WO2013005766A1 - 伝送システム及び伝送方法 - Google Patents
伝送システム及び伝送方法 Download PDFInfo
- Publication number
- WO2013005766A1 WO2013005766A1 PCT/JP2012/067066 JP2012067066W WO2013005766A1 WO 2013005766 A1 WO2013005766 A1 WO 2013005766A1 JP 2012067066 W JP2012067066 W JP 2012067066W WO 2013005766 A1 WO2013005766 A1 WO 2013005766A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- error correction
- encoded data
- data
- transmission system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
- H04L2001/0096—Channel splitting in point-to-point links
Definitions
- error correction coding is performed on a digital signal from a client, and then distributed and transmitted over a transmission section composed of a plurality of paths, and output signals from the transmission section are aggregated again to perform error correction decoding.
- the present invention relates to a transmission system and a transmission method.
- the same signal is routed to multiple paths or multiple paths in order to improve tolerance or reliability against failure due to transmission device interface failure or optical fiber disconnection.
- the system is constructed so that the actual transfer service is not affected even if one of them fails.
- a 1 + 1 system, a 1: 1 system, an N: 1 system, or the like is actually used.
- a copy of a digital signal to be transmitted is created and always transmitted simultaneously with the original signal using a path or interface different from the original signal transmission path or the interface through which the original signal passes.
- digital signals can be transmitted without stopping between the transmitting and receiving ends by using signals from the interface and interface that do not fail. It is an ongoing technology. Until now, such a technique has been used in clients that require high reliability.
- the international standard ITU-T G As described in 709, by using an error correction code, a transmission system having high tolerance against a random error or the like generated in a transmission path section is realized. Thereby, high reliability and long distance of the transmission section are realized.
- the present invention has been made in the background as described above, and is capable of providing a transfer service with higher reliability even with less network resources, and capable of flexible reliability design according to the application. It is an object to provide a system and a transmission method.
- a transmission system and a transmission method perform error correction coding on a digital signal from a client and, at the same time, divide it into a plurality of paths and interfaces for each bit.
- the receiver side collects signals from multiple paths and interfaces, performs error correction decoding, and restores the original digital signal.
- the transmission system includes an error correction encoding unit that converts an input data sequence into an encoded data sequence that includes an error correction code and encoded data, and an error correction encoding unit.
- Data distribution means for dividing the encoded data string into predetermined processing units and combining it with a plurality of transmission paths, and data combining means for combining the signal strings from the respective transmission paths to restore the encoded data string Error correction decoding means for error correcting and decoding the encoded data string from the data combining means and outputting the input data string; redundancy in the error correction encoding means; and data distribution means Setting means in which the number of divisions of the encoded data sequence is set.
- the transmission method includes an error correction encoding unit that converts an input data sequence into an encoded data sequence including an error correction code and encoded data, and the encoded data sequence from the error correction encoding unit.
- a data dispersive unit that divides the data into predetermined processing units and couples to a plurality of transmission paths, a data combination means that combines the signal sequences from the respective transmission paths to restore the encoded data sequence, and the data combination
- a transmission control method for controlling a transmission system comprising: an error correction decoding unit that corrects and decodes the encoded data sequence from the unit and outputs the input data sequence, the reliability of the transmission system being improved Accordingly, the redundancy in the error correction encoding means and the number of divisions of the encoded data string in the data distribution means are set.
- the present invention can provide a transmission system and a transmission method that can perform a transfer service with higher reliability even with fewer network resources, and that can be flexibly designed according to use.
- the setting means has an availability ratio of the plurality of transmission paths, an error correction capability in the correction encoding means, and an availability ratio of the entire transmission system of the input data string given by the number of path dispersions.
- the error correction capability and the number of path dispersions are set in the correction encoding means so as to satisfy the required availability of the entire transmission system.
- the transmission rate that requires the availability rate of the plurality of transmission paths, the error correction capability in the correction encoding means, and the overall transmission rate of the input data string given by the number of path dispersions is required.
- the error correction capability and the number of path distributions in the correction encoding means are set so as to satisfy the availability rate of the entire system.
- the availability of the entire transmission system having a high value can be realized by appropriately selecting the number of consecutive bits and the number of path dispersions that can be error-corrected.
- the encoded series obtained by dividing time-series management data for specifying a temporal position before being coupled to the transmission path
- a time series management data input means added to each data string, and a delay in the transmission path of each of the divided encoded data strings with reference to the time series management data added by the time series management data input means
- a delay difference absorbing means for absorbing the difference and inputting the difference to the data combining means.
- the encoded data series obtained by dividing time-series management data for specifying a temporal position before being coupled to the transmission path
- the time-series management data added to each of the divided encoded data sequences that have been added to each data sequence and propagated through the transmission path, and each of the divided encoded data sequences in the transmission path It is characterized by absorbing the delay difference.
- the present invention can realize the normal operation of the subsequent error correction decoding by the delay difference absorption effect using the time series management data even when the length and delay amount of each transmission path section are different.
- the encoded data sequence that propagates through each of the transmission paths is a multiplexing unit that is a data sequence in which a data sequence based on the input data sequence from a plurality of clients is multiplexed, Separating means for separating the encoded data string propagating through each of the transmission paths for each data string based on the input data strings from a plurality of clients; Is further provided.
- the encoded data sequence propagating through each of the transmission paths is a data sequence in which data sequences based on the input data sequences from a plurality of clients are multiplexed, and each of the transmission paths The encoded data sequence propagating the data is separated for each data sequence based on the input data sequences from a plurality of clients.
- the present invention can transmit more client data.
- the transmission system according to the present invention further comprises control means for setting the redundancy in the error correction encoding means and the number of divisions of the encoded data string in the data distribution means in the setting means for each client.
- the transmission method according to the present invention is characterized in that the redundancy in the error correction encoding means and the number of divisions of the encoded data string in the data distribution means are set for each client.
- the present invention implements encoding having different error correction capabilities for each of signals from a plurality of clients, and sets the number of divisions of the encoded data sequence for each client, thereby providing different reliability for each client. Can be realized easily, and a plurality of different reliability can coexist in the transmission path, so that the flexibility of the network can be greatly improved.
- the transmission system according to the present invention is characterized in that the setting means sets a change in the number of divisions of the encoded data sequence for the data distribution means and the data combination means.
- the transmission method according to the present invention is characterized in that a change in the number of divisions of the encoded data string is set for the data distribution means and the data combination means.
- an operation method with a high system operation rate can be achieved while suppressing a decrease in the number of allowable failures.
- the transmission system according to the present invention is characterized in that the setting means transmits the encoded data string transmitted to a part of the transmission path by transferring it to a transmission path different from the transmission path.
- the transmission method according to the present invention is characterized in that the encoded data string transmitted to a part of the transmission path is transferred to a transmission path different from the transmission path.
- the transmission system according to the present invention is characterized in that the setting means sets a change in redundancy for the input data string to an error correction coding means and an error correction decoding means.
- the transmission method according to the present invention is characterized in that a change in redundancy for the input data string is set for the error correction encoding means and the error correction decoding means.
- the transmission system according to the present invention is characterized in that the control means sets or changes the division number of the encoded data string or the redundancy for the input data string based on a specified priority.
- the transmission method according to the present invention is characterized in that the number of divisions of the encoded data string or the redundancy for the input data string is set or changed based on a specified priority.
