WO2013008566A1 - 自動車用駆動システム - Google Patents

自動車用駆動システム Download PDF

Info

Publication number
WO2013008566A1
WO2013008566A1 PCT/JP2012/064803 JP2012064803W WO2013008566A1 WO 2013008566 A1 WO2013008566 A1 WO 2013008566A1 JP 2012064803 W JP2012064803 W JP 2012064803W WO 2013008566 A1 WO2013008566 A1 WO 2013008566A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output
way clutch
continuously variable
variable transmission
Prior art date
Application number
PCT/JP2012/064803
Other languages
English (en)
French (fr)
Inventor
庸浩 小林
光宏 岩垂
智史 小堂
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2013523865A priority Critical patent/JP5747081B2/ja
Publication of WO2013008566A1 publication Critical patent/WO2013008566A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H29/00Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action
    • F16H29/02Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts
    • F16H29/04Gearings for conveying rotary motion with intermittently-driving members, e.g. with freewheel action between one of the shafts and an oscillating or reciprocating intermediate member, not rotating with either of the shafts in which the transmission ratio is changed by adjustment of a crank, an eccentric, a wobble-plate, or a cam, on one of the shafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a hybrid vehicle drive system provided with an engine (mainly an internal combustion engine) and two electric motors as a drive source for traveling.
  • an engine mainly an internal combustion engine
  • two electric motors as a drive source for traveling.
  • Patent Document 1 As a conventional vehicle drive system of this type, as disclosed in Patent Document 1, an engine, a transmission, and a motor generator are combined, and a drive shaft and a driven shaft of the transmission are provided on the drive shaft. And the one-way clutch provided on the driven shaft to introduce the engine output to the transmission drive shaft, and the motor generator via the clutch to the transmission input side or the one-way clutch output side.
  • a hybrid drive system that can be selectively connected to each other, or can be connected simultaneously to both the input side of the transmission and the output side of the one-way clutch.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to make it possible to perform smooth traveling without fluctuations in torque transmitted to drive wheels when switching from EV traveling to engine traveling.
  • the object is to provide a drive system for an automobile.
  • an automobile drive system includes: An engine that generates rotational power (for example, ENG in an embodiment described later); A continuously variable transmission mechanism (for example, transmission TM in an embodiment described later) for shifting and outputting the rotational power generated by the engine; An input member (for example, an input member 122 in an embodiment described later), an output member (for example, an output member 121 in an embodiment described later), an input member, and an output member are locked to each other.
  • An engine that generates rotational power for example, ENG in an embodiment described later
  • a continuously variable transmission mechanism for example, transmission TM in an embodiment described later
  • An engaging member for example, a roller 123 in an embodiment described later
  • the rotational speed in the positive direction of the input member that receives rotational power from the continuously variable transmission mechanism is the output member.
  • the input member and the output member are in a locked state so that the rotational power input to the input member is transmitted to the output member (for example, implementation described later)
  • a rotated drive member for example, a driven member in an embodiment described later
  • a rotated drive member for example, a driven member in an embodiment described later
  • a drive wheel for example, a drive wheel 2 in an embodiment described later
  • a rotary drive member 11 A first electric motor (for example, a first motor generator MG1 in an embodiment described later) disposed between the engine and the continuously variable transmission mechanism; A second electric motor (for example, a second motor generator MG2 in an embodiment described later) connected to the rotated drive member; It is characterized by providing.
  • a first electric motor for example, a first motor generator MG1 in an embodiment described later
  • a second electric motor for example, a second motor generator MG2 in an embodiment described later
  • the invention of claim 2 is the configuration of claim 1,
  • a clutch mechanism (for example, a clutch mechanism CL in an embodiment described later) capable of transmitting and interrupting power is provided between the engine and the first electric motor.
  • the invention of claim 3 is the configuration of claim 1 or claim 2,
  • the continuously variable transmission mechanism is An input shaft (for example, an input shaft 101 in an embodiment described later) that rotates around an input center axis (for example, an input center axis O1 in an embodiment described later) by receiving rotational power;
  • the first fulcrum (for example, described later) that is provided at equal intervals in the circumferential direction around the input center axis and that can change the amount of eccentricity relative to the input center axis (for example, the amount of eccentricity r1 in an embodiment described later).
  • a plurality of eccentric disks having the first fulcrum O3 in each of the embodiments and rotating together with the input shaft around the input center axis while maintaining the amount of eccentricity.
  • Disk 104 An output member (for example, an output member 121 in an embodiment to be described later) that rotates around an output center axis (for example, an output center axis O2 in an embodiment to be described later) separated from the input center axis, and power in the rotational direction from the outside And an engaging member (for example, an input member 122 in an embodiment described later) and an engaging member (for example, an input member and an output member that lock or unlock each other) And a roller 123) in an embodiment described later, and when the rotational speed in the positive direction of the input member exceeds the rotational speed in the positive direction of the output member, the rotational power input to the input member is output as the output power.
  • a one-way clutch (e.g., in an embodiment described later) And kicking one-way clutch 120), A second fulcrum provided with one end rotatably connected to the outer periphery of each eccentric disk around the first fulcrum, and the other end provided at a position separated from the output center axis on the input member of the one-way clutch.
  • the second fulcrum O4 in the embodiment described later is rotatably connected to the input member so that the rotational motion applied from the input shaft to the eccentric disk is applied to the input member of the one-way clutch.
  • a plurality of connecting members e.g., connecting members 130 in the embodiments described later
  • An actuator that changes the swing angle of the swing motion transmitted from the eccentric disk to the input member of the one-way clutch by adjusting the amount of eccentricity of the first fulcrum with respect to the input center axis (for example, an embodiment described later)
  • a gear ratio for changing a gear ratio when rotational power input to the input shaft is transmitted as rotational power to the output member of the one-way clutch via the eccentric disk and the connecting member.
  • a variable mechanism for example, a gear ratio variable mechanism 112 in an embodiment described later
  • And is configured as a continuously variable transmission mechanism of a four-bar link mechanism type in which the eccentric amount can be set to zero so that the gear ratio can be set to infinity.
  • the first electric motor is coupled to an input shaft of the continuously variable transmission mechanism;
  • a one-way clutch for example, a one-way clutch 120 in an embodiment described later
  • a one-way clutch is also used.
  • engine running using the driving force of the engine EV running using the driving force of the first electric motor or / and the second electric motor, the driving force of the engine and the first electric drive.
  • Parallel traveling using the driving force of the motor or / and the second electric motor can be arbitrarily selected and executed.
  • the first electric motor is operated while continuously selecting the highest efficiency point by adjusting the gear ratio of the continuously variable transmission mechanism. can do.
  • the engine is started without shock by the first electric motor by setting the gear ratio of the continuously variable transmission mechanism. be able to.
  • the engine and the first electric motor can be disconnected from the drive wheel side by setting the transmission ratio of the continuously variable transmission mechanism so that the input side rotational speed of the one-way clutch is smaller than the output side rotational speed.
  • the engine can be started so that torque fluctuation is not transmitted to the drive wheel side, and smooth running can be realized.
  • the action of the one-way clutch the operation of switching from the state of running with the driving force of the second electric motor to the state of running with the driving force of the first electric motor or / and engine, or vice versa, It is possible to smoothly perform the operation of switching from the state of traveling with the driving force of the first electric motor and / or engine to the state of traveling with the driving force of the second electric motor.
  • the clutch mechanism is disengaged so that the engine does not drag, and the stepless speed change mechanism is used to provide the most output power regardless of the rotational speed on the drive wheel side.
  • the first electric motor can be operated with high efficiency, and energy loss can be reduced.
  • the one-way clutch which is a component in the continuously variable transmission mechanism of the four-bar crank mechanism type is provided between the output portion of the continuously variable transmission mechanism and the driven member. Since it also serves as a one-way clutch, the number of one-way clutches can be reduced and the configuration can be simplified.
  • FIG. 5B is a diagram showing a state in which the gear ratio i is set to “small” with “large”, and FIG.
  • 5B is a diagram showing a state in which the eccentricity r1 is set to “medium” and the gear ratio i is set to “medium”.
  • ) Is a diagram showing a state in which the eccentricity r1 is set to “small” and the transmission ratio i is set to “large”, and
  • (d) is a state in which the eccentricity r1 is set to “zero” and the transmission ratio i is set to “infinity ( ⁇ )”. It is a figure which shows the state set to.
  • FIG. 7 is an explanatory diagram of the latter half of the speed change principle of the speed change mechanism in the same speed change mechanism, wherein the input member 122 of the one-way clutch 120 swings when the speed change ratio i is changed by changing the eccentric amount r1 of the eccentric disk.
  • FIG. 6A is a diagram showing a change in the angle ⁇ 2, and (a) shows a state in which the swing angle ⁇ 2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”.
  • FIG. 6A is a diagram showing a change in the angle ⁇ 2, and (a) shows a state in which the swing angle ⁇ 2 of the input member 122 becomes “large” by setting the eccentricity r1 to “large” and the transmission ratio i to “small”.
  • 5B is a diagram showing a state in which the swing angle ⁇ 2 of the input member 122 is “medium” by setting the eccentricity r1 to “medium” and the gear ratio i to “medium”; ) Is a diagram showing a state where the swing angle ⁇ 2 of the input member 122 is “small” by setting the eccentricity r1 to “small” and the transmission ratio i to “large”. It is explanatory drawing of the driving force transmission principle of the said infinite and continuously variable transmission mechanism comprised as a four-bar link mechanism.
