WO2013008614A1 - 蓄電池管理ユニット - Google Patents

蓄電池管理ユニット Download PDF

Info

Publication number
WO2013008614A1
WO2013008614A1 PCT/JP2012/066226 JP2012066226W WO2013008614A1 WO 2013008614 A1 WO2013008614 A1 WO 2013008614A1 JP 2012066226 W JP2012066226 W JP 2012066226W WO 2013008614 A1 WO2013008614 A1 WO 2013008614A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
storage battery
unit
control unit
Prior art date
Application number
PCT/JP2012/066226
Other languages
English (en)
French (fr)
Inventor
岩▲崎▼ 利哉
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013008614A1 publication Critical patent/WO2013008614A1/ja
Priority to US13/956,113 priority Critical patent/US20130314053A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage battery management unit that can monitor a voltage between terminals of a storage battery, and more particularly to a storage battery management unit that can monitor a voltage between terminals of a storage battery when the storage battery is charged.
  • the storage battery is a rechargeable secondary battery, but in order to utilize its power storage capacity as much as possible, it is preferable to charge the battery to the charge limit and discharge the charged power to the maximum.
  • a charging method that fully charges in as short a time as possible is preferable.
  • Patent Document 1 states that as a method of charging a storage battery, a method of performing constant current charging according to a current setting value and switching to constant voltage charging when the battery voltage reaches the voltage setting value is used. .
  • An object of the present invention is to provide a storage battery management unit that can make the timing for switching from constant current charging to constant voltage charging appropriate.
  • the storage battery management unit includes a voltage acquisition unit that acquires a voltage between terminals of a storage battery that is being subjected to constant current charging under the control of the charge control unit, and a threshold value that is determined by a predetermined voltage between the terminals of the storage battery.
  • a transmission processing unit that transmits a switching command for urging the charging control unit to switch from constant current charging to constant voltage charging when the switching voltage is reached.
  • the timing for switching from constant current charging to constant voltage charging can be made appropriate.
  • a lithium ion battery is demonstrated as a storage battery
  • storage batteries other than this may be sufficient.
  • a nickel hydrogen battery, a nickel cadmium battery, or the like may be used.
  • the assembled battery may be configured by connecting a plurality of storage batteries in parallel, or may be configured by connecting a plurality of storage batteries in series and parallel.
  • the voltage between the terminals of the assembled battery and the voltage between the terminals of the storage battery described below are examples for explanation, and can be appropriately changed according to the specifications of the assembled battery.
  • FIG. 1 is a diagram illustrating a configuration of a charging system 10 in which the storage battery management unit 20 is used.
  • the charging system 10 includes an assembled battery 14 in which a plurality of storage batteries 12 are connected in series, a switch unit 16, a charge control unit 18, and a storage battery management unit 20.
  • the charging system 10 is a system for appropriately fully charging the assembled battery 14 using the inter-terminal voltage V B of the assembled battery 14 acquired by the storage battery management unit 20.
  • the assembled battery 14 is configured by connecting a plurality of storage batteries 12 in series in order to obtain a desired inter-terminal voltage V B and charging capacity.
  • the storage battery 12 is also a unit cell in which a plurality of lithium ion unit storage batteries each having a terminal voltage of several volts, which are called unit cells, are connected in series and parallel.
  • the inter-terminal voltage of each storage battery 12 is set to several tens of volts
  • the inter-terminal voltage V B of the assembled battery 14 is set to about 200V to 300V.
  • the assembled battery 14 is constituted by a plurality of storage batteries in order to obtain an appropriate inter-terminal voltage and charging capacity, and may be substantially regarded as one large-capacity storage battery.
  • the switch unit 16 is disposed in series between the assembled battery 14 and the charge control unit 18 and has a function of connecting or blocking between the assembled battery 14 and the charge control unit 18.
  • a switching element for large current can be used. Specifically, a power MOSFET or IGBT can be used. A relay, a circuit breaker, etc. can also be used.
  • the switch unit 16 is basically turned on and connected during charging, and is turned off and shut off when it is necessary to prevent overcharging. The operation of the switch unit 16 is controlled by the storage battery management unit 20.
  • the charging control unit 18 has a function of controlling the charging current supplied to the assembled battery 14 via the connected switch unit 16 so that the assembled battery 14 can be fully charged in a short time. Specifically, at the beginning of charging, a predetermined constant current is supplied to the assembled battery 14 so as to perform constant current charging, and processing for switching to constant voltage charging is performed when the battery is nearly fully charged.
  • FIG. 2 shows two diagrams with the horizontal axis taken at a common time t.
  • the vertical axis represents the charging current I
  • the vertical axis represents the inter-terminal voltage V of the assembled battery 14.
  • the battery is charged with a small current value until time t 1 . Charging during this period is to avoid suddenly executing a constant current charging with a large current when the assembled battery 14 is in an empty charging in which the initial state is hardly charged.
  • the inter-terminal voltage V A on the charge control unit 18 side of the switch unit 16 is a voltage that can be easily acquired by the charge control unit 18. Therefore, it is convenient for the charging control unit 18 to use the inter-terminal voltage V A and compare it with V 0 and switch to constant voltage charging when V A reaches V 0 . However, in this case, switching to constant voltage charging is performed before the actual inter-terminal voltage V B of the assembled battery 14 reaches V 0 . Therefore, the time t 3 when the assembled battery 14 becomes fully charged is delayed as compared with the case where the charging is switched to the constant voltage charging at the timing when V B reaches V 0 . This is the problem to be solved by the present invention.
  • battery management unit 20 includes a voltage obtaining unit 22 obtains the inter-terminal voltage V B, when the acquired inter-terminal voltage V B, which was the threshold switching voltage predetermined, to the charge control unit 18
  • a transmission processing unit 24 that transmits a switching command that prompts switching from constant current charging to constant voltage charging is provided.
  • the threshold switching voltage it is possible to use a voltage that is lowered by a predetermined margin voltage from a charging upper limit voltage that is a limit at which the assembled battery 14 is not overcharged. In order to match the description of FIG. 2, the description will be continued below assuming that the threshold switching voltage is V 0 .