- the present invention can provide a transmission system and a transmission method that can perform a transfer service with higher reliability even with fewer network resources and that can be flexibly designed according to the application.
- the transmission system 301 includes an error correction encoding unit 10 that converts an input data sequence into an encoded data sequence including an error correction code and encoded data, and encoded data from the error correction encoding unit 10.
- a data distribution unit 20 that divides a sequence in a predetermined processing unit and couples it to a plurality of transmission paths 30; a data combination unit 40 that combines a signal sequence from each transmission path 30 to restore an encoded data sequence; Error correction decoding means 50 for correcting and decoding the encoded data string from the data combining means 40 and outputting the input data string; redundancy in the error correction encoding means 10 and encoding in the data distribution means 20
- Setting means 60 in which the number of divisions of the data string is set.
- FIG. 3 shows a basic configuration of the transmission system 301.
- the error correction encoding means 10 performs error correction encoding on the input data string.
- the data distribution unit 20 distributes the data to a plurality of transmission paths 30.
- the data combining unit 40 reassembles the data strings that have passed through the transmission path 30.
- the error correction decoding means 50 performs error correction decoding on this. This is the principle configuration.
- the error correction encoding unit 10 and the error correction decoding unit 50 of the transmission system 301 can use, for example, a convolutional code processed in bit units or a block code processed in byte units or word units as an error correction code.
- the data distribution means 20 divides the encoded data string in predetermined processing units.
- the “predetermined processing unit” means the number of bits greater than or equal to the number of bits that can be corrected if the error correction code is a convolutional code, and the code word length used in the error correction code if the error correction code is a block code ( Data string length + redundancy) or more data string length. More specifically, when the error correction code is a convolutional code, the “predetermined processing unit” is the number of bits equal to or greater than the error interval that can be corrected or the number of bits equal to or less than the burst error tolerance. The encoded data string is divided using this number of bits as a predetermined processing unit.
- the “predetermined processing unit” is a data string length that is greater than or equal to the codeword length or a data string length that is greater than or equal to the interleave length, and the data distribution means 20 The encoded data string is divided as a predetermined processing unit.
- FIG. 4 is a diagram for explaining a case where the error correction encoding unit 10 and the error correction decoding unit 50 process the error correction code in bit units.
- the transmission system 301 in FIG. 4 needs to make the number of divisions of the encoded data string equal to or larger than the error interval capable of error correction as in Condition 1 for complete failure relief.
- (Condition 1) Complete protection (complete error correction) condition Data dispersion number ⁇ error interval in which error correction is possible
- the data dispersion number is the number of transmission paths or the number of interfaces. The interval depends on the set error correction method.
- the transmission system 301 in FIG. 4 needs to make the division unit of the encoded data string equal to or less than the burst error tolerance as in Condition 2 for complete failure relief.
- the error correction code used in the error correction coding means 10 and the error correction decoding means 50 is a convolutional code
- the correctable error interval is 10
- FIG. 12 to 14 are diagrams for explaining the operation of the transmission system 301.
- the input data string to be input is set as ⁇ y1, y2,.
- redundant bits are added according to the used error correction code and converted into a coded bit string ⁇ x1, x2,.
- the length of the encoded data string is increased according to the amount of redundant bits added.
- the encoded data string subjected to the error correction encoding is input to the next data distribution means 20.
- the data distribution means 20 has a plurality of output ports corresponding to the number of subsequent transmission paths 30.
- the input encoded data string is distributed and output to different output ports for each bit.
- the number of output ports of the data distribution means 20 is ten.
- the state of the output encoded data string is shown in the lower part of the figure. As shown here, since the number of ports is 10, the encoded bit string of ⁇ x1, x11, x21,... ⁇ Is distributed to the transmission path 30-1 in a form that circulates every 10 bits.
- the encoded bit strings x2, x12, x22,... are distributed to the transmission path 30-2.
- the encoded bit string ⁇ xn, x1n, x2n,... ⁇ Is distributed for the transmission path 30-n.
- the number of divisions of the encoded data sequence is set by the number of transmission paths 30, but the encoded data sequence may be divided by the number of divisions set in the setting means 60.
- Each encoded bit string output from the section of the transmission path 30 is input to the data combining means 40.
- the number of input ports of the data combination means 40 is equal to the number of transmission paths and is ten.
- the encoded data strings distributed in 10 paths are combined again, and the encoded bit strings in the original order, that is, ⁇ x1, x2,. Is restored as follows.
- FIG. 13 is a diagram for explaining the operation of the transmission system 301 in more detail.
- a line disconnection accident occurs in the transmission path 30-5.
- the encoded bit string that has passed through the transmission path 30-5 is lost.
- ⁇ x5, x15, x25,... ⁇ Will be lost.
- the subsequent error correction decoding means 50 finds and corrects the error.
- the client is not affected.
- the transmission system 301 can set the error interval or continuous error correction in the setting means 60 as the error correction redundancy.
- the error correction encoding unit 10 and the error correction decoding unit 50 perform error correction according to the error correction redundancy set in the setting unit 60.
- the data distribution unit 20 divides the encoded data string by a number equal to or greater than the error interval set in the setting unit 60.
- the path distribution is The available rate ⁇ of the entire transmission system of the input data string to be transferred.
- the transmission system in which the availability ratio of each of the plurality of transmission paths 30 is ⁇ when the availability ratio of the entire transmission system required is X for a certain input data string, the entire transmission system obtained by the above formula The required reliability can be realized by selecting the number of consecutive bits ⁇ and the number of path distributions n that can be corrected so that the availability rate of X exceeds or is close to X.
- the availability rate ⁇ of the entire transmission system of the input data string can be calculated.
- a high ⁇ can be obtained by preferentially selecting a high-availability transmission path among a plurality of transmission paths.
- FIG. 34 is a calculation example when the horizontal axis is the number of path dispersions n, the vertical axis is the availability of the entire transmission system, and the number of consecutive bits / number of blocks that can be corrected is a parameter.
- high value transmission can be achieved by selecting the number of consecutive bits ⁇ and the number of path dispersions n that can be corrected appropriately.
- the availability rate of the entire system can be realized.
- the transmission system 301 can perform a transfer service with higher reliability even with fewer network resources, and is flexible depending on the application. It is possible to provide a transmission system and a transmission method capable of reliable design.
- Path 1 A1, B1, C1, A2 Path 2: A2, B2, C2, A3 Path 3: A3, B3, C3, A4 Path 4: A4, B4, C4, A1
- A has the same encoding redundancy and number of divisions as B and C, but the redundancy is doubled.
- the use of “multiplicity” has the same effect as an encoding scheme with variable redundancy. Furthermore, the use of “multiplicity” also has an effect of quantifying the effect of route allocation. This multiplicity may also be applied when the error rate is different for each path.
- Path 1 A1, B1, C1 Path 2: A2, B2, C2 Path 3: A3, B3, C3 Path 4: A4, B4, C4, A4, B4, C4
- Path 1 A1, B1, C1 Path 2: A2, B2, C2 Path 3: A3, B3, C3 Path 4: A4, B4, C4, A4, B4, C4
- the multiplicity is set approximately at the inverse ratio of the error rate according to the error rate for each path.
- a similar effect can be obtained by assigning the number of divisions to each path so that the inverse ratio of the error rate is almost equal to the error rate for each path even if the multiplicity of all paths is 1. For example, when only the path 4 has an error rate twice that of the other paths and the number of divisions is 5, the following is assumed. Path 1: A1, B1, C1 Path 2: A2, B2, C2 Path 3: A3, B3, C3 Path 4: A4, B4, C4, A5, B5, C5 In this way, it is possible to cope with a case where the error rate is different for each path.
