色散补偿光纤 Download PDF

Info

Publication number
WO2013013513A1
WO2013013513A1 PCT/CN2012/072223 CN2012072223W WO2013013513A1 WO 2013013513 A1 WO2013013513 A1 WO 2013013513A1 CN 2012072223 W CN2012072223 W CN 2012072223W WO 2013013513 A1 WO2013013513 A1 WO 2013013513A1
Authority
WO
WIPO (PCT)
Prior art keywords
cladding
dispersion
core
weight percentage
fluorine
Prior art date
Application number
PCT/CN2012/072223
Other languages
English (en)
French (fr)
Inventor
张树强
范明锋
汪松
徐进
罗杰
曹蓓蓓
Original Assignee
长飞光纤光缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆有限公司 filed Critical 长飞光纤光缆有限公司
Priority to KR1020137019061A priority Critical patent/KR101558257B1/ko
Priority to US14/009,324 priority patent/US9140851B2/en
Publication of WO2013013513A1 publication Critical patent/WO2013013513A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02261Dispersion compensating fibres, i.e. for compensating positive dispersion of other fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -

Definitions

  • the present invention relates to a dispersion compensation fiber (DCF) operating in a C-band (1530 nm to 1565 nm band) optical communication window, which can be used for dispersion and dispersion slope compensation of standard single mode fiber (G.652, ITU-T standard) .
  • DCF dispersion compensation fiber
  • WDM transmission technology has developed rapidly, expanding the working wavelength band and increasing the wavelength diversity. Develop rapidly.
  • the long-haul fiber optic cable constructed based on G.652 fiber has the smallest dispersion at 1310nm wavelength, but the attenuation is large, and it has the lowest attenuation (about 0.20dB/km:) in the 1550nm band. Therefore, people are eager to use the 1550nm wavelength window.
  • the successful development and practical application of an erbium doped fiber amplifier (EDFA) operating in the 1550 nm band further eliminates the limitations of attenuation on the communication system, making the 1550 nm band the preferred window for high-capacity, long-haul optical systems.
  • EDFA erbium doped fiber amplifier
  • the current commercial single-mode fiber and its DCF have the following dispersion characteristics:
  • the dispersion coefficient of the non-dispersion-shifted single-mode fiber (G.652C/D, ITU-T standard) is about 17ps/nm-km, and the dispersion slope is about 0.058 ps/nm2-km, so the RDS of the required DCF is about 0.0036 nm-l.
  • dispersion compensation technology is widely used in the world to improve link dispersion.
  • DCF dispersion-compensating fiber
  • This technique is more than other dispersion compensation techniques such as fiber grating dispersion compensation technology and electronic dispersion compensation technology. Reliable, and the technology is more mature.
  • the DCF changes the transmission parameters of the optical signal in the optical fiber by adjusting the waveguide structure of the optical fiber, and the core of the optical fiber has a large refractive index to achieve a large negative dispersion value and a dispersion slope.
  • the DCF is made into a dispersion compensation module and is connected to the communication link.
  • the fusion loss of the DCF and the standard communication fiber becomes an important influence factor of the insertion loss. Therefore, the fusion performance of DCF is a key parameter.
  • the practical DCF not only requires suitable optical performance and transmission performance, but also requires excellent welding performance, that is, the welding loss is low and the welding process is efficient and stable. Splice performance is a major factor affecting DCF cost and performance. The lower the splice loss, the better the performance of the module; the faster the welding procedure, the higher the efficiency, and the lower the welding cost.
  • the mode field diameter of the DCF is approximately 5 ⁇ m, while the mode field of a standard communication fiber is approximately 10.5 ⁇ m.
  • This mode field difference causes the optical power to be introduced into the small mode field from the large mode field. Easy to leak.
  • Prior art involves adoption
  • the complex fusion process causes the DCF core near the end interface of the fused fiber to diffuse, and the mode field distribution of the nearby DCF becomes a conical transition region.
  • the "chimney effect" of the region is beneficial to reduce the light caused by the mode field mismatch. Power loss thus reduces splice losses.
  • the prior art also relates to a method of connecting a DCF and a standard single mode fiber using "bridge fiber" as a bridge.
  • Bridge fiber is a type of special fiber that is similar in structure to DCF and has a layer doping concentration lower than DCF. Both ends of the bridge fiber are respectively fused with DCF and standard single-mode fiber, and different welding processes are adopted at both ends.
  • the end of the bridge fiber and the DCF connection has a low welding power and a short welding time to reduce the element diffusion and mode mismatch in the core region; and the other end of the bridge fiber and the single mode fiber is connected to the other end with high welding power and long welding time, so that the fiber of the bridge fiber The core is diffused to achieve matching of the mode field.
  • U.S. Patent No. 6,603,914 describes a DCF composition and manufacturing method, but does not relate to the fusion method and the optical transmission performance of the DCF.
  • U.S. Patent 6,541,942 describes a method of using a bridge fiber to connect a DCF to a standard single mode fiber, which reduces the splice loss, but does not disclose the optical transmission performance of the corresponding DCF, and the process is complicated, time consuming, and splice efficiency Low, not suitable for use.
  • the Chinese patent does not cover the fusion method of DCF.
  • Weight percent The weight percent of an element in a sufficiently small area, expressed in wt%.
  • Relative refractive index difference ⁇ % Where ⁇ % is the relative refractive index difference of each layer of the core, ni is the refractive index of the ith layer of the fiber material, and ⁇ is the refractive index of the pure quartz glass.
  • the refractive index distribution of each layer is the refractive index value of the layer at each radial point, and unless otherwise stated, ⁇ % in the present invention is the relative refractive index of the largest absolute value in each core layer. difference.
  • the technical problem to be solved by the present invention is to provide a dispersion-compensating fiber having a high negative dispersion coefficient and a suitable negative dispersion slope in the C-band for the disadvantages of the prior art described above, and the dispersion-compensating fiber has excellent welding performance. Enables fast fusion and low splice loss while maintaining excellent optical and transmission performance.