  • FIG. 6 is a diagram for explaining the principle of output extraction when power is transmitted from an input side (input shaft or eccentric disk) to an output side (output member of a one-way clutch) by a plurality of connecting members in the transmission mechanism. .
  • FIG. 5B is a characteristic diagram showing a motor efficiency map in the case of the present embodiment with a step transmission mechanism, and FIG. 5B shows a constant transmission ratio without an infinite / stepless transmission mechanism downstream of the first motor generator. It is a characteristic view which shows the motor efficiency map in the case of the comparative example with a gear.
  • FIG. 1 is a skeleton diagram of an automobile drive system according to the embodiment
  • FIG. 2 is a cross-sectional view showing a specific configuration of an infinite and continuously variable transmission mechanism that is a main part of the drive system
  • FIG. 3 is an infinite and continuously variable transmission. It is the sectional side view which looked at the one part structure of the mechanism from the axial direction.
  • this automobile drive system 1 is provided on the downstream side of an engine (internal combustion engine) ENG that generates rotational power and the engine ENG, and continuously changes the rotational power generated by the engine ENG.
  • a transmission (continuously variable transmission mechanism) TM a first motor generator (first electric motor) MG1 disposed between the engine ENG and the transmission TM, and an output part of the transmission TM.
  • One-way clutch OWC that transmits only power from the side to the drive wheel 2 side, a rotated drive member 11 that receives the output rotation transmitted through the one-way clutch OWC and transmits it to the drive wheel 2, and the rotated And a second motor generator (second electric motor) MG2 connected to the drive member 11.
  • the vehicle drive system 1 is provided between the engine ENG and the first motor generator MG1, and is capable of transmitting / cutting power between the engine ENG and the first motor generator MG1.
  • a flywheel FW provided between the engine ENG and the clutch mechanism CL, and a battery (not shown) capable of exchanging electric power between the first motor generator MG1 and / or the second motor generator MG2.
  • a control means (not shown) for controlling a running pattern by controlling various elements.
  • the one-way clutch OWC is disposed between an input member (clutch outer) 122, an output member (clutch inner) 121, and the input member 122 and the output member 121.
  • the rotational speed in the positive direction (in the direction of the arrow RD1) of the input member 122 that receives each rotational power from the transmission TM exceeds the rotational speed in the positive direction of the output member 121, the input member 122 and the output member 121 are mutually connected. By being locked, the rotational power input to the input member 122 is transmitted to the output member 121.
  • the one-way clutch OWC is disposed adjacent to the differential device 10, and the output member 121 of the one-way clutch OWC is connected to the rotated drive member 11.
  • the driven member 11 is configured to include a differential case of the differential device 10, and the rotational power transmitted to the output member 121 of the one-way clutch OWC is transmitted via the differential device 10 and the left and right axle shafts 13L and 13R. , Transmitted to the left and right drive wheels 2.
  • a differential case (rotary drive member 11) of the differential device 10 is provided with a differential pinion and a side gear (not shown). Dynamic rotation.
  • the second motor generator MG2 and the rotation driven member 11 are provided on the drive gear 15 and the rotation driven member 11 attached to the rotor shaft (output shaft) S2 of the second motor generator MG2.
  • the driven gear 12 By being engaged with the driven gear 12, it is connected so that power can be transmitted.
  • the second motor generator MG2 functions as a motor
  • the driving force is transmitted from the second motor generator MG2 to the driven member 11 to be rotated.
  • the second motor generator MG2 is caused to function as a generator, power is input from the driven member 11 to the second motor generator MG2, and mechanical energy is converted into electrical energy.
  • a regenerative braking force acts on the driven member 11 from the second motor generator MG2.
  • power transmission between the second motor generator MG2 and the driven member 11 may be performed by a planetary gear mechanism instead of the reduction gear mechanism including the drive gear 15 and the driven gear 12.
  • the rotor shaft S1 of the first motor generator MG1 is connected to the input shaft 101 of the transmission TM, and is connected to the output shaft S of the engine ENG via the flywheel FW and the clutch mechanism CL, and the output of the engine ENG.
  • Mutual transmission of power is performed between the shaft S and the input shaft 101 of the transmission TM.
  • the driving force is transmitted from the first motor generator MG1 to the input shaft 101 of the transmission TM and the output shaft S of the engine ENG via the clutch mechanism CL. Is done.
  • first motor generator MG1 functions as a generator, power is transmitted from output shaft S of engine ENG to first motor generator MG1.
  • the rotational power generated by the engine ENG and the first motor generator MG1 is input to the one-way clutch OWC via the transmission TM and is rotated via the one-way clutch OWC. It is input to the drive member 11 and transmitted from the differential device 10 to the drive wheel 2.
  • the rotational power generated by the second motor generator MG ⁇ b> 2 is input to the driven member 11 via the gears 15 and 12 and transmitted from the differential device 10 to the driving wheel 2.
  • the transmission TM used in the drive system 1 will be described.
  • the transmission TM is constituted by a continuously variable transmission mechanism.
  • I can be changed steplessly, and the infinite and continuously variable transmission mechanism BD can set the maximum value of the transmission ratio to infinity ( ⁇ ).
  • the infinite / continuously variable transmission mechanism BD has an input shaft 101 that rotates around the input center axis O 1 by receiving rotational power from the engine ENG, A plurality of eccentric disks 104 that rotate integrally, the same number of connecting members 130 as the eccentric disks 104 for connecting the input side and the output side, and a one-way clutch 120 provided on the output side are provided.
  • the plurality of eccentric disks 104 are each formed in a circular shape centered on the first fulcrum O3.
  • the first fulcrum O3 is provided at equal intervals in the circumferential direction of the input shaft 101.
  • Each of the first fulcrums O3 can change the amount of eccentricity r1 with respect to the input center axis O1, and while maintaining the amount of eccentricity r1, Is set to rotate together with the input shaft 101.
  • the plurality of eccentric disks 104 are provided to rotate eccentrically around the input center axis O1 as the input shaft 101 rotates while maintaining the eccentricity r1.
  • the eccentric disk 104 is composed of an outer peripheral disk 105 and an inner peripheral disk 108 formed integrally with the input shaft 101.
  • the inner circumferential disk 108 is formed as a thick disk whose center is deviated by a certain eccentric distance with respect to the input center axis O1 that is the center axis of the input shaft 101.
  • the outer peripheral side disk 105 is formed as a thick disk centered on the first fulcrum O3, and has a first circular hole 106 centered at a position off the center (first fulcrum O3). Yes.
  • the outer periphery of the inner peripheral disk 108 is fitted to the inner periphery of the first circular hole 106 so as to be rotatable.
  • the inner circumferential disc 108 is provided with a second circular hole 109 centered on the input center axis O1 and having a part in the circumferential direction opened to the outer circumference of the inner circumferential disc 108.
  • a pinion 110 is rotatably accommodated inside the two circular holes 109.
  • the teeth of the pinion 110 are meshed with an internal gear 107 formed on the inner periphery of the first circular hole 106 of the outer peripheral disk 105 through the opening on the outer periphery of the second circular hole 109.
  • the ratio of the number of teeth of the pinion 110 and the number of teeth of the internal gear 107 is 1: 2.
  • the pinion 110 is provided so as to rotate coaxially with the input center axis O1, which is the center axis of the input shaft 101. That is, the rotation center of the pinion 110 and the input center axis O1 that is the center axis of the input shaft 101 coincide with each other.
  • the pinion 110 is rotated inside the second circular hole 109 by an actuator 180 configured by a DC motor and a speed reduction mechanism. Normally, the pinion 110 is rotated in synchronization with the rotation of the input shaft 101, and the pinion 110 is given a rotational speed that is higher or lower than the rotational speed of the input shaft 101 with reference to the synchronous rotational speed. 110 is rotated relative to the input shaft 101.
  • a reduction ratio is applied to the rotation difference.
  • a speed reduction mechanism for example, a planetary gear
  • the relative angle between the input shaft 101 and the pinion 110 changes by the amount.
  • the internal gear 107 with which the teeth of the pinion 110 are engaged that is, the outer peripheral disk 105 rotates relative to the inner peripheral disk 108, and thereby the center ( The distance between the input center axis O1) and the center of the outer peripheral disk 105 (first fulcrum O3) (that is, the eccentric amount r1 of the eccentric disk 104) changes.
  • the rotation of the pinion 110 is set so that the center of the outer peripheral disc 105 (first fulcrum O3) can be matched with the center of the pinion 110 (input center axis O1), and both the centers match.
  • the eccentricity r1 of the eccentric disk 104 can be set to “zero”.
  • the one-way clutch 120 also has an output member (clutch inner) 121 that rotates around an output center axis O2 that is distant from the input center axis O1, and an output center axis O2 that receives power from the outside in the rotational direction.
  • the one-way clutch 120 is input to the input member 122 when the rotational speed of the input member 122 in the positive direction (for example, the direction indicated by the arrow RD1 in FIG. 3) exceeds the rotational speed of the output member 121 in the positive direction.
  • the rotational power thus transmitted is transmitted to the output member 121, whereby the swinging motion of the input member 122 can be converted into the rotational motion of the output member 121.
  • the output member 121 of the one-way clutch 120 is configured as a member that is integrally continuous in the axial direction.
  • the input member 122 is divided into a plurality of portions in the axial direction, and is eccentric.
  • the number of disks 104 and connecting members 130 are arranged so as to be able to swing independently in the axial direction.
  • the roller 123 is inserted between the input member 122 and the output member 121 for each input member 122.
  • a protruding portion 124 is provided at one circumferential position on each ring-shaped input member 122, and a second fulcrum O4 spaced from the output center axis O2 is provided on the protruding portion 124.
  • the pin 125 is arrange
  • the connecting member 130 has a ring portion 131 on one end side, and the inner periphery of the circular opening 133 of the ring portion 131 is rotatably fitted to the outer periphery of the eccentric disk 104 via a bearing 140. Accordingly, one end of the connecting member 130 is rotatably connected to the outer periphery of the eccentric disk 104 in this way, and the other end of the connecting member 130 is the second fulcrum O4 provided on the input member 122 of the one-way clutch 120.