- the transmission system 302 multiplexes the encoded data sequence that propagates through each of the transmission paths 30 into the transmission system 301 as a data sequence in which data sequences based on input data sequences from a plurality of clients are multiplexed.
- a separation unit 80 for separating the encoded data sequence propagating through each of the transmission paths 30 for each data sequence based on input data sequences from a plurality of clients.
- the transmission system 302 will be described in comparison with the prior art.
- input data strings from five clients are transmitted through ten transmission paths 30.
- An implementation example according to the prior art is shown in FIG.
- two of each of the ten paths are paired to form a 1 + 1 configuration, and a single failure resistance is achieved.
- the bandwidth of one path is 1 Gbps
- a bandwidth of 5 Gbps can be used as a whole.
- this conventional technique can achieve resistance against a single failure for five clients in the 1 Gbps band.
- the configuration of the transmission system 302 is shown in FIG. In this case, signals from five clients are bundled by the multiplexing means 70, subjected to error correction coding processing, and then distributed to a plurality of transmission paths 30 by the data distribution means 20.
- the error interval that can be corrected by the error correction code used by the error correction coding unit 10 and the error correction decoding unit 50 is set to 10, and continuous errors up to 3 bits can be corrected.
- the redundancy used at this time varies depending on the error correction code to be used. For example, a convolutional code having a coding rate of 2/3, a memory number of 6, and a constraint length of 4 can be used (for example, Non-Patent Document 2). See).
- the transmission system 302 can transfer a wider band with higher reliability even in the same network resource.
- FIG. 16 is a graph showing the contents of FIG. The transmission system 302 can realize a large band with a small connection loss rate as compared with the prior art.
- FIG. 10 shows a transmission system 302 ′ and FIG. 11 shows a transmission system 302 ′′.
- the transmission system 302 ′ uses the error correction coding means 10 to input data strings from a plurality of clients.
- a plurality of encoded data strings are multiplexed by the multiplexing means 70, and the encoded data strings multiplexed by the data distribution means 20 are divided and input to the plurality of transmission paths 30.
- the transmission system 302 ′ aggregates the outputs from the sections of the transmission path 30 by the data combining unit 40, separates the encoded data sequence multiplexed by the separating unit 80, and separates it by the error correction decoding unit 50.
- the plurality of encoded data strings are restored to the original client input data strings.
- the multiplexing means 70 time-division-multiplexes the encoded data string for each client, and the data distribution means 20 distributes it to different paths according to the timing.
- the multiplexing means 70 multiplexes the identification information for each client in the encoded data string, and the data distribution means 20 distributes them to different paths according to the identification information.
- the error correction encoding means 10 sets each of input data strings from a plurality of clients as encoded data strings, and the data distribution means 20 converts each of the encoded data strings into a plurality of transmission paths 30. Then, the multiplexing means 70 multiplexes the encoded data sequences of different clients for each transmission path 30 and outputs them to the respective transmission paths 30.
- the transmission system 302 ′′ separates each encoded data sequence output from the sections of the plurality of transmission paths 30 by the separating unit 80 for each client, and the data combining unit 40 converts the encoded data sequence for each client.
- the error correction decoding means 50 performs error correction decoding on the encoded data strings output from the plurality of data combining means 40, and restores the original client input data strings.
- the data distribution means 20 and the data combination means 40 are independent for each client, and the multiplexing means 70 and the separation means 80 are independent for each transmission path 30. High tolerance can be realized against the failure of the means 40 and the failure of the multiplexing means 70 and the separating means 80.
- the transmission system 302, the transmission system 302 ′, and the transmission system 302 ′′ have the same reliability with less resources than the conventional method in which copies of the original signal are distributed and transmitted over a plurality of paths. Higher reliability can be easily realized with fewer resources, contributing to the economic realization of highly reliable services.
- FIG. 9 shows a transmission system 302 ′′ ′′.
- different redundancy and reliability are realized for each group of clients having a certain group by performing different error correction coding for each group of clients, not for a plurality of clients. be able to.
- input data strings from a plurality of clients are collectively input to the multiplexing means 70 with the same reliability request.
- the multiplexed signal output from the multiplexing means 70 is input to the error correction encoding means 10.
- the error correction coding means 10 sets the redundancy degree according to the required reliability.
- the error correction-coded data sequence is discretely arranged in a plurality of path sections as in the previous embodiment. Signals from a plurality of paths are collected by the data combining means 40 and input to the error correction decoding means 50 for each group. Thereafter, the original client signal is restored in the separating means 80. In this way, a transmission system can be efficiently configured when there are a plurality of clients having the same reliability request.
- the transmission system 303 uses the time series management data for specifying the temporal position before being coupled to the transmission path 30 for each of the encoded data strings divided by the data distribution unit 20 with respect to the transmission system 302. Is added to each of the divided encoded data strings, and the time series management data added by the time series management data input means 90 is referred to, and each of the divided encoded data strings is transmitted.
- Delay difference absorbing means 100 that absorbs the delay difference in the path 30 and inputs the difference to the data combining means 40 is further provided.
- FIG. 7 is a diagram for explaining the transmission system 303.
- the operation of the transmission system 303 is similar to the operation of the transmission system 301, but the transmission system 303 includes the time series management data input means 90 and the delay difference absorbing means 100, and absorbs the delay difference between the distributed signal sequences.
- the data string before the data distribution unit 20 can be accurately restored at the output of the data combination unit 40.
- the transmission system 303 operates normally in the error correction decoding unit 50 in the subsequent stage due to the delay difference absorption effect using the time series management data even when the lengths and delay amounts of the sections of the transmission path 30 are different. Can be realized.
- the transmission system 304 is configured to set, for each client, the redundancy in the error correction encoding unit 10 and the number of divisions of the encoded data string in the data distribution unit 20 from the transmission system 301 to the transmission system 303. 60 is further provided.
- FIG. 17 is a diagram for explaining the transmission system 304.
- the transmission system 304 sets, in the setting unit 60, the type of error correction code used according to the desired reliability by the control unit 110, or the necessary number of transmission paths. For example, when tolerance against triple faults is required, select an error correction code that can correct up to 3-bit continuous errors, and set the number of transmission path sections so that the selected error correction code is equal to or greater than the correctable error interval. To do.
- the transmission system 304 not only has high tolerance against failures in the section of the transmission path 30 but also selects error correction codes independently for digital signals from a plurality of clients, and sets the number of distributions to the transmission path. By setting, the reliability can be set independently for each client.
- the “predetermined processing unit” in which the data distribution means 20 distributes the data string is the length of one cycle of the divided data string, that is, all the transmission paths 30 when sequentially distributed to each transmission path 30. Is the length of one round.
- the predetermined processing unit is equal to or longer than the codeword length of the error correction code used by the error correction coding means 10 and the error correction decoding means 50, or longer than the interleave length.
- the transmission system 301 can correct an error correction code used by the error correction encoding unit 10 and the error correction decoding unit 50 when an error occurs in an arbitrary transmission path 30. Appears only once per unit and can be completely corrected.
- the present embodiment is another example when the transmission system 301 described in the first embodiment uses a convolutional code as an error correction code.
