WO2013008322A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013008322A1
WO2013008322A1 PCT/JP2011/065976 JP2011065976W WO2013008322A1 WO 2013008322 A1 WO2013008322 A1 WO 2013008322A1 JP 2011065976 W JP2011065976 W JP 2011065976W WO 2013008322 A1 WO2013008322 A1 WO 2013008322A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
internal combustion
combustion engine
mixing ratio
pressure adjustment
Prior art date
Application number
PCT/JP2011/065976
Other languages
English (en)
French (fr)
Inventor
佐久間哲哉
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/065976 priority Critical patent/WO2013008322A1/ja
Priority to EP11869446.2A priority patent/EP2733334A4/en
Priority to JP2013523745A priority patent/JP5590242B2/ja
Publication of WO2013008322A1 publication Critical patent/WO2013008322A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/029Determining density, viscosity, concentration or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0209Hydrocarbon fuels, e.g. methane or acetylene
    • F02M21/0212Hydrocarbon fuels, e.g. methane or acetylene comprising at least 3 C-Atoms, e.g. liquefied petroleum gas [LPG], propane or butane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • Patent Document 1 discloses a bi-fuel engine that uses a mixed fuel of liquefied petroleum gas and dimethyl ether as a fuel and a method for estimating the mixing ratio of the mixed fuel.
  • Patent Document 2 discloses a control apparatus for an internal combustion engine that determines whether a fuel is a liquid fuel or a gas fuel when using liquid fuel and gaseous fuel. Has been.
  • an object of the present invention is to provide a control device for an internal combustion engine that can suitably realize appropriate combustion according to the mixing ratio of the fuel used in an internal combustion engine that uses a plurality of gaseous fuels as fuel. To do.
  • the present invention is provided for an internal combustion engine that uses a plurality of gaseous fuels as fuel and includes a pressure adjustment unit in a fuel supply path that can adjust the pressure of the fuel to be injected.
  • the control apparatus for an internal combustion engine includes a control unit that performs combustion control of the internal combustion engine based on a fluctuating heat amount.
  • the present invention further includes an estimation unit that estimates a mixing ratio of the used fuel based on a fluctuating heat amount of the fuel at the time of pressure adjustment in the pressure adjusting unit, and the control unit sets the mixing ratio of the used fuel estimated by the estimating unit.
  • the combustion control of the internal combustion engine can be configured to perform the combustion control of the internal combustion engine based on the fluctuating heat amount of the fuel at the time of pressure adjustment in the pressure adjusting unit.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine and related configurations.
  • FIG. 3 is a diagram illustrating a main part of a fuel supply path according to the first embodiment. It is a schematic block diagram of ECU. It is a figure which shows the relationship between a moving heat amount and a mixing rate. It is a figure which shows a 1st control operation with a flowchart.
  • FIG. 6 is a diagram illustrating a main part of a fuel supply path according to a second embodiment. It is a figure which shows a 2nd control operation with a flowchart.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine 50 and related configurations.
  • the intake system 10 includes an air cleaner 11, an air flow meter 12, an electronic control throttle 13, and an intake manifold 14.
  • the air cleaner 11 filters the intake air.
  • the air flow meter 12 measures the intake air amount GA of the internal combustion engine 50.
  • the electronic control throttle 13 adjusts the intake air amount GA.
  • the electronic control throttle 13 includes a throttle opening sensor 13a.
  • the intake manifold 14 distributes intake air to each cylinder of the internal combustion engine 50.
  • An intake air temperature sensor 71 is provided in the intake manifold 14.
  • the internal combustion engine 50 includes a cylinder block 51, a cylinder head 52, a piston 53, an intake valve 54, an exhaust valve 55, a spark plug 56, a fuel injection valve 57, an intake side VVT (InVVT) 58, and an exhaust side VVT (ExVVT) 59. ing.
  • the internal combustion engine 50 is provided with a water temperature sensor 72 for detecting the coolant temperature THW and a crank angle sensor 73 for detecting the crank angle.
  • the cylinder block 51 is formed with a cylinder 51a.
  • a piston 53 is accommodated in the cylinder 51a.
  • a cylinder head 52 is fixed to the upper surface of the cylinder block 51.
  • the combustion chamber E is formed as a space surrounded by the cylinder block 51, the cylinder head 52 and the cylinder 53.
  • the cylinder head 52 is formed with an intake port 52 a that guides intake air to the combustion chamber E and an exhaust port 52 b that exhausts gas from the combustion chamber E.
  • the cylinder head 52 is provided with an intake valve 54 for opening and closing the intake port 52a and an exhaust valve 55 for opening and closing the exhaust port 52b.
  • the spark plug 56 is provided in the cylinder head 52 with an electrode protruding from the center upper portion of the combustion chamber E.
  • the fuel injection valve 57 is provided in the cylinder head 52 with the injection hole protruding from the combustion chamber E.
  • the fuel injection valve 57 is provided in a portion of the cylinder head 52 between the intake port 52 a and the cylinder block 51.
  • the fuel injection valve 57 directly injects fuel into the combustion chamber E.
  • the arrangement of the fuel injection valve 57 is not limited to this.
  • the fuel injection valve 57 may be arranged so that fuel can be injected into the intake port 52a.
  • a fuel supply path FR for supplying fuel to the internal combustion engine 50 is connected to the fuel injection valve 57.
  • the cylinder head 52 is provided with an intake side VVT 58 and an exhaust side VVT 59.