  • the technical solution adopted by the present invention to solve the above-mentioned problems is as follows: comprising a core and a cladding, the core being a core layer having a positive relative refractive index difference mainly doped with ruthenium, characterized in that it is coated on the core
  • the outer layer is a depressed cladding mainly doped with fluorine, an annular cladding mainly doped with antimony, a matching cladding mainly doped with fluorine, and a mechanical cladding of the outermost layer; a relative refractive index difference between the core and each cladding
  • the range is: ⁇ 1% is 1.55% ⁇ 2.20%, ⁇ 2% is -0.55% ⁇ -0.30%, 8.3% is 0.40% ⁇ 0.65%, ⁇ 4% is -0.20% ⁇ -0.01%, ⁇ 5% is 0
  • the radius of the core and the cladding ranges from R1 to R5: R1 is 1.4 ⁇ 1.7 ⁇ , R2 is 4.1 ⁇ 4.8 ⁇ , R3 is 6.7 ⁇
  • the core has a ruthenium weight percentage of 15 wt% to 35 wt%
  • the depressed cladding has a fluorine weight percentage of 1 wt% to 5 wt%
  • the annular clad has a niobium weight percentage of 4 wt% to 10 wt%, matching the cladding layer.
  • the fluorine weight percentage is from 0.3% by weight to 3% by weight.
  • the weight percentage of chlorine of the core and each cladding layer is from 0 wt% to 1.0 wt%.
  • the weight percentage of the core of the core is 20% by weight to 30% by weight
  • the weight percentage of fluorine of the depressed cladding layer is
  • the weight percentage of the annular cladding is 5wt% ⁇ 8wt%, and the weight percentage of fluorine matching the cladding is 0.7wt%.
  • the weight percentage of chlorine of the core is 0.1 wt% to 0.4 wt%
  • the weight percentage of chlorine of the depressed cladding layer is 0.1 wt% to 0.3 wt%
  • the weight percentage of chlorine of the annular cladding layer is 0.1 wt% to 0.3.
  • the wt%, the weight percentage of chlorine in the matching cladding layer is 0.1 wt% to 0.4 wt%
  • the weight percentage of chlorine in the mechanical cladding layer is 0.1 wt% to 0.7 wt%.
  • the dispersion coefficient in the wavelength range of 1530nm to 1565nm is -120ps/nm-km ⁇ -260ps/nm-km, the dispersion slope is negative, and the attenuation coefficient is less than or equal to 0.45dB/km;
  • the dispersion slope RDS is 0.0033 nm-1 to 0.0040 nm-1, and the polarization mode dispersion (PMD) is less than or equal to 0.25 ps/kml/2.
  • the relative refractive index difference and geometric relationship between the core and the depressed cladding are the main influence factors of DCF optics and transmission performance, and the toroidal cladding regulates the mode field diameter and cutoff wavelength of the DCF.
  • the depressed cladding layer, the annular cladding layer and the matching cladding layer also have the function of adjusting the welding loss: the fusion splicer generates a large amount of heat instantaneously through the arc discharge during the welding operation, so that the fluorine in the cladding layer is diffused under high temperature conditions.
  • the outermost mechanical cladding has a higher viscosity and carries a greater proportion of drawing tension during drawing, which effectively prevents the stress caused by the drawing tension from being concentrated in the core portion and causing an increase in fiber attenuation.
  • the DCF of the present invention deposits a quartz-doped glass layer on the inner wall of a high-purity quartz liner by a PCVD process; then, the deposited hollow quartz tube is melted into a solid quartz glass core rod; and finally, it is laminated into a quartz glass sleeve and combined into The preform is drawn into a fiber optic cable on a draw tower.
  • the DCF fiber provided by the present invention is welded using a Fujikura FSM-60S fusion splicer, and the main welding parameters are shown in Table 1.
  • the sum of the fusion loss at the two contacts of the DCF dispersion compensation module and the SMF pigtail is less than or equal to 2 dB, and the time for welding one contact is less than or equal to 90 seconds.
  • the present invention provides a core layer and a cladding doped DCF.
  • the depressed cladding layer, the annular cladding layer and the matching cladding layer are subjected to the discharge of the fusion machine, and the element diffusion near the contact causes a refractive index change to form a conical transition mode.
  • Field area which can reduce the mode field mismatch and reduce the splice loss.
  • the DCF of the present invention has a suitable element structure distribution, so that the core layer and the cladding layer are matched in viscosity, so that the DCF and the SMF can be quickly welded, and the welding time of one contact is shortened to 90 seconds or even 60 seconds.
  • the welding efficiency is greatly improved and the welding cost is reduced.
  • the invention not only has excellent welding performance, but also has a low attenuation coefficient and a PMD coefficient, and has a C-band.
  • a larger absolute negative dispersion coefficient and an appropriate relative dispersion slope it is easy to upgrade an optical communication system designed to operate in a C-band window, and the optical fiber is more easily inserted into a communication link to meet the requirements of high-speed, high-capacity system transmission.
  • the device based on this DCF is particularly suitable for effectively compensating for high speed DWDM systems based on G.652 fiber.
  • Figure 1 is a schematic illustration of the relative refractive index difference distribution of one embodiment of the present invention.
  • Fig. 2 is a schematic view showing the weight percentages of cerium, fluorine and chlorine in one embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional structural view of a relative refractive index difference according to an embodiment of the present invention.
  • Fig. 4 is a DCF dispersion curve of four embodiments of the present invention.
  • the optical fibers in the present invention each have a composition similar to that of Fig. 1, and optical fibers having different performance parameters are obtained by changing the weight percentage of the elements of the layer.
  • a core rod of an optical fiber preform is fabricated using a PCVD process, and a layer of pure quartz glass or a layer of quartz glass doped with antimony or fluorine and chlorine is deposited on the inner wall of the high purity quartz glass based tube. Then, the deposited quartz glass tube is melted into a solid quartz glass core rod. The mandrel is then placed in a quartz glass sleeve and combined into a preform, which is drawn into a DCF by a high temperature furnace on a drawing tower.
  • the constituent structural parameters and optical transmission parameters of the various embodiments are as shown in the attached table of the examples:
  • Example 1 2 3 4 ⁇ wt (%) (core) 24.81 16.94 32.25 26.13 fluorine wt (%) (sag cladding) 2.75 3.66 1.23 2.45 ⁇ wt (%) (annular cladding) 6.77 4.12 9.56 7.05 fluorine wt ( %) (matching cladding) 0.98 2.76 0.35 0.71 chlorine wt (%) (core) 0.22 0.98 0.11 0.35 chlorine wt (%) (sag cladding) 0.10 0.27 0.55 0.25 chlorine wt (%) (annular cladding) 0.15 0.28 0.22 0.41 chlorine wt (%) (matching cladding) 0.11 0.36 0.44 0.25