  • a four-bar linkage mechanism having four nodes of the input center axis O1, the first fulcrum O3, the output center axis O2, and the second fulcrum O4 as pivot points is configured. Then, the rotational motion given from the input shaft 101 to the eccentric disk 104 is transmitted to the input member 122 of the one-way clutch 120 as the swing motion of the input member 122, and the swing motion of the input member 122 is the output member. 121 is converted into a rotational motion.
  • the eccentric amount r1 of the eccentric disk 104 can be changed by moving the pinion 110 of the speed ratio variable mechanism 112 configured by the actuator 105 and the actuator 180 with the actuator 180. Then, by changing the amount of eccentricity r1, the swing angle ⁇ 2 of the input member 122 of the one-way clutch 120 can be changed, whereby the ratio of the rotational speed of the output member 121 to the rotational speed of the input shaft 101 ( Gear ratio: Ratio i) can be changed.
  • the rotor shaft S1 of the first motor generator MG1 connected to the output shaft S of the engine ENG is integrally connected to the input shaft 101 of the infinite and continuously variable transmission mechanism BD.
  • the one-way clutch 120 which is a component of the infinite / continuously variable transmission mechanism BD, also serves as the one-way clutch OWC provided between the transmission TM and the driven member 11 to be rotated.
  • FIGS. 4 (a) to 4 (d) and FIGS. 5 (a) to 5 (c) are explanatory diagrams of the speed change principle by the speed ratio variable mechanism 112 in the infinite and continuously variable transmission mechanism BD.
  • the pinion 110 of the speed ratio variable mechanism 112 is rotated to rotate the outer peripheral disk with respect to the inner peripheral disk.
  • the amount of eccentricity r1 with respect to the input center axis O1 (rotation center of the pinion 110) of the eccentric disk 104 can be adjusted.
  • FIG. 6 is an explanatory diagram of the driving force transmission principle of the infinite / continuously variable transmission mechanism BD configured as a four-bar linkage mechanism
  • FIG. 7 shows the eccentricity of an eccentric disk 104 that rotates at the same speed as the input shaft 101 in the transmission mechanism BD.
  • FIGS. 8 and 8 show the transmission mechanism BD when power is transmitted from the input side (the input shaft 101 and the eccentric disk 104) to the output side (the output member 121 of the one-way clutch 120) by the plurality of connecting members 130. It is a figure for demonstrating the output taking-out principle.
  • the input member 122 of the one-way clutch 120 oscillates by the power applied from the eccentric disk 104 via the connecting member 130.
  • the input member 122 of the one-way clutch 120 swings one reciprocating motion.
  • the swing cycle of the input member 122 of the one-way clutch 120 is always constant.
  • the angular velocity ⁇ 2 of the input member 122 is determined by the rotational angular velocity ⁇ 1 of the eccentric disk 104 (input shaft 101) and the eccentric amount r1.
  • One end (ring portion 131) of a plurality of connecting members 130 connecting the input shaft 101 and the one-way clutch 120 is rotatably connected to an eccentric disk 104 provided at equal intervals in the circumferential direction around the input center axis O1. . Therefore, the swinging motion brought about by the rotational motion of each eccentric disk 104 to the input member 122 of the one-way clutch 120 occurs in order at a constant phase as shown in FIG.
  • transmission of power (torque) from the input member 122 to the output member 121 of the one-way clutch 120 is such that the rotational speed of the input member 122 in the positive direction (the direction of the arrow RD1 in FIG. 3) is the positive direction of the output member 121. It is performed only under conditions that exceed the rotational speed. That is, in the one-way clutch 120, meshing (locking) via the roller 123 occurs only when the rotational speed of the input member 122 becomes higher than the rotational speed of the output member 121. Is transmitted to the output member 121 to generate a driving force.
  • the rotational speed of the input member 122 is lower than the rotating speed of the output member 121, and the lock by the roller 123 is released by the driving force of the other connecting member 130, and free Returns to the normal state (idle state).
  • This is sequentially performed by the number of the connecting members 130, whereby the swinging motion is converted into a unidirectional rotational motion. Therefore, only the power of the input member 122 at a timing exceeding the rotational speed of the output member 121 is sequentially transmitted to the output member 121, and the rotational power leveled almost smoothly is applied to the output member 121.
  • rotation detection means for detecting the rotation speed of the engine ENG, the rotation speed of the input member 122 and the rotation speed of the output member 121 of the one-way clutch OWC, the rotation speed of the driven member 11 and the like.
  • the rotational speed of the output member 121 of the one-way clutch OWC and the rotational speed of the driven member 11 are the same, and the rotational speed of the driven member 11 is the axle (foot shaft) or the second motor generator MG2. Is considered equivalent to the number of revolutions.
  • the control means sends a control signal to the engine ENG, the first motor generator MG1, the second motor generator MG2, the actuator 180 of the infinitely variable transmission mechanism BD constituting the transmission TM, the clutch mechanism CL, etc.
  • various running patterns also referred to as operation patterns
  • the control means is supplied with signals from request output detection means, rotation detection means for various elements, and other detection means.
  • the control means controls the engine traveling control mode for controlling the engine traveling only by the driving force of the engine ENG, the EV traveling by the driving force of the first motor generator MG1 and / or the driving force of the second motor generator MG2. It has a function of selecting and executing an EV traveling control mode or the like.
  • the control means also has a function of executing a parallel traveling mode in which traveling is performed using both the driving force of engine ENG and the driving force of first motor generator MG1 and / or the driving force of second motor generator MG2. .
  • Engine travel, EV travel, and parallel travel are selected and executed according to the required driving force and the remaining battery capacity (SOC).
  • the first motor generator MG1 is driven with the clutch mechanism CL disengaged. By doing so, the driving force of the first motor generator MG1 can be transmitted to the driving wheel 2 side via the transmission TM without dragging the engine ENG.
  • the first motor generator MG1 is set to the highest with respect to the required output regardless of the rotational speed on the drive wheel 2 side. It is possible to operate while continuously selecting efficiency points, and energy efficiency can be increased.
  • FIGS. 9 (a) and 9 (b) are diagrams for explaining the efficiency of EV traveling by the driving force of the first motor generator MG1.
  • FIG. 9A is a characteristic diagram showing a motor efficiency map in the case of the present embodiment in which the infinite and continuously variable transmission mechanism BD is provided on the downstream side of the first motor generator MG1
  • FIG. 11 is a characteristic diagram showing a motor efficiency map in the case of a comparative example in which a gear having a constant gear ratio is not attached to the downstream side of the motor generator MG1 without the infinite and continuously variable transmission mechanism BD.
  • FIGS. 9 (a) and 9 (b) are diagrams for explaining the efficiency of EV traveling by the driving force of the first motor generator MG1.
  • FIG. 9A is a characteristic diagram showing a motor efficiency map in the case of the present embodiment in which the infinite and continuously variable transmission mechanism BD is provided on the downstream side of the first motor generator MG1
  • FIG. 11 is a characteristic diagram showing a motor efficiency map in the case of a comparativ
  • the horizontal axis represents the rotation speed (NMot: rpm) of the first motor generator MG1
  • the vertical axis represents the torque (TRQ_Mot: Nm) of the first motor generator MG1.
  • White circles indicate the operating points when the EV travels.
  • the EV operation point extends to a range where the efficiency is not so good, but in the case of the embodiment of FIG. 9A, the EV operation point is within a range where the efficiency is high. It is gathered up. Therefore, it becomes possible to select the operating point as a high efficiency point, and to improve the energy efficiency.
  • the upstream side and the downstream side of the infinite / continuously variable transmission mechanism BD are separated by operating the transmission ratio of the infinite / continuously variable transmission mechanism BD. Therefore, drag loss can be almost eliminated. Further, in this state, when the rotation on the drive wheel 2 side exceeds the rotation of the second motor generator MG2, the second motor generator MG2 can be regeneratively operated, and a regenerative braking force is applied to the drive wheel 2 side. be able to. Even in that case, the upstream and downstream sides of the infinite and continuously variable transmission mechanism BD can be separated by operating the transmission ratio of the infinite and continuously variable transmission mechanism BD, thereby improving the energy efficiency by eliminating drag loss. Can be made.
  • the clutch mechanism CL is fastened and the first motor generator MG1 is driven to start the engine ENG.
  • the engine ENG can be started without a shock by the first motor generator MG1 by setting the transmission ratio of the infinite / continuously variable transmission mechanism BD. That is, the engine ENG and the first motor generator MG1 are driven by setting the speed ratio of the infinite / continuously variable transmission mechanism BD so that the input side rotational speed of the one-way clutch OWC is smaller than the output side rotational speed. Since it can be separated from the second side, the engine ENG can be started so that torque fluctuation is not transmitted to the drive wheel 2 side, and smooth running can be realized. Further, since engine ENG can be started by first motor generator MG1 in this way, it is possible to eliminate the need to separately install an engine starter.
  • the driving force of the engine ENG is driven through the one-way clutch OWC by adjusting the transmission ratio of the infinite / continuously variable transmission mechanism BD from the large side to the small side. It can be placed on the second side, thereby switching to engine running.
  • a clutch mechanism CL capable of transmitting and interrupting power is provided between the engine ENG and the first motor generator MG1. Therefore, the clutch mechanism CL is disengaged so that the engine ENG is not dragged, and through the infinite and continuously variable transmission mechanism BD, the highest efficiency is achieved with respect to the required output regardless of the rotational speed on the drive wheel side. At this point, the first motor generator MG1 can be operated, and energy loss can be reduced.
  • the one-way clutch 120 which is a component in the four-bar crank mechanism infinite / continuously variable transmission mechanism BD, is provided between the output portion of the transmission TM and the driven member 11 to be rotated. Since the one-way clutch OWC is also used, the number of one-way clutches can be reduced and the configuration can be simplified. *
  • the transmission TM is configured by a type using the eccentric disk 104, the connecting member 130, and the one-way clutch 120 has been described.
  • other continuously variable transmission mechanisms such as CVTs.
  • a one-way clutch OWC may be provided downstream of the continuously variable transmission mechanism.
  • the present invention is based on a Japanese patent application (Japanese Patent Application No. 2011-155918) filed on July 14, 2011, the contents of which are incorporated herein by reference.