  • the intake side VVT 58 is a variable valve mechanism that makes the valve characteristics (for example, valve timing and operating angle) of the intake valve 54 variable
  • the exhaust side VVT 59 is a variable valve mechanism that makes the valve characteristic of the exhaust valve 55 variable.
  • the VVTs 58 and 59 are provided with state detection sensors 58a and 59a for detecting the control state.
  • FIG. 2 is a diagram showing a main part of the fuel supply path FR.
  • the internal combustion engine 50 includes a regulator 60A that is a pressure adjustment unit capable of adjusting the pressure of fuel injected into the fuel supply path FR.
  • the regulator 60A includes a fuel circulation part 61 and a heating part 62A.
  • the fuel distribution unit 61 is incorporated in the fuel supply path FR and distributes the fuel.
  • the heating unit 62A is incorporated in a heat medium circulation path C that circulates the heat medium, and heats the fuel flowing through the fuel circulation unit 61 with the flowing heat medium.
  • an inlet side fuel thermometer 81 and an outlet side fuel thermometer 82 for detecting the temperature of the fuel are provided before and after the regulator 60A.
  • an inlet side fuel pressure gauge 83 and an outlet side fuel pressure gauge 84 for detecting the pressure of the fuel are provided.
  • a fuel flow meter 85 for detecting the flow rate of the fuel is provided on the outlet side of the regulator 60A.
  • a plurality of gaseous fuels circulate in the fuel supply path FR.
  • the internal combustion engine 50 is an internal combustion engine that uses a plurality of gaseous fuels as fuel.
  • a plurality of gaseous fuels used as fuel can be circulated through the fuel supply path FR in a mixed state. While the type of each gaseous fuel is known for the plurality of gaseous fuels, a fuel whose mixing ratio of each gaseous fuel is unknown can be applied.
  • the plurality of gaseous fuels are hydrogen and CNG whose mixing ratio is unknown here.
  • an inlet-side heat medium thermometer 86 and an outlet-side heat medium thermometer 87 for detecting the temperature of the heat medium are provided before and after the regulator 60A.
  • a heat medium flow meter 88 for detecting the flow rate of the heat medium is provided on the outlet side of the regulator 60A.
  • water can be circulated through the heat medium circulation path C.
  • the heat medium may be cooling water of the internal combustion engine 50, for example.
  • FIG. 3 is a schematic configuration diagram of the ECU 1A.
  • the ECU 1A is an electronic control device corresponding to a control device for an internal combustion engine, and includes a microcomputer including a CPU 2, a ROM 3, a RAM 4, and the like, and input / output circuits 5 and 6.
  • the CPU 2, ROM 3, RAM 4, and input / output circuits 5 and 6 are connected to each other via a bus 7.
  • a sensor group S including various sensors and switches is electrically connected to the ECU 1A.
  • the electronic control throttle 13, the fuel injection valve 57, and the VVTs 58 and 59 are electrically connected as control targets.
  • the sensor group S includes an air flow meter 12, a throttle opening sensor 13a, state detection sensors 58a and 59a, an intake air temperature sensor 71, a water temperature sensor 72, a crank angle sensor 73, an inlet side fuel thermometer 81, an outlet, and the like.
  • Side fuel thermometer 82, inlet side fuel pressure gauge 83, outlet side fuel pressure gauge 84, fuel flow meter 85, inlet side heat medium thermometer 86, outlet side heat medium thermometer 87, heat medium flow rate A total of 88 is included.
  • the ROM 3 is configured to store a program in which various processes executed by the CPU 2 are described, map data, and the like.
  • the ECU 1A includes a control unit, a fluctuating heat amount estimation unit, a mixing ratio estimation unit, and the like described below. Various functional units are realized.
  • the control unit controls the combustion of the internal combustion engine 50 based on the fluctuating heat amount of the fuel at the time of pressure adjustment in the regulator 60A.
  • the fluctuating heat amount of the fuel at the time of pressure adjustment can be grasped by the amount of heat transferred from the heating unit 62A to the fuel. This is because the amount of heat transferred from the heating unit 62A to the fuel changes in accordance with the fluctuating heat amount of the fuel during pressure adjustment.
  • the fluctuating heat amount estimation unit is an estimation unit that estimates the fluctuating heat amount of the fuel during pressure regulation. Specifically, the fluctuating heat quantity estimation unit estimates the amount of heat transferred per unit time from the heating unit 62A to the fuel based on the specific heat of the heat medium and the temperature and flow rate of the heat medium before and after the regulator 60A. Estimate the fluctuating heat quantity of the fuel at the time.
  • the mixing ratio estimation unit is an estimation unit that estimates the mixing ratio of the fuel used. Specifically, the mixing ratio estimation unit estimates the mixing ratio of the used fuel based on the fluctuating heat amount of the fuel at the time of pressure adjustment in the regulator 60A. This is because the fluctuating calorific value of the fuel at the time of pressure adjustment varies depending on the mixing ratio of the fuel used, and the mixing ratio of the fuel used is estimated using such properties.
  • FIG. 4 is a diagram showing the relationship between the amount of heat transferred and the mixing ratio.
  • the vertical axis represents the amount of heat transferred from the heating section 62A to the fuel, and the horizontal axis represents the mixing ratio.
  • the mixing ratio indicates the mixing ratio of hydrogen to CHG, and the mixing ratio increases as the amount of hydrogen contained in the fuel increases. As shown in FIG. 4, it can be seen that the amount of heat transferred tends to decrease as the mixing ratio increases.