- the “predetermined processing unit” distributed by the data distribution unit 20 is a length that makes one round of the entire transmission path 30 when the bit string is sequentially distributed to each transmission path 30.
- the predetermined processing unit is smaller than the burst error tolerance of the error correction code used in the error correction coding means 10 and the error correction decoding means 50.
- the transmission system 301 can cause a burst of error correction codes used by the error correction encoding means 10 and the error correction decoding means 50 when an error occurs in a certain transmission path 30. It is within the error tolerance and can be completely corrected.
- Embodiment 1, Embodiment 5 and Embodiment 6 have described the predetermined processing units when the transmission system 301 uses a convolutional code as an error correction code and when a block code is used.
- the control unit 110 sets whether to use a convolutional code or a block code as an error correction code for each client, and sets a predetermined processing unit for each client accordingly. .
- FIG. 18 is a diagram for explaining the transmission system 307.
- the setting unit 60 of the transmission system 307 includes a division number changing unit 61 that changes the number of divisions of the encoded data string.
- FIG. 19 and 20 are diagrams for explaining the application effect of the division number changing means 61.
- the setting unit 60 includes a division number changing unit that changes the number of divisions of the encoded data string.
- FIG. 19 shows the relationship between the number of divisions, transmission bandwidth, and allowable number of failures every time a transmission line failure occurs when the number of divisions is fixed.
- the allowable number of failures represents the maximum number of transmission paths that can prevent a system disconnection by restoring information using redundancy even if a failure occurs.
- an error correction code to be used an erasure correction Reed-Solomon code having a code length of 6 and a data length of 4 is shown as an example.
- this encoded data string When this encoded data string is distributed and transmitted on different transmission paths for each symbol constituting the code, it can be correctly decoded for up to two transmission path failures.
- the allowable failure number decreases every time a transmission line failure occurs. If a transmission line failure occurs when the allowable failure number is 0, the system is disconnected. The time from the occurrence of the first transmission line failure to the system disconnection is a failure recovery possible period. If the failure can be recovered during this period, the system disconnection can be prevented. In the case of FIG. 19, this corresponds to the time until three transmission lines fail.
- the division number changing means 61 is unnecessary. Further, since it is not necessary to change the setting of the transmission system until the system is disconnected, the maintenance burden can be reduced.
- FIG. 20 shows the relationship between the number of divisions, the transmission band, and the allowable number of failures every time a transmission line failure occurs when the operation for reducing the number of divisions is performed in the same environment as in FIG. In this case, the number of divisions is reduced when a transmission line failure occurs, and data that should originally be transmitted to the transmission line in which the transmission line failure has occurred is distributed to other transmission lines.
- FIG. 20 shows the relationship between the number of divisions, the transmission band, and the allowable number of failures every time a transmission line failure occurs when the operation for reducing the number of divisions is performed in the same environment as in FIG. In this case, the number of divisions is reduced when a transmission line failure occurs, and data that should originally be transmitted to the transmission line in which the transmission line failure has occurred is distributed to other transmission lines.
- the failure recovery possible period is the time until the four transmission lines fail. This extension of the failure recovery possible period is effective as a measure for ensuring the minimum connectivity in the case where the maintenance burden is extremely increased due to, for example, the occurrence of a disaster.
- the number of divisions can be changed in any period as long as it is within the period where failure can be recovered, without depending on the timing of occurrence of the failure.
- not only the number of divisions as shown in FIG. 20 can be reduced but also increased.
- the number of divisions is temporarily reduced when a failure occurs, the number of divisions of the transmission system is restored by transmission line restoration, or the reliability of the transmission system is improved during normal operation when no transmission line failure occurs In some cases, the number of divisions is increased in order to achieve the above.
- the change of the number of divisions can be realized by using a data distribution unit that can dynamically change the number of divisions or by preparing a plurality of data distribution units having different numbers of divisions and switching them using a selector.
- the eighth embodiment is characterized in that, in the setting means 60 of the transmission system 301 to the transmission system 303, the encoded data string transmitted using the transmission path is transferred to an alternative transmission path.
- FIG. 22 shows an application example of this embodiment triggered by a path failure. After the transmission line that has transferred the encoded data string ⁇ a6, b6, c6 ⁇ fails, the data string is transferred to the alternative transmission line. After that, even if the transmission line that has transferred the encoded data string ⁇ a5, b5, c5 ⁇ fails, it is transferred to the alternative transmission line in the same manner.
- this method has an advantage that the system operation can be maintained without rearranging the encoded data sequence transferred through the normal transmission path as in the seventh embodiment.
- the alternative transmission path may be prepared in advance before the transmission line failure, or the search for the alternative transmission line may be performed in response to the transmission line failure. If no alternative transmission path is found, a new transmission path can be newly established, or the seventh embodiment can be used.
- FIG. 23 shows an application example of this embodiment for the purpose of load distribution from the transmission system 301 to the transmission system 303. For transmission lines 1 to 5, an encoded data string having a code length of 5 bits and capable of erasure correction of 1 bit is transmitted.
- the transmission line 1 is also used for other transmissions, the traffic capacity is large and the load is high, while the load on the transmission line 6 is low.
- load distribution can be realized by cutting transmission to the transmission line 1 and switching to the transmission line 6. In this example, even if one transmission line is cut, it can be corrected correctly, so that data can be transmitted correctly even if a momentary interruption occurs when switching from transmission line 1 to 6.
- an encoded data sequence is transferred using optical paths set in a plurality of transmission paths.
- the form to do is conceivable.
- the accommodation path and wavelength of each optical path can be changed based on the network status, and wavelength resources in the optical path network can be effectively used.
- a plurality of temporary disconnections are allowed, so that high operability and implementation effects can be obtained.
- each node is connected by a fiber having a wavelength number of 3
- Transmission using the transmission system of the present invention is performed between AC and BC.
- Each connection between A and C and B and C has three transmission lines, and it is assumed that data can be correctly corrected for disconnection of one of the transmission lines.
- Each transmission path is assigned an individual path and wavelength.
- the number of wavelengths used between A and C and B and C has reached the upper limit, so the path arrangement cannot be changed from the state of (a). .
- FIG. 21 is a diagram for explaining the configuration of the transmission system 309.
- the setting unit 60 of the transmission system 309 includes a redundancy degree changing unit 62.
- the setting unit 60 includes a redundancy level changing unit that changes the redundancy level set for the input data string.
- the error correction encoding means 10 can be set by the setting means 60 in addition to the data distribution means as shown in FIG. 25 and FIG.
- the traffic capacity can be accommodated in each transmission line. May exceed capacity.
- the seventh embodiment there is a possibility that the restriction due to the transfer capacity becomes a bottleneck first even if the allowable number of failures is sufficient.
- transmission may be performed without causing data overflow by reducing the redundancy included in the data string.
- the redundancy can be changed within a range that satisfies the following conditions. (Transfer capacity of each transmission path) ⁇ (Maximum transfer capacity of each transmission path after redundancy change)
- the setting unit 60 includes a division number changing unit 61. It is assumed that a Reed-Solomon erasure correction code that can correct erasure of up to 2 bits out of 6 bits is used.
- the transfer capacity in the transmission path is 4 bits per unit time.
- FIG. 28 shows an example in which three path failures have occurred in the transmission system 309 in which FIG. 27 is in a normal state.
- the number of transmission lines to be transferred using the division number changing means is limited to three. In this case, the traffic capacity for the three transmission lines is 6 bits per unit time and exceeds the transfer capacity in the transmission line, so that data overflow occurs and normal transmission cannot be performed.