Abstract

 自動車用駆動システム1は、エンジンENGの回転を変速して出力する無限・無段変速機構BDと、無限・無段変速機構BDの出力部に設けられたワンウェイ・クラッチOWCと、ワンウェイ・クラッチOWCの出力部材121に連結され駆動車輪2にエンジン側の回転動力を伝えるデフケース11と、エンジンENGと無限・無段変速機構BDとの間に配置された第1のモータジェネレータMG1と、デフケース11に接続された第2のモータジェネレータMG2とを備える。

Description

自動車用駆動システム
 本発明は、走行用の駆動源として、エンジン(主として内燃機関)と2つの電動モータを備えたハイブリッド型の自動車用駆動システムに関するものである。
 従来のこの種の自動車用駆動システムとして、特許文献1に示されるように、エンジンとトランスミッションとモータジェネレータを組み合わせ、トランスミッションの駆動軸と被駆動軸とを、駆動軸に設けられた偏心体駆動装置と被駆動軸に設けられたワンウェイ・クラッチとにより接続し、トランスミッションの駆動軸にエンジンの出力を導入すると共に、モータジェネレータをクラッチを介して、トランスミッションの入力側、または、ワンウェイ・クラッチの出力側に選択的に接続可能とし、あるいは、トランスミッションの入力側とワンウェイ・クラッチの出力側の両方に同時に接続可能に構成したハイブリッド型の駆動システムが知られている。
 この駆動システムでは、エンジンの駆動力だけを利用したエンジン走行、モータジェネレータの駆動力だけを利用したEV走行、エンジンの駆動力とモータジェネレータの駆動力の両方を利用したパラレル走行を行うことができる。また、モータジェネレータの回生動作を利用することにより、減速時に回生エネルギーを得ることができると同時に、回生ブレーキを駆動車輪に利かせることもできる。また、モータジェネレータでエンジンを始動させることもできる。さらに、この駆動システムでは、偏心体駆動装置によりトランスミッションの変速比を無段階に調整することにより、エンジンを最適な回転数で駆動することができる。
日本国特表2005-502543号公報
 ところで、この駆動システムでは、モータジェネレータの駆動力によってEV走行している状態からエンジン走行へ切り替える時に、モータジェネレータの駆動力で走行しながら同時にモータジェネレータの駆動力でエンジンを始動させなければならないため、駆動車輪へ伝達するトルクに変動が生じるという問題があった。
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、EV走行からエンジン走行へ切り替えるときの駆動車輪に伝達するトルクの変動を無くしてスムーズな走行を行うことを可能にする自動車用駆動システムを提供することにある。
 前述した目的を達成するために、請求項1に係る自動車用駆動システム(例えば、後述の実施形態における自動車用駆動システム1)は、
 回転動力を発生するエンジン(例えば、後述の実施形態におけるENG)と、
 該エンジンの発生する回転動力を変速して出力する無段変速機構(例えば、後述の実施形態におけるトランスミッションTM)と、
 該無段変速機構の出力部に設けられ、入力部材(例えば、後述の実施形態における入力部材122)と出力部材(例えば、後述の実施形態における出力部材121)と入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材(例えば、後述の実施形態におけるローラ123)とを有し、前記無段変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチ(例えば、後述の実施形態におけるワンウェイ・クラッチOWC)と、
 該ワンウェイ・クラッチの出力部材に連結され、該出力部材に伝達された回転動力を駆動車輪(例えば、後述の実施形態における駆動車輪2)に伝える被回転駆動部材(例えば、後述の実施形態における被回転駆動部材11)と、
 前記エンジンと無段変速機構との間に配置された第1の電動モータ(例えば、後述の実施形態における第1のモータジェネレータMG1)と、
 前記被回転駆動部材に接続された第2の電動モータ(例えば、後述の実施形態における第2のモータジェネレータMG2)と、
を備えることを特徴とする。
 請求項2の発明は、請求項1の構成において、
 前記エンジンと前記第1の電動モータとの間に、動力の伝達および遮断が可能なクラッチ機構(例えば、後述の実施形態におけるクラッチ機構CL)が設けられていることを特徴とする。
 請求項3の発明は、請求項1または請求項2の構成において、
 前記無段変速機構が、
 回転動力を受けることで入力中心軸線(例えば、後述の実施形態における入力中心軸線O1)の周りを回転する入力軸(例えば、後述の実施形態における入力軸101)と、
 該入力中心軸線の周囲に周方向に等間隔に設けられると共に、それぞれが前記入力中心軸線に対する偏心量(例えば、後述の実施形態における偏心量r1)を変更可能な各第1支点(例えば、後述の実施形態における第1支点O3)をそれぞれの中心に有して、該偏心量を保ちつつ該入力中心軸線の周りに前記入力軸と共に回転する複数の偏心ディスク(例えば、後述の実施形態における偏心ディスク104)と、
 前記入力中心軸線から離れた出力中心軸線(例えば、後述の実施形態における出力中心軸線O2)の周りを回転する出力部材(例えば、後述の実施形態における出力部材121)と、外部から回転方向の動力を受けることで前記出力中心軸線の周りを揺動する入力部材(例えば、後述の実施形態における入力部材122)と、入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材(例えば、後述の実施形態におけるローラ123)とを有し、前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材に入力された回転動力を前記出力部材に伝達し、それにより前記入力部材の揺動運動を前記出力部材の回転運動に変換するワンウェイ・クラッチ(例えば、後述の実施形態におけるワンウェイ・クラッチ120)と、
 それぞれ一端が前記各偏心ディスクの外周に前記第1支点を中心に回転自在に連結され、他端が前記ワンウェイ・クラッチの入力部材上の前記出力中心軸線から離間した位置に設けられた第2支点(例えば、後述の実施形態における第2支点O4)に回動自在に連結されることで、前記入力軸から前記偏心ディスクに与えられる回転運動を、前記ワンウェイ・クラッチの入力部材に対し該入力部材の揺動運動として伝える複数の連結部材(例えば、後述の実施形態における連結部材130)と、
 前記入力中心軸線に対する前記第1支点の偏心量を調節することで、前記偏心ディスクから前記ワンウェイ・クラッチの入力部材に伝えられる揺動運動の揺動角度を変更するアクチュエータ(例えば、後述の実施形態におけるアクチュエータ180)を備え、前記入力軸に入力される回転動力が前記偏心ディスクおよび前記連結部材を介して前記ワンウェイ・クラッチの出力部材に回転動力として伝達される際の変速比を変更する変速比可変機構(例えば、後述の実施形態における変速比可変機構112)と、
 を具備し、且つ、前記偏心量がゼロに設定可能とされることで変速比を無限大に設定することのできる4節リンク機構式の無段変速機構として構成されており、
 前記第1の電動モータが前記無段変速機構の入力軸に連結され、
 前記無段変速機構の構成要素であるワンウェイ・クラッチ(例えば、後述の実施形態におけるワンウェイ・クラッチ120)が、前記無段変速機構の出力部と前記被回転駆動部材との間に設けられた前記ワンウェイ・クラッチ(例えば、後述の実施形態におけるワンウェイ・クラッチOWC)を兼ねていることを特徴とする。
 請求項1の発明によれば、エンジンの駆動力を利用したエンジン走行、第1の電動モータまたは/および第2の電動モータの駆動力を利用したEV走行、エンジンの駆動力と第1の電動モータまたは/および第2の電動モータの駆動力を利用したパラレル走行を任意に選択して実行することができる。特に第1の電動モータの駆動力を利用して走行する際に、無段変速機構の変速比を調整することにより、第1の電動モータを、最も高い効率点を無段階で選択しながら運転することができる。また、第2の電動モータの駆動力を利用してEV走行している状態でエンジン走行に切り替える場合、無段変速機構の変速比の設定により、第1の電動モータによってショックなくエンジンを始動させることができる。つまり、無段変速機構の変速比を、ワンウェイ・クラッチの入力側回転数が出力側回転数より小さくなるように設定することにより、エンジンおよび第1の電動モータを駆動車輪側から切り離すことができ、駆動車輪側にトルクの変動が伝わらないようにエンジンの始動を行うことができ、スムーズな走行を実現することができる。また、ワンウェイ・クラッチの働きにより、第2の電動モータの駆動力で走行している状態から、第1の電動モータまたは/およびエンジンの駆動力で走行する状態に切り替える動作、またはその逆に、第1の電動モータまたは/およびエンジンの駆動力で走行している状態から、第2の電動モータの駆動力で走行する状態に切り替える動作をスムーズに行うことができる。
 請求項2の発明によれば、クラッチ機構を切断状態にすることにより、エンジンを引き摺ることなく、また無段変速機構を介することにより駆動車輪側の回転数に関係なく、要求出力に対して最も高効率な点で第1の電動モータを運転することができ、エネルギーロスを減らすことができる。
 請求項3の発明によれば、4節クランク機構式の無段変速機構の中の構成要素であるワンウェイ・クラッチが、無段変速機構の出力部と被回転駆動部材との間に設けられたワンウェイ・クラッチを兼ねているため、ワンウェイ・クラッチの数を減らすことができ、構成を簡素化することができる。
