WO2013005903A1 - 인휠 모터 구동 전기자동차의 피치운동 제어장치 - Google Patents

인휠 모터 구동 전기자동차의 피치운동 제어장치 Download PDF

Info

Publication number
WO2013005903A1
WO2013005903A1 PCT/KR2011/010104 KR2011010104W WO2013005903A1 WO 2013005903 A1 WO2013005903 A1 WO 2013005903A1 KR 2011010104 W KR2011010104 W KR 2011010104W WO 2013005903 A1 WO2013005903 A1 WO 2013005903A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
torque
wheel
pitch
wheels
Prior art date
Application number
PCT/KR2011/010104
Other languages
English (en)
French (fr)
Inventor
김영렬
왕지남
Original Assignee
주식회사 유디엠텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유디엠텍 filed Critical 주식회사 유디엠텍
Publication of WO2013005903A1 publication Critical patent/WO2013005903A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/50Electric vehicles; Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0512Pitch angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/16Pitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a pitch motion control apparatus for an in-wheel motor-driven electric vehicle, and more particularly, to a technology for reducing the forward and backward rotational movement of a vehicle generated during driving of the vehicle through torque control of the in-wheel motor.
  • the electric drive motor is a device that generates a driving force to rotate the wheel by replacing the engine of the existing internal combustion engine vehicle with its original function.
  • the electric drive motor has the advantage of producing the commanded torque very quickly and accurately as compared to the engine of the internal combustion engine, and in the case of the in-wheel motor in which the electric drive motor is installed in the wheels, each wheel can be independently driven.
  • the in-wheel motor-driven electric vehicle has excellent controllability and independent driving force of the in-wheel motor.
  • in-wheel motor-driven electric vehicles have been actively developed and researched on wheel slip control and yaw motion control by turning the vehicle using excellent controllability and independent driving force of the electric drive motor.
  • a pitch motion control apparatus for an in-wheel motor-driven electric vehicle which reduces the pitch movement of the vehicle body to rotate in the front-rear direction by using independent braking force or driving force control characteristics of each wheel of the in-wheel motor.
  • the pitch motion control apparatus of an in-wheel motor-driven electric vehicle according to an aspect of the present invention, the front wheel and the left and right rear wheels of the six-wheeled electric vehicle, the wheel and the road surface that rotates in accordance with the torque of the in-wheel motor
  • the driving force or braking force of the wheel generated by friction is the angle between the virtual link of the suspension system and the road surface, and it is stretched or compressed as it acts on the body by the component force that hinders the vertical movement of the body due to the pitch movement while driving. It includes a suspension equipped with a spring.
  • the directions of the braking force or driving force of the left and right front wheels and the left and right rear wheels are the same, and the direction of the braking force or the driving force of the left and right middle wheels of the six-wheeled electric vehicle is opposite to the direction of the braking force or the driving force of the left and right front wheels and the left and right rear wheels. It can have
  • the sum of the driving force or braking force of all wheels of the six-wheeled electric vehicle generated by friction with the road surface becomes "0"
  • the driving force of all wheels of the six-wheeled electric vehicle generated by friction with the road surface or The sum of the turning moments produced by the braking force can be "0".
  • a pitch motion control apparatus for an in-wheel motor-driven electric vehicle includes: a first subtractor configured to output a deviation between a target pitch speed of a driver and a pitch speed of the electric vehicle output from a six-wheeled electric vehicle; A second subtractor outputting a deviation between a target longitudinal speed of a driver and a longitudinal speed of the electric vehicle output from the electric vehicle; A first PI controller configured to proportionally integrate and control a value output from the first subtractor, thereby outputting a component force that hinders vertical movement of the vehicle body; A torque converter for multiplying the component force by the wheel radius of a six-wheeled electric vehicle of the same size and outputting a pitch motion control torque to be applied to the left and right front wheels and the left and right rear wheels for pitch motion control; A second PI controller configured to proportionally integrate a value output from the second subtractor to output a driving torque for following a target longitudinal speed of the driver; A torque forming unit for obtaining torques of all wheels of the six-wheel
  • This suspension angle includes a suspension device having a spring that is extended or compressed by acting on the vehicle body as a component that prevents the vertical movement of the vehicle body due to the pitch movement while driving the vehicle, the torque of the wheel obtained from the torque forming unit
  • An electric vehicle that measures and outputs a pitch speed, a pitch angle, and a longitudinal speed of the electric vehicle being driven by the rotation of the wheel using a pitch speed sensor, a pitch angle sensor, and a speed sensor; And an application unit determining whether the pitch movement control torque is applied to the torque forming unit according to whether the pitch angle and the pitch speed of the electric vehicle coincide with each other.
  • the target pitch speed of the driver may be set to zero.
  • the torque of all the wheels can be obtained using the following equation.
  • Is the pitch motion control torque to be applied to the left and right front wheels and the left and right rear wheels for pitch motion control Is the driving torque for following the driver's target longitudinal speed, Is the torque of the left front wheel, Is the torque of the right front wheel, Is the torque of the left middle wheel, Is the torque of the right middle wheel, Is the torque of the left rear wheel and Represents the torque of the right rear wheel.
  • the applicator may include: a determining unit configured to check whether the pitch angles and pitch speeds of the electric vehicle coincide with each other and to output “1” if they match and output “0” if they do not match; And a multiplier configured to multiply and output an output value of the determination unit and the pitch motion control torque value.
  • the pitch motion control apparatus of an in-wheel motor-driven electric vehicle by using the independent braking force or driving force control characteristics of the in-wheel motor to reduce the pitch angle accompanying the pitch motion of the vehicle body generated during the driving of the vehicle As a result, the phenomenon of rotational movement in the front-rear direction of the vehicle generated while the vehicle is running can be reduced.
  • FIG. 2 is a view showing the direction and pitching angle of the inertia force during vehicle braking.
  • FIG. 3 is a diagram in which a middle wheel generates a braking force or a driving force opposite to a braking force or a driving force of a front and rear wheel in a six-wheeled vehicle to which an embodiment of the present invention is applied;
  • FIG. 6 is a view showing a suspension model according to an embodiment of the present invention.
  • FIG. 7 is a view showing the configuration of a pitch motion control apparatus for an in-wheel motor-driven electric vehicle according to an embodiment of the present invention.
  • FIG. 8 illustrates a road surface profile for vehicle pitch motion simulation.
  • FIG. 9 is a view showing a simulation result for a vehicle pitch motion in a time domain.
  • FIG. 10 is a diagram showing simulation results for a vehicle pitch motion in a frequency domain.
  • the pitch motion control apparatus for an in-wheel motor-driven electric vehicle includes a suspension device that enables vertical motion for each wheel of the left and right front wheels and the left and right rear wheels.
  • the road-grounding center point of the wheel tire can have a vertical movement trajectory of the ground point as shown in FIG. 1 when the wheel is viewed from the side.
  • the up-and-down movement trajectory of this ground point is related to the anti-dive / anti-lift characteristics in the movement of the vehicle, and is moved by the rotation of the virtual link as shown in FIG.
  • the road surface has a predetermined angle ( )
  • the virtual link of the front wheel suspension and the virtual wheel of the rear wheel suspension receiving the braking force due to the braking force acting on the road surface respectively, the predetermined first angle formed with the road surface ( ) And second angle ( ),
  • the component force is generated in the upward direction of the vehicle body by the first angle
  • the front wheel suspension spring is extended (stretched) by the component force generated in this upward direction
  • the component force is generated downward in the vehicle body by the second angle.
  • the rear wheel suspension spring is compressed by the force generated in the downward direction, thereby reducing the dive phenomenon of the vehicle.
  • the instantaneous rotation center of the virtual link of the front wheel suspension ( Instantaneous rotation center of the virtual link of the rear suspension, so that the position of If the position of the) is designed to be in front of the rear wheels, it can produce a force that interferes with the pitch movement of the body caused by the braking of the vehicle. This component reduces the vertical movement of the body, which is the anti-dive / anti-lift characteristics.
  • the braking force or driving force generated by friction with the road surface of the wheel rotated by the torque of the in-wheel motor is the angle between the virtual link of the suspension device and the road surface.
  • the spring of the suspension device can be stretched or compressed by acting on the vehicle body by the component force in the vertical direction of the vehicle body.
  • the direction of the component force that prevents the up and down movement of the vehicle body should act in the upper direction of the vehicle body in the left and right front wheels, and in the case of the left and right rear wheels, in the downward direction of the vehicle body.
  • the left and right rear wheels should act in the upper direction of the vehicle body.
  • the direction of the component force that hinders the vertical movement of the vehicle body to reduce the pitch movement of the vehicle body to rotate in all directions should be in the upward direction in the left and right front wheels, and in the downward direction in the left and right rear wheels,
  • the direction of the braking force or driving force by the torque of the in-wheel motors of the left and right front wheels becomes the braking force
  • the direction of the braking force or the driving force by the torque of the in-wheel motors of the left and right rear wheels must also be the braking force.
  • the direction of the component force hindering the vertical movement of the vehicle body to reduce it should be downward in the left and right front wheels and upward in the left and right rear wheels.
  • the direction of the braking force or driving force by the torque of the in-wheel motors of the left and right front wheels becomes the driving force, and the direction of the braking force or the driving force by the torque of the in-wheel motors of the left and right rear wheels must also be the driving force.
  • the directions of braking force or driving force of the front and rear wheels for reducing the pitch motion of the vehicle coincide.
  • the matching of the direction of braking force or driving force of the front and rear wheels is not preferable because it is to change the magnitude of the braking force or driving force for the vehicle to originally drive desired. Therefore, the control of the braking force or the driving force of the in-wheel motor for reducing the pitch movement of the vehicle is not applicable because it interferes with the original movement of the vehicle.
  • the present invention can reduce the pitch motion of the vehicle by controlling the braking force or the driving force of the in-wheel motor without disturbing the movement of the vehicle in the case of a six-wheel drive vehicle having a left and right front wheel and a left and right rear wheel. .
  • the braking force or the driving force in the same direction is generated in the left and right front wheels and the left and right rear wheels of the six-wheel drive vehicle, and in the opposite direction of the left and right front wheels and the left and right rear wheels in the middle wheel of the six-wheel drive vehicle.
  • To generate braking or driving force That is, the braking force or driving force of the left and right front wheels and the left and right rear wheels and the braking force or driving force of the left and right middle wheels cancel each other, thereby reducing the pitch motion of the vehicle without disturbing the original movement of the vehicle.
  • the braking force or the driving force of the left and right middle wheels is the direction of the left and right front wheels even when the braking force or the driving force is reduced, respectively, to reduce the pitch movement.
  • the sum of their overall braking force or driving force is zero (0) can reduce the pitch motion without disturbing the original running of the vehicle.