- the redundancy level changing unit 62 reduces the redundancy level set by the error correction encoding unit 10.
- the traffic capacity in each transmission path is reduced to 4 as shown in FIG. In this way, it is possible to perform transmission without causing data overflow by appropriately changing the redundancy even for the transfer capacity limit.
- a flexible transmission system can be operated.
- the change of the redundancy is realized by using the error correction encoding means 10 capable of dynamically changing the redundancy, or by preparing a plurality of error correction encoding means 10 having different redundancy and switching them using a selector.
- FIG. 30 is a diagram illustrating the configuration of the transmission system 310.
- the transmission system 310 includes priority information management means 111 that manages the operation based on the priority defined in the control means 110.
- the priority is set for each client in two stages of high priority and low priority.
- the client represents a unit for identifying demand such as a port ID and a VLAN ID connected to the transmission system.
- redundancy changing means 62 shown in the ninth embodiment.
- the redundancy is changed for each client according to the information on the priority of the client described in the priority information management unit 111.
- control means can be implemented by using a policing function in the device when the packet communication device is included in the transmission system, for example. If the transfer capacity restriction occurs even if the redundancy of the low priority client is lowered, the control means thins out the data from the low priority client in cooperation with the packet communication device, so that the higher priority client System operation rate can be maintained.
- this embodiment is applicable even when the redundancy level changing unit 62 is not provided and only the priority information management unit 111 is provided. In this case, only the effect of temporarily thinning out low priority data in cooperation with the packet communication apparatus is obtained.
- FIG. 32 shows an example in which two clients having different priorities connect to a transmission system having a correction capability for a single transmission line failure.
- the input data string of the client 1 with high priority is encoded data string ⁇ a1, a2, a3, a4, a5 ⁇ by the error correction coding means, while the input data string of the client 2 with low priority is encoded
- the data is transmitted as a digitized data string ⁇ b1, b2, b3, b4, b5 ⁇ .
- FIG. 32 shows an example in which two transmission line failures occur. In this case, since the number of permissible transmission line failures is exceeded, neither of the clients 1 and 2 can normally transmit data in a normal case where priority is not taken into consideration. However, according to the present embodiment, it is possible to restore the encoded data sequence of the client 1 having a high priority normally by allocating the data sequence having a high priority to a normal transmission path in the event of a failure. become.
- the transmission path 30 in all the embodiments described above may be an optical transmission path using an optical fiber, or may propagate light in free space.
- the present invention can also be applied to a wireless communication transmission line using radio waves and a metallic transmission line such as a copper wire.
- ITU-T G As a means for multiplexing and separating signals from a plurality of clients, ITU-T G. A method of assigning an ODU path or the like using the time division multiplexing technique recommended in 709 to each client at the time of multiplexing and separating the same in the separating means can be used.
- the data distribution means 20 may be distributed in units of bytes or in units of words as shown in FIGS. 5 and 6 in addition to the method of distributing for each bit of FIG. 4 as a predetermined processing unit.
- the transmission system 301 needs to make the length of one cycle of the distributed data as in Condition 3 equal to or larger than the codeword length or interleave length of the error correction method for complete failure relief. . (Condition 3) Complete protection (complete error correction) conditions Length of one period of distributed data ⁇ codeword length or interleave length
- “Correctable error interval” The performance of the error correcting code to be used, whether it is a bit or a byte, is an index of how often an error can be corrected until an error occurs. “Length of one cycle of data to be distributed”: For example, in the case of distributing every 10 bits in 10 paths, the length is 10 bits. “Code word length used in error correction code”: the length of data after error correction coding of the data. Specifically, it is the length of data length + redundancy. “Interleave length”: the length of the data buffer prepared to ensure the randomness of the data. The larger the value, the higher the randomness.