本発明の実施形態の自動車用駆動システムのスケルトン図である。 同システムの要部である無限・無段変速機構の具体的な構成を示す断面図である。 同変速機構の一部の構成を軸線方向から見た側断面図である。 同変速機構における変速比可変機構による変速原理の前半部分の説明図であり、(a)は偏心ディスク104の中心点である第1支点O3の回転中心である入力中心軸線O1に対する偏心量r1を「大」にして変速比iを「小」に設定した状態を示す図、(b)は偏心量r1を「中」にして変速比iを「中」に設定した状態を示す図、(c)は偏心量r1を「小」にして変速比iを「大」に設定した状態を示す図、(d)は偏心量r1を「ゼロ」にして変速比iを「無限大(∞)」に設定した状態を示す図である。 同変速機構における変速比可変機構による変速原理の後半部分の説明図であって、偏心ディスクの偏心量r1を変更して変速比iを変えた場合のワンウェイ・クラッチ120の入力部材122の揺動角度θ2の変化を示す図であり、(a)は偏心量r1を「大」にし変速比iを「小」にすることで、入力部材122の揺動角度θ2が「大」になった状態を示す図、(b)は偏心量r1を「中」にし変速比iを「中」にすることで、入力部材122の揺動角度θ2が「中」になった状態を示す図、(c)は偏心量r1を「小」にし変速比iを「大」にすることで、入力部材122の揺動角度θ2が「小」になった状態を示す図である。 4節リンク機構として構成された前記無限・無段変速機構の駆動力伝達原理の説明図である。 同変速機構において、入力軸と共に等速回転する偏心ディスクの偏心量r1(変速比i)を「大」、「中」、「小」と変化させた場合の、入力軸の回転角度θとワンウェイ・クラッチの入力部材の角速度ω2の関係を示す図である。 同変速機構において、複数の連結部材によって入力側(入力軸や偏心ディスク)から出力側(ワンウェイ・クラッチの出力部材)へ動力が伝達される際の出力の取り出し原理を説明するための図である。 同実施形態の駆動システムにおいて、第1のモータジェネレータの駆動力によりEV走行する際の効率の良さを説明するための図であり、(a)は第1のモータジェネレータの下流側に無限・無段変速機構が付いている本実施形態の場合のモータ効率マップを示す特性図、(b)は第1のモータジェネレータの下流側に無限・無段変速機構が付いておらず変速比が一定のギヤが付いている比較例の場合のモータ効率マップを示す特性図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1は実施形態の自動車用駆動システムのスケルトン図、図2は同駆動システムの要部である無限・無段変速機構の具体的な構成を示す断面図、図3は同無限・無段変速機構の一部の構成を軸線方向から見た側断面図である。
《全体構成》
 図1に示すように、この自動車用駆動システム1は、回転動力を発生するエンジン(内燃機関)ENGと、エンジンENGの下流側に設けられ、エンジンENGの発生する回転動力を無段階に変速して出力するトランスミッション(無段変速機構)TMと、エンジンENGとトランスミッションTMの間に配置された第1のモータジェネレータ(第1の電動モータ)MG1と、トランスミッションTMの出力部に設けられ、エンジンENG側から駆動車輪2側への動力のみ伝達するワンウェイ・クラッチOWCと、このワンウェイ・クラッチOWCを介して伝達された出力回転を受けて駆動車輪2に伝達する被回転駆動部材11と、この被回転駆動部材11に接続された第2のモータジェネレータ(第2の電動モータ)MG2と、を備える。また、自動車用駆動システム1は、エンジンENGと第1のモータジェネレータMG1との間に設けられて、エンジンENGと第1のモータジェネレータMG1との間の動力の伝達/遮断が可能なクラッチ機構CLと、エンジンENGとクラッチ機構CLの間に設けられたフライホイールFWと、第1のモータジェネレータMG1および/または第2のモータジェネレータMG2との間で電力のやりとりが可能なバッテリ(図示略)と、各種要素を制御することで走行パターンなどの制御を行う制御手段(図示略)と、をさらに備えている。
 ワンウェイ・クラッチOWCは、図3に示すように、入力部材(クラッチアウタ)122と、出力部材(クラッチインナ)121と、これら入力部材122および出力部材121の間に配されて両部材122、121を互いにロック状態または非ロック状態にする複数のローラ(係合部材)123と、ロック状態を与える方向にローラ123を付勢する付勢部材126とを有する。そして、トランスミッションTMからの各回転動力を受ける入力部材122の正方向(矢印RD1方向)の回転速度が、出力部材121の正方向の回転速度を上回ったとき、入力部材122と出力部材121が互いにロック状態になることにより、入力部材122に入力された回転動力を出力部材121に伝達する。
 ワンウェイ・クラッチOWCはディファレンシャル装置10に隣接して配置されており、ワンウェイ・クラッチOWCの出力部材121は被回転駆動部材11に連結されている。被回転駆動部材11は、ディファレンシャル装置10のデフケースを備えて構成されており、ワンウェイ・クラッチOWCの出力部材121に伝達された回転動力は、ディファレンシャル装置10および左右のアクスルシャフト13L、13Rを介して、左右の駆動車輪2に伝達される。ディファレンシャル装置10のデフケース(被回転駆動部材11)には、図示しないデフピニオンやサイドギヤが取り付けられており、左右のサイドギヤに左右のアクスルシャフト13L、13Rが連結され、左右のアクスルシャフト13L、13Rは差動回転する。
 図1に示すように、第2のモータジェネレータMG2と被回転駆動部材11は、第2のモータジェネレータMG2のロータ軸(出力軸)S2に取り付けたドライブギヤ15と被回転駆動部材11に設けたドリブンギヤ12とが噛合することにより、動力伝達可能に接続されている。例えば、第2のモータジェネレータMG2がモータとして機能するときは、第2のモータジェネレータMG2から被回転駆動部材11に駆動力が伝達される。また、第2のモータジェネレータMG2を発電機として機能させるときは、被回転駆動部材11から第2のモータジェネレータMG2に動力が入力され、機械エネルギーが電気エネルギーに変換される。同時に、第2のモータジェネレータMG2から被回転駆動部材11に回生制動力が作用する。なお、第2のモータジェネレータMG2と被回転駆動部材11との間の動力伝達は、ドライブギヤ15とドリブンギヤ12からなる減速ギヤ機構の代わりに、遊星ギヤ機構によって行われてもよい。
 また、第1のモータジェネレータMG1のロータ軸S1は、トランスミッションTMの入力軸101に接続されるとともに、エンジンENGの出力軸SにフライホイールFW及びクラッチ機構CLを介して接続され、エンジンENGの出力軸SとトランスミッションTMの入力軸101との間で動力の相互伝達を行う。この場合も、第1のモータジェネレータMG1がモータとして機能するときは、第1のモータジェネレータMG1からトランスミッションTMの入力軸101や、クラッチ機構CLを介してエンジンENGの出力軸Sに駆動力が伝達される。また、第1のモータジェネレータMG1が発電機として機能するときは、エンジンENGの出力軸Sから第1のモータジェネレータMG1に動力が伝達される。
 以上の要素を備えたこの駆動システム1では、エンジンENGおよび第1のモータジェネレータMG1の発生する回転動力が、トランスミッションTMを介してワンウェイ・クラッチOWCに入力され、ワンウェイ・クラッチOWCを介して被回転駆動部材11に入力されて、ディファレンシャル装置10から駆動車輪2に伝達される。あるいは、第2のモータジェネレータMG2の発生する回転動力が、ギヤ15、12を介して被回転駆動部材11に入力されて、ディファレンシャル装置10から駆動車輪2に伝達される。
《トランスミッションの構成》
 次に、この駆動システム1に用いられているトランスミッションTMについて説明する。
 トランスミッションTMは無段変速機構により構成されている。この場合の無段変速機構は、IVT(Infinity Variable Transmission=クラッチを使用せずに変速比を無限大にして出力回転をゼロにできる方式の変速機構)と呼ばれるものの一種であり、変速比(レシオ=i)を無段階に変更できると共に、変速比の最大値を無限大(∞)に設定することのできる、無限・無段変速機構BDにより構成されている。
 この無限・無段変速機構BDは、図2および図3に構成を示すように、エンジンENGからの回転動力を受けることで入力中心軸線O1の周りを回転する入力軸101と、入力軸101と一体回転する複数の偏心ディスク104と、入力側と出力側を結ぶための偏心ディスク104と同数の連結部材130と、出力側に設けられたワンウェイ・クラッチ120とを備えている。
 複数の偏心ディスク104は、それぞれ第1支点O3を中心とした円形形状に形成されている。第1支点O3は、入力軸101の周方向に等間隔に設けられると共に、それぞれが、入力中心軸線O1に対する偏心量r1を変更可能で、且つ、該偏心量r1を保ちつつ、入力中心軸線O1の周りに入力軸101と共に回転するように設定されている。従って、複数の偏心ディスク104は、それぞれに偏心量r1を保った状態で、入力中心軸線O1の周りに入力軸101の回転に伴って偏心回転するように設けられている。
 偏心ディスク104は、図3に示すように、外周側円板105と、入力軸101に一体形成された内周側円板108とで構成されている。内周側円板108は、入力軸101の中心軸線である入力中心軸線O1に対して一定の偏心距離だけ中心を偏奇させた肉厚円板として形成されている。外周側円板105は、第1支点O3を中心にした肉厚円板として形成されており、その中心(第1支点O3)を外れた位置に中心を持つ第1円形孔106を有している。そして、この第1円形孔106の内周に回転可能に内周側円板108の外周が嵌っている。