  • the sum of the turning moments generated by the driving force or the braking force of all the wheels of the six-wheeled vehicle generated by the friction with the road surface may be "0". That is, when the distance from the vehicle center line (not shown) of FIG. 3 to the position where the braking force or driving force of each wheel is applied is t and the braking force or driving force by torque ⁇ p of the in-wheel motor is Fp, the turning moment is the left front wheel, ( ⁇ p ⁇ t)-( ⁇ p ⁇ t) +2 ( ⁇ p ⁇ t) -2 ( ⁇ p ⁇ t) + ( ⁇ p in the order of right front wheel, left middle wheel, right middle wheel, left rear wheel and right rear wheel ⁇ t) - it is a ( ⁇ p ⁇ t) is "0".
  • braking force is applied to both the left and right front wheels and the left and right rear wheels.
  • the braking force on the left and right front wheels produces a component force acting upward on the vehicle body by the virtual link formed by the suspension as shown in FIG. 2, and the brake force on the left and right rear wheels creates a component force acting downward on the vehicle body. It acts as a force to reduce the pitch movement.
  • Means for limiting the vertical movement of the vehicle body in the existing internal combustion engine vehicle is to directly control the force in the vertical direction acting on the vehicle body, for this purpose it is possible to vary the damping coefficient of the damping force of the damper as a suspension element Skyhook control technique is used to determine damping coefficient with variable damper. Let's look at this.
  • Skyhook control is directly proportional to the speed of the vehicle M by installing a virtual skyhook manual damper on the virtual Inertia Reference and the spring mass M of the vehicle, as shown in FIG. 4. It is a method of generating attenuation force.
  • Equation 1 The equivalent damping coefficient in the actual suspension model can be obtained through Equation 1 below.
  • the equivalent damping force ego Occurs when all the cases are satisfied, or ego This may occur when all of the following conditions are satisfied. That is, an equivalent damping force may occur when the direction of the vehicle's up-down speed and the direction of the vehicle between the vehicle's up-down speed and the wheel's up-and-down speed coincide with each other.
  • the pitch motion control apparatus of the in-wheel motor-driven electric vehicle according to the pitch motion to rotate the vehicle body back and forth while the vehicle is running by using the sky hook control method, the left and right front wheels and left and right of the six-wheeled electric vehicle
  • the force generated in the direction of reducing the vertical motion of the electric vehicle body due to the stretching and compression of each suspension spring of the rear wheel is applied to the vehicle body, thereby increasing the vertical movement of the suspension springs of the left and right front wheels and the left and right rear wheels of the electric vehicle. It is possible to reduce the pitch movement of the vehicle body generated while driving the vehicle.
  • FIG. 1 A model of the suspension applied to an embodiment of the present invention is shown in FIG.
  • the suspension model according to an embodiment of the present invention, a spring for supporting the wheel 4, the electric vehicle body 1 of the electric vehicle having an in-wheel motor (spring) (2) and a damper (3) for absorbing the vibration in the vertical direction of the electric vehicle body (1).
  • the wheel 4 is a case in which the left and right front wheels, the left and right middle wheels and the left and right rear wheels of the electric vehicle are modeled and displayed by only one wheel. This is an example, and it is obvious that other embodiments are possible.
  • the driving force or braking force generated by the friction between the wheel and the road surface rotated by the torque of the in-wheel motor acts on the vehicle body by the component force that hinders the up and down movement of the vehicle body by the angle between the virtual link of the suspension device and the road surface.
  • the spring of the suspension can be stretched or compressed.
  • the component force hindering the vertical movement of the body Becomes a force applied to the vehicle body in order to reduce the movement of the vehicle body in the up and down direction due to the rotation of the vehicle body generated during driving of the electric vehicle in the front-rear direction.
  • the component force impedes the up and down movement of the vehicle body.
  • the spring of the suspension is stretched or compressed in a direction that obstructs the pitch movement of the vehicle body. As a result, the pitch motion generated while driving the vehicle can be reduced.
  • components that interfere with the up and down movement of the body Is a component that prevents the vertical movement of the vehicle body generated by each of the left and right front wheels of the electric vehicle and the vertical direction of the vehicle body generated by the left and right rear wheels of the electric vehicle. It can be divided into components that interfere with exercise.
  • the component force hindering the vertical movement of the vehicle body generated by each of the left and right front wheels is the driving force or braking force of each of the left and right front wheels generated by the friction between the road surface and each of the left and right front wheels rotated by the torque of the in-wheel motor.
  • As the angle between each virtual link and the road surface it acts on the car body by the component force that hinders the up and down movement of the car body, and expresses the force to stretch or compress the spring of each of the left and right front wheel suspensions.
  • the component force hindering the vertical movement of the vehicle body generated by each of the left and right rear wheels is the driving force or braking force of each of the left and right rear wheels generated by the friction between the road surface and the left and right rear wheels rotated by the torque of the in-wheel motor.
  • the angle formed by each virtual link and the road surface it acts on the car body by the component force that hinders the up and down movement of the car body, and expresses the force to stretch or compress the springs of the left and right rear wheel suspensions.
  • FIG. 7 is a view showing the configuration of the pitch motion control apparatus of the in-wheel motor-driven electric vehicle according to an embodiment of the present invention.
  • the pitch motion control apparatus of an in-wheel motor-driven electric vehicle includes a first subtractor 10, a second subtractor 11, a first PI controller 12, and a first subtractor.
  • 2 includes a PI controller 13, a torque converter 14, a torque forming unit 15, a six-wheeled electric vehicle 16, and a torque applying unit including a determination unit 17 and a multiplier 18.
  • the first subtractor 10 is a target pitch speed of the driver And pitch speed of the vehicle output from the electric vehicle 16 Output the deviation of.
  • the target pitch speed of the driver may be “O (Zero)”. This is for the electric vehicle occupant to have a comfortable ride so as not to be affected by the pitch movement.
  • the second subtractor 11 is the target longitudinal speed of the driver Speed of the electric vehicle output from the electric vehicle and the electric vehicle 16. Output the deviation of.
  • the target longitudinal speed of the driver Means the electric vehicle speed desired by the driver while driving the electric vehicle.
  • the driver is responsible for the current vehicle speed of the electric vehicle in operation, ie the longitudinal speed of the electric vehicle. Recognize and maintain the speed of the electric vehicle (vehicle) to accelerate or decelerate. In order to maintain the speed of the electric vehicle, the state of the current accelerator pedal is maintained, the accelerator pedal is further pressed for acceleration, and the deceleration pedal is mainly operated for deceleration.
  • the operation of the driver's acceleration / deceleration pedal is the same as that of increasing or decreasing the torque of the in-wheel motor or the command of the regenerative braking torque, and thus is equivalent to the role of the second PI controller 13 in FIG. 6. Because the PI controller applies the torque applied to the in-wheel motor from the driver's target longitudinal speed and the current electric vehicle's longitudinal speed deviation, that is, drive torque for following the driver's target longitudinal speed. This is because
  • the first PI controller 12 proportionally integrates the value output from the first subtractor 10 and outputs a component force that prevents the up and down movement of the vehicle body.
  • the torque converter 14 multiplies the wheel radius of the six-wheeled electric vehicle of the same size by the component force that hinders the up and down movement of the vehicle body. Pitch motion control torque applied to left and right front wheel and left and right rear wheel Outputs
  • the second PI controller 13 proportionally integrates the value output from the second subtractor 11 to drive the target torque to follow the target longitudinal speed of the driver.
  • the torque forming unit 15 is a pitch motion control torque output from the torque converting unit 14. And drive torque output from the second PI controller 13 Torque of left front wheel Torque on right front wheel , Left middle wheel torque And right middle wheel torque , Left rear wheel torque And right rear wheel torque Obtain
  • the torque of the left front wheel, the torque of the right front wheel, the torque of the left middle wheel, the torque of the right middle wheel, the torque of the left rear wheel and the torque of the right rear wheel can be obtained using Equation 3 below.
  • Is the pitch motion control torque to be applied to the left and right front wheels and the left and right rear wheels for pitch motion control Is the driving torque for following the driver's target longitudinal speed, Is the torque of the left front wheel, Is the torque of the right front wheel, Is the torque of the left middle wheel, Is the torque of the right middle wheel, Is the torque of the left rear wheel and Represents the torque of the right rear wheel.
  • the torque for reducing the pitch motion of the middle wheel is opposite to that of the front and rear wheels, and has a double value.
  • the electric vehicle 16 includes six wheels, and the driving force of the wheels generated by friction between the wheels and the road surface which rotates according to the torque of the in-wheel motor among the left and right front wheels and the left and right rear wheels of the six wheels. Or a suspension provided with a spring that extends or compresses as the braking force acts on the vehicle body by a component force that prevents the vertical movement of the vehicle body due to the pitch movement while driving the vehicle as much as the angle between the virtual link of the suspension system and the road surface. .
  • the directions of braking force or driving force of the left and right front wheels and the left and right rear wheels are the same, and the direction of the braking force or driving force of the left and right middle wheels of the six-wheeled electric vehicle is opposite to the direction of the braking force or the driving force of the left and right front wheels and the left and right rear wheels, and the size of the driving force is doubled.
  • the sum of driving force or braking force of all wheels of the six-wheeled electric vehicle generated by friction with the road surface becomes "0"
  • the driving force or braking force of all wheels of the six-wheeled electric vehicle generated by friction with the road surface is generated.
  • the turn moment sum can be "0".
  • the electric vehicle 16 may calculate the pitch speed, the pitch angle, and the longitudinal speed of the electric vehicle being driven by the rotation of each wheel according to the respective torque values obtained by the torque forming unit 15, respectively. Measure and output by using a sensor and a speed sensor.
  • Torque application part is pitch angle of vehicle And pitch speed Determine whether or not the pitch motion control torque output from the torque converter is applied to the torque forming unit 15 according to the direction of the match, and includes a determiner 17 and a multiplier 18.
  • the determination unit 17 outputs "1" only when the pitch angle of the vehicle and the direction of the pitch speed coincide, and outputs "0" when it does not match.
  • the multiplier 18 multiplies and outputs the value output from the determination unit 17 with the value output to the torque converter 14. That is, only when the pitch angle of the vehicle and the direction of the pitch speed coincide with each other, the torque forming unit 15 receives the pitch motion control torque output from the torque converting unit 14 only when the output of the determining unit 17 is "1". To apply.
  • FIG. 8 is a diagram illustrating a road surface profile for simulating a vehicle pitch motion.
  • the road surface of FIG. 8 is a so-called SIGNSWEEP road surface, and the curvature of the road surface has a SINE shape, and as the vehicle progresses, the size of the SINE curvature decreases but the frequency of the SINE curvature increases.
  • FIG. 9 is a diagram illustrating a simulation result of a vehicle pitch motion in a time domain.
  • FIG. 9 is a result of the vehicle traveling on the road surface of FIG. 8 at a speed of 40 kph, compared with the case in which the pitch motion control is performed with the control according to an embodiment of the present invention. It can be seen that the pitch motion is reduced.
  • FIG. 10 shows that the pitch motion is reduced in a frequency range of 1 to 2 Hz, which is a frequency range in which a person feels sensitive to the pitch motion of the vehicle, by converting the result in the time domain of FIG. 9 into the frequency domain.
  • the present invention can be used in the field of manufacturing in-wheel motor-driven electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