- “Division unit of data to be distributed” a predetermined processing unit, which is 1 bit for a bit unit and 8 bits for a byte unit. “Burst error tolerance”: This is the number of bits that can be remedied when consecutive errors occur. “Multiple failure multiplicity”: a double failure means a situation in which two failures occur simultaneously.
- “Convolutional code” an error correction code generated by a logic circuit composed of a shift register and an exclusive OR circuit, which is a code obtained by sequentially convolving an input signal sequence. “Number of memories of convolutional code”: the number of stages of the shift register. “Convolutional code constraint length”: the number of memories + 1. “Convolutional code rate”: Ratio of (number of input bits / number of output bits) when a convolutional code is generated.
- Error correction coding means 20: Data distribution means 30, 30-1, 30-2, ...: Transmission path 40: Data combining means 50: Error correction decoding means 60: Setting means 61: Division number changing means 62: Redundancy changing means 70: Multiplexing means 80: Separating means 90: Time series management data input means 100: Delay difference absorbing means 111: Priority information management means 110: Control means 301 to 304, 307, 309, 310: Transmission system
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Communication Control (AREA)
Abstract
Description
をさらに備えることを特徴とする。
実施形態1の伝送システム301は、入力データ列を、誤り訂正符号及び符号化したデータからなる符号化データ列に変換する誤り訂正符号化手段10と、誤り訂正符号化手段10からの符号化データ列を所定の処理単位で分割して複数の伝送経路30に結合するデータ分散手段20と、それぞれの伝送経路30からの信号列を結合して符号化データ列を復元するデータ結合手段40と、データ結合手段40からの符号化データ列を誤り訂正及び復号して入力データ列を出力する誤り訂正復号化手段50と、誤り訂正符号化手段10での冗長度及びデータ分散手段20での符号化データ列の分割数が設定された設定手段60と、を備える。
(条件1)
完全なプロテクション(完全な誤り訂正)条件
データ分散数≧誤り訂正可能なエラーインターバル
ここでデータ分散数は伝送経路数又はインタフェース数である。また、インターバルは設定された誤り訂正方式に依存する。
また、図4の伝送システム301は、完全な故障救済のために条件2のように符号化データ列の分割単位をバーストエラー耐力以下とする必要がある。
(条件2)
完全なプロテクション(完全な誤り訂正)条件
分散化する分割単位≦誤り訂正方式のバーストエラー耐力
複数の伝送経路30のそれぞれの可用率がγである伝送システムにおいて、ある入力データ列について、要求される伝送システム全体の可用率がXであった場合、上記の計算式により求めた伝送システム全体の可用率がXを超える、あるいはその近傍となるように、誤り訂正可能な連続ビット数β及び経路分散数nを選択することで、要求される信頼度を実現できる。なお、伝送経路30のそれぞれに対して可用率γが異なる値をとる場合でも、前記入力データ列の伝送システム全体の可用率σを算出可能である。この場合は、例えば複数の伝送経路のうち高い可用率の伝送経路を優先して選択することにより、高いσを得ることができる。
経路1:A1、B1、C1
経路2:A2、B2、C2
経路3:A3、B3、C3
経路4:A4、B4、C4
ここで、A1~A4の冗長度を向上するために多重度を向上する。
経路1:A1、B1、C1、A2
経路2:A2、B2、C2、A3
経路3:A3、B3、C3、A4
経路4:A4、B4、C4、A1
このようにすることでAは、BとCと同一の符号化冗長度と分割数であるが、その冗長度は倍となる。
経路1:A1、B1、C1
経路2:A2、B2、C2
経路3:A3、B3、C3
経路4:A4、B4、C4、A4、B4、C4
このようにして、経路毎に誤り率が異なる場合も対応できる。以上述べたように、誤り率に応じた経路選択冗長度設計が出来る効果がある。
例えば経路4のみが誤り率が他の経路の倍であり、分割数が5である場合以下とする。
経路1:A1、B1、C1
経路2:A2、B2、C2
経路3:A3、B3、C3
経路4:A4、B4、C4、A5、B5、C5
このようにして、経路毎に誤り率が異なる場合も対応できる効果がある。
実施形態2の伝送システム302は、伝送システム301に、伝送経路30のそれぞれを伝搬する符号化データ列を、複数のクライアントからの入力データ列に基づくデータ列が多重化されたデータ列とする多重化手段70と、伝送経路30のそれぞれを伝搬する符号化データ列を、複数のクライアントからの入力データ列に基づくデータ列毎に分離する分離手段80と、をさらに備える。
(1)多重化手段70が符号化データ列をクライアント毎に時分割多重化し、データ分散手段20がそのタイミングに合わせて異なる方路へ振り分ける。
(2)多重化手段70が符号化データ列にクライアント毎の識別情報を入れて多重化し、データ分散化手段20がその識別情報に従って異なる方路へ振り分ける。
実施形態3の伝送システム303は、伝送システム302に対して、データ分散手段20で分割された符号化データ列それぞれについて、伝送経路30に結合される前の時間的位置を特定する時系列管理データを分割された符号化データ列それぞれに付加する時系列管理データ入力手段90と、時系列管理データ入力手段90で付加された時系列管理データを参照し、分割された符号化データ列それぞれの伝送経路30での遅延差を吸収し、データ結合手段40に入力する遅延差吸収手段100と、をさらに備える。
実施形態4の伝送システム304は、伝送システム301から伝送システム303に対して、誤り訂正符号化手段10での冗長度及びデータ分散手段20での符号化データ列の分割数をクライアント毎に設定手段60に設定する制御手段110をさらに備える。
本実施形態は、実施形態1で説明した伝送システム301が誤り訂正符号としてブロック符号を使用する場合の一例である。本実施形態では、データ分散手段20がデータ列を分散化する「所定の処理単位」は、分割したデータ列の1周期の長さ、すなわち各伝送経路30に順次分散する際の全伝送経路30を1周する長さである。そして、所定の処理単位は、誤り訂正符号化手段10及び誤り訂正復号化手段50が用いる誤り訂正符号の符号語長以上、あるいはインターリーブ長以上である。
本実施形態は、実施形態1で説明した伝送システム301が誤り訂正符号として畳み込み符号を使用する場合の他の例である。本実施形態では、データ分散手段20において分散化する「所定の処理単位」は、ビット列を各伝送経路30に順次分散する際の全伝送経路30を1周する長さである。そして、所定の処理単位は、誤り訂正符号化手段10及び誤り訂正復号化手段50において用いる誤り訂正符号のバーストエラー耐力より小さい。
実施形態7の伝送システムは、伝送システム301から伝送システム303において、設定手段は、符号化データ列の分割数を変更する。図18は、伝送システム307を説明する図である。伝送システム307の設定手段60は、符号化データ列の分割数を変更する分割数変更手段61を備える。
実施形態8は、伝送システム301から伝送システム303の設定手段60において、当該伝送路を用いて伝送していた符号化データ列を代替の伝送路に振り替えることを特徴とする。実施用途として、伝送路の故障が発生した場合における代替伝送路の設定と、伝送システムの負荷分散や資源利用効率向上、の二通りが挙げられる。図22に経路故障を契機とした本実施形態の適用例を示す。{a6、b6、c6}の符号化データ列を転送していた伝送路が故障した後、代替伝送路に当該データ列を転送する。その後、{a5、b5、c5}の符号化データ列を転送していた伝送路が故障した場合も、同様にして代替伝送路に振り替えて転送する。この方法は、代替伝送路が存在する限り、実施形態7のように正常な伝送路で転送する符号化データ列を組み替えることなく、システム稼働を維持することができるというメリットがある。なお、代替伝送路は伝送路故障前に予め用意しても、伝送路故障を契機に代替伝送路の探索を実施しても良い。代替伝送路が見つからなかった場合は、新たに伝送路を新設するか、あるいは実施形態7を利用することができる。また、図23に伝送システム301から伝送システム303の負荷分散を目的とした本実施形態の適用例を示す。伝送路1から5について、符号長が5ビットであり、1ビットの消失訂正が可能な符号化データ列が伝送されている。ここで、伝送路1は他の伝送にも利用されているためトラフィック容量が多く負荷が高い一方で、伝送路6の負荷が低いものとする。この場合、伝送路1への伝送を切断し、伝送路6に切り替えることにより、負荷分散が実現できる。この例では、1本の伝送路が切断されても正しく訂正可能であるため、伝送路1から6への切り替えの際に瞬断が発生しても正しくデータを伝送することができる。
実施形態9の伝送システム309は、伝送システム301から伝送システム303において、設定手段60が、入力データ列に対して設定する冗長度を変更する。図21は、伝送システム309の構成を説明する図である。伝送システム309の設定手段60は、冗長度変更手段62を備える。
(各伝送路の転送容量)≧(冗長度変更後における各伝送路の転送容量の最大値)
実施形態10の伝送システム310は、優先度に基づいた運用を実施する。図30は、伝送システム310の構成を説明する図である。伝送システム310は、制御手段110に規定された優先度に基づいて運用を管理する優先度情報管理手段111を備える。
1)優先度の低いクライアントから入力されるデータの冗長度を下げる
2)優先度の低いクライアントから入力されるデータの一部を間引く
3)優先度の高いクライアントから入力されるデータの冗長度を下げる
以上全ての実施形態における伝送経路30は、光ファイバを用いた光伝送路であっても良いし、光を自由空間に伝搬させるものでも良い。さらには電波を用いた無線通信伝送路や、銅線等のメタリック伝送路でも適用可能である。
(条件3)
完全なプロテクション(完全な誤り訂正)条件
分散化したデータの1周期の長さ≧符号語長あるいはインターリーブ長
本明細書で使用している用語について説明する。
「訂正可能エラーインターバル」:ビットであれ、バイトであれ、用いる誤り訂正符号の性能できまるもので、どれくらいの頻度でエラーが起こった場合まで訂正可能かという指標である。
「分散化するデータの1周期の長さ」:例えば、10経路に1ビット毎に分散化する場合には、当該長さは10ビットである。
「誤り訂正符号において用いる符号語長」:データを誤り訂正符号化した後のデータの長さである。具体的にはデータ長+冗長度の長さである。
「インターリーブ長」:データのランダム性を確保するために用意するデータバッファの長さである。大きいほどランダム性が高まる。
「分散化するデータの分割単位」:所定の処理単位であり、ビット単位なら1ビット、バイト単位なら8ビット毎である。
「バーストエラー耐力」:何ビットまで連続したエラーが発生した場合に救済できるかの数である。
「多重故障の多重度」:2重故障なら故障が2つ同時に発生した状況を意味する。
「畳み込み符号」:シフトレジスタと排他的論理和回路で構成される論理回路により生成される誤り訂正符号で、入力信号列を順次畳みこみ処理した符号である。
「畳み込み符号のメモリ数」:上記シフトレジスタの段数である。
「畳み込み符号の拘束長」:上記メモリ数+1である。
「畳み込み符号の符号化率」:畳みこみ符号を生成したときの(入力ビット数/出力ビット数)の比である。
20:データ分散手段
30、30-1、30-2、・・・:伝送経路
40:データ結合手段
50:誤り訂正復号化手段
60:設定手段
61:分割数変更手段
62:冗長度変更手段
70:多重化手段
80:分離手段
90:時系列管理データ入力手段
100:遅延差吸収手段
111:優先度情報管理手段
110:制御手段
301~304、307、309、310:伝送システム
Claims (18)
- 入力データ列を、誤り訂正符号及び符号化したデータからなる符号化データ列に変換する誤り訂正符号化手段と、
前記誤り訂正符号化手段からの前記符号化データ列を所定の処理単位で分割して複数の伝送経路に結合するデータ分散手段と、
それぞれの前記伝送経路からの信号列を結合して前記符号化データ列を復元するデータ結合手段と、
前記データ結合手段からの前記符号化データ列を誤り訂正及び復号して前記入力データ列を出力する誤り訂正復号化手段と、
前記誤り訂正符号化手段での冗長度及び前記データ分散手段での前記符号化データ列の分割数が設定された設定手段と、
を備える伝送システム。 - 前記設定手段は、前記複数の伝送経路の可用率、前記訂正符号化手段での誤り訂正能力及び経路分散数より与えられる入力データ列の伝送システム全体の可用率が、必要となる伝送システム全体の可用率を満たすよう、前記訂正符号化手段での誤り訂正能力及び経路分散数を設定することを特徴とする請求項1に記載の伝送システム。
- 前記データ分散手段で分割された前記符号化データ列それぞれについて、前記伝送経路に結合される前の時間的位置を特定する時系列管理データを分割された前記符号化データ列それぞれに付加する時系列管理データ入力手段と、
前記時系列管理データ入力手段で付加された前記時系列管理データを参照し、分割された前記符号化データ列それぞれの前記伝送経路での遅延差を吸収し、前記データ結合手段に入力する遅延差吸収手段と、
をさらに備えることを特徴とする請求項1又は2に記載の伝送システム。 - 前記伝送経路のそれぞれを伝搬する前記符号化データ列を、複数のクライアントからの前記入力データ列に基づくデータ列が多重化されたデータ列とする多重化手段と、
前記伝送経路のそれぞれを伝搬する前記符号化データ列を、複数のクライアントからの前記入力データ列に基づくデータ列毎に分離する分離手段と、
をさらに備えることを特徴とする請求項1から3のいずれかに記載の伝送システム。 - 前記誤り訂正符号化手段での冗長度及び前記データ分散手段での前記符号化データ列の分割数をクライアント毎に前記設定手段に設定する制御手段を、さらに備えることを特徴とする請求項4に記載の伝送システム。
- 前記設定手段は、前記符号化データ列の分割数の変更を前記データ分散手段および前記データ結合手段に対して設定することを特徴とする請求項1から5のいずれかに記載の伝送システム。
- 前記設定手段は、一部伝送路に伝送されている前記符号化データ列を、当該伝送路とは異なる伝送路に振り替えて伝送することを特徴とする請求項1から6のいずれかに記載の伝送システム。
- 前記設定手段は、前記入力データ列に対する冗長度の変更を誤り訂正符号化手段および誤り訂正復号化手段に対して設定することを特徴とする請求項1から7のいずれかに記載の伝送システム。
- 前記制御手段は、規定された優先度に基づいて前記符号化データ列の分割数または前記入力データ列に対する冗長度を設定または変更することを特徴とする請求項5から8のいずれかに記載の伝送システム。
- 入力データ列を、誤り訂正符号及び符号化したデータからなる符号化データ列に変換する誤り訂正符号化手段と、
前記誤り訂正符号化手段からの前記符号化データ列を所定の処理単位で分割して複数の伝送経路に結合するデータ分散手段と、
それぞれの前記伝送経路からの信号列を結合して前記符号化データ列を復元するデータ結合手段と、
前記データ結合手段からの前記符号化データ列を誤り訂正及び復号して前記入力データ列を出力する誤り訂正復号化手段と、
を備える伝送システムを制御する伝送制御方法であって、
前記伝送システムの信頼性に応じて、前記誤り訂正符号化手段での冗長度及び前記データ分散手段での前記符号化データ列の分割数を設定することを特徴とする伝送方法。 - 前記複数の伝送経路の可用率、前記訂正符号化手段での誤り訂正能力及び経路分散数より与えられる入力データ列の伝送システム全体の可用率が、必要となる伝送システム全体の可用率を満たすよう、前記訂正符号化手段での誤り訂正能力及び経路分散数を設定することを特徴とする請求項10に記載の伝送方法。
- 前記データ分散手段で分割された前記符号化データ列それぞれについて、前記伝送経路に結合される前の時間的位置を特定する時系列管理データを分割された前記符号化データ列それぞれに付加し、
前記伝送経路を伝搬した分割された前記符号化データ列それぞれに付加された前記時系列管理データを参照し、分割された前記符号化データ列それぞれの前記伝送経路での遅延差を吸収することを特徴とする請求項10又は11に記載の伝送方法。 - 前記伝送経路のそれぞれを伝搬する前記符号化データ列を、複数のクライアントからの前記入力データ列に基づくデータ列が多重化されたデータ列とし、
前記伝送経路のそれぞれを伝搬する前記符号化データ列を、複数のクライアントからの前記入力データ列に基づくデータ列毎に分離することを特徴とする請求項10から12のいずれかに記載の伝送方法。 - 前記誤り訂正符号化手段での冗長度及び前記データ分散手段での前記符号化データ列の分割数をクライアント毎に設定することを特徴とする請求項13に記載の伝送方法。
- 前記符号化データ列の分割数の変更を前記データ分散手段および前記データ結合手段に対して設定することを特徴とする請求項10から14のいずれかに記載の伝送方法。
- 一部伝送路に伝送されている前記符号化データ列を、当該伝送路とは異なる伝送路に振り替えて伝送することを特徴とする請求項10から15のいずれかに記載の伝送方法。
- 前記入力データ列に対する冗長度の変更を誤り訂正符号化手段および誤り訂正復号化手段に対して設定することを特徴とする請求項10から16のいずれかに記載の伝送方法。
- 規定された優先度に基づいて前記符号化データ列の分割数または前記入力データ列に対する冗長度を設定または変更することを特徴とする請求項14から17のいずれかに記載の伝送方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280027779.5A CN103597793B (zh) | 2011-07-04 | 2012-07-04 | 传送系统以及传送方法 |
US14/123,773 US9336080B2 (en) | 2011-07-04 | 2012-07-04 | Transmission system and transmission method |
JP2013523035A JP5583851B2 (ja) | 2011-07-04 | 2012-07-04 | 伝送システム及び伝送方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011147956 | 2011-07-04 | ||
JP2011-147956 | 2011-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013005766A1 true WO2013005766A1 (ja) | 2013-01-10 |
Family
ID=47437113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067066 WO2013005766A1 (ja) | 2011-07-04 | 2012-07-04 | 伝送システム及び伝送方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9336080B2 (ja) |
JP (1) | JP5583851B2 (ja) |
CN (1) | CN103597793B (ja) |
WO (1) | WO2013005766A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017188754A (ja) * | 2016-04-04 | 2017-10-12 | 日本電信電話株式会社 | マルチレーン伝送システム及びマルチレーン伝送方法 |
JP2018019224A (ja) * | 2016-07-27 | 2018-02-01 | 日本電信電話株式会社 | 伝送装置及び伝送方法 |
WO2024150522A1 (ja) * | 2023-01-11 | 2024-07-18 | 国立研究開発法人情報通信研究機構 | 通信ネットワークの制御装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6160802B2 (ja) * | 2012-08-14 | 2017-07-12 | シャープ株式会社 | ビット符号化装置、ビット復号装置、送信装置、受信装置、ビット符号化方法、ビット復号方法、送信方法、受信方法およびプログラム |
JP6155029B2 (ja) * | 2013-01-17 | 2017-06-28 | 三菱重工業株式会社 | 航空機の通信システム、航空機の通信方法及び通信機器 |
JP7011151B2 (ja) * | 2017-08-28 | 2022-02-10 | 富士通株式会社 | 送信装置、送受信システム及び送受信システムの制御方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002009740A (ja) * | 2000-06-26 | 2002-01-11 | Mitsubishi Electric Corp | データ通信装置 |
JP2002261854A (ja) * | 2001-03-02 | 2002-09-13 | Mitsubishi Heavy Ind Ltd | 分散通信装置、分散通信方法および分散通信プログラム |
JP2002368811A (ja) * | 2001-06-07 | 2002-12-20 | Nippon Telegr & Teleph Corp <Ntt> | データ転送方法、データ転送システム、送信装置、および受信装置 |
JP2004320434A (ja) * | 2003-04-16 | 2004-11-11 | Mitsubishi Electric Corp | インターリーバ、デインターリーバおよび通信装置 |
JP2006352357A (ja) * | 2005-06-14 | 2006-12-28 | Fujitsu Ltd | 通信制御装置および通信制御方法 |
JP2010232787A (ja) * | 2009-03-26 | 2010-10-14 | Hitachi Ltd | 伝送システム、中継機及び受信機 |
JP2012109890A (ja) * | 2010-11-19 | 2012-06-07 | Sony Corp | 送信装置、送信方法、受信装置、受信方法、プログラム、および伝送システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006050174A2 (en) * | 2004-10-29 | 2006-05-11 | Broadcom Corporation | Hierarchical flow-level multi-channel communication |
US7835264B2 (en) | 2004-12-29 | 2010-11-16 | Mitsubishi Denki Kabushiki Kaisha | Interleaver, deinterleaver, communication device, and method for interleaving and deinterleaving |
CN100566228C (zh) * | 2005-03-21 | 2009-12-02 | 美国博通公司 | 实现有线网络内的高吞吐量带宽分配的方法和系统 |
JP4648093B2 (ja) * | 2005-05-31 | 2011-03-09 | 株式会社日立製作所 | 光伝送装置および集積回路装置 |
-
2012
- 2012-07-04 CN CN201280027779.5A patent/CN103597793B/zh active Active
- 2012-07-04 JP JP2013523035A patent/JP5583851B2/ja active Active
- 2012-07-04 US US14/123,773 patent/US9336080B2/en active Active
- 2012-07-04 WO PCT/JP2012/067066 patent/WO2013005766A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002009740A (ja) * | 2000-06-26 | 2002-01-11 | Mitsubishi Electric Corp | データ通信装置 |
JP2002261854A (ja) * | 2001-03-02 | 2002-09-13 | Mitsubishi Heavy Ind Ltd | 分散通信装置、分散通信方法および分散通信プログラム |
JP2002368811A (ja) * | 2001-06-07 | 2002-12-20 | Nippon Telegr & Teleph Corp <Ntt> | データ転送方法、データ転送システム、送信装置、および受信装置 |
JP2004320434A (ja) * | 2003-04-16 | 2004-11-11 | Mitsubishi Electric Corp | インターリーバ、デインターリーバおよび通信装置 |
JP2006352357A (ja) * | 2005-06-14 | 2006-12-28 | Fujitsu Ltd | 通信制御装置および通信制御方法 |
JP2010232787A (ja) * | 2009-03-26 | 2010-10-14 | Hitachi Ltd | 伝送システム、中継機及び受信機 |
JP2012109890A (ja) * | 2010-11-19 | 2012-06-07 | Sony Corp | 送信装置、送信方法、受信装置、受信方法、プログラム、および伝送システム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017188754A (ja) * | 2016-04-04 | 2017-10-12 | 日本電信電話株式会社 | マルチレーン伝送システム及びマルチレーン伝送方法 |
JP2018019224A (ja) * | 2016-07-27 | 2018-02-01 | 日本電信電話株式会社 | 伝送装置及び伝送方法 |
WO2024150522A1 (ja) * | 2023-01-11 | 2024-07-18 | 国立研究開発法人情報通信研究機構 | 通信ネットワークの制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US9336080B2 (en) | 2016-05-10 |
JPWO2013005766A1 (ja) | 2015-02-23 |
CN103597793A (zh) | 2014-02-19 |
US20140108894A1 (en) | 2014-04-17 |
CN103597793B (zh) | 2016-08-17 |
JP5583851B2 (ja) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5583851B2 (ja) | 伝送システム及び伝送方法 | |
US11936475B2 (en) | Method, apparatus, and system for improving reliability of data transmission involving an ethernet device | |
CN103797742B (zh) | 以太网中处理数据的方法、物理层芯片和以太网设备 | |
US6978416B2 (en) | Error correction with low latency for bus structures | |
US20100195663A1 (en) | Fabric Channel Control Apparatus and Method | |
CN110943800A (zh) | 数据包的发送方法、装置及系统、存储介质、电子装置 | |
CN108631947B (zh) | 一种基于纠删码的rdma网络数据传输方法 | |
US11438097B2 (en) | Media content-based adaptive method, device and system for forward error correction (FEC) coding and decoding of systematic code, and medium | |
CN112866103B (zh) | 一种面向边缘计算的时间敏感移动前传网络保护方法 | |
WO2022088709A1 (zh) | 一种以太网的编码方法及装置 | |
US20080267622A1 (en) | Efficient and simple bit error rate calculation on optical transport layer | |
WO2018036482A1 (zh) | 一种发送和接收业务的方法、装置和网络系统 | |
CN112751644A (zh) | 数据传输方法、装置及系统、电子设备 | |
WO2018177348A1 (zh) | 一种基于媒体内容的自适应fec编码矩阵设计方法 | |
JP7332873B2 (ja) | 符号化回路、復号化回路、符号化方法、復号化方法、伝送装置、及び光伝送システム | |
CN109412746B (zh) | 数据处理的方法和相关装置 | |
JP5778089B2 (ja) | 送受信制御装置、送受信制御方法及び送受信制御プログラム | |
CN109560864B (zh) | 一种数据传输方法和装置 | |
CN114520709A (zh) | 网络数据编码传输方法及装置 | |
JP7142977B1 (ja) | データ通信システム、送信装置、および受信装置 | |
WO2023223564A1 (ja) | 情報処理装置、情報処理方法、通信システム、及びプログラム | |
WO2024002084A1 (zh) | 数据帧的校验方法及相关设备 | |
WO2023238205A1 (ja) | 通信装置、通信方法、及びプログラム | |
US20240097949A1 (en) | Symbol multiplexing physical medium attachment (pma) | |
JP6450283B2 (ja) | パケット伝送システム、パケット伝送方法、および、送信制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12807240 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013523035 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14123773 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12807240 Country of ref document: EP Kind code of ref document: A1 |