 また、内周側円板108には、入力中心軸線O1を中心とすると共に周方向の一部が内周側円板108の外周に開口した第2円形孔109が設けられており、その第2円形孔109の内部にピニオン110が回転自在に収容されている。ピニオン110の歯は、第2円形孔109の外周の開口を通して、外周側円板105の第1円形孔106の内周に形成した内歯歯車107に噛み合っている。この場合、ピニオン110の歯数と内歯歯車107の歯数の比は1:2となっている。
 このピニオン110は、入力軸101の中心軸線である入力中心軸線O1と同軸に回転するように設けられている。即ち、ピニオン110の回転中心と入力軸101の中心軸線である入力中心軸線O1とが一致している。ピニオン110は、図2に示すように、直流モータ及び減速機構によって構成されるアクチュエータ180により、第2円形孔109の内部で回転させられる。通常時は、入力軸101の回転と同期させてピニオン110を回転させ、同期する回転数を基準として、ピニオン110に入力軸101の回転数を上回るか下回るかする回転数を与えることにより、ピニオン110を入力軸101に対して相対回転させる。例えば、ピニオン110およびアクチュエータ180の出力軸が互いに連結されるように配置し、アクチュエータ180の回転が入力軸101の回転に対して回転差が生じる場合には、その回転差に減速比をかけた分だけ入力軸101とピニオン110の相対角度が変化する減速機構(例えば遊星歯車)を用いることで実現できる。この際、アクチュエータ180と入力軸101の回転差がなく同期している場合には偏心量r1は変化しない。
 従って、ピニオン110を回すことにより、ピニオン110の歯が噛合している内歯歯車107つまり外周側円板105が内周側円板108に対して相対回転し、それにより、ピニオン110の中心(入力中心軸線O1)と外周側円板105の中心(第1支点O3)との間の距離(つまり偏心ディスク104の偏心量r1)が変化する。
 この場合、ピニオン110の回転によって、ピニオン110の中心(入力中心軸線O1)に外周側円板105の中心(第1支点O3)を一致させることができるように設定されており、両中心を一致させることにより、偏心ディスク104の偏心量r1を「ゼロ」に設定できる。
 また、ワンウェイ・クラッチ120は、入力中心軸線O1から離れた出力中心軸線O2の周りを回転する出力部材(クラッチインナ)121と、外部から回転方向の動力を受けることで出力中心軸線O2の周りを揺動するリング状の入力部材(クラッチアウタ)122と、これら入力部材122および出力部材121を互いにロック状態または非ロック状態にするために入力部材122と出力部材121の間に挿入された複数のローラ(係合部材)123と、ロック状態を与える方向にローラ123を付勢する付勢部材126とを有する。そして、ワンウェイ・クラッチ120は、入力部材122の正方向(例えば、図3中の矢印RD1で示す方向)の回転速度が出力部材121の正方向の回転速度を上回ったとき、入力部材122に入力された回転動力を出力部材121に伝達し、それにより、入力部材122の揺動運動を出力部材121の回転運動に変換することができるようになっている。
 図2に示すように、ワンウェイ・クラッチ120の出力部材121は、軸方向に一体に連続した部材として構成されたものであるが、入力部材122は、軸方向に複数に分割されており、偏心ディスク104および連結部材130の数だけ、軸方向に各々独立して揺動できるように配列されている。そして、ローラ123は、入力部材122毎に、入力部材122と出力部材121との間に挿入されている。
 リング状の各入力部材122上の周方向の1箇所には張り出し部124が設けられており、その張り出し部124に、出力中心軸線O2から離間した第2支点O4が設けられている。そして、各入力部材122の第2支点O4上にピン125が配置され、このピン125によって、連結部材130の先端(他端部)132が入力部材122に回転自在に連結されている。
 連結部材130は、一端側にリング部131を有し、そのリング部131の円形開口133の内周が、ベアリング140を介して、偏心ディスク104の外周に回転自在に嵌合されている。従って、このように連結部材130の一端が偏心ディスク104の外周に回転自在に連結されると共に、連結部材130の他端が、ワンウェイ・クラッチ120の入力部材122上に設けられた第2支点O4に回動自在に連結されることにより、入力中心軸線O1、第1支点O3、出力中心軸線O2、第2支点O4の4つの節を回動点とする四節リンク機構が構成される。そして、入力軸101から偏心ディスク104に与えられる回転運動が、ワンウェイ・クラッチ120の入力部材122に対して該入力部材122の揺動運動として伝えられ、その入力部材122の揺動運動が出力部材121の回転運動に変換される。
 その際、ピニオン110、ピニオン110を収容する第2円形孔109を備えた内周側円板108、内周側円板108を回転可能に収容する第1円形孔106を備えた外周側円板105、アクチュエータ180などにより構成された変速比可変機構112の前記ピニオン110をアクチュエータ180で動かすことにより、偏心ディスク104の偏心量r1を変化させることができる。そして、偏心量r1を変更することで、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を変更することができ、それにより、入力軸101の回転数に対する出力部材121の回転数の比(変速比:レシオi)を変えることができる。即ち、入力中心軸線O1に対する第1支点O3の偏心量r1を調節することで、偏心ディスク104からワンウェイ・クラッチ120の入力部材122に伝えられる揺動運動の揺動角度θ2を変更する。それにより、入力軸101に入力される回転動力が、偏心ディスク104および連結部材130を介してワンウェイ・クラッチ120の出力部材121に回転動力として伝達される際の変速比を変更することができる。
 本実施形態では、エンジンENGの出力軸Sと連結された第1のモータジェネレータMG1のロータ軸S1が、この無限・無段変速機構BDの入力軸101に一体に連結されている。また、無限・無段変速機構BDの構成要素であるワンウェイ・クラッチ120が、トランスミッションTMと被回転駆動部材11との間に設けられた前記ワンウェイ・クラッチOWCを兼ねている。
 図4(a)~(d)及び図5(a)~(c)は、無限・無段変速機構BDにおける変速比可変機構112による変速原理の説明図である。図4(a)~(d)および図5(a)~(c)に示すように、変速比可変機構112のピニオン110を回転させて、内周側円板108に対して外周側円板105を回転させることにより、偏心ディスク104の入力中心軸線O1(ピニオン110の回転中心)に対する偏心量r1を調節することができる。
 例えば、図4(a)、図5(a)に示すように、偏心ディスク104の偏心量r1を「大」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を大きくすることができるので、小さな変速比iを実現することができる。また、図4(b)、図5(b)に示すように、偏心ディスク104の偏心量r1を「中」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を「中」にすることができるので、中くらいの変速比iを実現することができる。また、図4(c)、図5(c)に示すように、偏心ディスク104の偏心量r1を「小」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を小さくすることができるので、大きな変速比iを実現することができる。また、図4(d)に示すように、偏心ディスク104の偏心量r1を「ゼロ」にした場合は、ワンウェイ・クラッチ120の入力部材122の揺動角度θ2を「ゼロ」にすることができるので、変速比iを「無限大(∞)」にすることができる。
 図6は4節リンク機構として構成された前記無限・無段変速機構BDの駆動力伝達原理の説明図、図7は同変速機構BDにおいて、入力軸101と共に等速回転する偏心ディスク104の偏心量r1(変速比i)を「大」、「中」、「小」と変化させた場合の、入力軸101の回転角度(θ)とワンウェイ・クラッチ120の入力部材122の角速度ω2の関係を示す図、図8は同変速機構BDにおいて、複数の連結部材130によって入力側(入力軸101や偏心ディスク104)から出力側(ワンウェイ・クラッチ120の出力部材121)へ動力が伝達される際の出力の取り出し原理を説明するための図である。
 図6に示すように、ワンウェイ・クラッチ120の入力部材122は、連結部材130を介して偏心ディスク104から与えられる動力により揺動運動する。偏心ディスク104を回転させる入力軸101が1回転すると、ワンウェイ・クラッチ120の入力部材122は1往復揺動する。図7に示すように、偏心ディスク104の偏心量r1の値に関係なく、ワンウェイ・クラッチ120の入力部材122の揺動周期は常に一定である。入力部材122の角速度ω2は、偏心ディスク104(入力軸101)の回転角速度ω1と偏心量r1によって決まる。
 入力軸101とワンウェイ・クラッチ120を繋ぐ複数の連結部材130の一端(リング部131)は、入力中心軸線O1の周りに周方向等間隔で設けられた偏心ディスク104に回転自在に連結されている。したがって、各偏心ディスク104の回転運動によりワンウェイ・クラッチ120の入力部材122にもたらされる揺動運動は、図8に示すように、一定の位相で順番に起こることになる。