인휠 모터 구동 전기자동차의 피치 운동 제어장치가 개시된다. 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 피치 운동 제어장치는, 6륜 전기자동차의 좌우 전륜 및 좌우 후륜 마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 해당 차륜과 노면과의 마찰에 의해 발생하는 해당 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 주행 중 피치 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함한다.

Description

인휠 모터 구동 전기자동차의 피치운동 제어장치
본 발명은 인휠 모터 구동 전기자동차의 피치운동 제어장치에 관한 것으로, 더욱 자세하게는 인휠모터의 토크 제어를 통하여 차량의 주행 중에 발생하는 차량의 전후방향의 회전운동을 저감시키는 기술에 관한 것이다.
전기자동차에 있어서 전기구동모터는 본래의 기능으로 기존의 내연기관차량의 엔진을 대체하여 차륜을 회전시키는 구동력을 발생시키는 장치이다. 전기구동 모터는 내연기관의 엔진과 비교할 때 명령받은 토크를 매우 빠르고 정확히 만들어내는 장점이 있으며, 특히 전기구동모터를 차륜 내에 설치하는 인휠 모터의 경우는 전후좌우 각 차륜을 독립적으로 구동할 수 있다. 따라서 인휠 모터 구동 전기자동차는 인휠 모터의 우수한 제어성과 독립적인 구동력을 가지게 된다. 이로 인해서 최근 이 인휠 모터 구동 전기 자동차 분야에서는 전기구동모터의 우수한 제어성과 독립적인 구동력을 이용하여 차륜 슬립 제어 및 차량 선회시 요(yaw) 운동제어에 대한 기술이 개발 및 연구가 활발히 이루어지고 있다.
하지만, 인휠 모터 구동 전기 자동차 분야에서 차량 전후방향의 회전운동인 피치운동을 저감시켜 탑승자의 승차감 향상에 대한 기술개발 및 연구가 이루어지지 않고 있다.
인휠 모터의 각 차륜의 독립적인 제동력 또는 구동력 제어 특성을 이용하여 차량의 주행 중 발생하는 차체가 전후방향으로 회전하려는 피치운동을 저감 하는, 인휠 모터 구동 전기자동차의 피치운동 제어 장치가 제안된다.
본 발명의 일 양상에 따른 인휠 모터 구동 전기자동차의 피치 운동 제어장치는, 6륜 전기자동차의 좌우 전륜 및 좌우 후륜 마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 해당 차륜과 노면과의 마찰에 의해 발생하는 해당 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 주행 중 피치 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함한다.
상기 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력의 방향은 동일하며, 상기 6륜 전기자동차의 좌우 중륜의 제동력 또는 구동력의 방향은 상기 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력의 방향과 반대이며 2배의 크기를 가질 수 있다.
상기 노면과의 마찰에 의해 발생하는 상기 6륜 전기자동차의 모든 차륜의 구동력 또는 제동력의 합은 "0"이 되며, 상기 노면과의 마찰에 의해 발생하는 상기 6륜 전기자동차의 모든 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 될 수 있다.
본 발명의 다른 양상에 따른 인휠 모터 구동 전기자동차의 피치 운동 제어장치는, 운전자의 목표 피치 속도와 6륜 전기자동차에서 출력된 상기 전기자동차의 피치 속도의 편차를 출력하는 제1감산기; 운전자의 목표 종방향 속도와 상기 전기자동차에서 출력되는 전기자동차의 종방향 속도의 편차를 출력하는 제2감산기; 상기 제1감산기에서 출력된 값을 비례 적분 제어하여, 차체의 상하방향 운동을 방해하는 분력을 출력하는 제 1 PI 제어기; 상기 분력에 동일한 크기의 6륜 전기자동차의 차륜 반경을 곱해서, 피치 운동 제어를 위하여, 좌우 전륜 및 좌우 후륜에 적용될 피치 운동 제어 토크를 출력하는, 토크 변환부; 상기 제2감산기에서 출력된 값을 비례 적분 제어하여 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크를 출력하는, 제 2 PI 제어기; 상기 피치 운동 제어 토크과 제 2 PI 제어기에서 출력된 구동 토크를 이용하여, 상기 6륜 전기자동차의 모든 차륜의 토크를 구하는, 토크 형성부; 6륜 전기자동차의 좌우 전륜 및 좌우 후륜 마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 해당 차륜과 노면과의 마찰에 의해 발생하는 해당 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 주행 중 피치 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함하며, 상기 토크 형성부에서 구해진 차륜의 토크에 따라 해당 차륜의 회전에 의해 주행중인 전기자동차의 피치속도, 피치각 및 종방향 속도를 각각 피치속도 감지센서, 피치각 감지센서 및 속도 감지센서를 이용하여 측정해서 출력하는 전기자동차; 및 상기 전기자동차의 피치각과 피치 속도의 방향 일치 여부에 따라 상기 피치 운동 제어 토크의 상기 토크 형성부로의 인가 여부를 결정하는 적용부를 포함한다.
상기 운전자의 목표 피치 속도는, 0으로 설정될 수 있다.
상기 모든 차륜의 토크는 아래의 수학식을 이용하여 구해질 수 있다.
[수학식]
Figure PCTKR2011010104-appb-I000001
이때,
Figure PCTKR2011010104-appb-I000002
는 피치 운동 제어를 위하여 좌우 전륜 및 좌우 후륜에 적용될 피치운동 제어토크,
Figure PCTKR2011010104-appb-I000003
는 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크,
Figure PCTKR2011010104-appb-I000004
는 좌측전륜의 토크,
Figure PCTKR2011010104-appb-I000005
는 우측전륜의 토크,
Figure PCTKR2011010104-appb-I000006
는 좌측중륜의 토크,
Figure PCTKR2011010104-appb-I000007
는 우측중륜의 토크,
Figure PCTKR2011010104-appb-I000008
는 좌측후륜의 토크 및
Figure PCTKR2011010104-appb-I000009
는 우측후륜의 토크를 나타낸다.
상기 적용부는, 상기 전기자동차의 피치각과 피치 속도의 방향 일치 여부를 확인하여, 일치한 경우 "1"을 출력하고 일치하지 않은 경우 "0"을 출력하는 판단부; 와 상기 판단부의 출력 값과 상기 피치 운동 제어 토크 값을 승산하여 출력하는 승산부를 포함할 수 있다.
본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 피치 운동 제어장치에 따르면, 인휠 모터의 독립적인 제동력 또는 구동력 제어 특성을 이용하여 차량의 주행 중 발생하는 차체의 피치 운동으로 수반되는 피치각을 저감함으로써, 차량의 주행 중 발생하는 차량 전후방향의 회전운동 현상을 감소시킬 수 있다.
도 1은 후륜 타이어 노면 접지점의 상하운동과 현가장치의 가상링크의 관계도.
도 2는 차량 제동시에 관성력의 방향과 피칭각을 나타낸 도면.
도 3은 본 발명의 실시예가 적용되는 6륜 차량에 있어서 중륜이 전후륜의 제동력 또는 구동력과 반대의 제동력 또는 구동력을 발생시키는 도면
도 4는 이상적인 현가장치 모델을 나타낸 도면.
도 5는 실제적인 현가장치 모델을 나타낸 도면.