  • the ECU 1A includes a plurality of map data that defines the relationship between the amount of heat transferred and the mixing ratio according to the pressure of the fuel before and after the regulator 60A, the temperature of the fuel on the inlet side of the regulator 60A, and the flow rate of the fuel as necessary.
  • the map data may be one map data in which the relationship between the amount of heat transferred and the mixing ratio is defined in a multidimensional manner.
  • the mixing ratio estimating unit In estimating the mixing ratio of the used fuel based on the fluctuating heat quantity of the fuel at the time of pressure adjustment, the mixing ratio estimating unit specifically measures the fuel pressure before and after the regulator 60A, the temperature of the fuel on the inlet side of the regulator 60A, and the fuel Detect the flow rate. And corresponding map data are specified based on the detected pressure, temperature and flow rate of the fuel. Furthermore, the mixing ratio of the used fuel is estimated by reading the mixing ratio corresponding to the moving heat quantity estimated by the fluctuating heat quantity estimation unit from the specified map data.
  • the control unit when performing the combustion control of the internal combustion engine 50 based on the fluctuating heat amount of the fuel at the time of pressure adjustment, the control unit more specifically, based on the mixing ratio of the used fuel estimated by the mixing ratio estimation unit.
  • the combustion control is performed.
  • the control unit can control, for example, the electronic control throttle 13, the fuel injection valve 57, and the VVTs 58 and 59.
  • the ECU 1A detects the temperature and flow rate of the heat medium before and after the regulator 60A (step S1). Further, the pressure of the fuel before and after the regulator 60A, the temperature of the fuel on the inlet side of the regulator 60A, and the flow rate of the fuel are detected (step S2). Subsequently, the ECU 1A estimates the amount of heat transferred based on the detection result in step S1 and the specific heat of the heat medium (step S3). Further, based on the detection result in step S2 and the amount of moving heat estimated in step S3, the mixing ratio of the used fuel is estimated (step S4). Further, the combustion control of the internal combustion engine 50 is performed based on the estimated mixing ratio of the used fuel (step S5).
  • the ECU 1A controls the combustion of the internal combustion engine 50 based on the fluctuating heat amount of the fuel at the time of pressure adjustment in the regulator 60A.
  • the mixing ratio of the used fuel is estimated based on the fluctuating heat amount of the fuel at the time of pressure adjustment in the regulator 60A.
  • the fluctuating heat amount of the fuel at the time of pressure adjustment can be estimated by providing the heating unit 62A in the regulator 60A, for example.
  • the ECU 1A realizes appropriate combustion in accordance with the mixing ratio of the used fuel in the internal combustion engine 50, it is not necessary to use a detection device that tends to be expensive because it is a dedicated product such as a gas analyzer. Low cost can be easily realized.
  • the heating unit 62A is incorporated in the regulator 60A, thus ensuring the compactness of the entire configuration necessary for grasping the mixing ratio of the fuel used. It can also be made easier. In these respects, appropriate combustion according to the mixing ratio of the fuel used can be suitably realized.
  • FIG. 6 is a diagram showing a main part of the fuel supply path FR ′.
  • the fuel supply path FR ′ is substantially the same as the fuel supply path FR except that a regulator 60B is provided instead of the regulator 60A.
  • the regulator 60B is substantially the same as the regulator 60A except that it includes a heating unit 62B instead of the heating unit 62A.
  • the heating unit 62B is incorporated in the electric heating circuit H.
  • the electric heating circuit H is provided with a power supply device 90, a voltmeter 91, and an ammeter 92.
  • the voltmeter 91 detects the voltage applied to the heating unit 62B
  • the ammeter 92 detects the current flowing through the heating unit 62B.
  • the heating unit 62B is, for example, a resistor, and warms the fuel flowing through the fuel flow unit 61 by generating electric heat.
  • the ECU 1B In controlling the combustion of the internal combustion engine 50, the ECU 1B is used instead of the ECU 1A in this embodiment.
  • a voltmeter 91 and an ammeter 92 are electrically connected instead of the inlet-side heat medium thermometer 86, the outlet-side heat medium thermometer 87, and the heat medium flow meter 88, and the fluctuating heat quantity estimation unit is described below. It is substantially the same as ECU1A except the point implement
  • the fluctuating calorie estimation unit estimates the amount of heat transferred per unit time from the heating unit 62B to the fuel based on the voltage applied to the heating unit 62B and the current flowing through the heating unit 62B, thereby adjusting the pressure. Estimate the fluctuating heat quantity of the fuel.
  • step S1 ′ the ECU 1B detects the voltage applied to the heating unit 62B and the current flowing through the heating unit 62B.
  • step S3 the fluctuating heat quantity of the fuel is estimated based on the detection result in step S1 ′.
  • the heating unit 62B may be used.
  • the ECU 1B adapted to the heating unit 62B can also achieve a low cost and, as in the case of the ECU 1A, and can make it easy to ensure the compactness of the entire configuration. Appropriate combustion can be suitably realized.
  • the fluctuating heat amount of the fuel during pressure adjustment in the pressure adjusting unit may be estimated based on the temperature of the fuel before and after the pressure adjusting unit by the fluctuating heat amount estimating unit.
  • ECU 1A, 1B Internal combustion engine 50 Regulator 60A, 60B Fuel Distribution Department 61 Heating part 62A, 62B