 その際、ワンウェイ・クラッチ120の入力部材122から出力部材121への動力(トルク)の伝達は、入力部材122の正方向(図3中矢印RD1方向)の回転速度が出力部材121の正方向の回転速度を超えた条件でのみ行われる。つまり、ワンウェイ・クラッチ120では、入力部材122の回転速度が出力部材121の回転速度より高くなったときに初めてローラ123を介しての噛み合い(ロック)が発生し、連結部材130により、入力部材122の動力が出力部材121に伝達され、駆動力が発生する。
 1つの連結部材130による駆動が終了した後は、入力部材122の回転速度が出力部材121の回転速度より低下すると共に、他の連結部材130の駆動力によってローラ123によるロックが解除されて、フリーな状態(空転状態)に戻る。これが、連結部材130の数だけ順番に行われることで、揺動運動が一方向の回転運動に変換される。そのため、出力部材121の回転速度を超えたタイミングの入力部材122の動力のみが出力部材121に順番に伝えられ、ほぼ平滑に均された回転動力が出力部材121に与えられる。
 また、この4節リンク機構式の無限・無段変速機構BDでは、偏心ディスク104の偏心量r1を変更することで、変速比(レシオ=エンジンENGの出力軸であるクランク軸の1回転でどれだけ被回転駆動部材11を回転させるか)を決めることができる。この場合、偏心量r1をゼロに設定することで、変速比iを無限大に設定することができ、エンジンENGの回転中にも拘わらず、入力部材122に伝達される揺動角度θ2をゼロにすることができる。
 また、この駆動システムでは、エンジンENGの回転数、ワンウェイ・クラッチOWCの入力部材122の回転数および出力部材121の回転数、被回転駆動部材11の回転数などをそれぞれ検出するための回転検出手段(図示略)を備えている。ここで、ワンウェイ・クラッチOWCの出力部材121の回転数と被回転駆動部材11の回転数は同じであり、被回転駆動部材11の回転数は、車軸(足軸)や第2のモータジェネレータMG2の回転数と等価と見なす。
《制御手段の主な働き》
 次に、この駆動システム1において実行する制御内容について説明する。
 制御手段は、エンジンENG、第1のモータジェネレータMG1、第2のモータジェネレータMG2、トランスミッションTMを構成する無限・無段変速機構BDのアクチュエータ180、クラッチ機構CLなどに制御信号を送って、これらの要素を制御することにより、様々な走行パターン(動作パターンとも言う)制御を行う。また、制御手段には、要求出力検出手段、各種要素の回転検出手段、その他の検出手段の信号が入力されている。
 そして、制御手段は、エンジンENGの駆動力のみによるエンジン走行を制御するエンジン走行制御モード、第1のモータジェネレータMG1の駆動力または/および第2のモータジェネレータMG2の駆動力によるEV走行を制御するEV走行制御モードなどを選択して実行する機能を有する。また、制御手段は、エンジンENGの駆動力と第1のモータジェネレータMG1の駆動力または/および第2のモータジェネレータMG2の駆動力の両方を利用して走行するパラレル走行モードを実行する機能も有する。なお、エンジン走行、EV走行、パラレル走行は、要求駆動力やバッテリの残容量(SOC)に応じて、選択して実行される。
 以下、第1のモータジェネレータMG1と第2のモータジェネレータMG2の特徴的な使われ方の例について説明する。まず、エンジンENGを使わず、第1のモータジェネレータMG1の駆動力のみでEV走行する場合は、クラッチ機構CLを切断状態にして第1のモータジェネレータMG1を駆動する。そうすることにより、エンジンENGを引き摺ることなく、第1のモータジェネレータMG1の駆動力を無駄なく、トランスミッションTMを介して駆動車輪2側に伝えることができる。この際、トランスミッションTMを構成する無限・無段変速機構BDの変速比を調整することにより、駆動車輪2側の回転数に関係なく、第1のモータジェネレータMG1を、要求出力に対して最も高効率な点を無段階に選択しながら運転することができ、エネルギー効率を高めることができる。
 図9(a)及び(b)は、第1のモータジェネレータMG1の駆動力によりEV走行する際の効率の良さを説明するための図である。図9(a)は第1のモータジェネレータMG1の下流側に無限・無段変速機構BDが付いている本実施形態の場合のモータ効率マップを示す特性図、図9(b)は第1のモータジェネレータMG1の下流側に無限・無段変速機構BDが付いておらず変速比が一定のギヤが付いている比較例の場合のモータ効率マップを示す特性図である。図9(a)及び(b)のグラフにおいて、横軸は第1のモータジェネレータMG1の回転数(NMot:rpm)、縦軸は第1のモータジェネレータMG1のトルク(TRQ_Mot:Nm)であり、白丸がEV走行する際の各運転点を示している。
 図9(b)の比較例の場合にはEV運転点が効率のあまり良くない範囲にまで広がっているが、図9(a)の実施形態の場合にはEV運転点が効率の良い範囲にまとまっている。従って、運転点を高効率点に選択することができるようになり、エネルギー効率の向上が図れることがわかる。
 次に、第2のモータジェネレータMG2の駆動力のみでEV走行する場合は、無限・無段変速機構BDの変速比の操作により、無限・無段変速機構BDの上流側と下流側と切り離すことが可能なため、引き摺り損失をほとんど無くすことができる。また、この状態で、駆動車輪2側の回転が第2のモータジェネレータMG2の回転を上回る場合、第2のモータジェネレータMG2を回生運転させることができ、駆動車輪2側に回生制動力を利かせることができる。その場合も、無限・無段変速機構BDの変速比の操作により、無限・無段変速機構BDの上流側と下流側とを切り離しておくことができるため、引き摺り損失を無くしてエネルギー効率を向上させることができる。
 また、第2のモータジェネレータMG2の駆動力を利用してEV走行している状態でエンジン走行に切り替える場合、クラッチ機構CLを締結し、第1のモータジェネレータMG1を駆動してエンジンENGを始動させるが、その際、無限・無段変速機構BDの変速比の設定により、第1のモータジェネレータMG1によってショックなくエンジンENGを始動させることができる。つまり、無限・無段変速機構BDの変速比を、ワンウェイ・クラッチOWCの入力側回転数が出力側回転数より小さくなるように設定することにより、エンジンENGおよび第1のモータジェネレータMG1を駆動車輪2側から切り離すことができるので、駆動車輪2側にトルクの変動が伝わらないようにエンジンENGの始動を行うことができて、スムーズな走行を実現することができる。また、このように第1のモータジェネレータMG1によってエンジンENGを始動させることができるので、エンジンスタータを別途搭載する必要を無くすことができる。
 そして、エンジンENGの回転数が上昇した段階で、無限・無段変速機構BDの変速比を大側から小側に調節することにより、ワンウェイ・クラッチOWCを介してエンジンENGの駆動力を駆動車輪2側に乗せることができ、それによりエンジン走行に切り替えることができる。
 また、ワンウェイ・クラッチOWCの働きにより、第2のモータジェネレータMG2の駆動力で走行している状態から、第1のモータジェネレータMG1または/およびエンジンENGの駆動力で走行する状態に切り替える動作、またはその逆に、第1のモータジェネレータMG1または/およびエンジンENGの駆動力で走行している状態から、第2のモータジェネレータMG2の駆動力で走行する状態に切り替える動作もスムーズに行うことができる。
 また、エンジンENGと第1のモータジェネレータMG1との間に、動力の伝達および遮断が可能なクラッチ機構CLが設けられている。従って、クラッチ機構CLを切断状態にすることにより、エンジンENGを引き摺ることなく、また無限・無段変速機構BDを介することにより駆動車輪側の回転数に関係なく、要求出力に対して最も高効率な点で第1のモータジェネレータMG1を運転することができ、エネルギーロスを減らすことができる。
 また、本実施形態では、4節クランク機構式の無限・無段変速機構BDの中の構成要素であるワンウェイ・クラッチ120が、トランスミッションTMの出力部と被回転駆動部材11との間に設けられたワンウェイ・クラッチOWCを兼ねているため、ワンウェイ・クラッチの数を減らすことができ、構成を簡素化することができる。 
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
 上記実施形態では、トランスミッションTMが、偏心ディスク104や連結部材130、ワンウェイ・クラッチ120を使用した形式のもので構成されている場合を示したが、その他のCVTなどの無段変速機構を用いてもよい。その他の形式の無段変速機構を用いた場合は、ワンウェイ・クラッチOWCを無段変速機構の下流側に装備してもよい。
 なお、本発明は、2011年7月14日出願の日本特許出願(特願2011-155918)に基づくものであり、その内容はここに参照として取り込まれる。
 1 自動車用駆動システム
 2 駆動車輪
 11 被回転駆動部材(デフケース)
 101 入力軸
 104 偏心ディスク
 112 変速比可変機構
 120 ワンウェイ・クラッチ
 121 出力部材
 122 入力部材
 123 ローラ(係合部材)
 130 連結部材
 131 一端部(リング部)
 132 他端部
 180 アクチュエータ
 ENG エンジン
 S 出力軸
 TM 無段変速機構
 OWC ワンウェイ・クラッチ
 MG1 第1のモータジェネレータ(第1の電動モータ)
 S1 ロータ軸
 MG2 第2のモータジェネレータ(第2の電動モータ)
 S2 ロータ軸
 CL クラッチ機構
 O1 入力中心軸線
 O2 出力中心軸線
 O3 第1支点
 O4 第2支点
 r1 偏心量