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Glass Compositions (AREA)

Abstract

一种色散补偿光纤,包括有纤芯和包层,纤芯为主要惨有锗的相对折射率差为正值的芯层,包覆在纤芯外的包层依次为主要掺有氟的下陷包层、主要掺有锗的环形包层、主要掺有氟的匹配包层和最外层的机械包层。纤芯和各包层的相对折射率差范围依次为:Δ1%为1.55%〜2.20%,Δ2%为-0.55%〜-0.30%,Δ3%为0.40%〜0.65%,Δ4%为-0.20%〜-0.01%,Δ5%为0;纤芯和各包层的半径范围从R1到R5依次为:R1为1.4〜1.7μm,R2为4.1〜4.8μm,R3为6.7〜8.8μm,R4为10〜17μm,R5为38〜63μm。该色散补偿光纤在C波段具有高的负色散系数和适宜的负色散斜率,具有优良的熔接性能,能够实现快速熔接和低熔接损耗。

Description

一种色散补偿光纤
技术领域
本发明涉及一种工作在 C 波段 (1530nm〜1565nm波段) 光通信窗口的色散补偿光纤 (DCF), 该光纤可用于标准单模光纤 (G.652, ITU-T标准) 的色散和色散斜率补偿。
背景技术
随着标准单模光纤的 DWDM系统的普遍采用并且向着高速率、 长距离、 无中继和密集 通道的方向发展, 波分复用传输技术得到快速发展, 扩展工作波长带和增加波长多样性将快 速地发展。
基于 G.652 光纤构筑的长途光缆在 1310nm波长有最小的色散, 但衰减较大, 而它在 1550nm波段有最低的衰减 (约 0.20dB/km:)。 所以人们迫切希望利用 1550nm这一波长窗口。 工作在 1550nm波段的掺铒光纤放大器 (EDFA)的成功开发和实用化, 进一步消除了衰减对通 信系统的限制, 这使得 1550nm波段成了大容量、长距离光波系统的优选窗口。在 1550nm波 段, 目前商用单模光纤及其 DCF具有如下色散特性: 非色散位移单模光纤(G.652C/D, ITU-T 标准)的色散系数大约是 17ps/nm-km,色散斜率大约为 0.058 ps/nm2-km,所以其要求的 DCF 的 RDS大约为 0.0036nm-l。
为了解决 1310nm零色散标准单模光纤通信网络在 1550nm波段的升级及扩容问题,国际 上广泛采用色散补偿技术来改善链路色散。目前大量商用化的是运用色散补偿光纤 (DCF)技术 对通信链路光纤进行的色散和色散斜率同时进行补偿, 这种技术比其他色散补偿技术如光纤 光栅色散补偿技术和电子色散补偿技术更为可靠, 而且技术更成熟。
DCF通过调整光纤的波导结构来改变光信号在光纤中的传输参数, 并且使光纤的纤芯具 有较大的折射率, 来实现较大的负色散值和色散斜率。
在实际应用中, DCF被制成色散补偿模块接入通信链路中,这时 DCF与标准通信光纤的 熔接损耗成为插入损耗的重要影响因数。 因此 DCF的熔接性能是一个关键参数, 具有实用性 的 DCF不但要求具备适宜的光学性能和传输性能, 还要求具备优良的熔接性能, 即熔接损耗 低且熔接工艺高效而稳定。 熔接性能成为影响 DCF成本和性能的主要因素。 熔接损耗越低, 模块的性能就优良; 熔接程序越快捷, 效率越高, 熔接成本越低。
在已公开的专利文献中, 已存在一些有关改进 DCF 熔接性能的产品和方法示例。 对 1550nm的光源, DCF的模场直径大约为 5μηι, 而标准通信光纤的模场约为 10.5μηι, 这种模 场的差别 (模场失配) 导致光功率从大模场导入小模场时容易产生泄漏。 现有技术涉及采用 复杂的熔接工艺使得熔接光纤端点界面附近的 DCF纤芯产生扩散, 并使附近的 DCF的模场 分布成为圆锥形的过渡区域, 该区域的"烟囱效应"有利于减少模场失配导致的光功率损失从 而降低了熔接损耗。
现有技术也涉及使用 "桥纤 "作为桥梁来连接 DCF和标准单模光纤的方法。桥纤是一类结构类 似于 DCF而各分层掺杂浓度低于 DCF的特种光纤。桥纤的两端分别与 DCF和标准单模光纤 相熔接, 且两端采用不同的熔接工艺。桥纤与 DCF连接的一端熔接功率低且熔接时间短以减 少芯区元素扩散和模场失配; 而桥纤与单模光纤连接的另一端熔接功率高且熔接时间长, 使 得桥纤的纤芯发生扩散以实现模场的匹配。