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

ECU(1A)は複数の気体燃料を燃料として使用し、噴射する燃料の圧力を調整可能なレギュレータ(60A)を燃料供給経路(FR)に備える内燃機関(50)に対して設けられる。 ECU(1A)はレギュレータ(60A)における調圧時の燃料の変動熱量に基づき、内燃機関(50)の燃焼制御を行う。ECU(1A)は調圧時の燃料の変動熱量に基づき使用燃料の混合割合を推定するとともに、推定した使用燃料の混合割合に基づき内燃機関(50)の燃焼制御を行う。そしてこれにより、調圧時の燃料の変動熱量に基づき内燃機関(50)の燃焼制御を行う。

Description

内燃機関の制御装置
 本発明は内燃機関の制御装置に関する。
 複数の気体燃料を燃料として使用する内燃機関が知られている。特許文献1では、液化石油ガスとジメチルエーテルの混合燃料を燃料とするバイフューエルエンジンおよびその混合燃料の混合比率推定方法が開示されている。このほか本発明と関連性があると考えられる技術として、液体燃料と気体燃料とを使用するにあたり、燃料が液体燃料なのか気体燃料なのかを判定する内燃機関の制御装置が特許文献2で開示されている。
特開2005-61401号公報 特開2010-196667号公報
 複数の気体燃料を燃料として使用する内燃機関では、燃料補給のたびに使用燃料の混合割合が変化することが想定される。しかしながら、内燃機関で適切な燃焼を行うには使用燃料の混合割合を把握する必要がある。使用燃料の混合割合を把握するには、例えば専用品であるが故に高価になり易い検出機器を利用することによるコストの上昇を抑制できることや、使用燃料の混合割合を把握するために必要な構成全体としてのコンパクト性を確保できることが望まれる。
 本発明は上記課題に鑑み、複数の気体燃料を燃料として使用する内燃機関において、使用燃料の混合割合に応じた適切な燃焼を好適に実現可能な内燃機関の制御装置を提供することを目的とする。
 本発明は複数の気体燃料を燃料として使用し、噴射する燃料の圧力を調整可能な圧力調整部を燃料供給経路に備える内燃機関に対して設けられ、前記圧力調整部における調圧時の燃料の変動熱量に基づき、前記内燃機関の燃焼制御を行う制御部を備える内燃機関の制御装置である。
 本発明は前記圧力調整部における調圧時の燃料の変動熱量に基づき、使用燃料の混合割合を推定する推定部をさらに備え、前記制御部が、前記推定部が推定した使用燃料の混合割合に基づき、前記内燃機関の燃焼制御を行うことで、前記圧力調整部における調圧時の燃料の変動熱量に基づき前記内燃機関の燃焼制御を行う構成とすることができる。
 本発明によれば、複数の気体燃料を燃料として使用する内燃機関において、使用燃料の混合割合に応じた適切な燃焼を好適に実現できる。
内燃機関および関連する構成の概略構成図である。 実施例1の燃料供給経路の要部を示す図である。 ECUの概略構成図である。 移動熱量と混合割合との関係を示す図である。 第1の制御動作をフローチャートで示す図である。 実施例2の燃料供給経路の要部を示す図である。 第2の制御動作をフローチャートで示す図である。
 図面を用いて本発明の実施例について説明する。
 図1は内燃機関50および関連する構成の概略構成図である。吸気系10はエアクリーナ11とエアフロメータ12と電子制御スロットル13と吸気マニホルド14とを備えている。エアクリーナ11は吸入空気を濾過する。エアフロメータ12は内燃機関50の吸入空気量GAを計測する。電子制御スロットル13は吸入空気量GAを調節する。電子制御スロットル13はスロットル開度センサ13aを備えている。吸気マニホルド14は吸入空気を内燃機関50の各気筒に分配する。吸気マニホルド14には吸気温センサ71が設けられている。
 内燃機関50はシリンダブロック51とシリンダヘッド52とピストン53と吸気弁54と排気弁55と点火プラグ56と燃料噴射弁57と吸気側VVT(InVVT)58と排気側VVT(ExVVT)59とを備えている。内燃機関50には冷却水温THWを検出するための水温センサ72や、クランク角度を検出するためのクランク角センサ73が設けられている。
 シリンダブロック51には、シリンダ51aが形成されている。シリンダ51a内にはピストン53が収容されている。シリンダブロック51の上面にはシリンダヘッド52が固定されている。燃焼室Eはシリンダブロック51、シリンダヘッド52およびシリンダ53に囲まれた空間として形成されている。シリンダヘッド52には、燃焼室Eに吸入空気を導く吸気ポート52aと、燃焼室Eからガスを排気する排気ポート52bとが形成されている。またシリンダヘッド52には、吸気ポート52aを開閉する吸気弁54と、排気ポート52bを開閉する排気弁55とが設けられている。
 点火プラグ56は燃焼室Eの中央上部に電極を突出させた状態でシリンダヘッド52に設けられている。燃料噴射弁57は燃焼室Eに噴孔を突出させた状態でシリンダヘッド52に設けられている。燃料噴射弁57はシリンダヘッド52のうち、吸気ポート52aとシリンダブロック51との間の部分に設けられている。燃料噴射弁57は燃焼室Eに燃料を直接噴射する。燃料噴射弁57の配置はこれに限られず、例えば吸気ポート52aに燃料を噴射できるように配置されてもよい。燃料噴射弁57には内燃機関50に燃料を供給する燃料供給経路FRが接続されている。