  • the storage battery management unit 20 includes a charge stop processing unit 26.
  • the charging stop processing unit 26 has a function of turning off the switch unit 16 when a confirmation signal indicating that the switching command has been received is not received from the charging control unit 18 within a predetermined period from the transmission of the switching command. For example, even if the storage battery management unit 20 transmits a switching command, the assembled battery 14 may be overcharged if the charging control unit 18 delays switching to constant voltage charging. In such a case, the switch unit 16 can be turned off by the function of the charge stop processing unit 26.
  • the storage battery management unit 20 includes a calibration voltage transmission processing unit 28.
  • the calibration voltage transmission processing unit 28 acquires the inter-terminal voltage V B , generates a calibration voltage for calibrating the voltage difference from the inter-terminal voltage V A that can be acquired by the charging control unit 18, and charges It has a function of transmitting to the control unit 18.
  • R does not change so much with respect to current, voltage, temperature, etc.
  • the voltage V B between terminals at the start of charging can be used as the calibration voltage.
  • the charge control part 18 can calculate the calibrated inter-terminal voltage immediately after the start of charging.
  • the charging control unit 18 can appropriately switch to constant voltage charging using the calibrated inter-terminal voltage. For example, when the switch command is not transmitted by mistake, when the transmission of the switch command is delayed due to other interrupt processing or the like, or processing after receiving the switch command due to the internal processing of the charging control unit 18 Even when it takes a long time, the charging control unit 18 can appropriately switch to constant voltage charging.
  • Such a storage battery management unit 20 can be composed of a computer with appropriate performance. Specifically, it is composed of an embedded microprocessor having an appropriate processing speed and an appropriate storage capacity. The appropriate processing speed and the appropriate storage capacity are, for example, lower than the processing speed of the charging control unit 18 constituted by a computer and can be a small storage capacity. Moreover, each function of the storage battery management unit 20 can be realized by executing software, and specifically, can be realized by executing a charging program. A part of such functions may be realized by hardware.
  • FIGS. 3 and 4 are flowcharts showing the charging procedure.
  • FIG. 3 is a flowchart when the function of the calibration voltage transmission processing unit 28 is not used among the functions of the storage battery management unit 20, and
  • FIG. 4 is a flowchart when the function of the calibration voltage transmission processing unit 28 is used together. It is.
  • the inter-terminal voltage V B is acquired (S12). This step is executed by the function of the voltage acquisition unit 22 of the storage battery management unit 20. At this time, the constant current charging control described with reference to FIG.
  • the inter-terminal voltage V B is acquired as follows. That is, in the assembled battery 14, the voltage between the terminals of each storage battery 12 is detected by a voltage detector (not shown) and transmitted to the storage battery management unit 20.
  • the storage battery management unit 20 calculates and acquires the inter-terminal voltage V B as the assembled battery 14 by adding the transmitted inter-terminal voltages of the respective storage batteries 12.
  • the storage battery management unit 20 acquires the voltage between the terminals of the storage battery 12 constituting the assembled battery 14, acquires the temperature of the storage battery 12 detected by a temperature detector (not shown), and detects current (not shown). A management function for acquiring the current flowing through the assembled battery 14 detected by the battery. The acquired voltage, temperature, and current are transmitted to a monitoring unit (not shown) for use in charge / discharge control of the assembled battery 14.
  • a command receipt confirmation signal is received from the charging control unit 18 within a predetermined period (S18).
  • the length of the predetermined period is set as long as the assembled battery 14 is not overcharged even if constant current charging continues. If the determination in S18 is affirmative, the charging control unit 18 switches from constant current charging control to constant voltage charging control, and thus a series of processing ends.
  • FIG. 4 is a flowchart for explaining a situation when the function of the calibration voltage transmission processing unit 28 of the storage battery management unit 20 is used in addition to the procedure of FIG.
  • a process indicated by a solid frame is a process executed by the storage battery management unit 20 in the same process as in FIG. 3.
  • the process surrounded by the broken line frame is a process executed by the charging control unit 18.
  • the calibration V B is acquired (S22).
  • the acquisition of the calibration V B is to acquire the voltage V B between the terminals of the assembled battery 14 in the same manner as the acquisition of V B in S12, but the acquired V B is used for comparison with V 0 .
  • the charging controller 18 is used to calibrate the voltage V A between the terminals. Therefore, the step S22 needs to be executed before the inter-terminal voltage V B reaches V 0 . Preferably, it is performed immediately after S10.
  • the acquired calibration V B is transmitted to the charge control unit 18 (S24). This step is executed by the function of the calibration voltage transmission processing unit 28 of the storage battery management unit 20. And the process which the storage battery management unit 20 performs is complete
  • the inter-terminal voltage V A is acquired by the charge control unit 18 (S28).
  • V B configured and calculated is a voltage between terminals of the assembled battery 14 estimated from V A.
  • the timing at which the inter-terminal voltage V B of the assembled battery 14 reaches V 0 can be estimated on the charge control unit 18 side.
  • the acquired V A is compared with (V 0 + V c ) (S30). This corresponds to V B being compared with V 0 in S14 described with reference to FIG. Therefore, the process returns to S28 until V A reaches (V 0 + V C ), and acquisition of the inter-terminal voltage V A continues. In the meantime, the charging control unit 18 continues the constant current charging control. When V A reaches (V 0 + V C ), it is time to switch to constant voltage charging.
  • the storage battery management unit 20 is configured such that the voltage between the terminals of the storage battery that is being charged with constant current by the control of the charging control unit 18 is the threshold switching voltage that is determined in advance. When this happens, a switching command is transmitted to the charging control unit 18 to urge switching from constant current charging to constant voltage charging.
  • the storage battery management unit according to the present invention can be used for charge control of a storage battery.
  • 10 charging system 12 storage battery, 14 assembled battery, 16 switch unit, 18 charge control unit, 20 storage battery management unit, 22 voltage acquisition unit, 24 transmission processing unit, 26 charge stop processing unit, 28 calibration voltage transmission processing unit.