美国专利 6603914介绍了一种 DCF的组成结构及制造方法, 但未涉及熔接方法及 DCF 的光学传输性能。 美国专利 6543942描述了一种采用桥纤连接 DCF与标准单模光纤的方法, 该方法降低了熔接损耗, 但是未公开相应的 DCF的光学传输性能, 且该方法工艺复杂, 耗费 时间长, 熔接效率低, 不宜实用。 中国专利未涉及 DCF的熔接方法。
上述文献已经涉及各种改进 DCF与标准单模光纤熔接性能的方法及相应的 DCF产品, 但是未见报导既能改进熔接性能又具有优良光学传输性能的 DCF产品及其熔接方法。
本发明一些术语的定义
重量百分比: 元素在 一足够小的区域内的重量百分比, 用 wt%表示。 相对折射率差 Δί%:
Figure imgf000004_0001
, 其中 Δί%为纤芯各 分层相对折射率差, ni为第 i层光纤材料的折射率, ηθ为纯石英玻璃的折射率。 各分层的折 射率分布为该分层在各径向点处的折射率值, 除非另做说明, 本发明中 Δί%均为所述各纤芯 分层中的绝对值最大的相对折射率差。
半径: 用 Ri来表征 (i=l, 2, 3, 4, 5 ), 各分层的半径 Ri为从光纤的中心线到该分层 离中心线最远的点的距离。
RDS: 光纤在某一特征波长的相对色散斜率(RDS值)定义为该波长上的色散斜率(DS) 和色散 (D) 的比值: RDS=DS/D。 在 C波段通信窗口, 一般取 1550nm波长为中心波长, RDS1550=DS1550/D1550。
发明内容
本发明所要解决的技术问题在于针对上述现有技术存在的不足而提供一种在 C波段具有 高的负色散系数和适宜的负色散斜率的色散补偿光纤,该色散补偿光纤具有优良的熔接性能, 能够实现快速熔接和低熔接损耗, 并保持优良的光学和传输性能。 本发明为解决上述提出的问题所采用的技术方案为: 包括有纤芯和包层, 纤芯为主要掺 有锗的相对折射率差为正值的芯层, 其特征在于包覆在纤芯外的依次为主要掺有氟的下陷包 层、 主要掺有锗的环形包层、 主要掺有氟的匹配包层和最外层的机械包层; 纤芯和各包层的 相对折射率差范围依次为: Δ1%为 1.55%〜2.20%,八2%为-0.55%〜-0.30%,八3%为 0.40%〜0.65%, Δ4%为 -0.20%〜- 0.01%, Δ5%为 0; 纤芯和各包层的半径范围从 R1 到 R5 依次为: R1 为 1.4〜1.7μηι, R2为 4.1〜4.8μηι, R3为 6.7〜8.8μηι, R4为 10〜17μηι, R5为 38〜63μηι。
按上述方案, 所述纤芯的锗重量百分比为 15wt%〜35wt%, 下陷包层的氟重量百分比为 lwt%〜5wt%, 环形包层的锗重量百分比为 4wt%〜10wt%, 匹配包层的氟重量百分比为 0.3wt%〜3wt%。
按上述方案, 所述纤芯和各个包层的氯重量百分比为 0wt%〜1.0wt%。
按上述方案, 所述纤芯的锗重量百分比为 20wt%〜30wt%, 下陷包层的氟重量百分比为
2.0wt%~3.5wt%,环形包层的锗重量百分比为 5wt%〜8wt%,匹配包层的氟重量百分比为 0.7wt
%〜1.5wt%。
按上述方案, 所述纤芯的氯重量百分比为 0.1wt%〜0.4wt%, 下陷包层的氯重量百分比为 0.1wt%~0.3wt%, 环形包层的氯重量百分比为 0.1wt%〜0.3wt%, 匹配包层的氯重量百分比为 0.1wt%〜0.4wt%, 机械包层的氯重量百分比为 0.1wt%〜0.7wt%。
按上述方案, 在 1530nm 到 1565nm ( C 波段) 波长范围内的色散系数为 - 120ps/nm-km~-260ps/nm-km, 色散斜率为负值, 衰减系数小于或等于 0.45dB/km; 相对色散 斜率 RDS为 0.0033nm-l到 0.0040nm-l, 偏振模色散 (PMD) 小于或等于 0.25ps/kml/2。
纤芯和下陷包层的相对折射率差和几何关系是 DCF光学和传输性能的主要影响因数,环 形包层对 DCF的模场直径和截止波长起调节作用。下陷包层、环形包层和匹配包层还具有调 节熔接损耗的作用: 熔接机在熔接工作时通过电弧放电, 瞬间产生大量的热量, 使得包层分 层中的氟在高温条件下产生扩散, 从而引起熔接点附近的折射率变化, 使得附近的 DCF的模 场由原有的小模场转变为圆锥形的过渡模场区域, 该区域的"烟囱效应"有利于减少模场失配 导致的光功率损失从而降低了熔接损耗。 最外层的机械包层具有较高的粘度, 在拉丝时承载 较大比例的拉丝张力, 这样就可以有效地阻止拉丝张力所造成的应力集中在纤芯部分而引起 光纤衰减增加。