 シリンダヘッド52には、吸気側VVT58と排気側VVT59とが設けられている。吸気側VVT58は吸気弁54のバルブ特性(例えばバルブタイミングや作用角)を可変にする可変動弁機構であり、排気側VVT59は排気弁55のバルブ特性を可変にする可変動弁機構である。VVT58、59には制御状態を検出するための状態検出センサ58a、59aが設けられている。
 図2は燃料供給経路FRの要部を示す図である。内燃機関50は燃料供給経路FRに噴射する燃料の圧力を調整可能な圧力調整部であるレギュレータ60Aを備えている。レギュレータ60Aは燃料流通部61と加温部62Aとを備えている。燃料流通部61は燃料供給経路FRに組み込まれており、燃料を流通させる。加温部62Aは熱媒体を循環させる熱媒体循環経路Cに組み込まれており、流通する熱媒体で燃料流通部61を流通する燃料を加温する。
 燃料供給経路FRにおいて、レギュレータ60Aの前後には燃料の温度を検出するための入口側燃料温度計81および出口側燃料温度計82が設けられている。また、燃料の圧力を検出するための入口側燃料圧力計83および出口側燃料圧力計84が設けられている。レギュレータ60Aの出口側には、燃料の流量を検出するための燃料流量計85が設けられている。
 燃料供給経路FRには複数の気体燃料が流通する。この点、内燃機関50は複数の気体燃料を燃料として使用する内燃機関となっている。燃料として使用される複数の気体燃料は混合した状態で燃料供給経路FRを流通することができる。複数の気体燃料には各気体燃料の種類が判明している一方で、各気体燃料の混合割合が不明な燃料を適用できる。複数の気体燃料は具体的にはここでは混合割合が不明な水素およびCNGとなっている。
 熱媒体循環経路Cにおいて、レギュレータ60Aの前後には熱媒体の温度を検出するための入口側熱媒体温度計86および出口側熱媒体温度計87が設けられている。また、レギュレータ60Aの出口側には熱媒体の流量を検出するための熱媒体流量計88が設けられている。熱媒体循環経路Cには具体的には例えば水を流通させることができる。熱媒体は例えば内燃機関50の冷却水であってもよい。
 図3はECU1Aの概略構成図である。ECU1Aは内燃機関の制御装置に相当する電子制御装置であり、CPU2、ROM3、RAM4等からなるマイクロコンピュータと入出力回路5、6とを備えている。これらCPU2、ROM3、RAM4、および入出力回路5、6は互いにバス7で接続されている。
 ECU1Aには各種のセンサ・スイッチ類を含むセンサ群Sが電気的に接続されている。また、電子制御スロットル13や燃料噴射弁57やVVT58、59が制御対象として電気的に接続されている。センサ群Sはエアフロメータ12や、スロットル開度センサ13aや、状態検出センサ58a、59aや、吸気温センサ71や、水温センサ72や、クランク角センサ73や、入口側燃料温度計81や、出口側燃料温度計82や、入口側燃料圧力計83や、出口側燃料圧力計84や、燃料流量計85や、入口側熱媒体温度計86や、出口側熱媒体温度計87や、熱媒体流量計88を含んでいる。
 ROM3はCPU2が実行する種々の処理が記述されたプログラムやマップデータなどを格納するための構成である。CPU2がROM3に格納されたプログラムに基づき、必要に応じてRAM4の一時記憶領域を利用しつつ処理を実行することで、ECU1Aでは例えば以下に示す制御部や変動熱量推定部や混合割合推定部など各種の機能部が実現される。
 制御部はレギュレータ60Aにおける調圧時の燃料の変動熱量に基づき、内燃機関50の燃焼制御を行う。調圧時の燃料の変動熱量は加温部62Aから燃料への移動熱量によって把握することができる。これは、調圧時の燃料の変動熱量に応じて、加温部62Aから燃料への移動熱量が変化するためである。変動熱量推定部は調圧時の燃料の変動熱量を推定する推定部である。変動熱量推定部は具体的には熱媒体の比熱、レギュレータ60A前後における熱媒体の温度および流量に基づき、加温部62Aから燃料へ移動する単位時間あたりの移動熱量を推定することで、調圧時の燃料の変動熱量を推定する。
 混合割合推定部は使用燃料の混合割合を推定する推定部である。混合割合推定部は具体的にはレギュレータ60Aにおける調圧時の燃料の変動熱量に基づき、使用燃料の混合割合を推定する。これは使用燃料の混合割合に応じて調圧時の燃料の変動熱量が異なってくることから、かかる性質を利用して使用燃料の混合割合を推定するものである。
 図4は移動熱量と混合割合との関係を示す図である。縦軸は加温部62Aから燃料への移動熱量、横軸は混合割合を示す。混合割合はCHGに対する水素の混合割合を示しており、燃料に含まれる水素が多い場合ほど混合割合は大きくなる。図4に示すように移動熱量は混合割合が大きい場合ほど小さくなる傾向があることがわかる。
 図4に示す関係はECU1Aにおいてマップデータで予め用意されている。この点、図4に示す関係はレギュレータ60A前後の燃料の圧力、レギュレータ60Aの入口側における燃料の温度および燃料の流量が予め設定および想定されている条件下にある場合の関係を示す。ECU1Aは必要に応じてレギュレータ60A前後の燃料の圧力、レギュレータ60Aの入口側における燃料の温度および燃料の流量に応じて、移動熱量と混合割合との関係を規定したマップデータを複数備えている。マップデータはこれらに応じて、移動熱量と混合割合との関係を多次元的に規定した一つのマップデータであってもよい。