Abstract

 充電システム(10)は、複数の蓄電池(12)で構成される組電池(14)と、スイッチ部(16)と、充電制御部(18)と、蓄電池管理ユニット(20)を含んで構成される。蓄電池管理ユニット(20)は、充電制御部(18)の制御によって定電流充電が行なわれている組電池(14)の端子間電圧(VB)を取得する電圧取得部(22)と、取得された組電池(14)の端子間電圧(VB)が、予め定めた閾値切替電圧(V0)となったときに、充電制御部(18)に対し定電流充電から定電圧充電に切替えることを促す切替コマンドを送信する送信処理部(24)を備える。

Description

蓄電池管理ユニット
 本発明は、蓄電池の端子間電圧を監視できる蓄電池管理ユニットに係り、特に、蓄電池の充電の際に蓄電池の端子間電圧を監視できる蓄電池管理ユニットに関する。
 蓄電池は充放電可能な2次電池であるが、その蓄電能力をできるだけ利用するには、充電限界まで充電して、その最大限まで充電された電力を放電して用いることが好ましい。充電限界まで充電することを満充電とすると、できるだけ短時間で満充電する充電方法が好ましい。
 例えば、特許文献1には、蓄電池の充電方法として、電流設定値に従って定電流充電し、電池電圧が電圧設定値に到達した時点で、定電圧充電に切替える方法が用いられることが述べられている。
特開2002-152984号公報
 特許文献1に述べられている方法を用いると、最初に適当な定電流充電を行い、満充電に近い閾値切替電圧まで充電された時点で、その閾値切替電圧に電圧を保持する定電圧充電に切替える。切替は、蓄電池に供給される充電電流を制御する充電制御部で行われるので、閾値切替電圧は、充電制御部側の蓄電池の電圧と比較するものとすることが便利である。
 ところが、例えば、充電制御部と蓄電池との間にスイッチ等の素子が配置される場合を考えると、そのスイッチ等の素子において、無視できない電圧降下が生じることがある。すなわち、そのスイッチのオン抵抗が小さい抵抗値であっても、定電流充電の際の電流が大電流であると、スイッチ等の素子に大電流が流れることで、無視できない電圧降下が生じる。したがって、充電制御部側のスイッチ等の素子の電圧を用いて、これを閾値切替電圧と比較して定電圧充電に切替えるものとすると、蓄電池の端子間電圧は閾値切替電圧にまだ余裕がある状態の切替タイミングとなり、満充電にする時間が余計にかかることになる。
 本発明の目的は、定電流充電から定電圧充電に切替えるタイミングを適切なものとできる蓄電池管理ユニットを提供することである。
 本発明に係る蓄電池管理ユニットは、充電制御部の制御によって定電流充電が行なわれている蓄電池の端子間電圧を取得する電圧取得部と、取得された蓄電池の端子間電圧が、予め定めた閾値切替電圧となったときに、充電制御部に対し定電流充電から定電圧充電に切替えることを促す切替コマンドを送信する送信処理部と、を備えることを特徴とする。
 本発明によれば、定電流充電から定電圧充電に切替えるタイミングを適切なものとできる。
本発明に係る実施の形態における蓄電池管理ユニットが用いられる充電システムの構成を説明する図である。 定電流充電から定電圧充電に切替える様子を説明する図である。 本発明に係る実施の形態における蓄電池管理ユニットを用いるときの充電手順を示すフローチャートである。 図3とは別の充電手順を示すフローチャートである。
 以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、蓄電池としてリチウムイオン電池を説明するが、これ以外の蓄電池であってもよい。例えばニッケル水素電池、ニッケルカドミウム電池等であってもよい。以下では、適当な端子間電圧、適当な充電容量を得るために、複数の蓄電池を直列接続した組電池を充電するものとして説明するが、勿論1つの蓄電池を充電するものとしてもよい。また、組電池として、複数の蓄電池を並列接続して構成するものとしてもよく、複数の蓄電池を直並列接続して構成するものとしてもよい。以下で述べる組電池の端子間電圧、蓄電池の端子間電圧は説明のための例示であって、組電池の仕様に応じ、適宜変更が可能である。
 以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
 図1は、蓄電池管理ユニット20が用いられる充電システム10の構成を示す図である。充電システム10は、蓄電池12を複数直列に接続した組電池14と、スイッチ部16と、充電制御部18と、蓄電池管理ユニット20を含んで構成される。充電システム10は、蓄電池管理ユニット20が取得する組電池14の端子間電圧VBを用いて、組電池14を適切に満充電するためのシステムである。