本发明的 DCF采用 PCVD工艺在高纯石英衬管内壁沉积掺杂石英的玻璃层;然后将沉积 后的空心石英管熔縮成实心的石英玻璃芯棒; 最后套入石英玻璃套管中组合成预制棒在拉丝 塔上拉制成光纤。 本发明提供的 DCF光纤使用藤仓 FSM-60S熔接机进行熔接, 主要熔接参数如表 1所示。
表 1 FSM-60S熔接机 DCF+SMF熔接参数
Figure imgf000006_0001
按上述方案, 所述的 DCF制成色散补偿模块与 SMF尾纤两个接点处的熔接损耗之和小 于或等于 2dB, 熔接一个接点耗费时间小于或等于 90秒。
本发明获得的有益效果为:
1 本发明提供了一种芯层和包层掺杂的 DCF, 下陷包层、 环形包层和匹配包层在熔接机 放电作用下, 接点附近元素扩散引起折射率变化, 形成圆锥形的过渡模场区域, 从而能够降 低模场失配, 减小熔接损耗。
2 本发明的 DCF具有适宜的元素结构分布,使得芯层和包层粘度匹配,实现 DCF与 SMF 能够快速熔接, 使一个接点的熔接时间縮短至 90秒甚至 60秒以内。大幅度提高了熔接效率, 降低了熔接成本。
3 本发明不仅具备优异的熔接性能, 而且具有低的衰减系数和 PMD系数, 在 C波段具 备较大绝对值负色散系数及适当的相对色散斜率, 易于使设计在 C波段窗口工作的光通信系 统升级, 光纤更容易插入通信链路以满足高速率、 大容量系统传输的要求。 基于该 DCF的器 件特别适于对基于 G.652光纤的高速 DWDM系统进行有效补偿。
附图说明
图 1是本发明一个实施例的相对折射率差分布示意图。
图 2是本发明一个实施例的锗、 氟、 氯元素重量百分比示意图。
图 3是本发明一个实施例的相对折射率差剖面结构示意图。
图 4是本发明的 4个实施例的 DCF色散曲线。
具体实施方式
本发明中的光纤均具有与图 1相似的组成结构, 通过改变分层的元素重量百分比得到不 同性能参数的光纤。 在各个实施例中, 采用 PCVD工艺制造光纤预制棒的芯棒, 在高纯石英 玻璃基管内壁沉积纯石英玻璃层或掺有锗或氟和氯的石英玻璃层。 然后, 将沉积后的石英玻 璃管熔縮成实心石英玻璃芯棒。 再将芯棒放入石英玻璃套管内组合成预制棒, 在拉丝塔上经 高温炉拉丝成为 DCF。 各实施例的组成结构参数及光学传输参数如实施例附表所示: 实施例附表
实施例 1 2 3 4 锗 wt(%) (纤芯) 24.81 16.94 32.25 26.13 氟 wt(%) (下陷包层) 2.75 3.66 1.23 2.45 锗 wt(%) (环形包层) 6.77 4.12 9.56 7.05 氟 wt(%) (匹配包层) 0.98 2.76 0.35 0.71 氯 wt(%) (纤芯) 0.22 0.98 0.11 0.35 氯 wt(%) (下陷包层) 0.10 0.27 0.55 0.25 氯 wt(%) (环形包层) 0.15 0.28 0.22 0.41 氯 wt(%) (匹配包层) 0.11 0.36 0.44 0.25
Δ1(%) 1.70 1.56 2.20 1.79
Δ2(%) -0.50 -0.55 -0.31 -0.42
Δ3(%) 0.47 0.41 0.64 0.45
Δ4(%) -0.11 -0.05 -0.13 -0.14
Rl m) 1.58 1.48 1.43 1.69
R2 ) 4.44 4.14 4.4 4.73
R3( m) 7.25 6.75 7.11 8.55
R4 m) 11.15 10.25 10.12 16.31
Ι 5(μηι) 59 40 38 62 色散系 l¾@1550nm (ps/nm-km) -207.50 -209.61 -197.90 -250.72
RDS1550 (nrn-1) 0.0038 0.0035 0.0034 0.0033 衰减 @1550nm 0.365 0.387 0.401 0.424 (dB/km)
PMD(1525〜1565nm) (ps/km1/2) 0.09 0.15 0.23 0.05 两端熔接损耗和 1.7 1.4 1.9 1.6 @1550 (dB)
接点熔接时间 (秒) 37 24 55 78