Claims (3)

  1.  回転動力を発生するエンジンと、
     該エンジンの発生する回転動力を変速して出力する無段変速機構と、
     該無段変速機構の出力部に設けられ、入力部材と出力部材と前記入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記無段変速機構からの回転動力を受ける前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材と出力部材がロック状態になることで、前記入力部材に入力された回転動力を前記出力部材に伝達するワンウェイ・クラッチと、
     該ワンウェイ・クラッチの出力部材に連結され、該出力部材に伝達された回転動力を駆動車輪に伝える被回転駆動部材と、
     前記エンジンと無段変速機構との間に配置された第1の電動モータと、
     前記被回転駆動部材に接続された第2の電動モータと、
     を備えることを特徴とする自動車用駆動システム。
  2.  前記エンジンと前記第1の電動モータとの間に、動力の伝達および遮断が可能なクラッチ機構が設けられていることを特徴とする請求項1に記載の自動車用駆動システム。
  3.  前記無段変速機構が、
     回転動力を受けることで入力中心軸線の周りを回転する入力軸と、
     該入力中心軸線の周囲に周方向に等間隔に設けられると共に、それぞれが前記入力中心軸線に対する偏心量を変更可能な各第1支点をそれぞれの中心に有して、該偏心量を保ちつつ該入力中心軸線の周りに前記入力軸と共に回転する複数の偏心ディスクと、
     前記入力中心軸線から離れた出力中心軸線の周りを回転する出力部材と、外部から回転方向の動力を受けることで前記出力中心軸線の周りを揺動する入力部材と、前記入力部材および出力部材を互いにロック状態または非ロック状態にする係合部材とを有し、前記入力部材の正方向の回転速度が前記出力部材の正方向の回転速度を上回ったとき、前記入力部材に入力された回転動力を前記出力部材に伝達し、それにより前記入力部材の揺動運動を前記出力部材の回転運動に変換するワンウェイ・クラッチと、
     それぞれ一端が前記各偏心ディスクの外周に前記第1支点を中心に回転自在に連結され、他端が前記ワンウェイ・クラッチの入力部材上の前記出力中心軸線から離間した位置に設けられた第2支点に回動自在に連結されることで、前記入力軸から前記偏心ディスクに与えられる回転運動を、前記ワンウェイ・クラッチの入力部材に対し該入力部材の揺動運動として伝える複数の連結部材と、
     前記入力中心軸線に対する前記第1支点の偏心量を調節することで、前記偏心ディスクから前記ワンウェイ・クラッチの入力部材に伝えられる揺動運動の揺動角度を変更するアクチュエータを備え、前記入力軸に入力される回転動力が前記偏心ディスクおよび前記連結部材を介して前記ワンウェイ・クラッチの出力部材に回転動力として伝達される際の変速比を変更する変速比可変機構と、
     を具備し、且つ、前記偏心量がゼロに設定可能とされることで変速比を無限大に設定することのできる4節リンク機構式の無段変速機構として構成されており、
     前記第1の電動モータが前記無段変速機構の入力軸に連結され、
     前記無段変速機構の構成要素であるワンウェイ・クラッチが、前記無段変速機構の出力部と前記被回転駆動部材との間に設けられた前記ワンウェイ・クラッチを兼ねていることを特徴とする請求項1または2に記載の自動車用駆動システム。
PCT/JP2012/064803 2011-07-14 2012-06-08 自動車用駆動システム WO2013008566A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523865A JP5747081B2 (ja) 2011-07-14 2012-06-08 自動車用駆動システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-155918 2011-07-14
JP2011155918 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013008566A1 true WO2013008566A1 (ja) 2013-01-17

Family

ID=47505864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064803 WO2013008566A1 (ja) 2011-07-14 2012-06-08 自動車用駆動システム

Country Status (2)

Country Link
JP (1) JP5747081B2 (ja)
WO (1) WO2013008566A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162815A1 (ja) * 2013-04-01 2014-10-09 本田技研工業株式会社 車両用動力伝達装置
JP2015102173A (ja) * 2013-11-25 2015-06-04 本田技研工業株式会社 動力伝達装置
JP2017170976A (ja) * 2016-03-22 2017-09-28 本田技研工業株式会社 車両用動力伝達装置
CN107521326A (zh) * 2017-07-05 2017-12-29 潍柴动力股份有限公司 用于混合动力车辆的混联式驱动系统及混合动力车辆
CN109922980A (zh) * 2016-11-22 2019-06-21 舍弗勒技术股份两合公司 用于混合动力车辆的变速器组件和驱动装置
CN110293834A (zh) * 2019-07-11 2019-10-01 广西玉柴机器股份有限公司 混合动力并联双电机的动力换挡变速箱系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115869A (ja) * 1999-08-09 2001-04-24 Honda Motor Co Ltd ハイブリッド自動車
JP2005502543A (ja) * 2001-09-26 2005-01-27 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 駆動装置
JP2006050767A (ja) * 2004-08-04 2006-02-16 Honda Motor Co Ltd 電動車両用制御装置
JP2010025310A (ja) * 2008-07-24 2010-02-04 Honda Motor Co Ltd 変速機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3593992B2 (ja) * 2001-04-23 2004-11-24 日産自動車株式会社 ハイブリッド車両用駆動装置
JP4008437B2 (ja) * 2004-08-10 2007-11-14 本田技研工業株式会社 パワーモジュールの駆動制御装置、及び、ハイブリッド車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115869A (ja) * 1999-08-09 2001-04-24 Honda Motor Co Ltd ハイブリッド自動車
JP2005502543A (ja) * 2001-09-26 2005-01-27 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 駆動装置
JP2006050767A (ja) * 2004-08-04 2006-02-16 Honda Motor Co Ltd 電動車両用制御装置
JP2010025310A (ja) * 2008-07-24 2010-02-04 Honda Motor Co Ltd 変速機

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162815A1 (ja) * 2013-04-01 2014-10-09 本田技研工業株式会社 車両用動力伝達装置
JP5945068B2 (ja) * 2013-04-01 2016-07-05 本田技研工業株式会社 車両用動力伝達装置
JP2015102173A (ja) * 2013-11-25 2015-06-04 本田技研工業株式会社 動力伝達装置
JP2017170976A (ja) * 2016-03-22 2017-09-28 本田技研工業株式会社 車両用動力伝達装置
CN109922980A (zh) * 2016-11-22 2019-06-21 舍弗勒技术股份两合公司 用于混合动力车辆的变速器组件和驱动装置
US11192442B2 (en) 2016-11-22 2021-12-07 Schaeffler Technologies AG & Co. KG Transmission arrangement and drive device for a hybrid vehicle
CN107521326A (zh) * 2017-07-05 2017-12-29 潍柴动力股份有限公司 用于混合动力车辆的混联式驱动系统及混合动力车辆
CN107521326B (zh) * 2017-07-05 2019-07-30 潍柴动力股份有限公司 用于混合动力车辆的混联式驱动系统及混合动力车辆
CN110293834A (zh) * 2019-07-11 2019-10-01 广西玉柴机器股份有限公司 混合动力并联双电机的动力换挡变速箱系统

Also Published As

Publication number Publication date
JP5747081B2 (ja) 2015-07-08
JPWO2013008566A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5638075B2 (ja) 自動車用駆動システム及びその制御方法
JP5019080B2 (ja) 自動車用駆動システム及びその制御方法
JP5501461B2 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
JP5492990B2 (ja) 自動車用駆動システム
JP5142234B2 (ja) 無段変速機構及び自動車用駆動システム
JP5449240B2 (ja) 変速比制御装置及び変速比制御方法
JP5455994B2 (ja) 自動車用駆動システム
JP5382882B2 (ja) 無段変速機構及び自動車用駆動システム
JP5589076B2 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
JP5747081B2 (ja) 自動車用駆動システム
WO2012176494A1 (ja) 駆動システム及び駆動システムの制御方法
US8512202B2 (en) Shift controller and shift controlling method
JP5542204B2 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
JP5677246B2 (ja) 変速比制御装置
JP5702698B2 (ja) 車両の駆動システム
JP5570661B2 (ja) 駆動システム
WO2012002062A1 (ja) 自動車用駆動システム及びその制御方法
JP5586694B2 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
JP5589075B2 (ja) 自動車用駆動システムおよび自動車用駆動システムの制御方法
WO2011162056A1 (ja) 自動車用駆動システム及びその制御方法
JP5654974B2 (ja) 駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810906

Country of ref document: EP

Kind code of ref document: A1