 組電池14は、所望の端子間電圧VBと充電容量を得るために、複数の蓄電池12を直列に接続して構成される。ここでは、蓄電池12も、単位セルと呼ばれる端子間電圧が数Vのリチウムイオン単位蓄電池を、複数個直並列に接続したものを用いている。これによって、各蓄電池12の端子間電圧を数10Vとし、組電池14の端子間電圧VBを200Vから300V程度としている。なお、組電池14は、適当な端子間電圧と充電容量を得るために複数の蓄電池で構成したものであり、実質的には、これを1つの大容量の蓄電池と考えてもよい。
 スイッチ部16は、組電池14と充電制御部18の間に直列に配置され、組電池14と充電制御部18との間を接続または遮断する機能を有する。かかるスイッチ部16としては、大電流用のスイッチング素子を用いることができる。具体的には、パワーMOSFETやIGBTを用いることができる。リレー、遮断器等を用いることもできる。スイッチ部16は、充電の間、基本的にはオンして接続状態とされ、過充電を防止する必要のあるとき等にオフして遮断状態とされる。スイッチ部16の動作は、蓄電池管理ユニット20によって制御される。
 充電制御部18は、組電池14を短時間で確実に満充電できるように、接続状態のスイッチ部16を介して、組電池14に供給される充電電流を制御する機能を有する。具体的には、充電の最初は、定電流充電を行うように、予め定めた一定電流を組電池14に供給し、満充電に近くなったところで定電圧充電に切替える処理を行う。
 図2は、定電流充電から定電圧充電に切替える様子を示す説明図である。説明のための図であるので、ここでは、図1におけるスイッチ部16の内部抵抗=0で、組電池14と充電制御部18が直接的に接続されているものとする。
 図2では、横軸を共通の時間tにとった2つの図が示されている。1つの図は、縦軸が充電電流Iで、もう1つの図は、縦軸が組電池14の端子間電圧Vである。ここで、時間t1までは小さな電流値で充電する。この期間の充電は、組電池14の初期状態がほとんど充電されていない空充電のときに、いきなり大電流の定電流充電を実行することを避けるためのものである。
 時間t1において端子間電圧Vが適当な電圧に上昇すると、そこで、予め定めた定電流I0で、定電流充電が開始する。定電流I0の大きさは、短時間で満充電近くまで到達するように、かなりの大電流に設定される。時間t1以降の定電流充電では、充電電流はI0の一定値に維持される。したがって、時間経過とともに、組電池14は充電が進行し、端子間電圧Vが次第に上昇する。
 時間t2において、端子間電圧Vが予め定めた電圧V0に到達すると、それ以後、端子間電圧が電圧V0に維持される。したがって、電流Iは定電流I0から次第に低下してゼロに近づく。この期間が定電圧充電である。時間t3で、電流Iがほぼゼロとなると、この時点を満充電とし、組電池14に対する充電が終了する。
 実際にはスイッチ部16が充電制御部18と組電池14との間に直列接続されるので、充電電流Iによって、スイッチ部16の両端子間に電圧降下が発生する。そこで、定電圧充電に切替える電圧V0を、スイッチ部16の組電池14側の端子間電圧VBと比較するか、スイッチ部16の充電制御部18側の端子間電圧VAと比較するかが問題となる。スイッチ部16のオンのときのスイッチ部16のところにおける内部抵抗、配線抵抗等を合わせた抵抗をRとし、充電電流をIとすると、VA=VB+IRとなり、電圧降下量であるIRの分だけ、VAの方がVBより大きな値となる。
 ここで、スイッチ部16の充電制御部18側の端子間電圧VAは、充電制御部18にとって容易に取得することができる電圧である。そこで端子間電圧VAを用いて、これをV0と比較して、VAがV0に到達したタイミングで定電圧充電に切替えることが、充電制御部18にとって便利である。しかし、この場合、組電池14の実際の端子間電圧VBがV0に到達する手前で定電圧充電に切り替わることになる。したがって、VBがV0に到達したタイミングで定電圧充電に切替える場合と比較すると、組電池14が満充電となる時間t3が遅くなる。これが、本発明によって解決しようとする課題である。
 そこで、蓄電池管理ユニット20は、端子間電圧VBを取得する電圧取得部22と、取得された端子間電圧VBが、予め定めた閾値切替電圧となったときに、充電制御部18に対し定電流充電から定電圧充電に切替えることを促す切替コマンドを送信する送信処理部24を備える。閾値切替電圧としては、組電池14が過充電とならない限度である充電上限電圧から予め定めた余裕電圧の分だけ低くした電圧を用いることができる。図2の説明と合わせるため、以下では、閾値切替電圧をV0として説明を続ける。