도 6은 본 발명의 실시예에 따른 현가장치 모델을 나타낸 도면.
도 7은 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 피치 운동 제어장치의 구성을 나타낸 도면.
도 8은 차량 피치 운동 시뮬레이션을 위한 노면 프로파일을 나타낸 도면.
도 9는 차량 피치 운동에 대한 시뮬레이션 결과를 시간영역에서 나타낸 도면.
도 10은 차량 피치 운동에 대한 시뮬레이션 결과를 주파수 영역에서 나타낸 도면.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 본 발명의 실시예를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술 되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 피치운동 제어장치는, 좌우 전륜 및 좌우 후륜 각 차륜별로 상하운동을 가능하게 하는 현가장치를 구비한다. 이 현가장치에 의해 차륜 타이어의 노면접지 중심점은, 차륜을 옆에서 보았을 때, 도 1에 도시된 바와 같은 접지점의 상하 이동궤적을 가질 수 있다. 이 접지점의 상하 이동궤적은 차량의 운동에 있어서 안티다이브(anti-dive)/안티리프트(anti-lift) 특성과 관계되며, 도 1에 도시된 바와 같이 가상링크의 회전에 의해 움직이며, 가상링크와 노면은 소정의 각도(
Figure PCTKR2011010104-appb-I000010
)를 이루고 있다.
이 안티다이브/안티리프트 특성에 대해서 살펴보기로 한다.
차량이 가속하거나 감속하게 되면 차량의 무게중심에 작용하는 관성력으로 인하여 차체는 피치 운동을 하게 된다.
예를 들어 도 2에 도시된 바와 같이, 차량이 제동력에 의해 감속을 하게 되면 감속도에 의한 차량의 관성력이 차량의 전진방향으로 작용하여 차체가 앞으로 기울어지는 방향의 모멘트가 되어, 전륜의 경우 하중이 증가하고 후륜의 경우 하중이 작아져서, 결국 차량은 다이브(dive, 차체가 진행방향으로 기울어지게 되는 현상) 된다.
이때, 노면에 작용하는 제동력으로 인하여 이 제동력을 받는 전륜 현가장치의 가상링크 및 후륜 현가장치의 가상링크는, 각각 노면과 이루는 소정의 제1각도(
Figure PCTKR2011010104-appb-I000011
) 및 제2각도(
Figure PCTKR2011010104-appb-I000012
)를 이루고, 제1각도만큼 차체의 윗 방향으로 분력이 발생하며 이 윗 방향으로 발생된 분력에 의해서 전륜 현가장치 스프링이 신장되고(늘어나고) 제2각도만큼 차체의 아래 방향으로 분력이 발생하며 이 아래 방향으로 발생된 분력에 의해 후륜 현가장치 스프링이 압축되어서, 결국 차량의 다이브 현상이 저감 된다.
도 2에 도시된 바와 같이, 전륜 현가장치의 가상링크의 순간 회전중심(
Figure PCTKR2011010104-appb-I000013
)의 위치가 전륜의 후방에 있도록, 후륜 현가장치의 가상링크의 순간 회전중심(
Figure PCTKR2011010104-appb-I000014
)의 위치가 후륜의 전방에 있도록 설계된 경우, 차량의 제동으로 인해 발생하는 차체의 피치 운동을 방해하는 분력을 만들어 낼 수 있다. 이러한 분력으로 인해서 차체의 상하운동이 저감 되는데, 이것이 바로 안티다이브/안티리프트 특성이다.
즉, 현가장치가 만들어 내는 안티다이브/안티리프트 특성을 이용하면, 인휠 모터의 토크에 의해 회전하는 차륜이 노면과의 마찰에 의해서 발생하는 제동력 또는 구동력이, 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차체의 상하 방향의 분력으로 차체에 작용하여, 현가장치의 스프링이 늘어나거나 압축될 수 있다.
이를 이용하여 차량 주행 중에 발생 되는 차량의 피치 운동을 저감 시키는 경우 인휠 모터의 토크에 의한 노면에서의 차륜에 발생하는 제동력 또는 구동력이 전후륜 모두 동일한 방향이 되어 차량의 본래의 진행 방향을 방해하게 되어 바람직하지 않게 된다.
이에 대해서 자세히 살펴보면, 차체의 상하방향 운동을 방해하는 분력의 방향은, 좌우 전륜에서 차체의 상방향으로 작용하면 좌우 후륜의 경우 차체의 하방향으로 작용하도록 하여야 하며, 이와 반대로 좌우 전륜에서 차체의 하방향으로 작용하면 좌우 후륜의 경우 차체의 상방향으로 작용하도록 하여야 한다.
이를 위해서는 차체가 전방향으로 회전하는 피치 운동이 발생할 경우 이를 저감하기 위한 차체의 상하방향 운동을 방해하는 분력의 방향은, 좌우 전륜의 경우 상방향으로, 좌우 후륜의 경우 하방향이 되어야 할 것이므로, 이를 위한 좌우 전륜의 인휠 모터의 토크에 의한 제동력 또는 구동력의 방향은 제동력이 되고 마찬가지로 좌우 후륜의 인휠 모터의 토크에 의한 제동력 또는 구동력의 방향 역시 제동력이 되어야 한다.
마찬가지로 차체가 후방향으로 회전하는 피치 운동이 발생할 경우, 이를 저감하기 위한 차체의 상하방향 운동을 방해하는 분력의 방향은, 좌우 전륜의 경우 하방향으로, 좌우 후륜의 경우 상방향이 되어야 할 것이므로, 이를 위한 좌우 전륜의 인휠 모터의 토크에 의한 제동력 또는 구동력의 방향은 구동력이 되고 마찬가지로 좌우 후륜의 인휠 모터의 토크에 의한 제동력 또는 구동력의 방향 역시 구동력이 되어야 한다.
즉 차량의 피치 운동을 저감 하기 위한 전후륜의 제동력 또는 구동력의 방향은 일치하고 있다. 그러나 이러한 전후륜의 제동력 또는 구동력의 방향의 일치는 차량이 본래 원하는 주행을 하기 위한 제동력 또는 구동력의 크기를 변화시키는 것이 되므로 바람직하지 않다. 따라서 차량의 피치 운동을 저감 하기 위한 인휠 모터의 제동력 또는 구동력의 제어는 차량의 본래의 운동을 방해하므로 적용할 수 없는 것이 된다.
그러나 본 발명은 좌우 전륜 및 좌우 후륜을 구비한 4륜 구동 차량이 아닌 6륜 구동 차량의 경우 차량의 운동을 방해하지 않고 이러한 인휠 모터의 제동력 또는 구동력 제어를 통한 차량의 피치 운동을 저감할 수 있다.
즉, 차량의 피치 운동을 저감하기 위해서, 6륜 구동 차량의 좌우 전륜 및 좌우 후륜의 경우 동일한 방향의 제동력 또는 구동력이 발생하도록 하고, 6륜 구동 차량의 중륜의 경우 좌우 전륜 및 좌우 후륜과 반대 방향의 제동력 또는 구동력을 발생시킨다. 즉 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력과 좌우 중륜의 제동력 또는 구동력이 서로 상쇄됨으로써 차량의 본래의 운동을 방해하지 않고 차량의 피치 운동을 저감 할 수 있는 것이 된다.
다시 말해서, 도 3에 예시한 바와 같이 좌우 중륜을 포함하는 6륜 차량의 경우는 좌우 전륜 및 좌우 후륜 각각 피치 운동을 저감 시키는 제동력 또는 구동력을 발생시켜도, 좌우 중륜의 제동력 또는 구동력의 방향이 좌우 전륜 및 좌우 후륜의 힘과 반대 방향으로 발생하도록 하여 상쇄시키면 이들의 전체적인 제동력 또는 구동력의 합은 Zero(0)가 되어 차량 본래의 주행을 방해하지 않고도 피치 운동을 저감할 수 있다.
또한 노면과의 마찰에 의해 발생하는 6륜 차량의 모든 차륜의 구동력 또는 제동력이 만드는 선회 모멘트의 합은 "0"일 수 있다. 즉, 도 3의 차량 중심선(미도시)에서 각 차륜의 제동력 또는 구동력이 작용하는 위치까지의 거리를 t라하고 인휠 모터의 토크 τp에 의한 제동력 또는 구동력을 Fp라 하면 선회 모멘트는 좌측 전륜, 우측 전륜, 좌측 중륜, 우측 중륜, 좌측 후륜 및 우측 후륜 순서대로, (τp×t)-(τp×t)+2(τp×t)-2(τp×t)+(τp×t)-(τp×t)이 되어 "0"이 된다.
다시 도 2를 참조하여 차량 주행 중에 발생하는 피치 운동의 저감에 대해서 살펴보기로 한다.