Claims

利 要 求 书
1、 一种色散补偿光纤, 包括有纤芯和包层, 纤芯为主要掺有锗的相对折射 率差为正值的芯层, 其特征在于包覆在纤芯外的依次为主要掺有氟的下陷包层、 主要掺有锗的环形包层、主要掺有氟的匹配包层和最外层的机械包层; 纤芯和各 包层的相对折射率差范围依次为: Δ1%为 1.55%〜2.20%, Δ2%为 -0.55%〜- 0.30%, Δ3%为 0.40%〜0.65%, Δ4%为 -0.20%〜- 0.01%, Δ5%为 0; 纤芯和各包层的半径范 围从 R1到 R5依次为: R1为 1.4〜1.7μηι, R2为 4.1〜4.8μηι, R3为 6.7〜8.8μηι, R4为 10〜17μηι, R5为 38〜63μηι。
2、 按权利要求 1所述的色散补偿光纤, 其特征在于所述纤芯的锗重量百分 比为 15wt%〜35wt%, 下陷包层的氟重量百分比为 lwt %〜5wt %, 环形包层的锗 重量百分比为 4wt%〜10wt%, 匹配包层的氟重量百分比为 0.3wt %〜3wt %。
3、 按权利要求 2所述的色散补偿光纤, 其特征在于所述纤芯的锗重量百分 比为 20wt%〜30wt%, 下陷包层的氟重量百分比为 2.0wt %〜3.5wt %, 环形包层的 锗重量百分比为 5wt%〜8wt%, 匹配包层的氟重量百分比为 0.7wt %〜1.5wt%。
4、 按权利要求 2所述的色散补偿光纤, 其特征在于所述纤芯和各个包层的 氯重量百分比为 0wt%〜1.0wt%。
5、 按权利要求 4所述的色散补偿光纤, 其特征在于所述纤芯的氯重量百分 比为 0.1wt%〜0.4wt%, 下陷包层的氯重量百分比为 0.1wt%〜0.3wt%, 环形包层的 氯重量百分比为 0.1wt%〜0.3wt%, 匹配包层的氯重量百分比为 0.1wt%〜0.4wt%, 机械包层的氯重量百分比为 0.1wt%〜0.7wt%。
6、按权利要求 1或 2所述的色散补偿光纤,其特征在于在 1530nm到 1565nm 波长范围内的色散系数为 -120ps/nm-km〜- 260ps/nm-km, 色散斜率为负值, 衰减 系数小于或等于 0.45dB/km; 相对色散斜率 RDS为 0.0033nm- 1到 0.0040nm-
7、 按权利要求 6所述的色散补偿光纤, 其特征在于偏振模色散小于或等于 0.25ps/km1/2
8、按权利要求 1所述的色散补偿光纤, 其特征在于所述的 DCF制成色散补 偿模块与 SMF尾纤两个接点处的熔接损耗之和小于或等于 2dB。
9、 按权利要求 1所述的色散补偿光纤, 其特征在于所述的 DCF与 SMF尾 纤熔接一个接点耗费时间小于或等于 90秒。
PCT/CN2012/072223 2011-07-25 2012-03-13 一种色散补偿光纤 WO2013013513A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137019061A KR101558257B1 (ko) 2011-07-25 2012-03-13 분산보상 광섬유
US14/009,324 US9140851B2 (en) 2011-07-25 2012-03-13 Dispersion compensation fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102083429A CN102243336B (zh) 2011-07-25 2011-07-25 一种色散补偿光纤
CN201110208342.9 2011-07-25