 また、蓄電池管理ユニット20は、充電停止処理部26を備える。充電停止処理部26は、切替コマンドの送信から予め定めた所定期間内に、切替コマンドを受け取った旨の確認信号を充電制御部18から受信しないときに、スイッチ部16をオフさせる機能を有する。例えば、蓄電池管理ユニット20が切替コマンドを送信しても、充電制御部18が定電圧充電に切替えることが遅れると、組電池14が過充電となる恐れがある。そのような場合に、充電停止処理部26の機能によってスイッチ部16をオフさせることができる。
 また、蓄電池管理ユニット20は、較正用電圧送信処理部28を有する。較正用電圧送信処理部28は、端子間電圧VBを取得し、充電制御部18が取得できる端子間電圧VAとの間の電圧差の較正を行うための較正用電圧を生成し、充電制御部18に送信する機能を有する。端子間電圧VAを端子間電圧VBに較正するには、上記の関係式から、VB=VA-IRとすればよい。Rは電流、電圧、温度等に関しあまり変化しないときは、較正用電圧は、充電開始のときの端子間電圧VBを用いることができる。このようにすることで、充電制御部18は、充電開始の直後から、較正された端子間電圧を算出することができる。
 そこで、充電制御部18は、較正された端子間電圧を用いて適切に定電圧充電に切替えることができる。例えば、切替コマンドが誤って送信されない場合、切替コマンドの送信が他の割込処理等で遅れた場合、あるいは、充電制御部18の内部の処理の関係で、切替コマンドを受信してからの処理に時間がかかった場合においても、充電制御部18は適切に定電圧充電に切替えることができるようになる。
 かかる蓄電池管理ユニット20は、適当な性能のコンピュータで構成できる。具体的には、適当な処理速度と適当な記憶容量を有する組込型のマイクロプロセッサで構成される。適当な処理速度、適当な記憶容量とは、例えば、やはりコンピュータで構成される充電制御部18の処理速度よりも低速で、小規模の記憶容量とすることができる。また、蓄電池管理ユニット20の各機能は、ソフトウェアを実行することで実現でき、具体的には、充電プログラムを実行することで実現できる。かかる機能の一部をハードウェアで実現してもよい。
 上記構成の作用、特に、蓄電池管理ユニット20の各機能について、図3、図4を用いてさらに説明する。図3、図4は、充電手順を示すフローチャートである。図3は、蓄電池管理ユニット20の機能のうち、較正用電圧送信処理部28の機能を用いない場合についてのフローチャート、図4は、較正用電圧送信処理部28の機能を併用する場合についてのフローチャートである。
 図3において、充電が開始(S10)すると、端子間電圧VBの取得が行われる(S12)。この工程は、蓄電池管理ユニット20の電圧取得部22の機能によって実行される。このとき、充電制御部18では、図2で説明した定電流充電の制御が実行されている。
 端子間電圧VBの取得は、次のように行われる。すなわち、組電池14において、各蓄電池12の端子間電圧が図示されていない電圧検出器にて検出され、蓄電池管理ユニット20に伝送される。蓄電池管理ユニット20は、伝送されてきた各蓄電池12の端子間電圧を加算して、組電池14としての端子間電圧VBを算出して取得する。
 なお、蓄電池管理ユニット20は、組電池14を構成する蓄電池12の端子間電圧を取得する他に、図示されていない温度検出器で検出される蓄電池12の温度の取得、図示されていない電流検出器によって検出される組電池14を流れる電流を取得する管理機能を有する。取得された電圧、温度、電流は、組電池14の充放電制御に役立てるために、図示されていない監視部に送信される。
 図3において、端子間電圧VBが取得されると、閾値切替電圧V0と比較される(S14)。VBがV0となるまではS12に戻り、端子間電圧VBの取得が継続する。その間、充電制御部18では、定電流充電の制御が継続される。そして、VBがV0に到達すると、定電圧充電に切替えるタイミングであることを示すCVコマンドが充電制御部18に送信される(S16)。したがって、CVコマンドは、充電制御部18に対し、定電流充電から定電圧充電に切替える処理を行わせることを内容とする切替コマンドである。この工程は、蓄電池管理ユニット20の送信処理部24の機能によって実行される。