차량의 주행 중, 도 2에 예시된 바와 같은 피치 운동이 발생하면 좌우 전륜 및 좌우 후륜 모두에 제동력을 가한다. 좌우 전륜에서의 제동력은 도 2에서와 같이 현가장치에 의해 형성된 가상링크에 의해 차체에 상방향으로 작용하는 분력을 만들어 내고, 좌우 후륜에서의 제동력은 차체에 하방향으로 작용하는 분력을 만들기 때문에 발생된 피치 운동을 저감하는 힘으로 작용한다.
기존 내연기관 차량에 있어서 차체의 상하운동을 제한하기 위한 수단은, 차체에 작용하는 상하방향의 힘을 직접 제어하는 것으로서, 이를 위해 현가장치 요소인 댐퍼의 댐핑력을 이루는 댐핑계수를 가변할 수 있는 가변댐퍼를 두고 댐핑계수를 결정하는 알고리즘으로 스카이훅 제어 기법이 사용되고 있다. 이에 대해서 살펴보기로 한다.
스카이훅 제어는 도 4에 도시된 바와 같이 가상의 관성기준(Inertia Reference)과 차량의 스프링 상중량(Sprung mass)(차체) M에 가상의 스카이훅 수동 댐퍼를 설치하여 차체 M의 속도에 직접 비례하는 감쇄력을 발생시키는 방법이다.
그러나 실제로는 이것이 가능하지 않기 때문에, 도 5에 도시된 바와 같이 현가장치의 가변 댐퍼를 이용하여 이와 등가 적인 감쇄력을 발생시킨다.
실제 현가장치 모델에서의 등가 댐핑 계수는 아래의 수학식 1을 통해서 구해질 수 있다.
수학식 1
Figure PCTKR2011010104-appb-M000001
이때,
Figure PCTKR2011010104-appb-I000015
는 실제 현가장치 모델에서의 등가 댐핑 계수,
Figure PCTKR2011010104-appb-I000016
는 이상적인 현가장치 모델에서의 등가 댐핑 계수,
Figure PCTKR2011010104-appb-I000017
는 차체(스프링 상중량)의 상하방향 속도,
Figure PCTKR2011010104-appb-I000018
는 차륜(스프링 하중량)의 상하방향 속도를 나타낸다.
또한, 도 5에서 등가적인 감쇄력은 아래의 수학식 2와 같은 조건에서만 구해질 수 있다.
수학식 2
Figure PCTKR2011010104-appb-M000002
이때, 등가적인 감쇄력은
Figure PCTKR2011010104-appb-I000019
이고
Figure PCTKR2011010104-appb-I000020
인 경우를 모두 만족하는 경우에 발생하거나,
Figure PCTKR2011010104-appb-I000021
이고
Figure PCTKR2011010104-appb-I000022
인 경우를 모두 만족하는 경우에 발생할 수 있다. 즉, 차체의 상하방향 속도의 방향과, 차체의 상하방향 속도와 차륜 상하방향 속도 간 차의 방향이 모두 일치한 경우에 등가적인 감쇄력이 발생할 수 있다.
이에 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 피치 운동 제어장치는, 스카이 훅 제어기법을 이용하여 차량의 주행 중 차체가 전후로 회전하려는 피치 운동에 따라, 6륜 전기자동차의 좌우 전륜 및 좌우 후륜 각 현가장치 스프링의 신장 및 압축에 의한 전기자동차 차체의 상하방향의 운동을 감소시키는 방향으로 힘을 발생하여 차체에 인가함으로써, 전기자동차의 좌우 전륜 및 좌우 후륜 각 현가장치 스프링의 상하방향 운동을 감소시켜 차량 주행 중 발생하는 차체의 피치 운동을 저감할 수 있게 된다.
본 발명의 실시예에 적용되는 현가장치의 모델이 도 6에 도시되어 있다.
도 6에 도시된 바와 같이, 본 발명의 실시예에 따른 현가장치 모델은, 인휠(In-Wheel) 모터를 구비한 전기자동차의 차륜(4), 전기자동차 차체(1)를 지지하는 스프링(spring)(2) 및 전기자동차 차체(1)의 상하방향의 진동을 흡수하는 댐퍼(damper)(3)를 구비할 수 있다. 이때, 차륜(4)은 전기자동차의 좌우 전륜, 좌우 중륜 및 좌우 후륜을 하나의 차륜으로만 모델화하여 표시한 경우이다. 이는 예시에 해당하며 다른 실시예도 가능함은 당연하다.
인휠 모터의 토크에 의해 회전하는 차륜과 노면 사이의 마찰에 의해 발생하는 구동력 또는 제동력이, 현가장치의 가상링크가 노면과 이루는 사잇각 만큼, 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용하여, 현가장치의 스프링이 신장되거나 압축될 수 있다.
이때, 차체의 상하방향 운동을 방해하는 분력
Figure PCTKR2011010104-appb-I000023
는, 전기자동차 주행 중 발생하는 차체가 전후방향으로 회전하는 것에 의한 차체의 상하방향의 운동을 감소시키기 위해 차체에 인가되는 힘이 된다. 이에 따라, 차체의 상하방향 운동을 방해하는 분력
Figure PCTKR2011010104-appb-I000024
가 차체에 작용하여, 현가장치의 스프링이 차체의 피치 운동을 방해하는 방향으로 신장되거나 압축된다. 이에 따라 차량 주행 중 발생하는 피치 운동이 저감될 수 있게 된다.
그리고 차체의 상하방향 운동을 방해하는 분력
Figure PCTKR2011010104-appb-I000025
는 전기자동차의 주행중 차제가 전후방향으로 회전하는 것에 의해, 전기자동차의 좌우 전륜 각각에 의해 발생하는 차체의 상하방향 운동을 방해하는 분력과, 전기자동차의 좌우 후륜 각각에 의해 발생하는 차체의 상하방향 운동을 방해하는 분력으로 나뉠 수 있다.
좌우 전륜 각각에 의해 발생하는 차체의 상하방향 운동을 방해하는 분력은, 인휠 모터의 토크에 의해 회전하는 좌우 전륜 각각과 노면 간 마찰에 의해 발생하는 좌우 전륜 각각의 구동력 또는 제동력이, 좌우 전륜 현가장치 각각의 가상링크와 노면이 이루는 사잇각 만큼, 차체의 상하운동을 방해하는 분력으로 차체에 작용하여, 좌우 전륜 현가장치 각각의 스프링을 신장하거나 압축하는 힘을 나타낸다.
좌우 후륜 각각에 의해 발생하는 차체의 상하방향 운동을 방해하는 분력은, 인휠 모터의 토크에 의해 회전하는 좌우 후륜 각각과 노면 간 마찰에 의해 발생하는 좌우 후륜 각각의 구동력 또는 제동력이, 좌우 후륜 현가장치 각각의 가상링크와 노면이 이루는 사잇각 만큼, 차체의 상하운동을 방해하는 분력으로 차체에 작용하여, 좌우 후륜 현가장치 각각의 스프링을 신장하거나 압축하는 힘을 나타낸다.
도 7은 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 피치 운동 제어장치의 구성을 나타낸 도면이다.
도 7에 도시된 바와 같이, 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 피치 운동 제어장치는, 제1감산기(10), 제2감산기(11), 제 1 PI제어기(12), 제 2 PI제어기(13), 토크 변환부(14), 토크 형성부(15), 6륜 전기자동차(16) 및 판정부(17)와 승산부(18)를 포함한 토크 적용부를 포함한다.
제1감산기(10)는 운전자의 목표 피치속도
Figure PCTKR2011010104-appb-I000026
와 전기자동차(16)에서 출력된 차량의 피치속도
Figure PCTKR2011010104-appb-I000027
의 편차를 출력한다. 이때, 운전자의 목표 피치 속도는 "O(Zero)"일 수 있다. 이는 전기자동차 탑승자가 피치 운동의 영향을 받지 않도록 하여 안락한 승차감을 갖도록 하기 위해서이다.
제2감산기(11)는 운전자의 목표 종방향 속도
Figure PCTKR2011010104-appb-I000028
와 전기 자동차(16)에서 출력되는 전기자동차의 종방향 속도
Figure PCTKR2011010104-appb-I000029
의 편차를 출력한다. 이때, 운전자의 목표 종방향 속도
Figure PCTKR2011010104-appb-I000030
는 전기자동차 주행 중에 운전자가 원하는 전기자동차 속도를 의미한다. 운전자는 운전중인 전기자동차의 현재 차속, 즉 전기자동차의 종방향 속도
Figure PCTKR2011010104-appb-I000031
를 인지하여 전기자동차(차량)의 속도를 유지하거나 가속 또는 감속을 하게 된다. 전기자동차의 속도를 유지하기 위해서는 현재의 가속 페달의 상태를 유지하며, 가속을 위해서는 가속페달을 더욱 밟으며, 감속을 위해서는 주로 감속페달을 조작하게 된다. 이러한 운전자의 가감속 페달의 조작은, 인휠 모터의 토크를 증대시키거나 감소시키는 것 또는 회생 제동 토크의 명령과 동일하므로, 도 6의 제 2 PI 제어기(13)의 역할과 동일하다. 왜냐하면 PI 제어기는 운전자의 목표 종방향 속도와 현재 전기자동차의 종방향 속도의 편차로부터 인휠 모터에 인가되는 토크, 즉 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크
Figure PCTKR2011010104-appb-I000032
를 출력하기 때문이다.
제 1 PI 제어기(12)는 제1감산기(10)에서 출력된 값을 비례 적분 제어하여, 차체의 상하방향 운동을 방해하는 분력을 출력한다.
토크 변환부(14)는 차체의 상하방향 운동을 방해하는 분력에 동일한 크기의 6륜 전기자동차의 차륜 반경을 곱하여, 피치 운동 제어를 위하여 좌우 전륜 및 좌우 후륜에 적용될 피치 운동 제어 토크
Figure PCTKR2011010104-appb-I000033
를 출력한다.
제 2 PI 제어기(13)는 제2감산기(11)에서 출력된 값을 비례 적분 제어하여 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크
Figure PCTKR2011010104-appb-I000034
를 출력한다.
토크 형성부(15)는 토크 변환부(14)에서 출력된 피치 운동 제어 토크
Figure PCTKR2011010104-appb-I000035
와 제2 PI 제어기(13)에서 출력된 구동 토크
Figure PCTKR2011010104-appb-I000036
를 이용하여, 좌측전륜의 토크
Figure PCTKR2011010104-appb-I000037
, 우측전륜의 토크
Figure PCTKR2011010104-appb-I000038
, 좌측중륜의 토크
Figure PCTKR2011010104-appb-I000039
및 우측중륜의 토크
Figure PCTKR2011010104-appb-I000040
, 좌측후륜의 토크
Figure PCTKR2011010104-appb-I000041
및 우측후륜의 토크
Figure PCTKR2011010104-appb-I000042
을 구한다.
이때 좌측전륜의 토크, 우측전륜의 토크, 좌측중륜의 토크, 우측중륜의 토크, 좌측후륜의 토크 및 우측후륜의 토크는 아래의 수학식 3을 이용하여 구할 수 있다.
수학식 3
Figure PCTKR2011010104-appb-M000003
이때,
Figure PCTKR2011010104-appb-I000043
는 피치 운동 제어를 위하여 좌우 전륜 및 좌우 후륜에 적용될 피치운동 제어토크,
Figure PCTKR2011010104-appb-I000044
는 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크,
Figure PCTKR2011010104-appb-I000045
는 좌측전륜의 토크,
Figure PCTKR2011010104-appb-I000046
는 우측전륜의 토크,
Figure PCTKR2011010104-appb-I000047
는 좌측중륜의 토크,
Figure PCTKR2011010104-appb-I000048
는 우측중륜의 토크,
Figure PCTKR2011010104-appb-I000049
는 좌측후륜의 토크 및
Figure PCTKR2011010104-appb-I000050
는 우측후륜의 토크를 나타낸다. 여기서 중륜의 피치 운동을 저감 시키는 토크는 전후륜의 토크에 비하여 방향은 반대이고 크기는 2배의 값을 갖는다.
전기자동차(16)는, 6륜을 구비하며 6륜 중 좌우 전륜 및 좌우 후륜 마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 해당 차륜과 노면과의 마찰에 의해 발생하는 해당 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 주행 중 피치 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함한다. 이때, 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력의 방향은 동일하며, 6륜 전기자동차의 좌우 중륜의 제동력 또는 구동력의 방향은 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력의 방향과 반대이며 2배의 크기를 가질 수 있다. 또한 노면과의 마찰에 의해 발생하는 6륜 전기자동차의 모든 차륜의 구동력 또는 제동력의 합은 "0"이 되며, 노면과의 마찰에 의해 발생하는 6륜 전기자동차의 모든 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 될 수 있다.
또한 전기자동차(16)는, 토크 형성부(15)에서 구해진 각 토크 값에 따라 각 차륜의 회전에 의해 주행중인 전기자동차의 피치속도, 피치각 및 종방향 속도를 각각 피치속도 감지센서, 피치각 감지센서 및 속도 감지센서를 이용하여 측정해서 출력한다.
토크 적용부는 차량의 피치각
Figure PCTKR2011010104-appb-I000051
와 피치속도
Figure PCTKR2011010104-appb-I000052
의 방향의 일치 여부에 따라 토크 변환부에서 출력된 피치 운동 제어 토크의 토크 형성부(15)로의 인가 여부를 결정하며, 판정부(17)와 승산부(18)를 포함한다. 판정부(17)는 차량의 피치각과 피치속도의 방향이 일치한 경우에만 "1"을 출력하고 일치하지 않은 경우 "0"을 출력한다. 승산부(18)는 판정부(17)에서 출력된 값과 토크 변환부(14)에 출력된 값을 승산하여 출력한다. 즉, 차량의 피치각과 피치속도의 방향이 일치한 경우에만, 판정부(17)의 출력이 "1"인 경우에만 토크 변환부(14)에서 출력된 피치 운동 제어 토크를 토크 형성부(15)에 인가한다.
도 8은 차량 피치 운동을 시뮬레이션하기 위한 노면 프로파일을 나타내는 도면이다.
도 8의 노면은 소위 SIGNSWEEP 노면으로 노면의 굴곡이 SINE 형상으로 차량의 진행에 따라 노면의 SINE 굴곡의 크기는 적어지지만 SINE 굴곡의 주파수는 커지는 특징을 가진다.
도 9는 차량 피치 운동에 대한 시뮬레이션 결과를 시간영역에서 나타낸 도면이다.
도시된 바와 같이, 도 9는 차량이 도 8의 노면을 40kph의 속도로 주행한 결과로서, 본 발명의 실시예에 따른 피치 운동제어가 이루어진 경우(with control), 제어가 이루어지지 않은 경우에 비해서 피치 운동이 저감 됨을 알 수 있다.
도 10은 도 9의 시간영역에서의 결과를 주파수 영역으로 변환한 것으로서 일반적으로 차량의 피치운동에 대해 사람이 민감하게 느끼는 주파수 영역인 1~2Hz 대역에서 피치 운동이 저감 되었음을 나타내고 있다.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 따라서 본 발명의 범위는 전술한 실시예에 한정되지 않고 특허청구범위에 기재된 내용 및 그와 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다.
본 발명은 인휠 모터 구동 전기자동차의 제조분야에 이용될 수 있다.

Claims (9)

  1. 6륜 전기자동차의 좌우 전륜 및 좌우 후륜 마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 해당 차륜과 노면과의 마찰에 의해 발생하는 해당 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 주행 중 피치 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함하는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
  2. 제 1 항에 있어서,
    상기 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력의 방향은 동일하며, 상기 6륜 전기자동차의 좌우 중륜의 제동력 또는 구동력의 방향은 상기 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력의 방향과 반대이며 2배의 크기를 갖는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 노면과의 마찰에 의해 발생하는 상기 6륜 전기자동차의 모든 차륜의 구동력 또는 제동력의 합은 "0"이 되며, 상기 노면과의 마찰에 의해 발생하는 상기 6륜 전기자동차의 모든 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 되는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
  4. 운전자의 목표 피치 속도와 6륜 전기자동차에서 출력된 상기 전기자동차의 피치 속도의 편차를 출력하는 제1감산기;
    운전자의 목표 종방향 속도와 상기 전기자동차에서 출력되는 전기자동차의 종방향 속도의 편차를 출력하는 제2감산기;
    상기 제1감산기에서 출력된 값을 비례 적분 제어하여, 차체의 상하방향 운동을 방해하는 분력을 출력하는 제 1 PI 제어기;
    상기 분력에 동일한 크기의 6륜 전기자동차의 차륜 반경을 곱해서, 피치 운동 제어를 위하여, 좌우 전륜 및 좌우 후륜에 적용될 피치 운동 제어 토크를 출력하는, 토크 변환부;
    상기 제2감산기에서 출력된 값을 비례 적분 제어하여 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크를 출력하는, 제 2 PI 제어기;
    상기 피치 운동 제어 토크과 제 2 PI 제어기에서 출력된 구동 토크를 이용하여, 상기 6륜 전기자동차의 모든 차륜의 토크를 구하는, 토크 형성부;
    6륜 전기자동차의 좌우 전륜 및 좌우 후륜 마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 해당 차륜과 노면과의 마찰에 의해 발생하는 해당 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 주행 중 피치 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함하며, 상기 토크 형성부에서 구해진 차륜의 토크에 따라 해당 차륜의 회전에 의해 주행중인 전기자동차의 피치속도, 피치각 및 종방향 속도를 각각 피치속도 감지센서, 피치각 감지센서 및 속도 감지센서를 이용하여 측정해서 출력하는 전기자동차; 및
    상기 전기자동차의 피치각과 피치 속도의 방향 일치 여부에 따라 상기 피치 운동 제어 토크의 상기 토크 형성부로의 인가 여부를 결정하는 적용부를 포함하는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
  5. 제 4 항에 있어서,
    상기 운전자의 목표 피치 속도는, 0으로 설정되는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
  6. 제 4 항에 있어서,
    상기 모든 차륜의 토크는 아래의 수학식을 이용하여 구해지는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
    [수학식]
    Figure PCTKR2011010104-appb-I000053
    이때,
    Figure PCTKR2011010104-appb-I000054
    는 피치 운동 제어를 위하여 좌우 전륜 및 좌우 후륜에 적용될 피치운동 제어토크,
    Figure PCTKR2011010104-appb-I000055
    는 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크,
    Figure PCTKR2011010104-appb-I000056
    는 좌측전륜의 토크,
    Figure PCTKR2011010104-appb-I000057
    는 우측전륜의 토크,
    Figure PCTKR2011010104-appb-I000058
    는 좌측중륜의 토크,
    Figure PCTKR2011010104-appb-I000059
    는 우측중륜의 토크,
    Figure PCTKR2011010104-appb-I000060
    는 좌측후륜의 토크 및
    Figure PCTKR2011010104-appb-I000061
    는 우측후륜의 토크를 나타낸다.
  7. 제 4 항에 있어서,
    상기 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력의 방향은 동일하며, 상기 6륜 전기자동차의 좌우 중륜의 제동력 또는 구동력의 방향은 상기 좌우 전륜 및 좌우 후륜의 제동력 또는 구동력의 방향과 반대이며 2배의 크기를 갖는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
  8. 제 4 항에 있어서,
    상기 노면과의 마찰에 의해 발생하는 상기 6륜 전기자동차의 모든 차륜의 구동력 또는 제동력의 합은 "0"이 되며, 상기 노면과의 마찰에 의해 발생하는 상기 6륜 전기자동차의 모든 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 되는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
  9. 제 4 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 적용부는,
    상기 전기자동차의 피치각과 피치 속도의 방향 일치 여부를 확인하여, 일치한 경우 "1"을 출력하고 일치하지 않은 경우 "0"을 출력하는 판단부; 와
    상기 판단부의 출력 값과 상기 피치 운동 제어 토크 값을 승산하여 출력하는 승산부를 포함하는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 피치 운동 제어장치.
PCT/KR2011/010104 2011-07-07 2011-12-26 인휠 모터 구동 전기자동차의 피치운동 제어장치 WO2013005903A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0067519 2011-07-07
KR1020110067519A KR101265053B1 (ko) 2011-07-07 2011-07-07 인휠 모터 구동 전기자동차의 피치운동 제어장치

Publications (1)

Publication Number Publication Date
WO2013005903A1 true WO2013005903A1 (ko) 2013-01-10

Family

ID=47437229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010104 WO2013005903A1 (ko) 2011-07-07 2011-12-26 인휠 모터 구동 전기자동차의 피치운동 제어장치

Country Status (2)

Country Link
KR (1) KR101265053B1 (ko)
WO (1) WO2013005903A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3100923A1 (de) * 2015-06-03 2016-12-07 MAN Truck & Bus AG Beschleunigungsregler zur regelung von motor- und dauerbremsanforderungen
CN108733955A (zh) * 2018-05-30 2018-11-02 厦门大学 一种智能电动汽车纵向运动控制系统及方法
US20220250595A1 (en) * 2019-07-18 2022-08-11 Robert Bosch Gmbh Method and device for operating a brake system, computer program and computer program product, brake system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232632A1 (en) * 2003-02-21 2004-11-25 Beck Michael S. System and method for dynamically controlling the stability of an articulated vehicle
KR100881087B1 (ko) * 2007-09-17 2009-01-30 현대로템 주식회사 차량 자세 안정화 장치
KR20100055604A (ko) * 2008-11-18 2010-05-27 현대로템 주식회사 차륜 냉각 및 윤활 장치
KR20100110946A (ko) * 2009-04-06 2010-10-14 현대로템 주식회사 다축 인휠 모터 차량용 자가 정렬 현가 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119548A (ja) * 2003-10-17 2005-05-12 Nissan Motor Co Ltd 電気自動車のサスペンション装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232632A1 (en) * 2003-02-21 2004-11-25 Beck Michael S. System and method for dynamically controlling the stability of an articulated vehicle
KR100881087B1 (ko) * 2007-09-17 2009-01-30 현대로템 주식회사 차량 자세 안정화 장치
KR20100055604A (ko) * 2008-11-18 2010-05-27 현대로템 주식회사 차륜 냉각 및 윤활 장치
KR20100110946A (ko) * 2009-04-06 2010-10-14 현대로템 주식회사 다축 인휠 모터 차량용 자가 정렬 현가 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3100923A1 (de) * 2015-06-03 2016-12-07 MAN Truck & Bus AG Beschleunigungsregler zur regelung von motor- und dauerbremsanforderungen
CN108733955A (zh) * 2018-05-30 2018-11-02 厦门大学 一种智能电动汽车纵向运动控制系统及方法
CN108733955B (zh) * 2018-05-30 2020-07-17 厦门大学 一种智能电动汽车纵向运动控制系统及方法
US20220250595A1 (en) * 2019-07-18 2022-08-11 Robert Bosch Gmbh Method and device for operating a brake system, computer program and computer program product, brake system

Also Published As

Publication number Publication date
KR20130005867A (ko) 2013-01-16
KR101265053B1 (ko) 2013-05-16

Similar Documents

Publication Publication Date Title
CN104554265B (zh) 车辆用制动驱动力控制装置
US7783402B2 (en) Vehicle stability control system
JP4839778B2 (ja) 車両の制御装置
CN102958717B (zh) 车辆减振控制装置
JP6879467B2 (ja) 車両用制動力制御装置
WO2015083213A1 (ja) 電動車両の制御装置および電動車両の制御方法
EP1563716A2 (en) Computerized automated dynamic control system for single-track vehicles
JP2009273275A (ja) 車両の制御装置
WO2013005903A1 (ko) 인휠 모터 구동 전기자동차의 피치운동 제어장치
JP5736725B2 (ja) 車両の制駆動力制御装置
WO2012173354A2 (ko) 인휠 모터 구동 전기자동차의 롤 운동 제어장치
WO2012032870A1 (ja) 車体制振制御装置
JP2009273274A (ja) 車両の制御装置
JP2017077753A (ja) 車両制御装置
US20170028983A1 (en) Electric vehicle
CN105818723B (zh) 用于机动车座椅的多自由度并联机构减振平台
JP6299572B2 (ja) 車両の制御装置
JP2016214020A (ja) 四輪駆動車両の駆動力制御装置
JP2013014205A (ja) 車両の走行制御装置
CN117129234A (zh) 一种汽车底盘调教系统及汽车
JP2017077750A (ja) 車両制御装置
WO2012169783A2 (ko) 인휠 모터 구동 전기자동차의 승차감 향상장치
CN215042284U (zh) 主动减振装置、汽车座椅、汽车
US11760207B2 (en) Control device and method of electric vehicle for realizing virtual drive system sensibility
JP7102917B2 (ja) ブレーキ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868940

Country of ref document: EP

Kind code of ref document: A1