 調圧時の燃料の変動熱量に基づき、使用燃料の混合割合を推定するにあたり、混合割合推定部は具体的にはレギュレータ60Aの前後における燃料の圧力、レギュレータ60Aの入口側における燃料の温度および燃料の流量を検出する。そして、検出した燃料の圧力、温度および流量に基づき、対応するマップデータを特定する。さらに特定したマップデータから変動熱量推定部が推定した移動熱量に対応する混合割合を読み込むことで、使用燃料の混合割合を推定する。
 この点、調圧時の燃料の変動熱量に基づき、内燃機関50の燃焼制御を行うにあたり、制御部はさらに具体的には混合割合推定部が推定した使用燃料の混合割合に基づき、内燃機関50の燃焼制御を行う。内燃機関50の燃焼制御を行うにあたり、制御部は例えば電子制御スロットル13や燃料噴射弁57やVVT58、59を制御することができる。
 次に第1の制御動作であるECU1Aの動作を図5に示すフローチャートを用いて説明する。ECU1Aはレギュレータ60A前後における熱媒体の温度および流量を検出する(ステップS1)。また、レギュレータ60Aの前後における燃料の圧力、レギュレータ60Aの入口側における燃料の温度および燃料の流量を検出する(ステップS2)。続いてECU1AはステップS1における検出結果および熱媒体の比熱に基づき、移動熱量を推定する(ステップS3)。また、ステップS2における検出結果およびステップS3で推定した移動熱量に基づき、使用燃料の混合割合を推定する(ステップS4)。さらに推定した使用燃料の混合割合に基づき、内燃機関50の燃焼制御を行う(ステップS5)。
 次にECU1Aの作用効果について説明する。ECU1Aはレギュレータ60Aにおける調圧時の燃料の変動熱量に基づき、内燃機関50の燃焼制御を行う。また、これにあたってはレギュレータ60Aにおける調圧時の燃料の変動熱量に基づき、使用燃料の混合割合を推定する。この点、調圧時の燃料の変動熱量は例えばレギュレータ60Aに加温部62Aを設けることで、推定可能にすることができる。
 このため、ECU1Aは内燃機関50において使用燃料の混合割合に応じた適切な燃焼を実現するにあたり、例えばガス分析装置など専用品であるが故に高価になり易い検出機器を利用しないで済むことから、低コストを実現し易くすることができる。また、調圧時の燃料の変動熱量を推定するにあたり、レギュレータ60Aに加温部62Aを組み込む構成を採用できることから、使用燃料の混合割合を把握するために必要となる構成全体のコンパクト性を確保し易くすることもできる。そしてこれらの点で、使用燃料の混合割合に応じた適切な燃焼を好適に実現できる。
 図6は燃料供給経路FR´の要部を示す図である。燃料供給経路FR´はレギュレータ60Aの代わりにレギュレータ60Bが設けられている点以外、燃料供給経路FRと実質的に同一である。レギュレータ60Bは加温部62Aの代わりに加温部62Bを備えている点以外、レギュレータ60Aと実質的に同一である。加温部62Bは電熱回路Hに組み込まれている。電熱回路Hには加温部62Bのほか、電源装置90と電圧計91と電流計92とが設けられている。電圧計91は加温部62Bにかかる電圧を、電流計92は加温部62Bを流れる電流を検知する。加温部62Bは例えば抵抗器であり、電熱を発生させることで燃料流通部61を流通する燃料を加温する。
 内燃機関50の燃焼を制御するにあたり、本実施例ではECU1Aの代わりにECU1Bが用いられる。ECU1Bは入口側熱媒体温度計86、出口側熱媒体温度計87および熱媒体流量計88の代わりに電圧計91および電流計92が電気的に接続される点と、変動熱量推定部が以下に示すように実現される点以外、ECU1Aと実質的に同一である。このためECU1Bについては図示省略する。ECU1Bでは、変動熱量推定部が加温部62Bにかかる電圧および加温部62Bを流れる電流に基づき、加温部62Bから燃料へ移動する単位時間あたりの移動熱量を推定することで、調圧時の燃料の変動熱量を推定する。
 次に第2の制御動作であるECU1Bの動作について図7に示すフローチャートを用いて説明する。図7に示すフローチャートはステップS1の代わりにステップS1´が設けられている点以外、図5に示すフローチャートと同じである。このため、ここでは特にこれらについて説明する。ステップS1´で、ECU1Bは加温部62Bにかかる電圧および加温部62Bを流れる電流を検出する。なお、ステップS3ではステップS1´における検出結果に基づき燃料の変動熱量が推定される。
 次にECU1Bの作用効果について説明する。ここで、調圧時の燃料の変動熱量を推定するにあたっては、例えば加温部62Bを用いることもできる。そして、加温部62Bに適応したECU1BでもECU1Aと同様、低コストを実現し易くすることができる点や、構成全体のコンパクト性を確保し易くすることができる点で、使用燃料の混合割合に応じた適切な燃焼を好適に実現できる。
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば圧力調整部における調圧時の燃料の変動熱量は、変動熱量推定部によって圧力調整部の前後における燃料の温度に基づき推定されてもよい。この場合、加温部をレギュレータに特段設けることなく、使用燃料の混合割合に応じた適切な燃焼を実現できる点で、低コストの実現や構成全体のコンパクト化にとってさらに有利である。
  ECU         1A、1B
  内燃機関        50
  レギュレータ      60A、60B
  燃料流通部       61
  加温部         62A、62B