Publications (1)

Publication Number Publication Date
WO2013013513A1 true WO2013013513A1 (zh) 2013-01-31

Family

ID=44961489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072223 WO2013013513A1 (zh) 2011-07-25 2012-03-13 一种色散补偿光纤

Country Status (4)

Country Link
US (1) US9140851B2 (zh)
KR (1) KR101558257B1 (zh)
CN (1) CN102243336B (zh)
WO (1) WO2013013513A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243336B (zh) 2011-07-25 2013-06-05 长飞光纤光缆有限公司 一种色散补偿光纤
GB2526590A (en) * 2014-05-29 2015-12-02 Fibercore Ltd Optical fiber and method of producing an optical fiber
US9658394B2 (en) * 2014-06-24 2017-05-23 Corning Incorporated Low attenuation fiber with viscosity matched core and inner clad
CN104714273B (zh) * 2015-03-31 2019-04-16 长飞光纤光缆股份有限公司 低衰减少模光纤
WO2017048820A1 (en) * 2015-09-16 2017-03-23 Corning Incorporated Low-loss and low-bend-loss optical fiber
CN105866879B (zh) * 2016-06-14 2017-12-29 长飞光纤光缆股份有限公司 一种超低衰减大有效面积单模光纤
WO2018022413A1 (en) * 2016-07-29 2018-02-01 Corning Incorporated Single mode optical fiber with chlorine doped core and low bend loss
CN106468803A (zh) * 2016-08-30 2017-03-01 武汉长盈通光电技术有限公司 一种弯曲不敏感单模光纤
CN106371167A (zh) * 2016-11-26 2017-02-01 长飞光纤光缆股份有限公司 一种高带宽多模光纤
CN112147738B (zh) * 2020-10-19 2021-07-02 华中科技大学 可抑制受激布里渊散射效应的高拉曼增益光纤及制备方法
CN113866867A (zh) * 2021-09-02 2021-12-31 烽火通信科技股份有限公司 一种色散补偿光纤及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460868A (zh) * 2002-05-17 2003-12-10 株式会社藤仓 光纤以及光传输线路
CN1492246A (zh) * 2003-10-28 2004-04-28 �ӳɹ� 高性能色散补偿光纤及其制造方法
CN1609640A (zh) * 2004-11-19 2005-04-27 长飞光纤光缆有限公司 一种色散补偿光纤
CN101498811A (zh) * 2008-12-30 2009-08-05 长飞光纤光缆有限公司 一种高色散系数的色散补偿光纤
CN101718888A (zh) * 2009-11-06 2010-06-02 长飞光纤光缆有限公司 一种色散补偿光纤及其模块
US20100178504A1 (en) * 2009-01-09 2010-07-15 Xin Chen Bend Insensitive Optical Fibers with Low Refractive Index Glass Rings
CN102243336A (zh) * 2011-07-25 2011-11-16 长飞光纤光缆有限公司 一种色散补偿光纤

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762159B1 (en) * 1995-08-31 2003-10-22 Sumitomo Electric Industries, Ltd. Dispersion-compensating fiber and method of fabricating the same
WO1998004941A1 (en) * 1996-07-31 1998-02-05 Corning Incorporated Dispersion compensating single mode waveguide
EP1174741A4 (en) * 1999-11-04 2005-11-09 Sumitomo Electric Industries OPTICAL TRANSMISSION LINE
AU783168B2 (en) * 2000-06-23 2005-09-29 Sumitomo Electric Industries, Ltd. Optical fiber, optical transmission line and dispersion compensating module
JP2002072006A (ja) * 2000-08-28 2002-03-12 Sumitomo Electric Ind Ltd 光ファイバの接続方法
US6543942B1 (en) * 2000-09-21 2003-04-08 Fitel Usa Corp. Dispersion-compensating fiber system having a bridge fiber and methods for making same
JP4118912B2 (ja) 2001-04-03 2008-07-16 株式会社フジクラ 分散補償光ファイバの接続構造
JP2003114347A (ja) * 2001-07-30 2003-04-18 Furukawa Electric Co Ltd:The シングルモード光ファイバ、その製造方法および製造装置
US6937805B2 (en) * 2001-10-26 2005-08-30 Fujikura, Ltd. Dispersion compensating fiber and dispersion compensating fiber module
JP3833555B2 (ja) 2002-03-13 2006-10-11 株式会社フジクラ 分散補償光ファイバ及び分散補償光ファイバモジュール
FR2845486B1 (fr) * 2002-10-07 2005-01-28 Cit Alcatel Fibre optique a compensation de dispersion chromatique
US6985662B2 (en) * 2003-10-30 2006-01-10 Corning Incorporated Dispersion compensating fiber for moderate dispersion NZDSF and transmission system utilizing same
FR2887037B1 (fr) * 2005-06-14 2007-08-24 Draka Comteq France Fibre de compensation de la dispersion chromatique et de la pente de dispersion chromatique
US20070003198A1 (en) * 2005-06-29 2007-01-04 Lance Gibson Low loss optical fiber designs and methods for their manufacture
FR2891058B1 (fr) * 2005-09-20 2007-11-02 Draka Comteq France Fibre de composation de la dispersion chromatique et de la pente de dispersion cumulees.
US8107783B2 (en) * 2008-07-07 2012-01-31 Ofs Fitel, Llc Stretcher fiber and module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460868A (zh) * 2002-05-17 2003-12-10 株式会社藤仓 光纤以及光传输线路
CN1492246A (zh) * 2003-10-28 2004-04-28 �ӳɹ� 高性能色散补偿光纤及其制造方法
CN1609640A (zh) * 2004-11-19 2005-04-27 长飞光纤光缆有限公司 一种色散补偿光纤
CN101498811A (zh) * 2008-12-30 2009-08-05 长飞光纤光缆有限公司 一种高色散系数的色散补偿光纤
US20100178504A1 (en) * 2009-01-09 2010-07-15 Xin Chen Bend Insensitive Optical Fibers with Low Refractive Index Glass Rings
CN101718888A (zh) * 2009-11-06 2010-06-02 长飞光纤光缆有限公司 一种色散补偿光纤及其模块
CN102243336A (zh) * 2011-07-25 2011-11-16 长飞光纤光缆有限公司 一种色散补偿光纤

Also Published As

Publication number Publication date
CN102243336B (zh) 2013-06-05
US9140851B2 (en) 2015-09-22
KR20130117836A (ko) 2013-10-28
US20140369639A1 (en) 2014-12-18
CN102243336A (zh) 2011-11-16
KR101558257B1 (ko) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2013013513A1 (zh) 一种色散补偿光纤
JP6008575B2 (ja) シングルモード光ファイバ
JP5881213B2 (ja) シングルモード光ファイバ
CN103149630B (zh) 一种低衰减单模光纤
JP6298893B2 (ja) 損失低下を示す、台形コアを有するシングルモードファイバ
CN1230697C (zh) 光纤、光传输线和色散补偿组件
US20060198591A1 (en) Optical fiber, method for manufacturing same and optical transmission channel
KR20030085556A (ko) 라만을 이용한 전송용 분산조절 케이블
WO2020119439A1 (zh) 一种低损耗大有效面积单模光纤及其制备方法
WO2005015303A1 (ja) 非線形光ファイバ及びこの光ファイバを用いた光信号処理装置
AU764994B2 (en) Optical fiber for extended wavelength band
CN1514262A (zh) 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途
JP2005055795A (ja) 偏波保持光ファイバ及びこの偏波保持光ファイバを用いた光波長変換器
JP3798227B2 (ja) 分散補償光ファイバの接続構造
JP2001051148A (ja) 光ファイバの接続方法
US11067744B2 (en) Low bend loss optical fiber with step index core
JP2004126141A (ja) 光ファイバとその製造方法
JP3726745B2 (ja) 光ファイバの接続方法
JP2003066259A (ja) 波長多重伝送用低非線形光ファイバ
KR20010060739A (ko) 분산제어광섬유 및 그의 제조 방법
CN110244402B (zh) 一种超低损耗大有效面积单模光纤设计及其制造方法
US8792762B2 (en) Low loss aluminum doped optical fiber for UV applications
JP2002214467A (ja) 光ファイバの融着接続方法
JP3960867B2 (ja) 光ファイバおよびそれを用いた光信号処理装置
Tsuchida et al. Study on dispersion managed transmission lines with LMA holey fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137019061

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14009324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817094

Country of ref document: EP

Kind code of ref document: A1