 次に、CVコマンド送信後、予め定めた所定期間内に、充電制御部18からコマンド受領確認信号を受信したか否かが判断される(S18)。所定期間の長さは、定電流充電が継続しても組電池14が過充電とならない限度で設定される。S18の判断が肯定されるときは、充電制御部18において、定電流充電制御から定電圧充電制御に切替えられるので、一連の処理がこれで終了する。
 所定期間内に充電制御部18からのコマンド受領確認信号が受信されずにS18の判断が否定されると、組電池14の過充電を防止するため、スイッチ部16に対しオフ指令が出される(S20)。これにより、充電制御部18と組電池14との間が遮断され、充電停止処理とされる。この工程は、蓄電池管理ユニット20の充電停止処理部26の機能によって実行される。
 図4は、図3の手順に加え、蓄電池管理ユニット20の較正用電圧送信処理部28の機能を併用するときの様子を説明するフローチャートである。図4において、実線枠で示される工程は、図3と同様な工程で、蓄電池管理ユニット20によって実行される工程である。一方、破線枠で囲まれた工程は、充電制御部18によって実行される工程である。
 ここでは、充電開始(S10)の後で、較正用VBの取得が行われる(S22)。較正用VBの取得は、S12のVB取得と同様に組電池14の端子間電圧VBを取得することであるが、取得されたVBはV0と比較されるために用いられるのではなく、充電制御部18において、端子間電圧VAを較正するために用いられる。したがって、S22の工程は、端子間電圧VBがV0に到達する前に実行される必要がある。好ましくは、S10の直後に行われることがよい。
 S22の後、取得された較正用VBが充電制御部18に送信される(S24)。この工程は、蓄電池管理ユニット20の較正用電圧送信処理部28の機能によって実行される。そして、蓄電池管理ユニット20が行う処理は、このS24で終了する。これ以後は、較正用VBを受信した充電制御部18によって処理が行われる。
 充電制御部18では、較正用VBを受信したタイミングにおける端子間電圧を取得して、これを較正用VAとする。そして、較正用VBと較正用VAとを用いて、較正用電圧差VCを算出する(S26)。ここで、較正用電圧差VCは、VC=(較正用VA-較正用VB)で算出される。
 VCが求められると、充電制御部18による端子間電圧VAの取得が行われる(S28)。取得されたVAは、VCを用いて、VB=VA-VCの関係式で較正することができる。構成されて算出されるVBは、VAから推定される組電池14の端子間電圧である。この推定される組電池14の端子間電圧を用いて、充電制御部18の側で、組電池14の端子間電圧VBがV0に到達するタイミングを推定できる。
 具体的には、取得したVAと、(V0+Vc)との比較が行われる(S30)。これは、図3で説明したS14において、VBがV0と比較されたことに対応する。したがって、VAが(V0+VC)となるまではS28に戻り、端子間電圧VAの取得が継続する。その間、充電制御部18では、定電流充電の制御が継続される。そして、VAが(V0+VC)に到達すると、定電圧充電に切替えるタイミングとなる。
 そこで、蓄電池管理ユニット20から既にCVコマンドを受領済みかが判断される(S32)。既にCVコマンドを受領済みであるときは、図3で説明したS18に進み、以後は、蓄電池管理ユニット20によって実行されるS18,S20の工程に進む。
 S32の判断が否定されると、既に定電圧充電に切替えるタイミングに到達しているので、CVコマンドを受領していなくても、定電流充電の制御から定電圧充電の制御に切替が行われる(S34)。
 このように、蓄電池管理ユニット20の較正用電圧送信処理部28の機能を併用することで、何らかの理由でCVコマンドの受領が遅れても、定電圧充電の制御への切替を適切に実行することができる。すなわち、以上説明した本発明の実施の形態によれば、蓄電池管理ユニット20は、充電制御部18の制御によって定電流充電が行われている蓄電池の端子間電圧が、予め定めた閾値切替電圧となったときに、充電制御部18に対し定電流充電から定電圧充電に切替えることを促す切替コマンドを送信する。これによって、仮に、充電制御部18と蓄電池との間にスイッチ部16等の素子が設けられても、そのスイッチ等の素子における電圧降下の影響をなくして、定電流充電から定電圧充電に切替えるタイミングを適切なものとできる。
 本発明に係る蓄電池管理ユニットは、蓄電池の充電制御に用いることができる。
 10 充電システム、12 蓄電池、14 組電池、16 スイッチ部、18 充電制御部、20 蓄電池管理ユニット、22 電圧取得部、24 送信処理部、26 充電停止処理部、28 較正用電圧送信処理部。

Claims (3)

  1.  充電制御部の制御によって定電流充電が行なわれている蓄電池の端子間電圧を取得する電圧取得部と、
     取得された蓄電池の端子間電圧が、予め定めた閾値切替電圧となったときに、充電制御部に対し定電流充電から定電圧充電に切替えることを促す切替コマンドを送信する送信処理部と、
     を備えることを特徴とする蓄電池管理ユニット。
  2.  請求項1に記載の蓄電池管理ユニットにおいて、
     蓄電池の端子間電圧を取得し、充電制御部と蓄電池との間に設けられるスイッチ部の充電制御部側において取得される前記蓄電池の端子間電圧に前記スイッチ部における電圧降下量が加算された蓄電池電圧の較正を行うための較正用電圧を生成し、充電制御部に送信する較正用電圧送信処理部をさらに備えることを特徴とする蓄電池管理ユニット。
  3.  請求項2に記載の蓄電池管理ユニットにおいて、
     切替コマンドの送信から予め定めた所定期間内に、切替コマンドを受け取った旨の確認信号を充電制御部から受信しないときは、前記スイッチ部をオフさせる充電停止処理部をさらに備えることを特徴とする蓄電池管理ユニット。
PCT/JP2012/066226 2011-07-12 2012-06-26 蓄電池管理ユニット WO2013008614A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/956,113 US20130314053A1 (en) 2011-07-12 2013-07-31 Battery management unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011153919 2011-07-12
JP2011-153919 2011-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/956,113 Continuation US20130314053A1 (en) 2011-07-12 2013-07-31 Battery management unit

Publications (1)

Publication Number Publication Date
WO2013008614A1 true WO2013008614A1 (ja) 2013-01-17

Family

ID=47505911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066226 WO2013008614A1 (ja) 2011-07-12 2012-06-26 蓄電池管理ユニット

Country Status (3)

Country Link
US (1) US20130314053A1 (ja)
JP (1) JPWO2013008614A1 (ja)
WO (1) WO2013008614A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220079A1 (de) * 2014-10-02 2016-04-07 Robert Bosch Gmbh Verfahren zur Kalibrierung eines Sensors eines Batteriemanagementsystems
US10985590B2 (en) 2016-11-01 2021-04-20 Samsung Electronics Co., Ltd. Method and apparatus for charging battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235173A (ja) * 2002-02-13 2003-08-22 Nichicon Corp 電気二重層キャパシタの充電方法
JP2004328916A (ja) * 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd 充電装置
JP2008206259A (ja) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd 充電システム、充電装置、及び電池パック

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147729A (ja) * 1993-11-24 1995-06-06 Toyota Motor Corp バッテリの充電制御装置
JP3739820B2 (ja) * 1994-09-22 2006-01-25 松下電器産業株式会社 充電装置
US5994878A (en) * 1997-09-30 1999-11-30 Chartec Laboratories A/S Method and apparatus for charging a rechargeable battery
US20080218127A1 (en) * 2007-03-07 2008-09-11 O2Micro Inc. Battery management systems with controllable adapter output
JP2008261896A (ja) * 2007-04-10 2008-10-30 Sony Corp 撮像装置、ストロボ装置、および充電制御方法
JP4966822B2 (ja) * 2007-10-30 2012-07-04 パナソニック株式会社 充電システム、及び電池パック
JP5492464B2 (ja) * 2009-06-11 2014-05-14 ソニーモバイルコミュニケーションズ株式会社 電池パック、充電装置および移動機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235173A (ja) * 2002-02-13 2003-08-22 Nichicon Corp 電気二重層キャパシタの充電方法
JP2004328916A (ja) * 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd 充電装置
JP2008206259A (ja) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd 充電システム、充電装置、及び電池パック

Also Published As

Publication number Publication date
US20130314053A1 (en) 2013-11-28
JPWO2013008614A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5782803B2 (ja) 電池の充電装置および電池の充電方法
KR102227320B1 (ko) 축전 소자 보호 장치, 축전 장치, 스타터 배터리 및 축전 소자 보호 방법
JP4660523B2 (ja) 電池セルの表面温度で充電制御する充電システム
US8344700B2 (en) Charging method and charger
CN106797126B (zh) 二次电池充电系统和充电方法
KR101696160B1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
JP2007325458A (ja) 車両用組電池均等化システム
WO2014046234A1 (ja) 充電制御装置及び充電時間演算方法
US9337684B2 (en) Battery charging device and method
JP4724047B2 (ja) 充電システム、電池パックおよびその充電方法
US20090184685A1 (en) Battery pack and method of charging the same
US20100237832A1 (en) Charging method and charging system
US9847663B2 (en) Secondary-battery charging system and method and battery pack
JP2011004509A5 (ja)
JP6145712B2 (ja) 二次電池の充電システム及び方法並びに電池パック
US20140159664A1 (en) Method of manufacturing battery pack and battery pack
JP2018026923A (ja) 蓄電装置および蓄電装置の充電制御方法
US20110025272A1 (en) Charging method, charging device, and battery pack
JP2009225632A (ja) 充電制御回路、電池パック、及び充電システム
CN106685012B (zh) 锂电池充电控制系统及其工作方法
US11050267B2 (en) Power supply system
WO2013008614A1 (ja) 蓄電池管理ユニット
JP5165405B2 (ja) 充電制御回路、電池パック、及び充電システム
WO2013008396A1 (ja) 電池パック、充電制御システムおよび充電方法
WO2013008397A1 (ja) 電池パック、充電制御システムおよび充電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811225

Country of ref document: EP

Kind code of ref document: A1