Claims (2)

  1. 複数の気体燃料を燃料として使用し、噴射する燃料の圧力を調整可能な圧力調整部を燃料供給経路に備える内燃機関に対して設けられ、
     前記圧力調整部における調圧時の燃料の変動熱量に基づき、前記内燃機関の燃焼制御を行う制御部を備える内燃機関の制御装置。
  2. 請求項1記載の内燃機関の制御装置であって、
     前記圧力調整部における調圧時の燃料の変動熱量に基づき、使用燃料の混合割合を推定する推定部をさらに備え、
     前記制御部が、前記推定部が推定した使用燃料の混合割合に基づき、前記内燃機関の燃焼制御を行うことで、前記圧力調整部における調圧時の燃料の変動熱量に基づき、前記内燃機関の燃焼制御を行う内燃機関の制御装置。

     
PCT/JP2011/065976 2011-07-13 2011-07-13 内燃機関の制御装置 WO2013008322A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/065976 WO2013008322A1 (ja) 2011-07-13 2011-07-13 内燃機関の制御装置
EP11869446.2A EP2733334A4 (en) 2011-07-13 2011-07-13 CONTROL DEVICE FOR A COMBUSTION ENGINE
JP2013523745A JP5590242B2 (ja) 2011-07-13 2011-07-13 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065976 WO2013008322A1 (ja) 2011-07-13 2011-07-13 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013008322A1 true WO2013008322A1 (ja) 2013-01-17

Family

ID=47505641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065976 WO2013008322A1 (ja) 2011-07-13 2011-07-13 内燃機関の制御装置

Country Status (3)

Country Link
EP (1) EP2733334A4 (ja)
JP (1) JP5590242B2 (ja)
WO (1) WO2013008322A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285119A (ja) * 1990-03-31 1991-12-16 Mazda Motor Corp 燃料タンクにおける残量燃料警報装置
JPH08158950A (ja) * 1994-12-01 1996-06-18 Mazda Motor Corp 気体燃料エンジンの燃料供給装置
JP2004027975A (ja) * 2002-06-26 2004-01-29 Jfe Steel Kk 副生ガスを用いた発電方法および発電設備
JP2005061401A (ja) 2003-07-31 2005-03-10 Toyota Motor Corp バイフューエルエンジンおよび混合燃料の混合比率推定方法
JP2005320866A (ja) * 2004-05-06 2005-11-17 Walbro Japan Inc 異種液化ガス燃料用切換供給装置
JP2007032578A (ja) * 2006-11-02 2007-02-08 Tokyo Gas Co Ltd 内燃機関の運転制御装置
JP2008038729A (ja) * 2006-08-04 2008-02-21 Yanmar Co Ltd ガスエンジンの制御方法
JP2009243711A (ja) * 2008-03-28 2009-10-22 Ihi Corp 燃焼システム
JP2010196667A (ja) 2009-02-27 2010-09-09 Honda Motor Co Ltd 内燃機関の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411005A (en) * 1993-06-15 1995-05-02 Bohl; Michael E. Emissions and fuel control system and device
US6612269B2 (en) * 2000-08-11 2003-09-02 The Regents Of The University Of California Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285119A (ja) * 1990-03-31 1991-12-16 Mazda Motor Corp 燃料タンクにおける残量燃料警報装置
JPH08158950A (ja) * 1994-12-01 1996-06-18 Mazda Motor Corp 気体燃料エンジンの燃料供給装置
JP2004027975A (ja) * 2002-06-26 2004-01-29 Jfe Steel Kk 副生ガスを用いた発電方法および発電設備
JP2005061401A (ja) 2003-07-31 2005-03-10 Toyota Motor Corp バイフューエルエンジンおよび混合燃料の混合比率推定方法
JP2005320866A (ja) * 2004-05-06 2005-11-17 Walbro Japan Inc 異種液化ガス燃料用切換供給装置
JP2008038729A (ja) * 2006-08-04 2008-02-21 Yanmar Co Ltd ガスエンジンの制御方法
JP2007032578A (ja) * 2006-11-02 2007-02-08 Tokyo Gas Co Ltd 内燃機関の運転制御装置
JP2009243711A (ja) * 2008-03-28 2009-10-22 Ihi Corp 燃焼システム
JP2010196667A (ja) 2009-02-27 2010-09-09 Honda Motor Co Ltd 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733334A4 *

Also Published As

Publication number Publication date
EP2733334A4 (en) 2014-12-24
JPWO2013008322A1 (ja) 2015-02-23
JP5590242B2 (ja) 2014-09-17
EP2733334A1 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US7024301B1 (en) Method and apparatus to control fuel metering in an internal combustion engine
US10247140B2 (en) Methods and system for adjusting engine water injection
US9945310B1 (en) Methods and system for adjusting engine water injection
US9657662B2 (en) Determination of the quantity of fuel flowing through a fuel injector based on the heating of the fuel by means of an electric heating device
RU2708564C2 (ru) Способ непосредственного впрыска топлива в сверхкритическом состоянии (варианты)
CN103912429B (zh) 使用等效电阻估计燃料喷射器加热器的温度
KR102274486B1 (ko) 엔진 작동 장치
RU2618158C1 (ru) Управляющее устройство для двигателя внутреннего сгорания
TW201428252A (zh) 氧氣感測方法及裝置
US10132250B2 (en) Exhaust parameter based dual fuel engine power virtual sensor
CN101240753A (zh) 气体传感器控制器
JP2010038024A (ja) 内燃機関の燃料温度制御装置
RU2631583C2 (ru) СПОСОБ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ДВИГАТЕЛЯ (варианты)
KR101316875B1 (ko) 배기가스 재순환 제어장치 및 배기가스 재순환 제어방법
US20170218837A1 (en) Gas quality virtual sensor for an internal combustion engine
KR20040038849A (ko) 엔진의 가솔린 대체 연료 분사 제어 장치
JP2010007595A (ja) Lpgエンジンの燃料供給装置
JP5590242B2 (ja) 内燃機関の制御装置
CN106536906B (zh) 用于确定发动机气缸中的总压力的方法
JP2002048749A (ja) センサ昇温用電力制御装置
de Oliveira et al. Hydrogen electronic injection system for a diesel power generator
JP2021525335A (ja) 不燃性燃料の注入を制御するための方法および装置
JP5079744B2 (ja) 燃料蒸気圧計測システム
JP5178990B2 (ja) エンジン出力損失の補償
JP2014196736A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523745

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011869446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011869446

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE