WO2013008518A1 - 生産機械 - Google Patents

生産機械 Download PDF

Info

Publication number
WO2013008518A1
WO2013008518A1 PCT/JP2012/061261 JP2012061261W WO2013008518A1 WO 2013008518 A1 WO2013008518 A1 WO 2013008518A1 JP 2012061261 W JP2012061261 W JP 2012061261W WO 2013008518 A1 WO2013008518 A1 WO 2013008518A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable body
impact
actuator
impact force
piezoelectric element
Prior art date
Application number
PCT/JP2012/061261
Other languages
English (en)
French (fr)
Inventor
啓祐 名桐
政利 藤田
良 永田
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to EP12811792.6A priority Critical patent/EP2734023B1/en
Priority to CN201280034453.5A priority patent/CN103703877B/zh
Publication of WO2013008518A1 publication Critical patent/WO2013008518A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/02Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for connecting objects by press fit or for detaching same
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0038Force sensors associated with force applying means applying a pushing force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42092Position and force control loop together
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45143Press-brake, bending machine

Definitions

  • the present invention relates to a production machine having a function of controlling the pressure of the movable body against the pressurized object by moving the movable body with the actuator until it collides with the pressurized object.
  • a component mounting machine when a component is sucked by a suction nozzle and mounted on the circuit board, the component is lightly pressurized and mounted on the circuit board by the suction nozzle.
  • the suction nozzle mounting head
  • the higher the speed the greater the impact force when the component sucked by the suction nozzle collides with the circuit board. Since there is a possibility that the parts are damaged, it is necessary to mitigate the impact force.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-338067
  • Patent Document 2 Japanese Patent Laid-Open No. 7-249896
  • the present inventors have studied a system that uses an actuator to reduce the impact force.
  • the vibration of the impact force becomes high-frequency vibration
  • the control process cannot follow the high-frequency vibration, and the impact force is reduced.
  • the pressing force of the movable body against the pressurized object is not stable due to the impact force.
  • the problem to be solved by the present invention is that production that can relieve the impact force when the movable body collides with the pressurized object with good response, and can stabilize the pressing force of the movable body against the pressurized object. Is to provide a machine.
  • the present invention provides a production machine having a function of controlling the pressure of the movable body against the pressurized object by moving the movable body with an actuator until it collides with the pressurized object.
  • An impact mitigating actuator used to relieve the impact force when the movable body collides with the pressurized object, and an impact force detection means for detecting the impact force when the movable body collides with the pressurized object;
  • a deviation between the low frequency band signal extracting means for extracting the low frequency band signal component from the output signal of the impact force detecting means, and the low frequency band signal component extracted by the low frequency signal extracting means and the pressure command.
  • Driving force feedback control means for controlling the driving force of the main actuator to be reduced, and high frequency band signal extraction for extracting a signal component of the high frequency band from the output signal of the impact force detecting means And an impact for controlling the driving force of the impact mitigating actuator so as to relieve the impact force when the movable body collides with the object to be pressed based on the signal component of the high frequency band extracted by the high frequency signal extracting means.
  • the structure includes a relaxation control means.
  • the impact force when the movable body collides with the pressurized object is detected by the impact force detection means, extracted from the output signal of the impact force detection means by the low frequency band signal extraction means,
  • the driving force of the actuator is controlled by the driving force feedback control means so that the deviation between the signal component in the frequency band and the pressure command becomes small.
  • the magnitude of the impact force is extracted by extracting the signal component in the low frequency band from the output signal of the impact force detection means, and the driving force of the actuator 13 (the pressing force of the movable body against the pressurizing object) is applied. Feedback control is performed so as to match the command.
  • the movable body is controlled by controlling the driving force of the impact relaxation actuator so as to reduce the impact force based on the signal component of the high frequency band extracted from the output signal of the impact force detection means by the high frequency band signal extraction means.
  • the impact force when colliding with the pressurized object can be relaxed with good response, and the pressure applied by the movable body to the pressurized object can be stabilized.
  • the impact mitigating actuator and the impact force detecting means may be constituted by a single piezoelectric element. If the piezoelectric effect and the inverse piezoelectric effect of one piezoelectric element are used, the function of both the impact mitigation actuator and the impact force detection means can be realized with one piezoelectric element by using one piezoelectric element as a self-sensing actuator. There is an advantage that cost and space can be saved.
  • the impact mitigating actuator and the impact force detecting means are configured by separate piezoelectric elements and provided in series in the driving direction of the movable body, and the piezoelectric elements constituting the impact force detecting means collide with the object to be pressed.
  • the driving voltage of the piezoelectric element may be controlled so that the piezoelectric element constituting the impact mitigating actuator is deformed in a direction opposite to the distortion direction at the moment when the distortion due to is detected.
  • the impact mitigating actuator and the impact force detecting means are configured by separate piezoelectric elements, and a counter mass is attached to the piezoelectric element constituting the impact mitigating actuator, and the piezoelectric element constituting the impact force detecting means is added.
  • the drive voltage of the piezoelectric element constituting the impact relaxation actuator may be controlled so that the counter mass moves in a direction to relax the impact force.
  • the low frequency band signal extracting means, the high frequency signal extracting means, and the driving force feedback control means may be omitted.
  • position control means for executing position control for controlling the position of the movable body by driving the actuator based on the position command, and the pressing force of the movable body with respect to the pressurization target coincide with the pressing force command.
  • the system includes a control method switching unit that executes position control by the position control unit before, and executes pressure control by the driving force control unit after detecting the collision of the movable body by the collision detection unit. Also good.
  • the position control can switch from the position control to the pressurization control at the moment when the movable body collides with the pressurized object, the position control can increase the drive speed of the movable body and Can effectively relieve the impact force by controlling the applied pressure, and can stabilize the applied pressure of the movable body against the object to be pressed.
  • FIG. 1 is a block diagram showing the configuration of a production machine control system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the production machine control system according to the second embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the production machine control system according to the third embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the production machine control system according to the fourth embodiment of the present invention.
  • the production machine according to the first embodiment is, for example, a component mounting machine, a component assembling machine, and the like.
  • a component mounting machine suction is performed when the component is sucked into the suction nozzle and mounted on the circuit board.
  • the operation of mounting the component by lightly pressing the circuit board with the nozzle is controlled by the control system of the first embodiment.
  • the operation of holding the press-fitting (insertion) part and press-fitting (inserting) it into the hole is controlled by the control system of the first embodiment.
  • the movable body 11 of the production machine is slidably supported on the shaft 12 and is driven by the actuator 13.
  • the actuator 13 for driving the movable body 11 is configured by a servo motor, a motor such as a step motor, a linear motor, or the like.
  • a pressurization object 14 is installed at a predetermined position in the moving direction of the movable body 11.
  • a piezoelectric element 15 is attached to the movable body 11 at a position to which an impact force is applied when the distal end portion 11a collides with the object 14 to be pressed.
  • the piezoelectric element 15 functions as an impact mitigating actuator used to relieve an impact force when the distal end portion 11a of the movable body 11 collides with the pressurization target 14, and the distal end portion 11a of the movable body 11 is pressurized. It also functions as an impact force detection means for detecting an impact force when it collides with the object 14. That is, the piezoelectric element 15 is used as a self-sensing actuator that realizes the functions of both the impact mitigating actuator and the impact force detecting means by using the piezoelectric effect and the inverse piezoelectric effect.
  • a signal component in the low frequency band is extracted from the output signal (impact force detection signal) of the piezoelectric element 15 when the distal end portion 11 a of the movable body 11 collides with the pressurized object 14.
  • the actuator 13 is driven so that the deviation between the low frequency band signal extraction filter 16 (low frequency band signal extraction means) and the low frequency band signal component extracted by the low frequency band signal extraction filter 16 and the pressure command is small.
  • a feedback control unit 17 driving force feedback control means that feedback-controls the force (pressing force of the movable body 11 against the pressurizing object 14) is provided.
  • the feedback control unit 17 performs feedback control so that the driving force of the actuator 13 (the pressing force of the movable body 11 with respect to the pressurizing object 14) matches the pressing force command.
  • the drive control system of the piezoelectric element 15 constituting the impact mitigating actuator is based on an output signal (impact force detection signal) of the piezoelectric element 15 when the distal end portion 11a of the movable body 11 collides with the pressurization target 14.
  • a high-frequency band signal extraction filter 18 high-frequency band signal extraction means that extracts a high-frequency band signal component, and the tip 11a of the movable body 11 is added based on the high-frequency band signal component extracted by the high-frequency band signal extraction filter 18.
  • An impact mitigation control unit 19 is provided for controlling the driving voltage of the piezoelectric element 15 (driving force of the impact mitigation actuator) so as to mitigate the impact force when colliding with the pressure object 14. .
  • the impact relaxation control unit 19 generates a drive signal having a waveform opposite in phase to the signal component in the high frequency band extracted by the high frequency band signal extraction filter 18, and changes the drive voltage of the piezoelectric element 15 with this drive signal.
  • the driving force of the piezoelectric element 15 is changed so as to reduce the impact force applied to the distal end portion 11a of the movable body 11, and the impact force applied to the distal end portion 11a of the movable body 11 is reduced.
  • the impact mitigation control unit 19 may be configured by a digital circuit, but may be configured by an analog circuit when digital processing cannot sufficiently follow the vibration frequency because the vibration frequency of the piezoelectric element 15 is high.
  • the low frequency band signal extraction filter 16 reduces the output signal (impact force detection signal) of the piezoelectric element 15 when the distal end portion 11a of the movable body 11 collides with the pressurization target 14.
  • the signal component of the frequency band By extracting the signal component of the frequency band, the magnitude of the impact force applied to the distal end portion 11a of the movable body 11 is extracted, and the driving force of the actuator 13 by the feedback control unit 17 (the movable body 11 with respect to the pressurized object 14 is extracted).
  • the movable body based on the signal component in the high frequency band extracted by the high frequency band signal extraction filter 18 from the output signal (impact force detection signal) of the piezoelectric element 15.
  • Drive voltage of the piezoelectric element 15 (drive of the impact relaxation actuator) so as to relieve the impact force when the tip 11a of the 11 collides with the pressurized object 14 ) Is controlled by the impact relaxation control unit 19, the impact force when the distal end portion 11 a of the movable body 11 collides with the pressurization target 14 is relaxed with good response, and the addition of the movable body 11 to the pressurization target 14 is achieved.
  • the pressure can be stabilized.
  • the single piezoelectric element 15 is configured to realize the functions of both the impact mitigating actuator and the impact force detecting means.
  • An impact mitigating piezoelectric element 21 that constitutes an impact mitigating actuator used to mitigate the impact force when colliding with the pressurized object 14 at the distal end portion 11a, and the impact force when colliding with the pressurized object 14
  • An impact force detecting piezoelectric element 22 that constitutes an impact force detecting means for detecting the impact force is provided in series in the drive direction of the movable body 11, and the impact force detecting piezoelectric element 22 is distorted by collision with the pressurized object 14. At the moment when this is detected, the driving voltage of the piezoelectric element 21 is controlled so as to deform the impact-reducing piezoelectric element 21 in a direction opposite to the direction of strain.
  • the drive control system of the impact relaxation piezoelectric element 21 outputs an output signal (impact force detection piezoelectric element 22 when the distal end portion 11a of the movable body 11 collides with the pressurized object 14
  • a high frequency band signal extraction filter 18 high frequency band signal extraction means that extracts a high frequency band signal component from the impact force detection signal
  • a movable body based on the high frequency band signal component extracted by the high frequency band signal extraction filter 18 11 includes an impact mitigation control unit 19 (impact mitigation control means) that controls the driving voltage of the piezoelectric element 21 for mitigating the impact so as to mitigate the impact force when the tip portion 11a of the eleven has collided with the pressurized object 14.
  • impact mitigation control unit 19 impact mitigation control means
  • the front end portion 11a of the movable body 11 has an impact force detecting piezoelectric member that constitutes an impact force detecting means for detecting an impact force when the movable body 11 collides with the pressurized object 14. Only the element 23 is provided, and the impact reducing piezoelectric element 24 constituting the impact reducing actuator used for reducing the impact force when the tip 11a of the movable body 11 collides with the pressurizing object 14 is provided by the movable body. 11 is attached to the movable body 11 so as to be positioned around the distal end portion 11a, and a counter mass 25 is attached to the impact reducing piezoelectric element 24.
  • the impact-relieving piezoelectric element 24 and the counter mass 25 may be formed in a ring shape, or may be a plurality of them. In short, the counter mass with respect to the center line of the movable body 11 may be used. What is necessary is just to provide so that the load of 25 may act on the movable body 11 equally.
  • the counter mass 25 reduces the impact force with the driving voltage of the impact relaxation piezoelectric element 24. Control to move in the direction you want.
  • the drive control system of the impact relaxation piezoelectric element 23 outputs an output signal (impact force detection piezoelectric element 23 when the distal end portion 11a of the movable body 11 collides with the pressurized object 14
  • a high frequency band signal extraction filter 18 high frequency band signal extraction means that extracts a high frequency band signal component from the impact force detection signal
  • a movable body based on the high frequency band signal component extracted by the high frequency band signal extraction filter 18 11 includes an impact relaxation control unit 19 (impact relaxation control means) that controls the drive voltage of the piezoelectric element 24 for shock relaxation so as to relieve the impact force when the tip portion 11a of the 11 collides with the pressurized object 14.
  • impact relaxation control unit 19 impact relaxation control means
  • the drive control system of the actuator 13 that drives the movable body 11 performs position control that controls the position of the movable body 11 by driving the actuator 13 based on the position command.
  • a position control unit 31 position control means
  • a control system switching unit 33 control system switching unit for switching the control system of the actuator 13 between position control by the position control unit 31 and pressurization control by the pressurization control unit 32. ing.
  • the movable body 11 is provided with a collision detecting piezoelectric element 34 that constitutes a collision detecting means for detecting that the front end portion 11a collides with the pressurized object 14, and an output signal of the piezoelectric element 34 detects the collision detection. Input to the unit 35.
  • the collision detection signal is output from the collision detection unit 35 to the control method switching unit 33 at the moment when the output signal of the piezoelectric element 34 changes due to the tip 11a of the movable body 11 colliding with the pressurized object 14.
  • the control method switching unit 33 is maintained in a state of outputting the position control signal of the position control unit 31 to the actuator 13 and is movable.
  • the control method switching unit 33 controls the pressure.
  • the actuator 13 is driven such that the pressing force control signal of the unit 32 is output to the actuator 13 and the pressing force of the movable body 11 against the pressurizing object 14 matches the pressing force command.
  • the position control can be switched to the pressure control at the moment when the tip 11a of the movable body 11 collides with the pressurized object 14 by the position control. While the driving speed of the body 11 is increased, the impact force can be effectively relieved by the applied pressure control after the collision to stabilize the applied pressure of the movable body 11 against the pressurized object 14.
  • the fourth embodiment may be implemented in combination with any of the first to third embodiments described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Presses (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Manipulator (AREA)

Abstract

 可動体11の先端部11aが加圧対象物14に衝突したときの圧電素子15の出力信号(衝撃力の検出信号)から低周波帯域信号抽出フィルタ16で低周波帯域の信号成分を抽出することで、可動体11の先端部11aに加わる衝撃力の大きさを抽出し、フィードバック制御部17によってアクチュエータ13の駆動力(加圧対象物14に対する可動体11の加圧力)を加圧力指令に一致させるようにフィードバック制御する。更に、圧電素子15の出力信号(衝撃力の検出信号)から高周波帯域信号抽出フィルタ18で抽出した高周波帯域の信号成分に基づいて可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を緩和するように圧電素子15の駆動電圧を衝撃緩和制御部19によって制御する。

Description

生産機械
 本発明は、アクチュエータで可動体を加圧対象物に衝突するまで移動させて該加圧対象物に対する該可動体の加圧力を制御する機能を備えた生産機械に関する発明である。
 例えば、部品実装機においては、吸着ノズルに部品を吸着して回路基板上に該部品を実装する際に、吸着ノズルで部品を回路基板に軽く加圧して実装するようにしている。この場合、生産性を高めるには吸着ノズル(装着ヘッド)の駆動速度を高速化する必要があるが、高速化するほど、吸着ノズルに吸着した部品が回路基板に衝突したときの衝撃力が大きくなって部品が損傷する可能性があるため、衝撃力を緩和する必要がある。
 また、圧入(挿入)部品を孔に圧入(挿入)する部品組立機においても、圧入(挿入)部品を保持して孔に圧入(挿入)する組立ヘッドの駆動速度を高速化すると、圧入部品が孔の周縁に衝突したときの衝撃力が大きくなって圧入部品や孔の周縁部が損傷する可能性があるため、衝撃力を緩和する必要がある。
 一般に、衝撃力を緩和する場合は、特許文献1(特開2004-338067号公報)や特許文献2(特開平7-249896号公報)に記載されているように、衝撃力を緩和するショックアブソーバやダンパ部材を設けたものが多い。
特開2004-338067号公報 特開平7-249896号公報
 しかし、上記特許文献1,2のように、ショックアブソーバやダンパ部材によって衝撃力を緩和する手法では、衝撃力が許容値以下に緩和されるまでに、ある程度の時間がかかったり、共振したりする可能性があり、駆動速度の高速化に限界がある。
 そこで、本発明者らは、アクチュエータを用いて衝撃力を緩和するシステムを研究しているが、衝撃力の振動は高周波振動となるため、制御の処理が高周波振動に追従できなくなり、衝撃力を応答良く緩和することができないばかりか、衝撃力の影響で加圧対象物に対する可動体の加圧力も安定しないという問題がある。
 そこで、本発明が解決しようとする課題は、可動体が加圧対象物に衝突したときの衝撃力を応答良く緩和して、加圧対象物に対する可動体の加圧力を安定させることができる生産機械を提供することである。
 上記課題を解決するために、本発明は、アクチュエータで可動体を加圧対象物に衝突するまで移動させて該加圧対象物に対する該可動体の加圧力を制御する機能を備えた生産機械において、前記可動体が加圧対象物に衝突したときの衝撃力を緩和するために用いる衝撃緩和アクチュエータと、前記可動体が加圧対象物に衝突したときの衝撃力を検出する衝撃力検出手段と、前記衝撃力検出手段の出力信号から低周波帯域の信号成分を抽出する低周波帯域信号抽出手段と、前記低周波信号抽出手段で抽出した低周波帯域の信号成分と加
圧力指令との偏差が小さくなるように前記メインアクチュエータの駆動力を制御する駆動力フィードバック制御手段と、前記衝撃力検出手段の出力信号から高周波帯域の信号成分を抽出する高周波帯域信号抽出手段と、前記高周波信号抽出手段で抽出した高周波帯域の信号成分に基づいて前記可動体が加圧対象物に衝突したときの衝撃力を緩和するように前記衝撃緩和アクチュエータの駆動力を制御する衝撃緩和制御手段とを備えた構成としたものである。
 この構成によれば、可動体が加圧対象物に衝突したときの衝撃力を衝撃力検出手段により検出し、衝撃力検出手段の出力信号から低周波帯域信号抽出手段により抽出し、抽出した低周波帯域の信号成分と加圧力指令との偏差が小さくなるようにアクチュエータの駆動力を駆動力フィードバック制御手段により制御する。つまり、衝撃力検出手段の出力信号から低周波帯域の信号成分を抽出することで衝撃力の大きさを抽出し、アクチュエータ13の駆動力(加圧対象物に対する可動体の加圧力)を加圧力指令に一致させるようにフィードバック制御するものである。これと同時に、衝撃力検出手段の出力信号から高周波帯域信号抽出手段により抽出した高周波帯域の信号成分に基づいて衝撃力を緩和するように衝撃緩和アクチュエータの駆動力を制御することで、可動体が加圧対象物に衝突したときの衝撃力を応答良く緩和して、加圧対象物に対する可動体の加圧力を安定させることができる。
 この場合、衝撃緩和アクチュエータ及び衝撃力検出手段は、1つの圧電素子により構成しても良い。1つの圧電素子の圧電効果と逆圧電効果を利用すれば、1つの圧電素子をセルフセンシングアクチュエータとして用いて、衝撃緩和アクチュエータと衝撃力検出手段の両方の機能を1つの圧電素子で実現でき、低コスト化及び省スペース化も実現できる利点がある。
 或は、衝撃緩和アクチュエータ及び衝撃力検出手段をそれぞれ別の圧電素子により構成して、可動体の駆動方向に直列に設け、前記衝撃力検出手段を構成する圧電素子が加圧対象物との衝突による歪みを検出した瞬間に、前記衝撃緩和アクチュエータを構成する圧電素子が歪みの方向とは反対方向に変形するように該圧電素子の駆動電圧を制御するようにしても良い。
 或は、衝撃緩和アクチュエータ及び衝撃力検出手段をそれぞれ別の圧電素子により構成すると共に、前記衝撃緩和アクチュエータを構成する圧電素子にはカウンターマスを取り付け、前記衝撃力検出手段を構成する圧電素子が加圧対象物との衝突による歪みを検出した瞬間に、前記衝撃緩和アクチュエータを構成する圧電素子の駆動電圧を前記カウンターマスが衝撃力を緩和する方向に移動するように制御するようにしても良い。
 尚、上記発明においては、低周波帯域信号抽出手段、高周波信号抽出手段及び駆動力フィードバック制御手段を省略した構成としても良いし、請求項1に係る発明と同様、低周波帯域信号抽出手段、高周波信号抽出手段及び駆動力フィードバック制御手段を備えた構成としても良い。
 また、位置指令に基づいてアクチュエータを駆動して可動体の位置を制御する位置制御を実行する位置制御手段と、前記加圧対象物に対する前記可動体の加圧力が加圧力指令と一致するように前記アクチュエータを制御する加圧力制御を実行する加圧力制御手段と、前記可動体が加圧対象物に衝突したことを検出する衝突検出手段と、前記衝突検出手段で前記可動体の衝突を検出する前は前記位置制御手段による位置制御を実行し、前記衝突検出手段で前記可動体の衝突を検出した後は前記駆動力制御手段による加圧力制御を実行する制御方式切換手段とを備えた構成としても良い。
 この構成によれば、位置制御により可動体が加圧対象物に衝突した瞬間に、位置制御から加圧力制御に切り換えることができるため、位置制御により可動体の駆動速度を高速化しながら、衝突後は加圧力制御により衝撃力を効果的に緩和して、加圧対象物に対する可動体の加圧力を安定させることができる。
図1は本発明の実施例1の生産機械の制御システムの構成を示すブロック図である。 図2は本発明の実施例2の生産機械の制御システムの構成を示すブロック図である。 図3は本発明の実施例3の生産機械の制御システムの構成を示すブロック図である。 図4は本発明の実施例4の生産機械の制御システムの構成を示すブロック図である。
 以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。
 本発明の実施例1を図1に基づいて説明する。
 本実施例1の生産機械は、例えば、部品実装機、部品組立機等であり、部品実装機の場合は、吸着ノズルに部品を吸着して回路基板上に該部品を実装する際に、吸着ノズルで部品を回路基板に軽く加圧して実装する動作を本実施例1の制御システムによって制御する。部品組立機の場合は、圧入(挿入)部品を保持して孔に圧入(挿入)する動作を本実施例1の制御システムによって制御する。
 生産機械の可動体11は、軸12にスライド可能に支持され、アクチュエータ13によって駆動される。可動体11を駆動するアクチュエータ13は、サーボモータ、ステップモータ等のモータ、リニアモータ等により構成されている。可動体11の移動方向の所定位置には、加圧対象物14が設置されている。
 可動体11には、その先端部11aが加圧対象物14に衝突したときの衝撃力が加わる位置に圧電素子15が取り付けられている。この圧電素子15は、可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を緩和するために用いる衝撃緩和アクチュエータとして機能すると共に、可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を検出する衝撃力検出手段としても機能する。すなわち、圧電素子15は、圧電効果と逆圧電効果を利用することで、衝撃緩和アクチュエータと衝撃力検出手段の両方の機能を実現するセルフセンシングアクチュエータとして用いられている。
 アクチュエータ13の駆動制御系には、可動体11の先端部11aが加圧対象物14に衝突したときの圧電素子15の出力信号(衝撃力の検出信号)から低周波帯域の信号成分を抽出する低周波帯域信号抽出フィルタ16(低周波帯域信号抽出手段)と、この低周波帯域信号抽出フィルタ16で抽出した低周波帯域の信号成分と加圧力指令との偏差が小さくなるようにアクチュエータ13の駆動力(加圧対象物14に対する可動体11の加圧力)をフィードバック制御するフィードバック制御部17(駆動力フィードバック制御手段)とが設けられている。圧電素子15の出力信号(衝撃力の検出信号)から低周波帯域信号抽出フィルタ16で低周波帯域の信号成分を抽出することで、可動体11の先端部11aに加わる衝撃力の大きさを抽出し、フィードバック制御部17によってアクチュエータ13の駆動力(加圧対象物14に対する可動体11の加圧力)を加圧力指令に一致させるようにフィードバック制御する。
 一方、衝撃緩和アクチュエータを構成する圧電素子15の駆動制御系には、可動体11の先端部11aが加圧対象物14に衝突したときの圧電素子15の出力信号(衝撃力の検出信号)から高周波帯域の信号成分を抽出する高周波帯域信号抽出フィルタ18(高周波帯域信号抽出手段)と、この高周波帯域信号抽出フィルタ18で抽出した高周波帯域の信号成分に基づいて可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を緩和するように圧電素子15の駆動電圧(衝撃緩和アクチュエータの駆動力)を制御する衝撃緩和制御部19(衝撃緩和制御手段)とが設けられている。
 衝撃緩和制御部19は、高周波帯域信号抽出フィルタ18で抽出した高周波帯域の信号成分と逆位相の波形の駆動信号を生成して、この駆動信号で圧電素子15の駆動電圧を変化させることで、可動体11の先端部11aに加わる衝撃力を緩和するように圧電素子15の駆動電圧を変化させて、可動体11の先端部11aに加わる衝撃力を緩和する。この衝撃緩和制御部19は、ディジタル回路で構成しても良いが、圧電素子15の振動の周波数が高いために、ディジタル処理が振動周波数に十分に追従できない場合は、アナログ回路で構成すると良い。
 以上説明した本実施例1では、可動体11の先端部11aが加圧対象物14に衝突したときの圧電素子15の出力信号(衝撃力の検出信号)から低周波帯域信号抽出フィルタ16で低周波帯域の信号成分を抽出することで、可動体11の先端部11aに加わる衝撃力の大きさを抽出し、フィードバック制御部17によってアクチュエータ13の駆動力(加圧対象物14に対する可動体11の加圧力)を加圧力指令に一致させるようにフィードバック制御すると共に、圧電素子15の出力信号(衝撃力の検出信号)から高周波帯域信号抽出フィルタ18で抽出した高周波帯域の信号成分に基づいて可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を緩和するように圧電素子15の駆動電圧(衝撃緩和アクチュエータの駆動力)を衝撃緩和制御部19によって制御するため、可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を応答良く緩和して、加圧対象物14に対する可動体11の加圧力を安定させることができる。
 しかも、本実施例1では、1つの圧電素子15で、衝撃緩和アクチュエータと衝撃力検出手段の両方の機能を実現しているため、低コスト化及び省スペース化も実現できる利点がある。
 上記実施例1では、1つの圧電素子15で、衝撃緩和アクチュエータと衝撃力検出手段の両方の機能を実現するように構成したが、図2に示す本発明の実施例2では、可動体11の先端部11aに、加圧対象物14に衝突したときの衝撃力を緩和するために用いる衝撃緩和アクチュエータを構成する衝撃緩和用の圧電素子21と、加圧対象物14に衝突したときの衝撃力を検出する衝撃力検出手段を構成する衝撃力検出用の圧電素子22とを可動体11の駆動方向に直列に設け、衝撃力検出用の圧電素子22が加圧対象物14との衝突による歪みを検出した瞬間に、衝撃緩和用の圧電素子21を歪みの方向とは反対方向に変形させるように該圧電素子21の駆動電圧を制御する。
 これを実現するために、衝撃緩和用の圧電素子21の駆動制御系は、可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力検出用の圧電素子22の出力信号(衝撃力の検出信号)から高周波帯域の信号成分を抽出する高周波帯域信号抽出フィルタ18(高周波帯域信号抽出手段)と、この高周波帯域信号抽出フィルタ18で抽出した高周波帯域の信号成分に基づいて可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を緩和するように衝撃緩和用の圧電素子21の駆動電圧を制御する衝撃緩和制御部19(衝撃緩和制御手段)とから構成すれば良い。その他の事項は、前記実施例1と同じ
であり、同一部分には同一符号を付して説明を省略する。
 図3に示す本発明の実施例3では、可動体11の先端部11aには、加圧対象物14に衝突したときの衝撃力を検出する衝撃力検出手段を構成する衝撃力検出用の圧電素子23のみが設けられ、可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を緩和するために用いる衝撃緩和アクチュエータを構成する衝撃緩和用の圧電素子24は、可動体11の先端部11aの周囲に位置するように可動体11に取り付けられ、この衝撃緩和用の圧電素子24には、カウンターマス25が取り付けられている。衝撃緩和用の圧電素子24とカウンターマス25は、それぞれリング状に形成されたものであっても良いし、複数個のものであっても良く、要は、可動体11の中心線に関してカウンターマス25の荷重が均等に可動体11に作用するように設ければ良い。
 本実施例3では、衝撃力検出用の圧電素子23が加圧対象物14との衝突による歪みを検出した瞬間に、衝撃緩和用の圧電素子24の駆動電圧をカウンターマス25が衝撃力を緩和する方向に移動するように制御する。
 これを実現するために、衝撃緩和用の圧電素子23の駆動制御系は、可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力検出用の圧電素子23の出力信号(衝撃力の検出信号)から高周波帯域の信号成分を抽出する高周波帯域信号抽出フィルタ18(高周波帯域信号抽出手段)と、この高周波帯域信号抽出フィルタ18で抽出した高周波帯域の信号成分に基づいて可動体11の先端部11aが加圧対象物14に衝突したときの衝撃力を緩和するように衝撃緩和用の圧電素子24の駆動電圧を制御する衝撃緩和制御部19(衝撃緩和制御手段)とから構成すれば良い。その他の事項は、前記実施例1と同じであり、同一部分には同一符号を付して説明を省略する。
 図4に示す本発明の実施例4では、可動体11を駆動するアクチュエータ13の駆動制御系には、位置指令に基づいてアクチュエータ13を駆動して可動体11の位置を制御する位置制御を実行する位置制御部31(位置制御手段)と、加圧対象物14に対する可動体11の加圧力が加圧力指令と一致するようにアクチュエータ13を制御する加圧力制御を実行する加圧力制御部32(加圧力制御手段)と、アクチュエータ13の制御方式を位置制御部31による位置制御と加圧力制御部32による加圧力制御との間で切り換える制御方式切換部33(制御方式切換手段)とが設けられている。
 可動体11には、その先端部11aが加圧対象物14に衝突したことを検出する衝突検出手段を構成する衝突検出用の圧電素子34が設けられ、この圧電素子34の出力信号が衝突検出部35に入力される。可動体11の先端部11aが加圧対象物14に衝突して圧電素子34の出力信号が変化した瞬間に、衝突検出部35から衝突検出信号が制御方式切換部33へ出力される。衝突検出部35から衝突検出信号が出力される前(衝突が検出される前)は、制御方式切換部33が位置制御部31の位置制御信号をアクチュエータ13へ出力する状態に維持されて、可動体11の位置が位置指令と一致するようにアクチュエータ13が駆動され、衝突検出部35から衝突検出信号が出力された瞬間(衝突が検出された瞬間)に、制御方式切換部33が加圧力制御部32の加圧力制御信号をアクチュエータ13へ出力する状態に切り換えられて、加圧対象物14に対する可動体11の加圧力が加圧力指令と一致するようにアクチュエータ13が駆動される。
 以上説明した本実施例4によれば、位置制御により可動体11の先端部11aが加圧対象物14に衝突した瞬間に、位置制御から加圧力制御に切り換えることができるため、位置制御により可動体11の駆動速度を高速化しながら、衝突後は加圧力制御により衝撃力
を効果的に緩和して、加圧対象物14に対する可動体11の加圧力を安定させることができる。
 尚、上記実施例4は、前述した実施例1~3のいずれかと組み合わせて実施しても良い。
 その他、本発明は、可動体11の構造等を適宜変更して実施しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。
 11…可動体、13…アクチュエータ、14…加圧対象物、15…圧電素子(衝撃緩和アクチュエータ,衝撃力検出手段)、16…低周波帯域信号抽出フィルタ(低周波帯域信号抽出手段)、17…フィードバック制御部(駆動力フィードバック制御手段)、18…高周波帯域信号抽出フィルタ(高周波帯域信号抽出手段)、19…衝撃緩和制御部(衝撃緩和制御手段)、21…衝撃緩和用の圧電素子(衝撃緩和アクチュエータ)、22…衝撃力検出用の圧電素子(衝撃力検出手段)、23…衝撃力検出用の圧電素子(衝撃力検出手段)、24…衝撃緩和用の圧電素子(衝撃緩和アクチュエータ)、25…カウンターマス、31…位置制御部(位置制御手段)、32…加圧力制御部(加圧力制御手段)、33…制御方式切換部(制御方式切換手段)、34…衝突検出用の圧電素子(衝突検出手段)、35…衝突検出部

Claims (5)

  1.  アクチュエータで可動体を加圧対象物に衝突するまで移動させて該加圧対象物に対する該可動体の加圧力を制御する機能を備えた生産機械において、
     前記可動体が加圧対象物に衝突したときの衝撃力を緩和するために用いる衝撃緩和アクチュエータと、
     前記可動体が加圧対象物に衝突したときの衝撃力を検出する衝撃力検出手段と、
     前記衝撃力検出手段の出力信号から低周波帯域の信号成分を抽出する低周波帯域信号抽出手段と、
     前記低周波信号抽出手段で抽出した低周波帯域の信号成分と加圧力指令との偏差が小さくなるように前記メインアクチュエータの駆動力を制御する駆動力フィードバック制御手段と、
     前記衝撃力検出手段の出力信号から高周波帯域の信号成分を抽出する高周波帯域信号抽出手段と、
     前記高周波信号抽出手段で抽出した高周波帯域の信号成分に基づいて前記可動体が加圧対象物に衝突したときの衝撃力を緩和するように前記衝撃緩和アクチュエータの駆動力を制御する衝撃緩和制御手段と
     を備えていることを特徴とする生産機械。
  2.  前記衝撃緩和アクチュエータ及び前記衝撃力検出手段は、1つの圧電素子により構成されていることを特徴とする請求項1に記載の生産機械。
  3.  アクチュエータで可動体を加圧対象物に衝突するまで移動させて該加圧対象物に対する該可動体の加圧力を制御する機能を備えた生産機械において、
     前記可動体が加圧対象物に衝突したときの衝撃力を緩和するために用いる衝撃緩和アクチュエータと、
     前記可動体が加圧対象物に衝突したときの衝撃力を検出する衝撃力検出手段と、
     前記可動体が加圧対象物に衝突したときの衝撃力を緩和するように前記衝撃緩和アクチュエータの駆動力を制御する衝撃緩和制御手段とを備え、
     前記衝撃緩和アクチュエータ及び前記衝撃力検出手段は、それぞれ別の圧電素子により構成されていると共に、前記可動体の駆動方向に直列に設けられ、
     前記衝撃緩和制御手段は、前記衝撃力検出手段を構成する圧電素子が加圧対象物との衝突による歪みを検出した瞬間に、前記衝撃緩和アクチュエータを構成する圧電素子が前記歪みの方向とは反対方向に変形するように該圧電素子の駆動電圧を制御することを特徴とする生産機械。
  4.  アクチュエータで可動体を加圧対象物に衝突するまで移動させて該加圧対象物に対する該可動体の加圧力を制御する機能を備えた生産機械において、
     前記可動体が加圧対象物に衝突したときの衝撃力を緩和するために用いる衝撃緩和アクチュエータと、
     前記可動体が加圧対象物に衝突したときの衝撃力を検出する衝撃力検出手段と、
     前記可動体が加圧対象物に衝突したときの衝撃力を緩和するように前記衝撃緩和アクチュエータの駆動力を制御する衝撃緩和制御手段とを備え、
     前記衝撃緩和アクチュエータ及び前記衝撃力検出手段は、それぞれ別の圧電素子により構成されていると共に、前記衝撃緩和アクチュエータを構成する圧電素子にはカウンターマスが取り付けられ、
     前記衝撃緩和制御手段は、前記衝撃力検出手段を構成する圧電素子が加圧対象物との衝突による歪みを検出した瞬間に、前記衝撃緩和アクチュエータを構成する圧電素子の駆動電圧を前記カウンターマスが衝撃力を緩和する方向に移動するように制御することを特徴とする生産機械。
  5.  アクチュエータで可動体を加圧対象物に衝突するまで移動させて該加圧対象物に対する該可動体の加圧力を制御する機能を備えた生産機械において、
     位置指令に基づいて前記アクチュエータを駆動して前記可動体の位置を制御する位置制
    御を実行する位置制御手段と、
     前記加圧対象物に対する前記可動体の加圧力が加圧力指令と一致するように前記アクチュエータを制御する加圧力制御を実行する加圧力制御手段と、
     前記可動体が加圧対象物に衝突したことを検出する衝突検出手段と、
     前記衝突検出手段で前記可動体の衝突を検出する前は前記位置制御手段による位置制御を実行し、前記衝突検出手段で前記可動体の衝突を検出した後は前記駆動力制御手段による加圧力制御を実行する制御方式切換手段と
     を備えていることを特徴とする生産機械。
PCT/JP2012/061261 2011-07-11 2012-04-26 生産機械 WO2013008518A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12811792.6A EP2734023B1 (en) 2011-07-11 2012-04-26 Manufacturing machine
CN201280034453.5A CN103703877B (zh) 2011-07-11 2012-04-26 生产机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011152673A JP5725657B2 (ja) 2011-07-11 2011-07-11 生産機械
JP2011-152673 2011-07-11

Publications (1)

Publication Number Publication Date
WO2013008518A1 true WO2013008518A1 (ja) 2013-01-17

Family

ID=47505817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061261 WO2013008518A1 (ja) 2011-07-11 2012-04-26 生産機械

Country Status (4)

Country Link
EP (1) EP2734023B1 (ja)
JP (1) JP5725657B2 (ja)
CN (1) CN103703877B (ja)
WO (1) WO2013008518A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666651B2 (ja) * 2014-10-27 2020-03-18 ハンファ精密機械株式会社 表面実装機の部品実装ヘッド

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555797A (ja) * 1991-08-29 1993-03-05 Hitachi Ltd 電子部品搭載用ヘツド装置
JPH07249896A (ja) 1994-01-21 1995-09-26 Yamaha Motor Co Ltd 実装機のノズル駆動装置
JPH11145683A (ja) * 1997-11-06 1999-05-28 Matsushita Electric Ind Co Ltd 部品装着装置、及び方法
JP2004095718A (ja) * 2002-08-30 2004-03-25 Yamagata Casio Co Ltd 電子部品搭載装置
JP2004338067A (ja) 2003-05-19 2004-12-02 Okuma Corp パレット交換装置
JP2010087178A (ja) * 2008-09-30 2010-04-15 Yamatake Corp 自動装着装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954310B4 (de) * 1999-11-11 2007-01-18 Thoms, Volker, Prof.Dr. Verfahren zum schnellen Regeln von Ziehvorgängen in Pressen und hierzu geeignete Ziehpresse
JP2006212644A (ja) * 2005-02-01 2006-08-17 Fanuc Ltd ダイクッション制御装置
DE102005012876A1 (de) * 2005-03-19 2006-09-21 Müller Weingarten AG Verfahren und Vorrichtung zur Steuerung und Regelung von servo-elektrischen Ziehkissen
JP4041508B2 (ja) * 2005-07-11 2008-01-30 ファナック株式会社 サーボダイクッションの制御装置
CN201750672U (zh) * 2010-04-08 2011-02-16 东莞市新泽谷机械有限公司 一种立式插件机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555797A (ja) * 1991-08-29 1993-03-05 Hitachi Ltd 電子部品搭載用ヘツド装置
JPH07249896A (ja) 1994-01-21 1995-09-26 Yamaha Motor Co Ltd 実装機のノズル駆動装置
JPH11145683A (ja) * 1997-11-06 1999-05-28 Matsushita Electric Ind Co Ltd 部品装着装置、及び方法
JP2004095718A (ja) * 2002-08-30 2004-03-25 Yamagata Casio Co Ltd 電子部品搭載装置
JP2004338067A (ja) 2003-05-19 2004-12-02 Okuma Corp パレット交換装置
JP2010087178A (ja) * 2008-09-30 2010-04-15 Yamatake Corp 自動装着装置

Also Published As

Publication number Publication date
EP2734023B1 (en) 2019-06-26
CN103703877B (zh) 2016-04-13
EP2734023A1 (en) 2014-05-21
JP5725657B2 (ja) 2015-05-27
CN103703877A (zh) 2014-04-02
EP2734023A4 (en) 2015-05-13
JP2013021103A (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
US8353568B2 (en) Inkjet head driving apparatus with multi pulse generator
WO2013008518A1 (ja) 生産機械
WO2008146369A1 (ja) 電気車のブレーキ制御装置
WO2010017469A3 (en) Multistage solenoid fastening tool with decreased energy consumption and increased driving force
WO2007022755A3 (de) Verfahren und vorrichtung zur steuerung und regelung von kräften an servo-elektrischen pressen
WO2010067189A8 (en) Hydraulic control apparatus and hydraulic control method
WO2006002820A3 (de) Pressschweissmaschine und pressschweissverfahren
CN105849845B (zh) 开关装置
CN109305214A (zh) 马达驱动的动力转向机构的减振设备和方法
JP5842417B2 (ja) 圧電素子駆動回路、および流体噴射装置
WO2016156319A3 (de) Schmiedehammer mit elektrischem linearantrieb
KR20150129498A (ko) 압전 액츄에이터를 이용한 밸브 구동장치
JP2014180968A (ja) ラックガイド機構、及び、当該ラックガイド機構を用いるパワーステアリング装置
WO2012120149A3 (de) Antriebseinrichtung mit aktiv gelagerter antriebswelle
WO2009102925A3 (en) Method for providing an armature housing
WO2008016285A3 (en) Controlling apparatus for linear compressor
JP5673997B2 (ja) リニアアクチュエータ制御装置
WO2014147466A3 (en) Control apparatus for hybrid vehicle and method for avoiding muffled noise
US8517842B2 (en) Elastic shaft coupling with adaptive characteristics
WO2010057703A3 (de) Verfahren zum betreiben eines elektrostatischen antriebs und elektrostatische antriebe
WO2007115757A3 (de) Vorrichtung für die bewegungsbeeinflussung von mehreren bewegbaren möbelteilen und verfahren zur konfigurierung einer solchen vorrichtung und möbel
JP2012115847A (ja) ダイクッション制御装置
KR101230218B1 (ko) 자동차용 클러치페달 실린더의 반발 증대 리턴스프링
CN107004488B (zh) 电磁促动器
JP2013021103A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811792

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012811792

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE