WO2013005672A1 - Optical pickup device - Google Patents

Optical pickup device Download PDF

Info

Publication number
WO2013005672A1
WO2013005672A1 PCT/JP2012/066702 JP2012066702W WO2013005672A1 WO 2013005672 A1 WO2013005672 A1 WO 2013005672A1 JP 2012066702 W JP2012066702 W JP 2012066702W WO 2013005672 A1 WO2013005672 A1 WO 2013005672A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
optical
lens
optical axis
light
Prior art date
Application number
PCT/JP2012/066702
Other languages
French (fr)
Japanese (ja)
Inventor
木村 徹
田中秀樹
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013005672A1 publication Critical patent/WO2013005672A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses

Definitions

  • the present invention relates to an optical pickup device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm.
  • Patent Document 1 the magnification of the objective lens is changed by moving a coupling lens arranged between the light source and the objective lens in the optical axis direction, and the selected information recording surface is tertiary.
  • An optical pickup device capable of condensing a light beam with reduced spherical aberration is disclosed.
  • the operation of changing the information recording surface on which information is to be recorded / reproduced from one information recording surface to another information recording surface may be referred to as “interlayer focus jump” in this specification.
  • NA becomes smaller than that in the above state), so that the diameter of the focused spot is increased.
  • the change in the focused spot diameter of the objective lens tends to become more prominent as the change in magnification is larger, that is, as the amount of spherical aberration generated by the interlayer focus jump is larger.
  • an optical disc having an information recording surface of three or more layers is called BD-XL.
  • BD-XL the amount of spherical aberration generated by an interlayer focus jump is larger than that of a two-layer disc, so that spherical aberration is corrected.
  • magnification change of the objective lens becomes larger. Therefore, it can be said that the above-described recording / reproduction characteristic deterioration due to the change in the condensed spot diameter becomes more prominent than the conventional BD pickup that does not support BD-XL.
  • the coupling lens may be displaced in the direction of the optical axis in order to correct the spherical aberration that occurs when the temperature changes, but this makes the change in magnification of the objective lens larger, and the above problem becomes more apparent. Will be.
  • the present invention has been made in consideration of the above-described problems, and uses an anti-reflection film to achieve optimum focusing even when a light beam having a relatively large divergence angle is incident on an objective lens during a focus jump.
  • An object of the present invention is to provide an optical pickup device capable of forming a spot.
  • the optical pickup device includes a light source that emits a light beam having a wavelength ⁇ 1 (390 nm ⁇ 1 ⁇ 415 nm), a coupling lens, and an objective lens, and the coupling lens is displaced in an optical axis direction.
  • the wavelength ⁇ 1 emitted from the light source is selected.
  • the objective lens is a single lens having an image-side numerical aperture (NA) of 0.8 or more and less than 0.95, and an antireflection film is formed at least on the first surface on the light source side,
  • NA image-side numerical aperture
  • Tc in a central region inside 10% of the image-side numerical aperture NA and the transmittance in a peripheral region outside 90% of the image-side numerical aperture NA.
  • Tp satisfies the expression (1). 1.0 ⁇ Tp / Tc ⁇ 1.3 (1)
  • the transmittance Tc in the central region inside 10% of the image-side numerical aperture NA and the outer side of 90% of the image-side numerical aperture NA If the transmittance Tp in the peripheral region of the lens satisfies the expression (1), the rim intensity (the intensity of light passing through the peripheral portion with respect to the intensity of light passing near the optical axis of the objective lens) increases. A so-called super-resolution phenomenon occurs, and the diameter of the focused spot can be reduced.
  • An optical pickup device is the optical pickup device according to the first aspect, wherein the antireflection film applied to the first surface has a wavelength ⁇ 0 (nm) at which the reflectance with respect to the normal incident light is minimized,
  • the wavelength ⁇ 1 (nm) satisfies the formula (2). 1.30 ⁇ 0 / ⁇ 1 ⁇ 1.90 (2)
  • the transmittance of the peripheral region can be more reliably reduced and the rim strength can be increased.
  • the value of the expression (2) from exceeding the upper limit, it is possible to prevent the transmittance of the entire effective diameter from being reduced and to prevent the light utilization efficiency from being lowered. That is, by satisfying the condition of the expression (2), the transmittance of the peripheral region is larger than that of the central region, and the rim strength can be appropriately increased. More preferably, the following expression is satisfied. 1.40 ⁇ 0 / ⁇ 1 ⁇ 1.85 (2 ′)
  • the transmittance of the wavelength prevention film continuously changes within an effective diameter according to the height from the optical axis. It is characterized by.
  • the transmittance of the central region and the peripheral region may be kept constant, and the transmittance between the central region and the peripheral region may be linear.
  • it is necessary to apply an antireflection film for each region which complicates the film formation process and increases the manufacturing cost.
  • the transmittance of the antireflection film continuously changes in a curved line from the region closest to the optical axis to the peripheral region.
  • the objective lens is made of resin.
  • the objective lens is made of resin for cost reduction and weight reduction
  • the amount of change in the refractive index at the time of temperature change is larger than that of glass and so on, and spherical aberration deterioration that occurs at the time of temperature change cannot be ignored. Therefore, in addition to correcting the spherical aberration caused by the interlayer focus jump, the magnification of the objective lens is changed more greatly in order to correct the spherical aberration deterioration at the time of temperature change. In such a case, it can be said that the recording / reproduction characteristic deterioration due to the above-mentioned change in the diameter of the focused spot is further manifested.
  • the anti-reflection film satisfying the expression (1) is applied so that the focused spot diameter does not become too large even when a strong divergent light beam is incident on the objective lens. Is possible. That is, when the objective lens is made of resin, the problem of the present invention is increased. However, even in such a case, the present invention can solve the problem, and it can be said that the effect of the present invention becomes more remarkable.
  • a difference providing structure is formed.
  • the objective lens When the objective lens is provided with an optical path difference providing structure for correcting spherical aberration that occurs when a temperature change occurs, there is a problem that the transmittance is reduced due to a shape error of the optical path difference providing structure or a molding transfer defect. Such a problem becomes more apparent around the effective diameter where the diffraction pitch tends to be small. On the other hand, it is possible to compensate for such a decrease in transmittance by applying an antireflection film satisfying the expression (1).
  • the amount of spherical aberration generated when the temperature of the objective lens changes can be kept small, so by displacing the coupling lens in the optical axis direction, The change in magnification when spherical aberration correction is performed is reduced, and the change in the focused spot diameter can be suppressed by a synergistic effect.
  • the optical path difference providing structure is formed on the optical surface on the light source side and extends along the optical axis.
  • a negative step structure in which the step surface faces away from the optical axis is provided near the optical axis in the optical path difference providing structure.
  • a positive step structure in which the step surface faces the optical axis side is provided at a position farther from the optical axis than the negative step structure, and the step surface in the negative step structure is relative to the optical axis. It is parallel, and the step surface in the positive step structure is non-parallel to the optical axis.
  • the positive / negative switching type in which the direction of the step changes from negative to positive according to the direction from the lens center to the periphery ensures a larger diffraction pitch than the type in which the direction of the step does not change.
  • a negative surface with the step surface facing away from the optical axis is located near the optical axis.
  • a positive step structure with a step surface facing the optical axis is provided at a position farther from the optical axis than the negative step structure.
  • the sword tip bite BT has a rake face SP bordered by a first ridge line E1 intersecting at an acute angle and a second ridge line E2 closer to the axis MA than the first ridge line E1. ing.
  • the second edge E2 of the sword tip tool BT is set so that the mold material M is parallel to the axis MA and the mold material M is centered on the axis MA.
  • the blade tip BT is moved from the peripheral side so as to approach the axis MA and is cut while being displaced stepwise in the optical axis direction in synchronization therewith.
  • the step wall M2 facing away from the axis MA is cut by the second ridge line E2, and thus extends in parallel with the axis MA.
  • the step wall M1 facing the axis MA side is cut by the first ridge line E1, it is inclined with respect to the axis line by an angle equal to the crossing angle of the sword tip tool BT. Become.
  • the shape of the objective lens OBJ shown in FIG. 1B is obtained, and this objective lens OBJ is located near the optical axis.
  • the light beam incident on the step surface ST1 tilted with respect to the optical axis OA is not used for forming a condensed spot.
  • the light rays that pass through the step surface ST2 are also not used for the formation of the condensed spot. This is called ray vignetting.
  • the first edge E1 of the sword tip bite BT is set so that the mold material M is parallel to the axis MA and the mold material M is centered on the axis MA.
  • the blade tip BT is moved from the peripheral side so as to approach the axis MA and is cut while being displaced stepwise in the optical axis direction in synchronization therewith.
  • the step wall M2 facing the opposite side to the axis MA is cut by the second ridge line E2, so that it tilts with respect to the axis MA, but faces the axis MA side.
  • step difference wall M1 since it cuts with the 1st ridgeline E1, it becomes parallel with respect to the axis line MA.
  • step difference wall M1 and M2 are parallel by rotating the sword tip tool BT during cutting, but at the present time, since the difficulty of die machining increases dramatically, the manufacturing cost
  • the shape of the objective lens OBJ shown in FIG. 2B is obtained.
  • This objective lens OBJ is also located near the optical axis.
  • the step surface ST1 is parallel to the optical axis OA, so that the light beam does not substantially enter the step surface ST1. No vignetting will occur. That is, only the light rays incident from the stepped surface ST2 are not used for forming the condensing spot, which is apparent when compared with FIG. 1B, but the objective lens of FIG. 2B is hatched. It can be said that it is excellent from the viewpoint of light utilization efficiency. That is, by selecting the objective lens shown in FIG. 2B, it is possible to obtain a pickup device equipped with an objective lens that has a low mold processing difficulty, a low manufacturing cost, and a sufficiently high transmittance.
  • the lens as shown in FIG. 2 (b) tends to have a low transmittance in a region away from the optical axis, which increases the problem of increasing the diameter of the focused spot. For example, since the problem can be solved, the difficulty of mold processing is low, the manufacturing cost is suppressed, the transmittance is sufficiently high, and the condensing spot can be prevented from becoming large.
  • the optical pickup device according to any one of the fourth to sixth aspects, wherein the coupling lens corrects a spherical aberration that occurs when a temperature change occurs in the objective lens. It is characterized by being displaced in the optical axis direction.
  • the amount of displacement of the coupling lens in the optical axis direction is increased as compared with the interlayer focus jump, and the effect of the present invention is further exhibited.
  • An optical pickup device is the optical pickup device according to any one of the first to seventh aspects, wherein the objective lens material has a refractive index smaller than 1.58 with respect to the wavelength ⁇ 1, and the first surface.
  • the antireflective film applied to the film has 2 to 4 layers.
  • any resin material can be selected as long as the refractive index with respect to the wavelength ⁇ 1 is smaller than 1.58.
  • the number of antireflection films on the first surface of the objective lens is two or more, a sufficient antireflection effect can be obtained, and a decrease in the overall transmittance can be prevented.
  • the antireflection film on the first surface having a large inclination angle of the aspherical surface is made to be four layers or less, it is possible to prevent an increase in film thickness error and to maintain a stable film thickness during mass production. . Therefore, the antireflection film applied to the first surface is preferably 2 to 4 layers.
  • the antireflection film applied to the first surface is preferably three layers or four layers, and most preferably three layers.
  • the optical pickup device has at least one light source (first light source).
  • first light source a plurality of types of light sources may be provided so as to support a plurality of types of optical disks.
  • the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc.
  • the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense.
  • the optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc.
  • the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
  • object side means the light source side
  • image side means the optical disk side.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD
  • the second optical disc is a DVD
  • the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disc has three or more information recording surfaces stacked in the thickness direction.
  • the first optical disc has three or more information recording surfaces in the thickness direction that have different distances from the light incident surface of the optical disc to the information recording surface (this is referred to as “transparent substrate thickness” in this specification). It is. Of course, you may have four or more information recording surfaces.
  • the second optical disc and the third optical disc may also have a plurality of information recording surfaces.
  • the “maximum transparent substrate thickness” means the transparent substrate thickness of the information recording surface farthest from the light incident surface of the optical disc among the plurality of information recording surfaces
  • the “minimum transparent substrate thickness” means the optical disc.
  • the transparent substrate thickness of all the information recording surfaces is 0.03 mm or more and 0.125 mm or less.
  • the difference between the maximum transparent substrate thickness and the minimum transparent substrate thickness is preferably 0.025 mm or more.
  • the optical pickup device selects one of the plurality of information recording surfaces of the first optical disc, and condenses the light beam emitted from the light source onto the selected information recording surface by the objective lens. By doing so, information is recorded and / or reproduced.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • the optical pickup device of the present invention is compatible with a BD having an information recording surface of at least three layers.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (6) and (7). 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (6) 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 (7)
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less
  • the third wavelength ⁇ 3 of the third light source is preferably 750 nm. As mentioned above, it is 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has a coupling lens and an objective lens.
  • the coupling lens is a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimator is a kind of coupling lens, and is a coupling lens that emits an incident light beam as parallel light or substantially parallel light.
  • the coupling lens may be composed of only a positive lens group or may have a positive lens group and a negative lens group.
  • the positive lens group has at least one positive lens.
  • the positive lens group may include only one positive lens or may include a plurality of lenses.
  • the negative lens group includes at least one negative lens.
  • the negative lens group may include only one negative lens or may include a plurality of lenses. Examples of a preferable coupling lens include only a single positive lens or a combination of a single positive lens and a single negative lens.
  • a lens that is movable in the optical axis direction in the coupling lens may be referred to as a “movable lens”.
  • “movement amount of the coupling lens” is used in the same meaning as “movement amount of the movable lens”.
  • the power of the lens group moved in the optical axis direction is increased (that is, in the optical axis direction). It is conceivable to shorten the focal length of the lens group that is moved to (1). This is because the amount of movement of the lens group moved in the optical axis direction decreases as the power of the lens group increases (that is, as the focal length of the lens group decreases).
  • the coupling lens has a group configuration
  • the focal length of the lens group moved in the optical axis direction that is, equal to the focal length of the coupling lens
  • the spot condensed by the objective lens becomes an ellipse.
  • the recording and / or reproduction of information on the BD may be hindered. The reason for this will be described below.
  • the coupling lens has a two-group configuration including a positive lens group and a negative lens group, and at least one lens in the positive lens group is moved in the optical axis direction, thereby It is preferable to select whether to collect light on the information recording surface.
  • the coupling lens is a two-group thin lens system composed of a positive lens and a negative lens, and the positive lens is moved along the optical axis direction during focus jump.
  • the power of the positive lens is P P
  • the focal length of the positive lens is f P
  • the power of the negative lens is P N
  • the focal length of the negative lens is f N
  • the distance between the positive lens and the negative lens is L
  • all coupling lenses The system power P C and the focal length f C of the entire coupling lens system are expressed by the following equation (8).
  • magnification M of the condensing optical system composed of the coupling lens and the objective lens is expressed by the following equation (9).
  • the system magnification M is about -0.1.
  • the focal length f C of the entire coupling lens system cannot be extremely shortened.
  • the distance between the objective lens and the BD (also referred to as a working distance) is not too short, and in order to reduce the thickness of the optical pickup device, optimal range of the focal length f O of the lens naturally determined.
  • the focal length range of the entire system needs to be a certain predetermined range, and the movement of the coupling lens required at the time of focus jump The focal length f C of the entire coupling lens system cannot be reduced excessively considering only the amount.
  • the power P P of the positive lens is increased, and further, the power P of the negative lens is set so that the focal length f C of the entire coupling lens system is not too short. It is preferable to increase the absolute value of N (see equation (8)).
  • the movement amount of the positive lens group required at the time of focus jump is reduced by moving the positive lens group in the optical axis direction.
  • the arrangement of the positive lens group and the negative lens group may be arranged in the order of the negative lens group and the positive lens group from the light source side, or may be arranged in the order of the positive lens group and the negative lens group from the light source side. good.
  • the preferred arrangement is the former.
  • one of the preferred examples of the coupling lens in the optical pickup device is a combination of one positive lens and one negative lens, and the negative lens from the light source side, They are arranged in the order of positive lenses.
  • the present invention is not limited to this, and from the viewpoint of simplifying the configuration of the coupling lens as much as possible, there can be an option of a single positive lens coupling lens.
  • At least one lens (preferably a positive lens) of the positive lens group is movable in the optical axis direction in order to correct spherical aberration occurring on the selected information recording surface of the first optical disk. It is preferable that For example, when recording and / or reproducing on one information recording surface of the first optical disk and then recording and / or reproducing on another information recording surface of the first optical disk, the positive lens group of the coupling lens group Spherical aberration that occurs at the time of focus jump to a different information recording surface of the first optical disk by moving at least one lens in the optical axis direction, changing the divergence of the light beam, and changing the magnification of the objective lens Correct.
  • 3 (a) to 3 (d) are diagrams showing the examination results of each case conducted by the present inventors.
  • the first optical disc (BD) having a surface, when the maximum spherical aberration difference A generated when the optimum focused spot is formed on each of the information recording surfaces that are separated as much as possible, and when the environmental temperature changes by ⁇ 30 ° C.
  • the maximum spherical aberration B that occurred and the maximum spherical aberration C that occurred when the wavelength of the light source changed by ⁇ 5 nm were determined. This is represented by the bar graph of FIG.
  • Such spherical aberration can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
  • the total amount of spherical aberration is the amount of movement of the coupling lens. It is equivalent to.
  • the amount of spherical aberration is obtained regardless of whether the optical surface is an aspherical refractive surface or a diffractive surface. Is about 410 to 430 m ⁇ , and the amount of movement of the coupling lens is relatively small.
  • the total amount of spherical aberration is 680 m ⁇ in the case of an objective lens having an aspherical refractive surface. The amount of movement is required to be about 1.5 times that required when an optical disc having two information recording surfaces is used. Further, as shown in FIG.
  • the objective lens is made of glass and the optical surface is an aspherical refracting surface
  • the objective lens is made of glass and the optical surface is a diffractive surface that corrects spherical aberration that occurs when the wavelength varies, in addition to spherical aberration B caused by environmental temperature changes, spherical aberration C caused by wavelength fluctuations of the light source due to the function of the diffractive surface.
  • the amount of movement of the coupling lens is smaller (corresponding to the correction amount of the spherical aberration of 500 m ⁇ in FIG. 3C). That is, in order to reduce the amount of movement of the coupling lens, the objective lens is preferably made of a glass material. However, even if the objective lens is improved in this way, the amount of movement of the coupling lens when the optical disk having two information recording surfaces is used is smaller than that of the coupling lens when the optical disk having four information recording surfaces is used. Since the amount of movement is still about twice, it is preferable to further devise in order to suppress the amount of movement of the coupling lens. The same applies to the amount of movement of the coupling lens when using an optical disc having three information recording surfaces or five or more information recording surfaces. On the other hand, the amount of movement of the coupling lens can be further reduced by breaking the sine condition of the objective lens.
  • an optical disc having two information recording surfaces an information recording surface having a smaller distance from the light beam incident surface of the optical disc is RL1, an information recording surface having a larger distance from the light beam incident surface of the optical disc is RL2
  • optical disk having four information recording surfaces (assuming that the information recording surface having the smallest distance from the light beam incident surface of the optical disk is RL1, and the information recording surface having the largest distance from the light beam incident surface of the optical disk is RL4), An optical disk was assumed in which the distance from the light beam incident surface of the optical disk to RL1 was 50 ⁇ m and the distance from the light beam incident surface of the optical disk to RL4 was 100 ⁇ m.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is a single plastic lens or glass lens.
  • the objective lens is a single convex lens.
  • the objective lens may be composed of only a refractive surface or may have an optical path difference providing structure.
  • the hybrid lens which provided the optical path difference providing structure with the photocurable resin, UV curable resin, or thermosetting resin etc. on the glass lens may be sufficient.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the objective lens is a glass lens, as described with reference to FIG. 3, it is not necessary to move the coupling lens in order to correct the spherical aberration caused by the temperature change. This is preferable because it can be reduced and the optical pickup device can be downsized.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower more preferably 400 ° C. or lower.
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • a physical property value that is important when molding a glass lens is the linear expansion coefficient ⁇ . Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still large compared to the resin material. When lens molding is performed using a glass material having a large linear expansion coefficient ⁇ , cracks are likely to occur when the temperature is lowered.
  • the linear expansion coefficient ⁇ of the glass material is preferably 200 (10E-7 / K) or less, more preferably 120 or less.
  • the specific gravity of a glass lens is generally larger than that of a plastic lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity.
  • the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
  • the objective lens is a plastic lens
  • an alicyclic hydrocarbon polymer material such as a cyclic olefin resin material.
  • the resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the refractive index change rate dN / dT (° C. ⁇ 1 ) is -20 ⁇ 10 ⁇ 5 to ⁇ 5 ⁇ 10 ⁇ 5 (more preferably ⁇ 10 ⁇ 10 ⁇ 5 to ⁇ 8 ⁇ 10 ⁇ 5 ). It is more preferable to use a certain resin material.
  • the coupling lens is preferably a plastic lens.
  • a first preferred example is a polymer block [A] containing a repeating unit [1] represented by the following formula (1), a repeating unit [1] represented by the following formula (1) and the following formula ( 2) and / or polymer block [B] containing the repeating unit [3] represented by the following formula (3), and the repeating unit in the block [A] It consists of a block copolymer in which the relationship between the molar fraction a (mol%) of [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is a resin composition.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ⁇ 20 alkoxy groups or halogen groups.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • the second preferred example is obtained by addition polymerization of a monomer composition comprising at least an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (4).
  • Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (5) ).
  • R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group.
  • R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group.
  • the following additives may be added.
  • Stabilizer It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
  • phenol-based stabilizer conventionally known ones can be used.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate
  • 2 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like
  • JP-A Nos. 63-179953 and 1-168643 JP-A Nos. 63-179953 and 1-168643.
  • Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-but
  • the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl).
  • Phenyl) phosphite tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 ′ isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
  • each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
  • hydrophilic group of the surfactant examples include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms.
  • the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent.
  • Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like.
  • the aromatic ring include a phenyl group.
  • the surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
  • examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene
  • examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like.
  • amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
  • the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • the addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • Plasticizer The plasticizer is added as necessary to adjust the melt index of the copolymer.
  • Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisode
  • cycloolefin resins are preferably used.
  • ZEONEX manufactured by Nippon Zeon Co., Ltd. APEL manufactured by Mitsui Chemicals, Inc.
  • TOPAS® ADVANCED® POLYMERS manufactured by TOPAS and JSR manufactured by ARTON are preferable. Take as an example.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • the objective lens for the optical pickup device according to the present invention may or may not satisfy the sine condition.
  • the sine condition is h when a light beam having a height h 1 from the optical axis is incident on the lens in parallel with the optical axis, and when the emission angle when the light beam is emitted from the lens is U. 1 / sinU satisfies a certain value. If this is a constant value regardless of the height from the height h 1 from the optical axis, the sine condition is satisfied and the lateral magnification of each ray within the effective diameter can be regarded as constant.
  • This sine condition is a calculated value on the axis, but is effective in correcting off-axis lateral magnification error (ie off-axis coma).
  • FIG. 5 is a graph showing the sine condition violation amount in the objective lens on the horizontal axis and the height from the optical axis on the vertical axis.
  • the graph coincides with the vertical axis, but in the case of an objective lens that does not satisfy the sine condition, the graph moves away from the vertical axis to the positive side and / or the negative side as shown in FIG. It becomes.
  • the sine condition violation amount always has a maximum value.
  • OSCmax the maximum value on the positive side of the sine condition violation amount
  • OSCmin the maximum value on the negative side
  • the objective lens having the characteristics shown in FIG. 5A is an example in which the sine condition violation amount has one negative maximum value OSCmin and does not have a positive maximum value OSCmax. According to such an objective lens, since the surface shift sensitivity is small and the on-axis thickness error sensitivity is small, it is easy to manufacture. On the other hand, as the coupling lens moves, the higher-order spherical aberration increases and the magnification changes. It has the characteristic that the change in spherical aberration due to is small. Therefore, when the coupling lens is moved to select an information recording surface in an optical disc having three or more layers, there is a possibility that the necessary movement amount increases.
  • the objective lens having the characteristics shown in FIGS. 5B and 5C has a magnification M ( ⁇ 0.003 ⁇ M ⁇ 0.003) and 70 to 90% of the effective radius of the objective lens.
  • the sine condition violation amount has at least one maximum value OSCmax on the positive side. (Preferably only one)
  • the violating sine condition has a positive maximum value OSCmax between 70% and 90% of the effective radius of the objective lens.
  • the sine condition violation amount has one negative maximum value on the optical axis side than the positive maximum value.
  • the sine condition violation amount has only a positive maximum value and does not have a negative maximum value.
  • the sine condition violation amount monotonously decreases in the peripheral portion from the maximum value.
  • the sine condition violation amount has a positive maximum value and the sine condition violation amount has a negative maximum value between 70% and 90% of the effective radius.
  • (Characteristic 1) The residual higher-order spherical aberration at the time of focus jump can be reduced, (Characteristic 2) the amount of movement of the coupling lens at the time of focus jump can be reduced, and (Characteristic 3) the substrate thickness In addition to being able to further suppress the reduction in lens tilt sensitivity even when the environmental temperature becomes high during recording / reproducing information on the thicker information recording surface (Characteristic 4) It is possible to suppress the amount of aberration that occurs when two opposing optical surfaces are shifted in the direction perpendicular to the optical axis due to manufacturing errors.
  • the lens thickness on the optical axis depends on the manufacturing error in the optical axis direction. Occurrence of aberration in case of deviation Since it is possible to also suppress, it is possible to provide a more easily manufacturable objective lens.
  • the sine condition violation amount has a positive maximum value and the sine condition violation amount has a negative maximum value between 70% and 90% of the effective radius.
  • (Characteristic 1) the residual higher-order spherical aberration at the time of focus jump can be further reduced
  • (Characteristic 2) the amount of movement of the coupling lens at the time of focus jump can be further reduced
  • (Characteristic 3) Even when the environmental temperature becomes high during the recording / reproducing of information on the information recording surface having the larger substrate thickness, it is possible to further suppress the reduction of the lens tilt sensitivity.
  • the third-order spherical aberration generated in the objective lens due to the change in the divergence / convergence of incident light and the third-order spherical aberration generated during the focus jump are generated. It is preferable to set the positive maximum value of the sine condition so as to be almost similar to the change of the spherical aberration and the higher order spherical aberration.
  • the objective lens may be set in a shape that violates the sine condition, giving priority to reducing the amount of movement of the coupling lens, or giving priority to minimizing residual aberration during focus jump.
  • the shape of the condition violation amount may be set.
  • the objective lens does not satisfy the sine condition, and in order to meet (Characteristic 1), (Characteristic 2), and (Characteristic 3) described later, the transparent substrate thickness of the optical disc (information recording / reproduction from the surface)
  • the thickness of the transparent substrate having a thickness satisfying the formula (10) at room temperature (25 ⁇ 3 ° C.), where T MAX (mm) is the maximum transparent substrate thickness.
  • T MAX (mm) is the maximum transparent substrate thickness.
  • the magnification M at which the spherical aberration is minimized satisfies the expression (11), and at the magnification M, the sine condition violation amount is a positive maximum between 70% and 90% of the effective radius. It is preferable to have a value.
  • Examples of preferable characteristics in an objective lens suitable for a BD having three or more layers include the following three.
  • (Characteristic 2) The amount of movement of the coupling lens when performing a focus jump is small.
  • (Characteristic 3) The tilt sensitivity of the objective lens when information is recorded / reproduced with respect to the information recording surface having the larger substrate thickness is not too small. In particular, when a plastic objective lens is used, the lens tilt sensitivity is small when the environmental temperature becomes high during the recording / reproducing of information on the information recording surface having the larger substrate thickness. It is necessary not to become too much.
  • An objective lens that is preferable from the viewpoint of satisfying all the characteristics (Characteristic 1) to (Characteristic 3) will be described in detail below.
  • the sine condition violation amount has a positive maximum value between 70% and 90% of the effective radius, so that the high at the time of focus jump This is preferable because secondary spherical aberration can be effectively suppressed.
  • Some optical pickup devices that record / reproduce information with respect to a two-layer BD have a plastic objective lens mounted thereon, and the objective lens has a thicker substrate thickness for information recording.
  • Spherical aberration by combining a substrate thickness of 87.5 ⁇ m between the surface L0 (100 ⁇ m) and the thinner information recording surface L1 (75 ⁇ m) with a magnification of zero (corresponding to the case where a parallel light beam is incident) Is designed to be minimal.
  • the plastic objective lens designed in this manner the amount of coma generated when the lens is tilted is minimized because the environmental temperature is high during the recording / reproducing of information on the information recording surface L0.
  • CM third-order coma aberration due to tilt when the objective lens performs tracking
  • lens shift in this specification the amount of third-order coma aberration due to tilt when the objective lens performs tracking
  • CM plastic objective lens for BD having three or more layers can withstand practical use if it is designed so that the minimum amount of coma generated when the lens is tilted is greater than CM (LT). It can be said.
  • the amount of coma aberration generated by a plastic objective lens for a two-layer BD with a lens tilt of 0.5 degrees at a high temperature (55 degrees) CM (LT) is about 0.02 ⁇ rms
  • the ratio of the third-order coma aberration CM (DT) generated when the optical disk is tilted by the same amount in the same state and CM (LT) is about 0.36.
  • the “transparent substrate thickness T” is a transparent substrate thickness (also referred to as a design substrate thickness) used as a reference when comparing the characteristics of the objective lens.
  • the MIN ⁇ T MAX is intended to be distinguished.
  • the objective lens satisfies the following conditional expression (12).
  • the spherical aberration is not larger than T MAX design board thickness is corrected to zero, the light beam incident on the objective lens when recording / reproducing information for the information recording surface of the transparent towards the substrate thickness is thin An increase in the degree of convergence can be further prevented. Therefore, when information is recorded / reproduced on the information recording surface with the thinner transparent substrate, it is possible to further prevent the occurrence of coma aberration when the objective lens is shifted.
  • a BD having three or more layers where the maximum difference in the thickness of the transparent substrate on the information recording surface is larger than that on the two-layer BD, the light beam incident on the objective lens when information is recorded / reproduced on the information recording surface having the thinnest transparent substrate thickness Since the degree of convergence of the lens becomes too large and the lens shift characteristic is likely to be deteriorated, such an objective lens can solve a larger problem unique to such a BD having three or more layers. That is, when the transparent substrate thickness T satisfies the upper limit of the expression (12), the degree of convergence of the light beam incident on the objective lens becomes too large when information is recorded / reproduced on the information recording surface with the thinnest transparent substrate thickness. This is further preferable, and as a result, the lens shift characteristics can be further improved, and the residual higher-order spherical aberration when the focus jump is made to the information recording surface having the thinnest transparent substrate can be further reduced.
  • the objective lens By designing the objective lens so that the design substrate thickness is small so as to satisfy the expression (13), it is possible to provide an objective lens suitable for the thinned optical pickup device, but the objective lens tilt sensitivity is lowered. On the other hand, if the objective lens tilt sensitivity is increased by breaking the sine condition, the coma aberration correction amount with respect to the tilt amount of the objective lens can be increased. it can.
  • the term “minimum” includes a value in the range of + 10% with respect to the actual minimum value.
  • the transparent substrate thickness may be intermediate.
  • the optical pickup is designed to satisfy the conditional expressions (13) and (14), while having the same objective lens tilt characteristic as the conventional lens (currently used lens).
  • An objective lens that contributes to miniaturization of the apparatus can be realized.
  • the objective lens may be dedicated to BD or may be compatible with BD / DVD / CD.
  • an objective lens for BD / DVD / CD compatibility will be described.
  • At least one optical surface of the objective lens is distinguished from the “peripheral region” in the claims by the central region, the intermediate region around the central region, and the peripheral region around the intermediate region (hereinafter referred to as a dedicated region) ) At least.
  • the central region is preferably a region including the optical axis of the objective lens.
  • a minute region including the optical axis may be an unused region or a special purpose region, and the periphery thereof may be a central region.
  • the central region, the intermediate region, and the dedicated region are preferably provided on the same optical surface. As shown in FIG. 6, it is preferable that the central region CN, the intermediate region MD, and the dedicated region OT are provided concentrically around the optical axis on the same optical surface.
  • a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area.
  • the dedicated area may be a refracting surface, or a third optical path difference providing structure may be provided in the dedicated area.
  • the central region, intermediate region, and dedicated region are preferably adjacent to each other, but there may be a slight gap between them.
  • the central area of the objective lens can be said to be a BD / DVD / CD shared area used for recording / reproducing BD, DVD and CD. That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. The light is condensed so that information can be recorded and / or reproduced on the surface, and the third light flux passing through the central region is condensed so that information can be recorded / reproduced on the information recording surface of the CD.
  • the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam. Further, the first optical path difference providing structure is different from the thickness t1 of the BD protective substrate and the thickness t3 of the CD protective substrate with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference in the wavelength of the first light beam and the third light beam.
  • the intermediate area of the objective lens is used for BD / DVD recording / reproduction and can be said to be a BD / DVD shared area not used for CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the intermediate area is recorded as information recording on the DVD. Light is collected so that information can be recorded / reproduced on the surface.
  • the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the CD.
  • the third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the CD. As shown in FIG.
  • the spot center having a high light amount density in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a portion SCN, a spot intermediate portion SMD whose light intensity density is lower than that of the spot central portion, and a spot peripheral portion SOT whose light intensity density is higher than that of the spot intermediate portion and lower than that of the spot central portion.
  • the center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare.
  • the spot peripheral part may be called a flare.
  • the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the CD.
  • the dedicated area of the objective lens is used for BD recording / playback, and can be said to be a BD dedicated area not used for DVD / CD recording / playback. That is, the objective lens condenses the first light beam passing through the dedicated area so that information can be recorded / reproduced on the information recording surface of the BD.
  • the second light beam passing through the dedicated area is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD, and the third light beam passing through the dedicated area is used as the information recording surface of the CD. Do not collect light so that information can be recorded / reproduced on top.
  • the second light flux and the third light flux that pass through the dedicated area of the objective lens form a flare on the information recording surface of the DVD and CD. That is, it is preferable that the second light flux and the third light flux that have passed through the dedicated area of the objective lens form a spot peripheral portion on the information recording surface of DVD and CD.
  • the first optical path difference providing structure it is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure it is preferable to provide in the area
  • the dedicated region has the third optical path difference providing structure
  • the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the dedicated region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the dedicated region.
  • optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure of the present invention is preferably a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the optical path difference providing structure is a single aspherical lens
  • the incident angle of the light flux to the objective lens differs depending on the height from the optical axis.
  • Each will be slightly different.
  • the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the diffractive structure is a single aspherical lens
  • the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be.
  • the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
  • the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center.
  • the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blaze type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape.
  • the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface.
  • the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 8 (a))
  • the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ).
  • V level means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the optical path difference providing structure illustrated in FIG. 8C is referred to as a five-level step structure
  • the optical path difference providing structure illustrated in FIG. 8D is referred to as a two-level step structure (also referred to as a binary structure). .
  • the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated.
  • the unit shape is periodically repeated here naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated. As shown in FIG. 8 (a), the same sawtooth shape may be repeated, or as shown in FIG. 8 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center).
  • first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, but are preferably provided on the same optical surface.
  • a 3rd optical path difference providing structure it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing.
  • the 1st optical path difference providing structure, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure it is preferable to provide in the light source side surface of an objective lens rather than the surface at the side of the optical disk of an objective lens.
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens. It is also conceivable to provide the first basic structure and the second basic structure on different optical surfaces without overlapping. Similarly, the third basic structure and the fourth basic structure may be provided on different optical surfaces without overlapping.
  • the first optical path difference providing structure is preferably a structure in which at least the first basic structure and the second basic structure are overlapped, but is not limited thereto.
  • the first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
  • the first basic structure is preferably a blazed structure.
  • the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity that has passed through the first basic structure. Is preferably larger than any other order of diffracted light, and the first order diffracted light of the third light beam having passed through the first basic structure is preferably larger than any other order of diffracted light. This is called a (1/1/1) structure.
  • the step amount of the first basic structure does not become too large, so that the manufacture is facilitated, and the light quantity loss due to the manufacturing error can be suppressed, and the wavelength It is preferable because the diffraction efficiency fluctuation at the time of fluctuation can be reduced.
  • the first basic structure provided at least in the vicinity of the optical axis in the central region has a step in a direction opposite to the optical axis.
  • the step is directed in the direction opposite to the optical axis means a state as shown in FIG.
  • the first basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (1/1/1) structure.
  • at least a (1/1/1) structure step existing between the optical axis and the half-position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region is the optical axis. Is pointing in the opposite direction.
  • the step may be directed in the direction of the optical axis. That is, as shown in FIG. 10B, the step is directed in the opposite direction to the optical axis when the first foundation structure is near the optical axis, but is switched halfway, and the step of the first foundation structure is near the intermediate region. It is good also as a shape which faces the direction of an optical axis. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
  • the direction of the step of the first basic structure in which the diffraction order of the first light beam is the first order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a sufficient working distance can be secured when the CD is used.
  • the first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have a negative paraxial power with respect to the luminous flux.
  • “having negative paraxial power” means that B 2 h 2 > 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
  • the second basic structure is preferably a blazed structure.
  • the second-order diffracted light amount of the first light beam that has passed through the second basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the first basic structure. It is preferable that the amount of light is made larger than any other order of diffracted light, and the first order diffracted light of the third light beam that has passed through the first basic structure is made larger than any other order of diffracted light. This is called a (2/1/1) structure.
  • the step amount of the second basic structure does not become too large, which facilitates manufacturing and suppresses light loss caused by manufacturing errors. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
  • the step of the second basic structure provided at least in the vicinity of the optical axis in the central region is directed in the direction of the optical axis.
  • the step is directed in the direction of the optical axis means a state as shown in FIG.
  • the second basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (2/1/1) structure.
  • the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 10A, the step is directed in the direction of the optical axis when the second foundation structure is in the vicinity of the optical axis, but is switched halfway, and the step of the second foundation structure is at the optical axis in the vicinity of the intermediate region. It is good also as a shape which faces the reverse direction.
  • the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
  • the structure shown in FIG. 10B is more effective.
  • the first optical path difference providing structure is formed by superimposing the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure, the height of the step is extremely high. Can be lowered. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
  • the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD.
  • an objective lens that has a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • a diffraction efficiency of 80% or more for the wavelength ⁇ 1 a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • the first optical path difference providing structure in which the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure are overlapped is expressed as follows. be able to.
  • the first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis.
  • the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (16) and (17). More preferably, the following conditional expressions (16) and (17) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase.
  • n the refractive index of the objective lens at the first wavelength ⁇ 1.
  • the first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis.
  • An optical path difference providing structure having both of the steps facing the direction of.
  • the optical path difference providing structure has a step existing between at least a half position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
  • the shape of the foundation structure is finely adjusted so that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure are matched.
  • d11 and d12 of the first optical path difference providing structure are the following conditional expressions (20) and (21 ) Is preferably satisfied. More preferably, the following conditional expressions (20) and (21) are satisfied in all the regions of the central region. 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (20) 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1. 5. ( ⁇ 1 / (n-1)) (21)
  • conditional expressions (24) and (25) are preferably satisfied. More preferably, the following conditional expressions (24) and (25) are satisfied in all the regions of the central region. 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (24) 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1. 5. ( ⁇ 1 / (n-1)) (25)
  • the spherical aberration when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (2 / In the second basic structure having the 1/1) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in the undercorrection direction (under).
  • the refractive index of the objective lens when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature.
  • the paraxial power of the first foundation structure is larger than that of the second foundation structure. That is, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure.
  • a working distance in the CD can be secured even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens.
  • the chromatic aberration is reduced, a good light spot is formed even when the light source has a high frequency superposition, and the problem of stray light when the optical disk has a plurality of information recording surfaces is reduced.
  • one ring zone closest to the optical axis of the second basic structure has two or more ring zones of the first basic structure. It is preferable that 6 (particularly preferably 2 to 3) are included.
  • the “ring zone” closest to the optical axis of the second foundation structure is described, but in practice, it is usually a “circle” including the optical axis. Accordingly, the “annular zone closest to the optical axis” mentioned here includes a circular shape.
  • 1 to 5 ring zones of the first foundation structure are included in one ring zone of the second foundation structure. ) Is included.
  • a part when the first basic structure and the second basic structure are directly overlapped, a part may protrude as shown by a dotted line, but the width of the protruding part is 5 ⁇ m or less. If it is narrow, the projecting portion is shifted in parallel along the optical axis, and eliminating the projecting portion has no significant effect, so that one annular zone of the second foundation structure can have a plurality of the first foundation structure.
  • the zonal is just like that (see the solid line). Therefore, in the example of FIG. 11D, it is assumed that three annular zones of the first foundation structure are on one annular zone of the second foundation structure. When the first foundation structure and the second foundation structure are superimposed as they are, a dent may be eliminated in the same manner even when a dent having a width of 5 ⁇ m or less is generated.
  • ⁇ (nm) is the amount of change in the first wavelength
  • ⁇ WD ( ⁇ m) is the chromatic aberration of the objective lens caused by the change ⁇ in the first wavelength
  • the optical disc has a plurality of information recording surfaces while ensuring a working distance in the CD even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. This is preferable because the problem of stray light can be reduced and the temperature and wavelength characteristics can be improved when using a DVD.
  • the number N2 of the first foundation structure annular zones superimposed on one annular zone closest to the intermediate region in the second foundation structure is preferably equal to or smaller than N1, for example, 1 to 5 overlapping zones. It should be done.
  • the first basic structure preferably has a positive diffractive power, so that a working distance when using a CD can be secured even for an objective lens having a large axial thickness such as an objective lens for BD / DVD / CD.
  • the second basic structure preferably has a negative diffraction power. As described above, since both the first basic structure and the second basic structure have diffraction power, when using an optical disk having a plurality of information recording surfaces, unnecessary light reflected by the information recording surface which is not a recording / reproducing object is required light. It is preferable because it can be further away from the center.
  • the first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (29).
  • the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range.
  • the first best focus position is the best focus position of the necessary light used for CD recording / reproduction
  • the second best focus position is the best of the luminous flux having the largest light quantity among the unnecessary light that is not used for CD recording / reproduction. The focus position.
  • f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus
  • L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
  • conditional expression (29) ′ is satisfied. 0.10 ⁇ L / f13 ⁇ 0.25 (29) ′
  • FIGS. 11 (a), (b), and (c) show preferred examples of the first optical path difference providing structure described above.
  • FIG. 11 shows the first optical path difference providing structure ODS1 as a flat plate for convenience, it may be provided on a single aspherical convex lens.
  • the first basic structure BS1 which is a (1/1/1) diffraction structure is overlapped with the second basic structure BS2 which is a (2/1/1) diffraction structure.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS1 also faces the direction of the optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • the step of the first basic structure BS1 faces in the direction opposite to the optical axis OA
  • the step of the second basic structure BS2 also faces in the direction opposite to the optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • the focal length of the first light flux of the objective lens is f (mm)
  • the focal length of the first light flux of the objective lens is f (mm)
  • first optical path difference providing structure As described above, the preferable structure of the first optical path difference providing structure has been described focusing on the structure in which the blaze type (1/1/1) structure and the blaze type (2/1/1) structure are superimposed. Examples of other first optical path difference providing structures include the following.
  • a first optical path difference providing structure composed only of a blazed (2/1/1) structure or a (1/1/1) structure alone while utilizing the magnification difference of the objective lens.
  • the 1st optical path difference providing structure which becomes becomes.
  • a first optical path difference providing structure consisting only of a (1 / ⁇ 3 / ⁇ 4) structure which is a 7-level staircase structure or a 7-level staircase structure (1 / ⁇ ) 2 / -3) a first optical path difference providing structure consisting only of the structure, a first optical path difference providing structure consisting only of a (1 / -1 / -2) structure which is a 6-level stepped structure, and the like.
  • the blaze type (2/1/1) structure and a blaze-type (1/0/0) structure may be mentioned as a first optical path difference providing structure.
  • a first optical path difference providing structure in which a blaze type (2/1/1) structure and a (1/0/0) structure that is a four-level stepped structure are superimposed There is a first optical path difference providing structure in which a blaze type (2/1/1) structure and a (0/0/1) structure that is a two-level stepped structure are superimposed.
  • the second optical path difference providing structure is preferably a structure in which at least two basic structures of the third basic structure and the fourth basic structure are overlapped, but is not limited thereto.
  • both the third basic structure and the fourth basic structure are blazed structures.
  • the third basic structure makes the first-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the third basic structure. Is preferably larger than any other order of diffracted light.
  • the first-order diffracted light amount of the third light flux that has passed through the third basic structure is larger than any other order diffracted light amount.
  • the fourth foundation structure makes the second-order diffracted light amount of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light amount, and the first-order of the second light beam that has passed through the fourth foundation structure. Is preferably larger than any other order of diffracted light.
  • the first-order diffracted light amount of the third light flux that has passed through the fourth basic structure is larger than any other order diffracted light amount.
  • the orders of the diffracted light having the highest light intensity in the first basic structure and the third basic structure are matched, and the orders of the diffracted light having the highest light intensity in the second basic structure and the fourth basic structure are matched. Therefore, the spherical aberration can be made continuous even when the temperature and the wavelength change for the light flux passing through the central region and the intermediate region, and as a result, the occurrence of higher order aberrations can be suppressed.
  • the second optical path difference providing structure may be a structure in which the fifth basic structure is overlapped in addition to the third and fourth basic structures. However, in order to simplify the structure and suppress a decrease in light utilization efficiency due to manufacturing errors.
  • the second optical path difference providing structure preferably includes only the third basic structure and the fourth basic structure.
  • the fifth basic structure makes the 0th-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure.
  • the 0th-order diffracted light amount is made larger than any other order diffracted light amount
  • the G-th order diffracted light amount of the third light flux that has passed through the fifth basic structure is made larger than any other order diffracted light amount. It is preferable.
  • G is ⁇ 1.
  • the fifth basic structure is preferably a two-level staircase structure (also referred to as a binary structure) as shown in FIG.
  • the third-order diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the second-order diffracted light amount of the second light beam that has passed through the third basic structure is changed to other values.
  • the diffraction light quantity of any order is made larger (also referred to as (3/2) structure)
  • the second-order diffraction light quantity of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffraction light quantity
  • the first-order diffracted light amount of the second light beam that has passed through the four basic structures may be made larger than any other order diffracted light amount (also referred to as a (2/1) structure). With such a configuration, the diffraction efficiency in BD can be further increased.
  • the 3rd foundation structure and the 4th foundation structure are the combination of the (1/1) structure and the (2/1) structure, it is the combination of the (3/2) structure and the (2/1) structure.
  • the third basic structure provided at least in the middle region at the position closest to the central region has the step in the direction opposite to the optical axis, and at least in the middle region at the position closest to the central region.
  • step difference has faced the direction of an optical axis. More preferably, the steps of all the third foundation structures in the intermediate region are directed in the direction opposite to the optical axis, and the steps of all the fourth foundation structures in the intermediate region are directed in the direction of the optical axis. is there.
  • the spherical aberration changes in an undercorrected (under) direction
  • the wavelength of the incident light beam becomes longer. If it changes, the spherical aberration may change in the direction of under-correction (under).
  • the wavelength of the light source also increases due to the increase in the environmental temperature. Is used to correct the deterioration of the spherical aberration due to the change in the refractive index of the objective lens, so that a more appropriate condensing spot can be formed on the information recording surface of each optical disc when the environmental temperature changes.
  • the spherical aberration changes in the undercorrection (under) direction, and the incident light is incident on the other side.
  • the spherical aberration may be changed in the overcorrection (over) direction.
  • the spherical aberration when the wavelength of the incident light beam is changed so as to become longer, the spherical aberration changes in the undercorrection (under) direction. If the spherical aberration is changed in the overcorrection direction when the wavelength is changed to be longer, when the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the first aberration is changed.
  • the amount of change of the third-order spherical aberration when the wavelength of one light beam changes by +5 nm can be set to ⁇ 30 m ⁇ rms to +50 m ⁇ rms, which is preferable.
  • the amount of change in the third-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -10 m ⁇ rms or more and +10 m ⁇ rms or less. More preferably.
  • the amount of change in the fifth-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -20 m ⁇ rms or more and 20 m ⁇ rms or less. It is preferable that More preferably, it is ⁇ 10 m ⁇ rms or more and +10 m ⁇ rms or less.
  • the two-optical path difference providing structure is composed of only the third and fourth basic structures, flare can be easily produced when using the CD. Accordingly, flare out when using a CD can be performed with a simple second optical path difference providing structure, so that a decrease in light utilization efficiency due to a shadow effect is suppressed, and a decrease in light utilization efficiency due to manufacturing errors is also suppressed. As a result, the light utilization efficiency can be improved.
  • the spherical aberration is changed in an undercorrected (under) direction, and the wavelength of the incident light beam is longer in the third basic structure.
  • the spherical aberration changes in the overcorrected (over) direction because the flare can be easily moved farther when the CD is used.
  • the ring zone of the third basic structure is 1 to 3 in one ring zone closest to the central region of the fourth basic structure. It is preferable that the number (particularly preferably 2 to 3) is included. More preferably, in the second optical path difference providing structure, 1 to 5 (particularly preferably 2 to 3) ring zones of the third foundation structure are provided for one ring zone closest to the dedicated area of the fourth foundation structure. It is included.
  • the third optical path difference providing structure preferably has a sixth basic structure.
  • the P-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than any other order diffracted light amount, and the Q-order diffraction of the second light beam that has passed through the sixth basic structure.
  • the light quantity is made larger than any other order of diffracted light quantity, and the R-order diffracted light quantity of the third light flux that has passed through the sixth basic structure is made larger than any other order of diffracted light quantity.
  • P is preferably 5 or less in order to suppress fluctuations in diffraction efficiency during wavelength fluctuations.
  • FIG. 12 shows a schematic diagram of a preferable objective lens. It is the figure which showed the upper half from the optical axis among the cross sections of the objective lens containing optical axis OA. Note that FIG. 12 is a schematic diagram to the last, and is not a drawing showing an accurate length ratio or the like based on the embodiment.
  • a first optical path difference providing structure ODS1 is provided in the central area
  • a second optical path difference providing structure ODS2 is provided in the intermediate area
  • a third optical path difference providing structure is provided in the dedicated area.
  • the first optical path difference providing structure ODS1 in FIG. 12 has a (2/1/1) blazed structure and a second basic structure BS2 whose level difference faces the optical axis, and (1/1/1).
  • the blazed structure has a structure in which a first basic structure BS1 with a step facing away from the optical axis is superimposed.
  • the second foundation structure BS2 has three annular zones, and four annular zones of the first foundation structure BS1 are included on the annular zone (circular shape) closest to the optical axis in the second foundation structure BS2. ing.
  • two annular zones of the first foundation structure BS1 are included in one annular zone closest to the intermediate region in the second foundation structure BS2.
  • the second optical path difference providing structure ODS2 in FIG. 12 is a (2/1/1) blazed structure in which a step is directed toward the optical axis and a (1/1/1) fourth basic structure BS4.
  • the blazed structure has a structure in which a third basic structure BS3 having a level difference opposite to the optical axis is superimposed.
  • 4th foundation structure BS4 is a 3 ring zone
  • 3 ring zones of 3rd foundation structure BS3 are contained on the ring zone nearest to the center area
  • one ring zone of the third foundation structure BS3 is included in one ring zone closest to the dedicated area in the fourth foundation structure BS4.
  • the third optical path difference providing structure ODS3 in FIG. 12 is a (2/1/1) blaze structure, and is composed only of the sixth basic structure BS6 in which the step is directed toward the optical axis.
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
  • NA2 NA1> NA2
  • NA3 NA2> NA3
  • NA1 is preferably 0.8 or more and 0.95 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the objective lens is a BD-dedicated objective lens or a BD / DVD / CD compatible objective lens
  • the following conditional expression (31) is satisfied.
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux. Note that f is preferably 1.0 mm or more and 1.8 mm or less.
  • the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an optical pickup device that can form an optimum focused spot even when a light beam having a relatively large divergence angle is incident on an objective lens at the time of focus jump using an antireflection film. Can do.
  • (A) is a figure which shows the aspect which processes the metal mold
  • (b) is sectional drawing of the objective lens shape
  • (A) is a figure which shows the aspect which processes the metal mold
  • (b) is sectional drawing of the objective lens shape
  • FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region.
  • FIG. 1 It is a conceptual diagram of a 1st optical path difference providing structure, (a), (b), (c) shows the preferable example of a 1st optical path difference providing structure, (d) is a 1st foundation structure and a 2nd foundation structure, It is a figure which shows the example which superimposed. It is a schematic diagram of a preferable objective lens. It is a figure which shows schematically the structure of optical pick-up apparatus PU1 only for BD. It is a figure which shows roughly the structure of optical pick-up apparatus PU2 of this Embodiment which can record and / or reproduce
  • Example 5 is a graph showing the pupil radius on the vertical axis and the spherical aberration and the sine condition violation amount on the horizontal axis for Example 1.
  • the vertical axis represents the pupil radius
  • the horizontal axis represents the spherical aberration and the sine condition violation amount.
  • the vertical axis represents the pupil radius
  • the horizontal axis represents the spherical aberration and the sine condition violation amount.
  • the vertical axis represents the pupil radius and the horizontal axis represents the spherical aberration and the sine condition violation amount.
  • the vertical axis represents the pupil radius
  • the horizontal axis represents the spherical aberration and the sine condition violation amount.
  • FIG. 13 shows information recording appropriately on a BD that is an optical disc having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in ascending order of the distance from the light incident surface of the optical disc) in the thickness direction.
  • FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment. For example, FIG.
  • FIG. 13 shows a BD-dedicated optical pickup device, but by using two BD-dedicated objective lenses OBJ and DVD / CD-compatible objective lenses, light for BD / DVD / CD compatibility is used.
  • a pickup device can also be used. Further, in order to adapt to BDXL, it can be applied to an optical disc having four information recording surfaces in the thickness direction.
  • the optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the ⁇ / 4 wavelength plate QWP, Coupling CL having a positive lens unit L2 composed of one positive lens having a refractive power and a negative lens unit L3 composed of one negative lens having a negative refractive power, only the positive lens unit L2 in the optical axis direction.
  • the coupling lens CL is disposed between the polarizing prism PBS and the ⁇ / 4 wavelength plate QWP.
  • the objective lens OBJ does not have to be provided with an optical path difference providing structure.
  • the objective lens OBJ has a blaze shape as shown in FIG. It is desirable to provide a type as shown in (b).
  • the antireflection film provided on the first surface (light source side) of the objective lens OBJ has 2 to 4 layers
  • the antireflection film provided on the second surface (optical disk side) has 2 to 4 layers.
  • the number of layers of the antireflection film is preferably 3 or 4 on both the first surface and the second surface, and most preferably 3 layers.
  • the objective lens OBJ is a single lens made of plastic or glass, and has an antireflection film formed on at least the first surface S1 on the light source side.
  • the transmittance Tc in a circular central region inside 10% of the image-side numerical aperture NA of the first surface S1 and the transmittance in a ring-shaped peripheral region outside of 90% of the image-side numerical aperture NA of the first surface S1.
  • Tp satisfies the equation (1). 1.0 ⁇ Tp / Tc ⁇ 1.3 (1)
  • the positive lens group L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a weakly convergent light beam, it is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the first thickness is obtained by the objective lens OBJ.
  • the protective substrate PL1 Through the protective substrate PL1, the spot is formed on the first information recording surface RL1 as shown by the solid line.
  • the reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens group L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a substantially parallel light beam, it is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the second thickness is obtained by the objective lens OBJ. This is a spot formed on the second information recording surface RL2 as shown by the alternate long and short dash line through the protective substrate PL2 having a thickness (thicker than the first thickness).
  • the reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens group L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a weak divergent light beam, it is converted from linearly polarized light into circularly polarized light by the ⁇ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the third thickness is obtained by the objective lens OBJ. This is a spot formed on the third information recording surface RL3 as shown by the dotted line through the protective substrate PL3 (thicker than the second thickness).
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the objective lens OBJ is attached by the triaxial actuator AC2. Tilt along the radial direction and / or tangential direction of the optical disc. As a result, it is possible to stably record and / or reproduce information on the warped optical disc, and to maintain a good spot quality on the information recording surface even when the optical disc is tilted during rotation.
  • FIG. 14 shows BD, DVD, and CD, which are optical discs having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in ascending order of distance from the light incident surface of the optical disc) in the thickness direction.
  • RL1, RL2, and RL3 information recording surfaces RL1 to RL3
  • Such an optical pickup device PU2 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment. Further, in order to adapt to BDXL, it can be applied to an optical disc having four information recording surfaces in the thickness direction.
  • the first optical path difference providing structure already described in detail is formed in the center region CN
  • the second optical path difference providing structure already described in detail is formed in the intermediate region MD.
  • a third optical path difference providing structure is formed in the dedicated region OT.
  • the third optical path difference providing structure is a blazed diffractive structure.
  • the objective lens of the present embodiment is a plastic lens.
  • the first optical path difference providing structure formed in the central region CN of the objective lens OBJ is a structure in which the first basic structure and the second basic structure are overlapped.
  • the first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is set to any other order.
  • the first order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN.
  • the step is directed in the direction opposite to the optical axis, and in the second basic structure, the second-order diffracted light quantity of the first light beam that has passed through the second basic structure is greater than the diffracted light quantity of any other order.
  • the following diffracted light larger than the other diffracted light of any order, and larger than the third light flux of the first-order diffracted light of other diffraction light amount of any order which has passed through the second basic structure.
  • the antireflection film provided on the first surface (light source side) of the objective lens OBJ has 2 to 4 layers
  • the antireflection film provided on the second surface (optical disk side) has 5 to 9 layers.
  • the number of antireflection films on the first surface is preferably 3 or 4, and most preferably 3 layers. Further, the number of antireflection films on the second surface is preferably 7 layers, 8 layers, or 9 layers, and most preferably 7 layers.
  • the objective lens OBJ is a single lens made of plastic or glass, and has an antireflection film formed on at least the first surface S1 on the light source side.
  • the transmittance Tc in a circular central region inside 10% of the image-side numerical aperture NA of the first surface S1 and the transmittance in a ring-shaped peripheral region outside of 90% of the image-side numerical aperture NA of the first surface S1.
  • Tp satisfies the equation (1). 1.0 ⁇ Tp / Tc ⁇ 1.3 (1)
  • the coupling lens COL is moved to the first predetermined position by a single-axis actuator (not shown).
  • the first information recording surface is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the objective lens OBJ passes through the transparent substrate PL1 having the first thickness. It becomes a spot formed on RL1.
  • the reflected light flux modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and coupled to the coupling lens COL. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the coupling lens COL is moved to the second predetermined position by a uniaxial actuator (not shown).
  • the / 4 wavelength plate QWP converts linearly polarized light into circularly polarized light
  • the diameter of the light beam is regulated by a diaphragm (not shown)
  • the second information recording surface RL2 is passed through the transparent substrate PL2 having the second thickness by the objective lens OBJ. It becomes a spot formed on the top.
  • the reflected light flux modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and coupled to the coupling lens COL. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the coupling lens COL is moved to a third predetermined position by a uniaxial actuator (not shown).
  • the linearly polarized light is converted into circularly polarized light by the ⁇ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the third information recording surface is passed through the transparent substrate PL3 having the third thickness by the objective lens OBJ. It becomes a spot formed on RL3.
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OBJ.
  • the light beam condensed by the central region and the intermediate region of the objective lens OBJ (the light beam that has passed through the dedicated region is flared and forms a spot peripheral portion) is recorded on the DVD through the protective substrate PL4. It becomes a spot formed on the surface RL4 and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL4 is transmitted again through the objective lens OBJ, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a parallel light beam by the collimator lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on DVD can be read using the output signal of light receiving element PD.
  • the linearly polarized light is converted into circularly polarized light by the ⁇ / 4 wavelength plate QWP, and is incident on the objective lens OBJ.
  • the light beam collected by the central region of the objective lens OBJ (the light beam that has passed through the intermediate region and the dedicated region is flared and forms a spot peripheral portion) is recorded on the CD information record through the protective substrate PL5. This is a spot formed on the surface RL5.
  • the reflected light flux modulated by the information pits on the information recording surface RL5 is again transmitted through the objective lens OBJ, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a parallel light flux by the collimator lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on CD can be read using the output signal of light receiving element PD.
  • N ⁇ 2 represents the refractive index of each surface at wavelength ⁇ 2
  • N ⁇ 3 represents the refractive index of each surface at wavelength ⁇ 3
  • t represents the transparent substrate thickness (mm).
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E-3
  • the optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by an equation in which the coefficient shown in Table 1 is substituted into Equation (1).
  • X (h) is an axis in the optical axis direction (the light traveling direction is positive)
  • is a conical coefficient
  • a i is an aspheric coefficient
  • h is a height from the optical axis
  • r is a paraxial curvature. Radius.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation obtained by substituting the coefficient shown in the table into the optical path difference function of Formula 2.
  • h is the height from the optical axis
  • is the wavelength of the incident light beam
  • m is the diffraction order
  • B 2i is the coefficient of the optical path difference function.
  • Example 1 is a BD-dedicated resin objective lens composed only of a refractive surface.
  • Table 1 shows lens data of Example 1.
  • FIG. 15 shows a graph of spherical aberration and sine condition violation amount of Example 1.
  • Example 2 is a BD-dedicated resinous objective lens composed only of a refractive surface.
  • Table 2 shows lens data of Example 2.
  • FIG. 16 shows a graph of spherical aberration and sine condition violation amount of Example 2.
  • Example 3 is a BD-dedicated resin objective lens having an optical path difference providing structure. Such an optical path difference providing structure is a type that is folded back halfway as shown in FIG. Table 3 shows lens data of Example 3.
  • FIG. 17 shows a graph of spherical aberration and sine condition violation amount of Example 3.
  • Example 4 is a BD-dedicated resin objective lens having an optical path difference providing structure.
  • Such an optical path difference providing structure is a type in which the step surface is always directed to the optical axis, as shown in FIG. Table 4 shows lens data of Example 4.
  • FIG. 18 shows a graph of spherical aberration and sine condition violation amount of Example 4.
  • Example 5 is a resin objective lens having a diffraction structure compatible with BD / DVD / CD.
  • Table 5 shows lens data of Example 5.
  • Example 5 the objective lens is divided into three regions (a central region, an intermediate region, and a dedicated region) centered on the optical axis, and the first optical path difference providing structure is (2, 1,
  • the optical path difference providing structure is formed by superimposing the first basic structure, which is the blazed diffraction structure (1, 1, 1), on the second basic structure, which is the blazed diffraction structure 1).
  • the second optical path difference providing structure has a (1, 1, 1) blazed diffraction pattern in a fourth basic structure that is a (2, 1, 1) blazed diffraction structure in the entire intermediate region.
  • the third basic structure which is a structure, is overlapped, and an optical path difference providing structure in which a fifth basic structure, which is a binary diffraction structure of (0, 0, 1), is further overlapped. Furthermore, the third optical path difference providing structure is a (2, 1, 1) blazed diffractive structure in the entire exclusive region.
  • FIG. 20 is a graph showing the relationship between the pupil radius (effective diameter is 100%) and the transmittance in the first design example of the antireflection film.
  • the transmittance gradually increases as the pupil radius increases from 0, the transmittance reaches the maximum value (97%) at the pupil radius of 65%, and then gradually decreases. That is, the transmittance continuously changes within the effective diameter according to the height from the optical axis.
  • FIG. 21 is a graph showing the relationship between the pupil radius (effective diameter is 100%) and the transmittance in the second design example of the antireflection film.
  • the transmittance gradually increases as the pupil radius increases from 0, the transmittance reaches the maximum value (92%) at the pupil radius of 75%, and then gradually decreases. That is, the transmittance continuously changes within the effective diameter according to the height from the optical axis.
  • the design examples 1 and 2 of the antireflection film are both antireflection films formed on the objective lenses of Examples 1 to 5 described above.
  • a total of 10 examples can be considered: an example in which the antireflection film of design example 1 is provided, and an example in which the antireflection film of back diameter example 2 is provided.
  • the first surface and the second surface have a three-layer structure.
  • Table 6 the values shown in the claims are summarized in Table 6, and the specific numerical configuration of the antireflection film applied to each surface is shown in Table 7.
  • Table 7 the first layer is a layer in contact with the lens surface, the second layer is a layer applied over the first layer, and the third layer is a layer applied over the second layer.
  • the antireflection film having a three-layer structure preferably has a structure in which a high refractive index second layer is sandwiched between a low refractive index first layer and a third layer.
  • the high refractive index material is preferably an oxide of zirconium, and the low refractive index material is preferably an oxide of silicon, but is not limited thereto.

Abstract

Provided is an optical pickup device that utilizes an antireflection film so as to be able to form an optimal focused spot even when a light beam with a relatively large divergence angle is incident on an objective lens at the time of a focus jump. In the objective lens on which the antireflection film is formed, if the transmittance (Tc) of the central region of a circle formed within the 10% range from the center of the effective diameter of a first surface and the transmittance (Tp) of an annular peripheral region formed outside the 90% range of the effective diameter of the first surface are set to meet equation (1), the rim intensity (perimeter intensity) of the spotlight is increased such that a so-called super-resolution phenomenon occurs, allowing the diameter of the focused spot to be reduced. Consequently, an optimal focused spot can be formed even in the event when a light beam with a relatively large divergence angle is incident on the objective lens. Thus, the recording/reproducing characteristics of the optical pickup device can be improved. 1.0<Tp/Tc<1.3 (1)

Description

光ピックアップ装置Optical pickup device
 本発明は、厚さ方向に3つ以上の情報記録面を有する光ディスクに対して情報の記録及び/又は再生を行える光ピックアップ装置に関する。 The present invention relates to an optical pickup device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction.
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。 There is known a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm. As an example, an optical disc for recording / reproducing information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-ray Disc (hereinafter referred to as BD), DVD (NA 0.6, light source wavelength 650 nm, storage capacity 4. It is possible to record 25 GB of information per layer on an optical disk having a diameter of 12 cm, which is the same size as 7 GB).
 ところで、従来のBDは1層もしくは2層の情報記録面を有しているものが多いが、1枚のBDに、より大きなデータを保存したいという市場の要求から、3層以上の情報記録面を有するBDについても実用化を目指して研究が進んでおり、一部製品化されている。
しかるに、情報の記録/再生を行う際の光束のNAが0.85と大きいため、複数の情報記録面を有するBDでは、一の情報記録面に対して最小の球面収差を付与するようにすると、基板厚さが異なる他の情報記録面においては球面収差が増大し、適切に情報の記録/再生を行えなくなるという問題がある。かかる球面収差の問題は情報記録面の数が多くなるほど(すなわち、表面からの距離が最も小さい情報記録面と表面からの距離が最も大きい情報記録面との間隔が大きくなるほど)顕在化する。
By the way, many of the conventional BDs have an information recording surface of one layer or two layers, but due to the market demand for storing larger data on one BD, the information recording surface of three layers or more. Research is also progressing with the aim of commercializing BDs having, and some have been commercialized.
However, since the NA of the luminous flux when recording / reproducing information is as large as 0.85, in a BD having a plurality of information recording surfaces, a minimum spherical aberration is imparted to one information recording surface. However, on other information recording surfaces with different substrate thicknesses, there is a problem that spherical aberration increases and information cannot be properly recorded / reproduced. The problem of spherical aberration becomes more apparent as the number of information recording surfaces increases (that is, as the distance between the information recording surface having the smallest distance from the surface and the information recording surface having the largest distance from the surface increases).
 これに対し特許文献1には、光源と対物レンズとの間に配置したカップリングレンズを光軸方向に移動させることで対物レンズの倍率を変更し、選択した情報記録面に対して、3次球面収差を抑えた光束を集光させることができる光ピックアップ装置が開示されている。尚、情報の記録/再生を行うべき情報記録面をある情報記録面から他の情報記録面へと変える動作を、本明細書では「層間フォーカスジャンプ」と呼ぶことがある。 On the other hand, in Patent Document 1, the magnification of the objective lens is changed by moving a coupling lens arranged between the light source and the objective lens in the optical axis direction, and the selected information recording surface is tertiary. An optical pickup device capable of condensing a light beam with reduced spherical aberration is disclosed. The operation of changing the information recording surface on which information is to be recorded / reproduced from one information recording surface to another information recording surface may be referred to as “interlayer focus jump” in this specification.
特許第4144763号明細書Japanese Patent No. 4144663
 ところで、特許文献1に開示された従来の光ピックアップ装置では、2層ディスクの記録再生時にカップリングレンズを光軸方向に移動させ、対物レンズの倍率を変化させることによって、層間フォーカスジャンプにより発生する球面収差を補正しているが、対物レンズの倍率が変わるとNAが変化するため、このNA変化に応じて情報記録面上の集光スポットサイズが変化することとなり、これにより記録/再生特性が劣化する虞がある。より具体的には、光ディスクにおいて表面からの距離が最も大きい情報記録面であるL0層に記録/再生を行う場合は、対物レンズに発散光が入射するため、基準状態(対物レンズの倍率がゼロの状態)よりもNAが小さくなるので、集光スポット径が大きくなってしまう。その結果、ジッター等の記録/再生特性に悪影響を与える可能性が大きくなる。かかる対物レンズの集光スポット径変化は、倍率変化が大きいほど、即ち、層間フォーカスジャンプにより発生する球面収差量が大きいほど、顕著になる傾向がある。 By the way, in the conventional optical pickup device disclosed in Patent Document 1, it is generated by an interlayer focus jump by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens at the time of recording / reproducing of the double-layer disc. Although the spherical aberration is corrected, the NA changes when the magnification of the objective lens is changed. Therefore, the condensing spot size on the information recording surface changes according to the change in the NA. There is a risk of deterioration. More specifically, when recording / reproducing is performed on the L0 layer, which is the information recording surface having the longest distance from the surface of the optical disc, divergent light is incident on the objective lens, so that the reference state (the objective lens magnification is zero). NA) becomes smaller than that in the above state), so that the diameter of the focused spot is increased. As a result, the possibility of adversely affecting recording / reproducing characteristics such as jitter increases. The change in the focused spot diameter of the objective lens tends to become more prominent as the change in magnification is larger, that is, as the amount of spherical aberration generated by the interlayer focus jump is larger.
 更に、3層以上の情報記録面を有する光ディスクはBD-XLと呼ばれるが、BD-XLでは、層間フォーカスジャンプにより発生する球面収差量が2層ディスクよりも大きくなるため、球面収差を補正するための対物レンズの倍率変化がより大きくなるという特性がある。従って、上述した集光スポット径変化に伴う記録再生特性劣化が、BD-XLに対応していない従来のBD用ピックアップよりもより顕在化するといえる。加えて、温度変化時に発生する球面収差を補正するために、カップリングレンズを光軸方向に変位させる場合もあるが、これにより対物レンズの倍率変化がより大きくなり、上述した問題が更に顕在化することとなる。 Furthermore, an optical disc having an information recording surface of three or more layers is called BD-XL. In BD-XL, the amount of spherical aberration generated by an interlayer focus jump is larger than that of a two-layer disc, so that spherical aberration is corrected. There is a characteristic that the magnification change of the objective lens becomes larger. Therefore, it can be said that the above-described recording / reproduction characteristic deterioration due to the change in the condensed spot diameter becomes more prominent than the conventional BD pickup that does not support BD-XL. In addition, the coupling lens may be displaced in the direction of the optical axis in order to correct the spherical aberration that occurs when the temperature changes, but this makes the change in magnification of the objective lens larger, and the above problem becomes more apparent. Will be.
 本発明は、上述の問題を考慮してなされたものであり、反射防止膜を利用して、フォーカスジャンプ時において対物レンズに比較的大きい発散角の光束が入射した場合にも、最適な集光スポットを形成できる光ピックアップ装置を提供することを目的とする。 The present invention has been made in consideration of the above-described problems, and uses an anti-reflection film to achieve optimum focusing even when a light beam having a relatively large divergence angle is incident on an objective lens during a focus jump. An object of the present invention is to provide an optical pickup device capable of forming a spot.
 請求項1に記載の光ピックアップ装置は、波長λ1(390nm<λ1<415nm)の光束を出射する光源と、カップリングレンズと、対物レンズとを有し、前記カップリングレンズを光軸方向に変位させることによって、光束入射面からの距離(透明基板厚)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクにおけるいずれかの情報記録面を選択し、前記光源から出射された波長λ1の光束を前記対物レンズにより前記選択された情報記録面に集光することによって、情報の記録及び/または再生を行う光ピックアップ装置であって、
 前記対物レンズは、像側開口数(NA)が0.8以上、0.95未満の単玉レンズであり、少なくとも光源側となる第1面に反射防止膜を形成してなり、
 前記反射防止膜が形成された前記対物レンズにおいて、前記像側開口数NAの10%より内側の中心領域における透過率Tcと、前記像側開口数NAの90%より外側の周辺領域における透過率Tpとが、(1)式を満たすことを特徴とする。
1.0<Tp/Tc<1.3   (1)
The optical pickup device according to claim 1 includes a light source that emits a light beam having a wavelength λ1 (390 nm <λ1 <415 nm), a coupling lens, and an objective lens, and the coupling lens is displaced in an optical axis direction. By selecting one of the information recording surfaces in the optical disc having three or more information recording surfaces in the thickness direction that are different from each other in distance (transparent substrate thickness) from the light beam incident surface, the wavelength λ1 emitted from the light source is selected. An optical pickup device that records and / or reproduces information by condensing the light beam on the selected information recording surface by the objective lens,
The objective lens is a single lens having an image-side numerical aperture (NA) of 0.8 or more and less than 0.95, and an antireflection film is formed at least on the first surface on the light source side,
In the objective lens on which the antireflection film is formed, the transmittance Tc in a central region inside 10% of the image-side numerical aperture NA and the transmittance in a peripheral region outside 90% of the image-side numerical aperture NA. Tp satisfies the expression (1).
1.0 <Tp / Tc <1.3 (1)
 本発明によれば、前記反射防止膜が形成された前記対物レンズにおいて、前記像側開口数NAの10%より内側の中心領域における透過率Tcと、前記像側開口数NAの90%より外側の周辺領域における透過率Tpとが、(1)式を満たすようにすれば、リム強度(対物レンズの光軸付近を通過する光の強度に対する周辺部を通過する光の強度)が増大するので、いわゆる超解像現象が生じ、集光したスポットの径を絞ることができる。これにより、フォーカスジャンプ時において前記対物レンズに比較的大きい発散角の光束が入射した場合にも、最適な集光スポットを形成できるため、光ピックアップ装置の記録/再生特性を向上することができる。より好ましくは、以下の式を満たすことである。
1.05<Tp/Tc<1.25   (1’)
According to the present invention, in the objective lens on which the antireflection film is formed, the transmittance Tc in the central region inside 10% of the image-side numerical aperture NA and the outer side of 90% of the image-side numerical aperture NA. If the transmittance Tp in the peripheral region of the lens satisfies the expression (1), the rim intensity (the intensity of light passing through the peripheral portion with respect to the intensity of light passing near the optical axis of the objective lens) increases. A so-called super-resolution phenomenon occurs, and the diameter of the focused spot can be reduced. As a result, even when a light beam having a relatively large divergence angle is incident on the objective lens during the focus jump, an optimum condensing spot can be formed, so that the recording / reproducing characteristics of the optical pickup device can be improved. More preferably, the following expression is satisfied.
1.05 <Tp / Tc <1.25 (1 ′)
 請求項2に記載の光ピックアップ装置は、請求項1に記載の発明において、前記第1面に施された反射防止膜は、垂直入射光に対する反射率が最小となる波長λ0(nm)と、前記波長λ1(nm)とが(2)式を満たすことを特徴とする。
1.30<λ0/λ1<1.90   (2)
An optical pickup device according to a second aspect is the optical pickup device according to the first aspect, wherein the antireflection film applied to the first surface has a wavelength λ0 (nm) at which the reflectance with respect to the normal incident light is minimized, The wavelength λ1 (nm) satisfies the formula (2).
1.30 <λ0 / λ1 <1.90 (2)
 (2)式の値の下限を上回ることで、より確実に周辺領域の透過率が小さく、リム強度を大きくすることが出来る。一方、(2)式の値が上限を超えないようにすることで、有効径全体の透過率が小さくなることを防ぎ、光の利用効率が低下することもを防止できる。つまり、(2)式の条件を満たすことにより、中心領域よりも周辺領域の透過率が大きくなり、適切にリム強度を大きくすることが出来るのである。より好ましくは、以下の式を満たすことである。
1.40<λ0/λ1<1.85   (2’)
By exceeding the lower limit of the value of equation (2), the transmittance of the peripheral region can be more reliably reduced and the rim strength can be increased. On the other hand, by preventing the value of the expression (2) from exceeding the upper limit, it is possible to prevent the transmittance of the entire effective diameter from being reduced and to prevent the light utilization efficiency from being lowered. That is, by satisfying the condition of the expression (2), the transmittance of the peripheral region is larger than that of the central region, and the rim strength can be appropriately increased. More preferably, the following expression is satisfied.
1.40 <λ0 / λ1 <1.85 (2 ′)
 請求項3に記載の光ピックアップ装置は、請求項1又は2に記載の発明において、前記波長防止膜の透過率は、光軸からの高さに応じて有効径内で連続的に変化することを特徴とする。 According to a third aspect of the present invention, in the optical pickup device according to the first or second aspect, the transmittance of the wavelength prevention film continuously changes within an effective diameter according to the height from the optical axis. It is characterized by.
 中央領域と周辺領域とで透過率に差を持たせる場合、中央領域の透過率と周辺領域の透過率をそれぞれ一定にし、中央領域と周辺領域の間の透過率を直線的にすることが考えられるが、このような場合、反射防止膜を領域毎に施す必要があり成膜工程が複雑になり製造コストが上昇する。これに対し、光軸からの高さに応じて有効径内で連続的に変化するような透過率特性とすることにより、反射防止膜を領域毎に施す必要がなくなり反射防止膜の成膜工程が単純になるので、対物レンズの製造コストを抑えることが可能となる。最も光軸に近い領域から最も周辺の領域まで、反射防止膜の透過率が曲線状に連続して変化することが好ましい。 If there is a difference in transmittance between the central region and the peripheral region, the transmittance of the central region and the peripheral region may be kept constant, and the transmittance between the central region and the peripheral region may be linear. However, in such a case, it is necessary to apply an antireflection film for each region, which complicates the film formation process and increases the manufacturing cost. On the other hand, by setting the transmittance characteristics so as to continuously change within the effective diameter according to the height from the optical axis, there is no need to apply an antireflection film for each region, and the film formation process of the antireflection film Therefore, the manufacturing cost of the objective lens can be reduced. It is preferable that the transmittance of the antireflection film continuously changes in a curved line from the region closest to the optical axis to the peripheral region.
 請求項4に記載の光ピックアップ装置は、請求項1~3のいずれかに記載の発明において、前記対物レンズは樹脂製であることを特徴とする。 According to a fourth aspect of the present invention, in the optical pickup device according to any one of the first to third aspects, the objective lens is made of resin.
 コストダウンや軽量化のため、対物レンズを樹脂化した場合、ガラスなどに比べ温度変化時の屈折率変化量が大きくなるから、温度変化時に生じる球面収差劣化を無視できなくなる。そこで、層間フォーカスジャンプにより発生する球面収差補正に加えて、温度変化時の球面収差劣化を補正するために、対物レンズの倍率をより大きく変化させることが行われる。かかる場合、上述した集光スポット径変化に伴う記録/再生特性劣化が更に顕在化するといえる。特に、表面からの距離が最も大きい情報記録面L0層に対して記録/再生を行う際に、対物レンズが高温になったときは、対物レンズにより強い発散光が入射するため、集光スポット径がより大きくなり、ジッターに悪影響を与える可能性がより大きくなる。これに対し本発明によれば、(1)式を満たす特性の反射防止膜を施すことにより、対物レンズに強い発散光束が入射した場合でも、集光スポット径が大きくなりすぎないようにすることが可能となる。即ち、対物レンズが樹脂製である場合、本発明の課題が大きくなるが、そのような場合であっても本発明は当該課題を解決できるため、本願発明の効果がより顕著になると言える。 When the objective lens is made of resin for cost reduction and weight reduction, the amount of change in the refractive index at the time of temperature change is larger than that of glass and so on, and spherical aberration deterioration that occurs at the time of temperature change cannot be ignored. Therefore, in addition to correcting the spherical aberration caused by the interlayer focus jump, the magnification of the objective lens is changed more greatly in order to correct the spherical aberration deterioration at the time of temperature change. In such a case, it can be said that the recording / reproduction characteristic deterioration due to the above-mentioned change in the diameter of the focused spot is further manifested. In particular, when recording / reproducing is performed on the information recording surface L0 layer having the longest distance from the surface, when the objective lens becomes high temperature, strong divergent light is incident on the objective lens. Becomes larger and the possibility of adversely affecting the jitter becomes larger. On the other hand, according to the present invention, the anti-reflection film satisfying the expression (1) is applied so that the focused spot diameter does not become too large even when a strong divergent light beam is incident on the objective lens. Is possible. That is, when the objective lens is made of resin, the problem of the present invention is increased. However, even in such a case, the present invention can solve the problem, and it can be said that the effect of the present invention becomes more remarkable.
 請求項5に記載の光ピックアップ装置は、請求項4に記載の発明において、前記対物レンズの光学面には、前記対物レンズにおいて温度変化が生じた際に発生する球面収差を補正するための光路差付与構造が形成されていることを特徴とする。 According to a fifth aspect of the present invention, in the optical pickup device according to the fourth aspect of the present invention, an optical path for correcting a spherical aberration that occurs when a temperature change occurs in the objective lens on the optical surface of the objective lens. A difference providing structure is formed.
 対物レンズに、温度変化が生じた際に発生する球面収差を補正するための光路差付与構造を設ける場合、光路差付与構造の形状誤差や成形転写不良により、透過率が小さくなる問題が生じるが、かかる問題は、回折ピッチが小さくなりがちな有効径周辺でより顕在化する。これに対し、(1)式を満たす反射防止膜を施すことにより、かかる透過率低下を補償することが可能となる。さらに、このような光路差付与構造を設けることで、対物レンズの温度が変化した際の球面収差発生量が小さく抑えられるため、カップリングレンズを光軸方向に変位させることにより、温度変化時の球面収差補正を行った時の倍率変化が小さくなり、相乗効果によって集光スポット径変化を抑制することが出来る。 When the objective lens is provided with an optical path difference providing structure for correcting spherical aberration that occurs when a temperature change occurs, there is a problem that the transmittance is reduced due to a shape error of the optical path difference providing structure or a molding transfer defect. Such a problem becomes more apparent around the effective diameter where the diffraction pitch tends to be small. On the other hand, it is possible to compensate for such a decrease in transmittance by applying an antireflection film satisfying the expression (1). Furthermore, by providing such an optical path difference providing structure, the amount of spherical aberration generated when the temperature of the objective lens changes can be kept small, so by displacing the coupling lens in the optical axis direction, The change in magnification when spherical aberration correction is performed is reduced, and the change in the focused spot diameter can be suppressed by a synergistic effect.
 請求項6に記載の光ピックアップ装置は、請求項1~5のいずれかに記載の発明において、前記光路差付与構造は前記光源側の光学面に形成され、前記光軸に沿って延在する段差面と、輪帯状の面とを交互に接続してなり、前記光路差付与構造において、前記光軸付近には、前記段差面が光軸とは逆側を向いた負の段差構造が設けられ、前記負の段差構造より前記光軸から遠い位置には、前記段差面が光軸側を向いた正の段差構造が設けられ、前記負の段差構造における段差面は前記光軸に対して平行であり、前記正の段差構造における段差面は前記光軸に対して非平行であることを特徴とする。 According to a sixth aspect of the present invention, in the optical pickup device according to any of the first to fifth aspects, the optical path difference providing structure is formed on the optical surface on the light source side and extends along the optical axis. In the optical path difference providing structure, a negative step structure in which the step surface faces away from the optical axis is provided near the optical axis in the optical path difference providing structure. A positive step structure in which the step surface faces the optical axis side is provided at a position farther from the optical axis than the negative step structure, and the step surface in the negative step structure is relative to the optical axis. It is parallel, and the step surface in the positive step structure is non-parallel to the optical axis.
 光路差付与構造により温度特性を補正する場合、レンズ中心から周辺に向かう従い、段差の向きが負から正に入れ替わる正負切り替えタイプのほうが、段差の向きの入れ替わりがないタイプよりも回折ピッチを大きく確保できるので、金型加工時の製造誤差や成形転写不良による透過率低下への影響が小さいレンズを得ることが可能になる。 When correcting the temperature characteristics using the optical path difference providing structure, the positive / negative switching type in which the direction of the step changes from negative to positive according to the direction from the lens center to the periphery ensures a larger diffraction pitch than the type in which the direction of the step does not change. As a result, it is possible to obtain a lens that has a small influence on the reduction in transmittance due to manufacturing errors during molding and molding transfer defects.
 請求項6に係る発明について図面を参照して説明する。光軸に沿って延在する段差面と、輪帯状の屈折面とを交互に接続してなる光路差付与構造において、光軸付近には、段差面が光軸とは逆側を向いた負の段差構造が設けられ、負の段差構造より光軸から遠い位置には、段差面が光軸側を向いた正の段差構造が設けられたタイプがある。 The invention according to claim 6 will be described with reference to the drawings. In an optical path difference providing structure in which a step surface extending along the optical axis and an annular refracting surface are alternately connected, a negative surface with the step surface facing away from the optical axis is located near the optical axis. There is a type in which a positive step structure with a step surface facing the optical axis is provided at a position farther from the optical axis than the negative step structure.
 ところで、このようなタイプの光路差付与構造を有する対物レンズを成形する金型を製造する場合、剣先バイトと呼ばれる先の尖った工具を用いて、光路差付与構造に対応した微小形状を形成することが一般的である。剣先バイトBTは、図1,2に示すように、そのすくい面SPが、鋭角に交差する第1の稜線E1と、第1の稜線E1より軸線MAから近い第2の稜線E2とにより縁取られている。 By the way, when manufacturing a mold for molding an objective lens having such a type of optical path difference providing structure, a minute shape corresponding to the optical path difference providing structure is formed using a sharp tool called a sword tip tool. It is common. As shown in FIGS. 1 and 2, the sword tip bite BT has a rake face SP bordered by a first ridge line E1 intersecting at an acute angle and a second ridge line E2 closer to the axis MA than the first ridge line E1. ing.
 まず、図1(a)に示す金型の加工態様によれば、剣先バイトBTの第2の稜線E2を、金型の素材Mを軸線MAと平行にし、金型の素材Mを軸線MA中心に回転させながら、矢印で示すように、剣先バイトBTを周辺側から軸線MAに近づくように移動させ且つそれに同期して光軸方向にステップ状に変位させながら切削を行う。このとき、金型の素材Mにおいて、軸線MAと逆側を向く段差壁M2については、第2の稜線E2で切削されるので、軸線MAと平行に延在するようになる。これに対し、軸線MA側を向く段差壁M1については、第1の稜線E1で切削されるので、軸線MAに対して、剣先バイトBTの交差角に等しい角度だけ軸線間に対して傾くこととなる。 First, according to the processing mode of the mold shown in FIG. 1A, the second edge E2 of the sword tip tool BT is set so that the mold material M is parallel to the axis MA and the mold material M is centered on the axis MA. As shown by the arrows, the blade tip BT is moved from the peripheral side so as to approach the axis MA and is cut while being displaced stepwise in the optical axis direction in synchronization therewith. At this time, in the mold material M, the step wall M2 facing away from the axis MA is cut by the second ridge line E2, and thus extends in parallel with the axis MA. On the other hand, since the step wall M1 facing the axis MA side is cut by the first ridge line E1, it is inclined with respect to the axis line by an angle equal to the crossing angle of the sword tip tool BT. Become.
 図1(a)に示す加工態様により加工された金型を用いて対物レンズを成形すると、図1(b)に示す対物レンズOBJの形状が得られ、この対物レンズOBJは、光軸付近には、段差壁M1により成形されてなる段差面ST1が光軸OAとは逆側を向いた負の段差構造NSSが設けられ、負の段差構造NSSより光軸から遠い位置には、段差壁M2により成形されてなる段差面ST2が光軸側を向いた正の段差構造PSSが設けられた光路差付与構造を有している。 When the objective lens is molded using the mold processed in the processing mode shown in FIG. 1A, the shape of the objective lens OBJ shown in FIG. 1B is obtained, and this objective lens OBJ is located near the optical axis. Is provided with a negative step structure NSS in which the step surface ST1 formed by the step wall M1 faces away from the optical axis OA, and at a position farther from the optical axis than the negative step structure NSS, the step wall M2 is provided. Has a light path difference providing structure provided with a positive step structure PSS in which the step surface ST2 formed by the step faces the optical axis side.
 図1(b)に示す対物レンズOBJに平行光を入射させた場合、光軸OAに対して傾いている段差面ST1に入射した光線は、集光スポットの形成に用いられない。一方、輪帯状の面に入射した光線のうち、段差面ST2を通過する光線も、同様に集光スポットの形成に用いられない。これを光線のケラレという。 When collimated light is incident on the objective lens OBJ shown in FIG. 1B, the light beam incident on the step surface ST1 tilted with respect to the optical axis OA is not used for forming a condensed spot. On the other hand, among the light rays incident on the ring-shaped surface, the light rays that pass through the step surface ST2 are also not used for the formation of the condensed spot. This is called ray vignetting.
 一方、図2(a)に示す金型の加工態様によれば、剣先バイトBTの第1の稜線E1を、金型の素材Mを軸線MAと平行にし、金型の素材Mを軸線MA中心に回転させながら、矢印で示すように、剣先バイトBTを周辺側から軸線MAに近づくように移動させ且つそれに同期して光軸方向にステップ状に変位させながら切削を行う。このとき、金型の素材Mにおいて、軸線MAと逆側を向く段差壁M2については、第2の稜線E2で切削されるので、軸線MAに対して傾くようになるが、軸線MA側を向く段差壁M1については、第1の稜線E1で切削されるので、軸線MAに対して平行になる。尚、切削加工中に剣先バイトBTを回転させることで、段差壁M1,M2を共に平行とする加工態様の試みもあるが、現時点では金型加工の難易度が飛躍的に上がるため、製造コストへの影響が懸念されている。 On the other hand, according to the mold machining mode shown in FIG. 2 (a), the first edge E1 of the sword tip bite BT is set so that the mold material M is parallel to the axis MA and the mold material M is centered on the axis MA. As shown by the arrows, the blade tip BT is moved from the peripheral side so as to approach the axis MA and is cut while being displaced stepwise in the optical axis direction in synchronization therewith. At this time, in the mold material M, the step wall M2 facing the opposite side to the axis MA is cut by the second ridge line E2, so that it tilts with respect to the axis MA, but faces the axis MA side. About the level | step difference wall M1, since it cuts with the 1st ridgeline E1, it becomes parallel with respect to the axis line MA. In addition, there is an attempt of a machining mode in which both the step walls M1 and M2 are parallel by rotating the sword tip tool BT during cutting, but at the present time, since the difficulty of die machining increases dramatically, the manufacturing cost There are concerns about the impact on
 図2(a)に示す加工態様により加工された金型を用いて対物レンズを成形すると、図2(b)に示す対物レンズOBJの形状が得られ、この対物レンズOBJも、光軸付近には、段差壁M1により成形されてなる段差面ST1が光軸OAとは逆側を向いた負の段差構造NSSが設けられ、負の段差構造NSSより光軸から遠い位置には、段差壁M2により成形されてなる段差面ST2が光軸側を向いた正の段差構造PSSが設けられた光路差付与構造を有している。つまり、負の段差構造NSSにおける段差面ST1は光軸OAに対して平行であり、正の段差構造PSSにおける段差面ST2は光軸OAに対して非平行である。 When the objective lens is molded using the mold processed according to the processing mode shown in FIG. 2A, the shape of the objective lens OBJ shown in FIG. 2B is obtained. This objective lens OBJ is also located near the optical axis. Is provided with a negative step structure NSS in which the step surface ST1 formed by the step wall M1 faces away from the optical axis OA, and at a position farther from the optical axis than the negative step structure NSS, the step wall M2 is provided. Has a light path difference providing structure provided with a positive step structure PSS in which the step surface ST2 formed by the step faces the optical axis side. That is, the step surface ST1 in the negative step structure NSS is parallel to the optical axis OA, and the step surface ST2 in the positive step structure PSS is non-parallel to the optical axis OA.
 図2(b)に示す対物レンズOBJに平行光を入射させた場合、段差面ST1は光軸OAに対して平行であるので、実質的に光線が段差面ST1に入射することはなく、光線のケラレが生じることがない。即ち、集光スポットの形成に用いられないのは、段差面ST2から入射する光線のみであり、図1(b)と比較すると明らかであるが、図2(b)の対物レンズの方がハッチングで示す光量損失領域が少なく、光の利用効率の観点から優れていると言える。つまり図2(b)の対物レンズを選択することにより、金型加工難易度が低く、製造コストが抑えられ、透過率が十分に高い対物レンズを搭載したピックアップ装置を得ることが出来る。一方、図2(b)のようなレンズは、光軸から離れた領域の透過率が低くなりがちとなるため、集光スポット径が大きくなってしまう課題がより大きくなるが、本発明におれば、当該課題も解決できるため、金型加工難易度が低く、製造コストが抑えられ、透過率が十分に高く、且つ、集光スポットが大きくなってしまうことを防止できるのである。 When parallel light is incident on the objective lens OBJ shown in FIG. 2B, the step surface ST1 is parallel to the optical axis OA, so that the light beam does not substantially enter the step surface ST1. No vignetting will occur. That is, only the light rays incident from the stepped surface ST2 are not used for forming the condensing spot, which is apparent when compared with FIG. 1B, but the objective lens of FIG. 2B is hatched. It can be said that it is excellent from the viewpoint of light utilization efficiency. That is, by selecting the objective lens shown in FIG. 2B, it is possible to obtain a pickup device equipped with an objective lens that has a low mold processing difficulty, a low manufacturing cost, and a sufficiently high transmittance. On the other hand, the lens as shown in FIG. 2 (b) tends to have a low transmittance in a region away from the optical axis, which increases the problem of increasing the diameter of the focused spot. For example, since the problem can be solved, the difficulty of mold processing is low, the manufacturing cost is suppressed, the transmittance is sufficiently high, and the condensing spot can be prevented from becoming large.
 請求項7に記載の光ピックアップ装置は、請求項4~6のいずれかに記載の発明において、前記カップリングレンズは、前記対物レンズにおいて温度変化が生じた際に発生する球面収差を補正するために光軸方向に変位されるようになっていることを特徴とする。 According to a seventh aspect of the present invention, there is provided the optical pickup device according to any one of the fourth to sixth aspects, wherein the coupling lens corrects a spherical aberration that occurs when a temperature change occurs in the objective lens. It is characterized by being displaced in the optical axis direction.
 これにより、層間フォーカスジャンプ時よりも前記カップリングレンズの光軸方向変位量が増大し、本発明の効果が一層発揮される。 As a result, the amount of displacement of the coupling lens in the optical axis direction is increased as compared with the interlayer focus jump, and the effect of the present invention is further exhibited.
 請求項8に記載の光ピックアップ装置は、請求項1~7のいずれかに記載の発明において、前記対物レンズの素材は、前記波長λ1に対する屈折率が1.58よりも小さく、前記第1面に施された反射防止膜は2~4層であることを特徴とする。 An optical pickup device according to an eighth aspect of the present invention is the optical pickup device according to any one of the first to seventh aspects, wherein the objective lens material has a refractive index smaller than 1.58 with respect to the wavelength λ1, and the first surface. The antireflective film applied to the film has 2 to 4 layers.
 前記波長λ1に対する屈折率が1.58よりも小さければ、任意の樹脂素材を選択できる。又、対物レンズの第1面の反射防止膜の層数を2層以上とすることで、十分な反射防止効果が得られ、全体の透過率の低下を防止できる。一方、非球面の傾斜角が大きい第1面の反射防止膜を4層以下とすることで、膜厚誤差が大きくなることを防止でき、量産時に安定した膜厚を維持することが可能となる。よって、前記第1面に施された反射防止膜は2~4層であると好ましい。前記第1面に施された反射防止膜は3層、若しくは、4層であることが好ましく、3層であることが最も好ましい。 Any resin material can be selected as long as the refractive index with respect to the wavelength λ1 is smaller than 1.58. In addition, when the number of antireflection films on the first surface of the objective lens is two or more, a sufficient antireflection effect can be obtained, and a decrease in the overall transmittance can be prevented. On the other hand, when the antireflection film on the first surface having a large inclination angle of the aspherical surface is made to be four layers or less, it is possible to prevent an increase in film thickness error and to maintain a stable film thickness during mass production. . Therefore, the antireflection film applied to the first surface is preferably 2 to 4 layers. The antireflection film applied to the first surface is preferably three layers or four layers, and most preferably three layers.
 本発明に係る光ピックアップ装置は、少なくとも1つの光源(第1光源)を有する。勿論、複数種類の光ディスクに対応できるように、複数種類の光源を有していてもよい。さらに、本発明の光ピックアップ装置は、少なくとも第1光源からの第1光束を第1光ディスクの情報記録面上に集光させるための集光光学系を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、集光光学系が、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光するようにしてもよい。また、本発明の光ピックアップ装置は、少なくとも第1光ディスクの情報記録面からの反射光束を受光する受光素子を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、受光素子が、第2光ディスクの情報記録面からの反射光束を受光し、第3光ディスクの情報記録面からの反射光束を受光するようにしてもよい。尚、本明細書で「物体側」とは光源側を意味し、「像側」とは光ディスク側を意味するものとする。 The optical pickup device according to the present invention has at least one light source (first light source). Of course, a plurality of types of light sources may be provided so as to support a plurality of types of optical disks. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc. In the optical pickup apparatus that can handle a plurality of types of optical disks, the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense. The optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc. In an optical pickup device that can handle a plurality of types of optical disks, the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good. In this specification, “object side” means the light source side, and “image side” means the optical disk side.
 第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。 The first optical disc has a protective substrate having a thickness t1 and an information recording surface. The second optical disc has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The third optical disc has a protective substrate having a thickness t3 (t2 <t3) and an information recording surface. The first optical disc is preferably a BD, the second optical disc is a DVD, and the third optical disc is preferably a CD, but is not limited thereto.
 第1光ディスクは、厚み方向に重ねて3つ以上の情報記録面を有するものである。即ち、第1光ディスクは、光ディスクの光束入射面から情報記録面までの距離(これを、本明細書で「透明基板厚」という)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクである。当然、4つ以上の情報記録面を有していてもよい。また、第2光ディスクや第3光ディスクも複数の情報記録面を有していてもよい。尚、「最大の透明基板厚」とは、複数の情報記録面のうち、光ディスクにおける光束の入射面から最も遠い情報記録面の透明基板厚をいい、「最小の透明基板厚」とは、光ディスクにおける光束の入射面に最も近い情報記録面の透明基板厚をいう。尚、全ての情報記録面の透明基板厚が、0.03mm以上、0.125mm以下であることが好ましい。また、最大の透明基板厚と最小の透明基板厚との差が、0.025mm以上であることが好ましい。 The first optical disc has three or more information recording surfaces stacked in the thickness direction. In other words, the first optical disc has three or more information recording surfaces in the thickness direction that have different distances from the light incident surface of the optical disc to the information recording surface (this is referred to as “transparent substrate thickness” in this specification). It is. Of course, you may have four or more information recording surfaces. The second optical disc and the third optical disc may also have a plurality of information recording surfaces. The “maximum transparent substrate thickness” means the transparent substrate thickness of the information recording surface farthest from the light incident surface of the optical disc among the plurality of information recording surfaces, and the “minimum transparent substrate thickness” means the optical disc. The thickness of the transparent substrate on the information recording surface closest to the incident surface of the light beam in FIG. In addition, it is preferable that the transparent substrate thickness of all the information recording surfaces is 0.03 mm or more and 0.125 mm or less. The difference between the maximum transparent substrate thickness and the minimum transparent substrate thickness is preferably 0.025 mm or more.
 従って、光ピックアップ装置は、第1光ディスクの複数の情報記録面のうち、いずれかの情報記録面を選択して、光源から出射された光束を対物レンズにより、選択された情報記録面に集光することによって、情報の記録及び/または再生を行うものである。 Therefore, the optical pickup device selects one of the plurality of information recording surfaces of the first optical disc, and condenses the light beam emitted from the light source onto the selected information recording surface by the objective lens. By doing so, information is recorded and / or reproduced.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録面のみ有するBDや、4層の情報記録面を有するBD-XL等、3層以上の情報記録面を有するBD等を含むものであるが、本発明の光ピックアップ装置は、少なくとも3層以上の情報記録面を有するBDに対応可能である。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. A generic term for BD series optical discs of about 125 mm, including BD having only a single information recording surface, BD-XL having four information recording surfaces, and BD having three or more information recording surfaces. However, the optical pickup device of the present invention is compatible with a BD having an information recording surface of at least three layers. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(3)、(4)、(5)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。 In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (3), (4), and (5), but is not limited thereto. The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
 0.030mm ≦ t1 ≦ 0.125mm   (3)
 0.5mm ≦ t2 ≦ 0.7mm    (4)
 1.0mm ≦ t3 ≦ 1.3mm   (5)
0.030mm ≦ t1 ≦ 0.125mm (3)
0.5mm ≤ t2 ≤ 0.7mm (4)
1.0 mm ≤ t3 ≤ 1.3 mm (5)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。
レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(6)、(7)を満たすことが好ましい。
 1.5・λ1 < λ2 < 1.7・λ1   (6)
 1.8・λ1 < λ3 < 2.0・λ1   (7)
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources.
As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (6) and (7).
1.5 · λ1 <λ2 <1.7 · λ1 (6)
1.8 · λ1 <λ3 <2.0 · λ1 (7)
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm以上、440nm以下、より好ましくは、390nmより長く、415nmより短く、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。 When BD, DVD, and CD are used as the first optical disc, the second optical disc, and the third optical disc, respectively, the first wavelength λ1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm. Longer and shorter than 415 nm, the second wavelength λ2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 750 nm. As mentioned above, it is 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、カップリングレンズと対物レンズを有する。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変えるレンズ群のことをいう。尚、コリメータは、カップリングレンズの一種であって、入射した光束を平行光又は略平行光として出射するカップリングレンズである。カップリングレンズは、正レンズ群のみからなる場合と、正レンズ群と負レンズ群とを有している場合とがあり得る。正レンズ群は少なくとも1枚の正レンズを有する。正レンズ群は、正レンズ1枚のみでもよいし、複数のレンズを有していてもよい。負レンズ群を有する場合、負レンズ群は少なくとも1枚の負レンズを有する。負レンズ群は、負レンズ1枚のみでもよいし、複数のレンズを有していてもよい。好ましいカップリングレンズの例は、単玉レンズの正レンズ1枚のみからなるか、又は、単玉の正レンズ1枚と単玉の負レンズ1枚との組み合わせからなるものである。 The condensing optical system has a coupling lens and an objective lens. The coupling lens is a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam. The collimator is a kind of coupling lens, and is a coupling lens that emits an incident light beam as parallel light or substantially parallel light. The coupling lens may be composed of only a positive lens group or may have a positive lens group and a negative lens group. The positive lens group has at least one positive lens. The positive lens group may include only one positive lens or may include a plurality of lenses. When the negative lens group is included, the negative lens group includes at least one negative lens. The negative lens group may include only one negative lens or may include a plurality of lenses. Examples of a preferable coupling lens include only a single positive lens or a combination of a single positive lens and a single negative lens.
 尚、本明細書では、カップリングレンズにおいて、光軸方向に移動可能とされたレンズを「可動レンズ」と呼ぶことがある。また、本明細書では、「カップリングレンズの移動量」を「可動レンズの移動量」と同じ意味で用いる。 In the present specification, a lens that is movable in the optical axis direction in the coupling lens may be referred to as a “movable lens”. Further, in this specification, “movement amount of the coupling lens” is used in the same meaning as “movement amount of the movable lens”.
 ところで、フォーカスジャンプを行う際、カップリングレンズの移動量を小さく抑える方法として、カップリングレンズを構成するレンズ群のうち、光軸方向に移動されるレンズ群のパワーを大きく(すなわち、光軸方向に移動されるレンズ群の焦点距離を短く)することが考えられる。これは、光軸方向に移動されるレンズ群の移動量はそのレンズ群のパワーが大きくなるほど(すなわち、そのレンズ群の焦点距離が短くなるほど)小さくなるからである。然るに、カップリングレンズを一群構成とする場合、光軸方向に移動されるレンズ群の焦点距離(すなわち、カップリングレンズの焦点距離に等しい)を短くすると、対物レンズで集光されたスポットが楕円形状になり、BDに対する情報の記録及び/又は再生に支障が出る虞がある。この理由を以下に述べる。 By the way, when performing the focus jump, as a method of reducing the amount of movement of the coupling lens, among the lens groups constituting the coupling lens, the power of the lens group moved in the optical axis direction is increased (that is, in the optical axis direction). It is conceivable to shorten the focal length of the lens group that is moved to (1). This is because the amount of movement of the lens group moved in the optical axis direction decreases as the power of the lens group increases (that is, as the focal length of the lens group decreases). However, when the coupling lens has a group configuration, if the focal length of the lens group moved in the optical axis direction (that is, equal to the focal length of the coupling lens) is shortened, the spot condensed by the objective lens becomes an ellipse. There is a risk that the recording and / or reproduction of information on the BD may be hindered. The reason for this will be described below.
 一般的に、光ピックアップ装置の光源として用いられる半導体レーザから射出される光束は楕円形状であるため、楕円の長軸方向と短軸方向の光量分布は異なる。カップリングレンズの焦点距離が短くなりすぎると、カップリングレンズが取り込む光量分布の非対称性が顕著になるため、対物レンズで集光されたスポットが楕円形状になり、BDに対する情報の記録及び/又は再生に支障が出る虞がある。従って、カップリングレンズが一群構成の場合は、フォーカスジャンプ時に必要とされるカップリングレンズの移動量を小さくすることと、カップリングレンズが取り込む光量分布の対称性を両立させることは困難である。 Generally, since a light beam emitted from a semiconductor laser used as a light source of an optical pickup device has an elliptical shape, the light quantity distribution in the major axis direction and the minor axis direction of the ellipse is different. If the focal length of the coupling lens becomes too short, the asymmetry of the light amount distribution taken in by the coupling lens becomes remarkable, so that the spot condensed by the objective lens becomes elliptical, and information recording on the BD and / or There is a risk that playback will be hindered. Therefore, when the coupling lens has a one-group configuration, it is difficult to reduce both the amount of movement of the coupling lens required at the time of focus jump and the symmetry of the light amount distribution captured by the coupling lens.
 上記を両立させるためには、カップリングレンズを正レンズ群と負レンズ群とから構成される2群構成とし、正レンズ群の少なくとも1つのレンズを光軸方向に移動させることにより、光ディスクにおけるいずれの情報記録面に集光するかを選択する構成にすると好ましい。 In order to achieve both of the above, the coupling lens has a two-group configuration including a positive lens group and a negative lens group, and at least one lens in the positive lens group is moved in the optical axis direction, thereby It is preferable to select whether to collect light on the information recording surface.
 説明を簡略化するために、カップリングレンズを正レンズと負レンズとから構成される2群構成の薄肉レンズ系とし、フォーカスジャンプ時には正レンズを光軸方向に沿って移動させるものとする。正レンズのパワーをPP、正レンズの焦点距離をfP、負レンズのパワーをPN、負レンズの焦点距離をfN、正レンズと負レンズの距離をLとすると、カップリングレンズ全系のパワーPC、及び、カップリングレンズ全系の焦点距離fCは以下の(8)式で表される。
 PC = PP+PN-L・PP・PN
 PC = 1/fC
 PC = 1/fP+1/fN-L/(fP・fN)   (8)
In order to simplify the description, it is assumed that the coupling lens is a two-group thin lens system composed of a positive lens and a negative lens, and the positive lens is moved along the optical axis direction during focus jump. If the power of the positive lens is P P , the focal length of the positive lens is f P , the power of the negative lens is P N , the focal length of the negative lens is f N , and the distance between the positive lens and the negative lens is L, all coupling lenses The system power P C and the focal length f C of the entire coupling lens system are expressed by the following equation (8).
P C = P P + P N -L · P P · P N
P C = 1 / f C
P C = 1 / f P + 1 / f N −L / (f P · f N ) (8)
 ここで、対物レンズの焦点距離をfOとすると、カップリングレンズと対物レンズとから構成される集光光学系の倍率Mは以下の(9)式となる。
 M=-fO/fC   (9)
Here, when the focal length of the objective lens is f 2 O , the magnification M of the condensing optical system composed of the coupling lens and the objective lens is expressed by the following equation (9).
M = −f O / f C (9)
 カップリングレンズが取り込む光量分布の対称性を良好にし、対物レンズで集光されたスポットの形状を円形状するためには、光源として使用する半導体レーザから射出される光束の楕円率に対して光学系倍率Mを最適な値に設定する必要がある。尚、BD用の光ピックアップ装置では集光光学系の倍率の最適な値は-0.1程度である。また、光源とカップリングレンズとの間に配置される偏光ビームスプリッタ等の光学素子を配置するスペースを考慮すると、カップリングレンズ全系の焦点距離fCを極端に短くすることは出来ない。さらに、BDに対して情報の記録及び/または再生を行う際の、対物レンズとBDの距離(作動距離ともいう)が短くなりすぎず、かつ、光ピックアップ装置を薄型化するためには、対物レンズの焦点距離fOの最適な範囲は自ずと決まる。以上より、(9)式から、BD用の光ピックアップ装置用のカップリングレンズとして、その全系の焦点距離範囲はある所定の範囲である必要があり、フォーカスジャンプ時に必要なカップリングレンズの移動量のみを考慮してカップリングレンズ全系の焦点距離fCをむやみに小さくすることは出来ない。 In order to improve the symmetry of the distribution of the amount of light captured by the coupling lens and make the shape of the spot collected by the objective lens circular, it is optical with respect to the ellipticity of the light beam emitted from the semiconductor laser used as the light source. It is necessary to set the system magnification M to an optimum value. In the BD optical pickup device, the optimum value of the magnification of the condensing optical system is about -0.1. In consideration of a space for arranging an optical element such as a polarization beam splitter arranged between the light source and the coupling lens, the focal length f C of the entire coupling lens system cannot be extremely shortened. Furthermore, when recording and / or reproducing information on the BD, the distance between the objective lens and the BD (also referred to as a working distance) is not too short, and in order to reduce the thickness of the optical pickup device, optimal range of the focal length f O of the lens naturally determined. As described above, from equation (9), as the coupling lens for the optical pickup device for BD, the focal length range of the entire system needs to be a certain predetermined range, and the movement of the coupling lens required at the time of focus jump The focal length f C of the entire coupling lens system cannot be reduced excessively considering only the amount.
 ここで、フォーカスジャンプ時の移動量を小さく抑えるために、正レンズのパワーPPを大きくし、さらに、カップリングレンズ全系の焦点距離fCが短くなり過ぎないように、負レンズのパワーPNの絶対値を大きくすると好ましい((8)式を参照)。 Here, in order to keep the movement amount at the time of focus jump small, the power P P of the positive lens is increased, and further, the power P of the negative lens is set so that the focal length f C of the entire coupling lens system is not too short. It is preferable to increase the absolute value of N (see equation (8)).
 以上より、正レンズ群と負レンズ群の2レンズ群からなるカップリングレンズにおいて、正レンズ群を光軸方向に動かすことにより、フォーカスジャンプ時に必要とされる正レンズ群の移動量を小さくすることと、カップリングレンズが取り込む光量分布の対称性を両立させることが可能となる。 As described above, in the coupling lens composed of the two lens groups of the positive lens group and the negative lens group, the movement amount of the positive lens group required at the time of focus jump is reduced by moving the positive lens group in the optical axis direction. In addition, it is possible to achieve both the symmetry of the light amount distribution captured by the coupling lens.
 また、正レンズ群と負レンズ群の配置は、光源側から負レンズ群、正レンズ群の順に配置されていても良いし、光源側から正レンズ群、負レンズ群の順に配置されていても良い。好ましい配置は前者である。 Further, the arrangement of the positive lens group and the negative lens group may be arranged in the order of the negative lens group and the positive lens group from the light source side, or may be arranged in the order of the positive lens group and the negative lens group from the light source side. good. The preferred arrangement is the former.
 以上より、カップリングレンズの移動量を減らすという観点から、光ピックアップ装置におけるカップリングレンズの好ましい例の一つは、正レンズ1枚と負レンズ1枚の組み合わせから成り、光源側から負レンズ、正レンズの順に配置されているものである。但し、本発明がこれに限られることはなく、カップリングレンズの構成を出来るだけ簡略にするという観点からは、単玉の正レンズ1枚のカップリングレンズという選択肢もあり得る。 From the above, from the viewpoint of reducing the movement amount of the coupling lens, one of the preferred examples of the coupling lens in the optical pickup device is a combination of one positive lens and one negative lens, and the negative lens from the light source side, They are arranged in the order of positive lenses. However, the present invention is not limited to this, and from the viewpoint of simplifying the configuration of the coupling lens as much as possible, there can be an option of a single positive lens coupling lens.
 以上のような理由から、第1光ディスクの選択された情報記録面において発生する球面収差を補正するために、正レンズ群の少なくとも1枚のレンズ(好ましくは正レンズ)は光軸方向に移動可能となっていることが好ましい。例えば、第1光ディスクのある情報記録面の記録及び/又は再生を行い、次に、第1光ディスクの他の情報記録面の記録及び/又は再生を行う場合、カップリングレンズ群の正レンズ群の中の少なくとも1枚のレンズが光軸方向に移動し、光束の発散度を変化させ、対物レンズの倍率を変化させることにより、第1光ディスクの異なる情報記録面へのフォーカスジャンプ時に発生する球面収差を補正する。 For the above reasons, at least one lens (preferably a positive lens) of the positive lens group is movable in the optical axis direction in order to correct spherical aberration occurring on the selected information recording surface of the first optical disk. It is preferable that For example, when recording and / or reproducing on one information recording surface of the first optical disk and then recording and / or reproducing on another information recording surface of the first optical disk, the positive lens group of the coupling lens group Spherical aberration that occurs at the time of focus jump to a different information recording surface of the first optical disk by moving at least one lens in the optical axis direction, changing the divergence of the light beam, and changing the magnification of the objective lens Correct.
 図3(a)~(d)は、本発明者が行った各ケースの検討結果を示す図である。本発明者は、プラスチック製であって、焦点距離f=1.18mmであり光学面が非球面もしくは回折面であり像側開口数が0.85である対物レンズを例として、複数の情報記録面を有する第1光ディスク(BD)において、最大限離れた情報記録面にそれぞれ最適な集光スポットを形成した際に生じる最大の球面収差の差Aと、環境温度が±30℃変化したときに生じる最大の球面収差Bと、光源の波長が±5nm変化した際に生じる最大の球面収差Cとを求めた。これを図3の棒グラフで表す。かかる球面収差は、カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変化させることで補正できるが、同じカップリングレンズを用いるとすると、球面収差量の合計がカップリングレンズの移動量に相当することとなる。 3 (a) to 3 (d) are diagrams showing the examination results of each case conducted by the present inventors. The inventor has made a plurality of information recordings using an objective lens made of plastic, having a focal length f = 1.18 mm, an optical surface being an aspherical surface or a diffractive surface, and an image-side numerical aperture of 0.85. In the first optical disc (BD) having a surface, when the maximum spherical aberration difference A generated when the optimum focused spot is formed on each of the information recording surfaces that are separated as much as possible, and when the environmental temperature changes by ± 30 ° C. The maximum spherical aberration B that occurred and the maximum spherical aberration C that occurred when the wavelength of the light source changed by ± 5 nm were determined. This is represented by the bar graph of FIG. Such spherical aberration can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens. However, if the same coupling lens is used, the total amount of spherical aberration is the amount of movement of the coupling lens. It is equivalent to.
 ここで、図3(a)、(b)に示すように、情報記録面を2つ有する光ディスクを使用する場合、光学面が非球面屈折面、回折面のいずれの対物レンズでも、球面収差量の合計は410~430mλ程度であり、カップリングレンズの移動量は比較的小さいといえる。一方、図3(c)に示すように、情報記録面を4つ有する光ディスクを使用する場合、光学面が非球面屈折面の対物レンズでは、球面収差量の合計は680mλとなり、カップリングレンズの移動量は、情報記録面を2つ有する光ディスクを使用する場合に比べて、約1.5倍必要になる。更に、図3(d)に示すように、光学面が回折面の対物レンズでは、情報記録面を4つ有する光ディスクを使用する場合、回折面の効果として、温度変化に伴って発生する球面収差を低減しているが、その分、波長変化に伴って発生する球面収差が増加してしまい、結果として、球面収差量の合計は660mλとなり、カップリングレンズの移動量は、情報記録面を2つ有する光ディスクを使用する場合に比べて、同様に約1.5倍必要になる。 Here, as shown in FIGS. 3A and 3B, when an optical disk having two information recording surfaces is used, the amount of spherical aberration is obtained regardless of whether the optical surface is an aspherical refractive surface or a diffractive surface. Is about 410 to 430 mλ, and the amount of movement of the coupling lens is relatively small. On the other hand, as shown in FIG. 3C, when an optical disk having four information recording surfaces is used, the total amount of spherical aberration is 680 mλ in the case of an objective lens having an aspherical refractive surface. The amount of movement is required to be about 1.5 times that required when an optical disc having two information recording surfaces is used. Further, as shown in FIG. 3 (d), when an optical disk having four information recording surfaces is used in an objective lens having a diffractive optical surface, spherical aberration that occurs due to a temperature change is an effect of the diffractive surface. However, as a result, the spherical aberration generated with the change in wavelength increases, and as a result, the total amount of spherical aberration becomes 660 mλ, and the amount of movement of the coupling lens is 2 on the information recording surface. Similarly, about 1.5 times as much is required as compared with the case of using one optical disk.
 但し、対物レンズをガラス製とし且つ光学面を非球面屈折面とすると、環境温度変化による球面収差B(=140mλ)がほぼゼロとなるため、よりカップリングレンズの移動量は小さく(図3(c)において球面収差540mλの補正量相当)なる。さらに、対物レンズをガラス製とし且つ光学面を波長変動時に発生する球面収差を補正する回折面とすると、環境温度変化による球面収差Bに加え、回折面の機能により光源の波長変動による球面収差Cも減少できるため、カップリングレンズの移動量はより小さく(図3(c)において球面収差500mλの補正量相当)なる。つまり、カップリングレンズの移動量を減らすためには、対物レンズがガラス材料からなることが好ましい。しかしながら、このように対物レンズを改良しても、2つの情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量に対し、4つの情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量は依然として2倍程度であるため、カップリングレンズの移動量を抑制するためには、更なる工夫をすることが好ましい。同様なことは、3つの情報記録面もしくは5つ以上の情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量についても言える。これに対し、対物レンズの正弦条件を崩すことで、カップリングレンズの移動量をさらに低減することが可能になる。 However, if the objective lens is made of glass and the optical surface is an aspherical refracting surface, the spherical aberration B (= 140 mλ) due to the environmental temperature change becomes almost zero, so the amount of movement of the coupling lens is smaller (FIG. 3 ( c), the spherical aberration is equivalent to the correction amount of 540 mλ. Furthermore, if the objective lens is made of glass and the optical surface is a diffractive surface that corrects spherical aberration that occurs when the wavelength varies, in addition to spherical aberration B caused by environmental temperature changes, spherical aberration C caused by wavelength fluctuations of the light source due to the function of the diffractive surface. Therefore, the amount of movement of the coupling lens is smaller (corresponding to the correction amount of the spherical aberration of 500 mλ in FIG. 3C). That is, in order to reduce the amount of movement of the coupling lens, the objective lens is preferably made of a glass material. However, even if the objective lens is improved in this way, the amount of movement of the coupling lens when the optical disk having two information recording surfaces is used is smaller than that of the coupling lens when the optical disk having four information recording surfaces is used. Since the amount of movement is still about twice, it is preferable to further devise in order to suppress the amount of movement of the coupling lens. The same applies to the amount of movement of the coupling lens when using an optical disc having three information recording surfaces or five or more information recording surfaces. On the other hand, the amount of movement of the coupling lens can be further reduced by breaking the sine condition of the objective lens.
 尚、上記検討において、情報記録面を2つ有する光ディスクとして(光ディスクの光束入射面からの距離が小さいほうの情報記録面をRL1、光ディスクの光束入射面からの距離が大きいほうの情報記録面をRL2、とする)、光ディスクの光束入射面からRL1までの距離が75μmであり、光ディスクの光束入射面からRL2までの距離が100μmである光ディスクを想定した。さらに、情報記録面を4つ有する光ディスクとして(光ディスクの光束入射面からの距離が最小の情報記録面をRL1、光ディスクの光束入射面からの距離が最大の情報記録面をRL4、とする)、光ディスクの光束入射面からRL1までの距離が50μmであり、光ディスクの光束入射面からRL4までの距離が100μmである光ディスクを想定した。 In the above examination, as an optical disc having two information recording surfaces (an information recording surface having a smaller distance from the light beam incident surface of the optical disc is RL1, an information recording surface having a larger distance from the light beam incident surface of the optical disc is RL2), an optical disc in which the distance from the light incident surface of the optical disc to RL1 is 75 μm and the distance from the light incident surface of the optical disc to RL2 is 100 μm. Further, as an optical disk having four information recording surfaces (assuming that the information recording surface having the smallest distance from the light beam incident surface of the optical disk is RL1, and the information recording surface having the largest distance from the light beam incident surface of the optical disk is RL4), An optical disk was assumed in which the distance from the light beam incident surface of the optical disk to RL1 was 50 μm and the distance from the light beam incident surface of the optical disk to RL4 was 100 μm.
 本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉のプラスチックレンズ又はガラスレンズである。好ましくは単玉の凸レンズからなる対物レンズである。対物レンズは屈折面のみからなっていてもよいし、光路差付与構造を有していてもよい。尚、ガラスレンズの上に光硬化性樹脂、UV硬化性樹脂、又は熱硬化性樹脂などで光路差付与構造を設けたハイブリッドレンズであってもよい。また、対物レンズは、屈折面が非球面であることが好ましい。
また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。
In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens is a single plastic lens or glass lens. Preferably, the objective lens is a single convex lens. The objective lens may be composed of only a refractive surface or may have an optical path difference providing structure. In addition, the hybrid lens which provided the optical path difference providing structure with the photocurable resin, UV curable resin, or thermosetting resin etc. on the glass lens may be sufficient. The objective lens preferably has a refractive surface that is aspheric.
In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 対物レンズがガラスレンズであると、図3を参照して説明したように、温度変化によって発生する球面収差を補正するためにカップリングレンズを移動させる必要がないため、カップリングレンズの移動量を減らすことができ、光ピックアップ装置を小型化できるため好ましい。 If the objective lens is a glass lens, as described with reference to FIG. 3, it is not necessary to move the coupling lens in order to correct the spherical aberration caused by the temperature change. This is preferable because it can be reduced and the optical pickup device can be downsized.
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下、更に好ましくは400℃以下であるガラス材料を使用することが好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。このようなガラス転移点Tgが低いガラス材料としては、例えば(株)住田光学ガラス製のK-PG325や、K-PG375(共に製品名) がある。 When the objective lens is a glass lens, it is preferable to use a glass material having a glass transition point Tg of 500 ° C. or lower, more preferably 400 ° C. or lower. By using a glass material having a glass transition point Tg of 500 ° C. or lower, molding at a relatively low temperature is possible, so that the life of the mold can be extended. Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
 加えて,ガラスレンズを成形して製作する際に重要となる物性値が線膨張係数αである。仮にTgが400℃以下の材料を選んだとしても、樹脂材料と比較して室温との温度差は依然大きい。線膨張係数αが大きい硝材を用いてレンズ成形を行った場合、降温時に割れが発生しやすくなる。硝材の線膨張係数αは、200(10E-7/K)以下にあることが好ましく、更に好ましくは120以下であることが好ましい。 In addition, a physical property value that is important when molding a glass lens is the linear expansion coefficient α. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still large compared to the resin material. When lens molding is performed using a glass material having a large linear expansion coefficient α, cracks are likely to occur when the temperature is lowered. The linear expansion coefficient α of the glass material is preferably 200 (10E-7 / K) or less, more preferably 120 or less.
 ところで、ガラスレンズは一般的にプラスチックレンズよりも比重が大きいため、対物レンズをガラスレンズとすると、重量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が4.0以下であるのが好ましく、更に好ましくは比重が3.0以下であるものである。 By the way, since the specific gravity of a glass lens is generally larger than that of a plastic lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
 対物レンズをプラスチックレンズとする場合は、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用するのが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.54乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃ -1) が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズをプラスチックレンズとする場合、カップリングレンズもプラスチックレンズとすることが好ましい。 When the objective lens is a plastic lens, it is preferable to use an alicyclic hydrocarbon polymer material such as a cyclic olefin resin material. The resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of −5 ° C. to 70 ° C. The refractive index change rate dN / dT (° C. −1 ) is -20 × 10 −5 to −5 × 10 −5 (more preferably −10 × 10 −5 to −8 × 10 −5 ). It is more preferable to use a certain resin material. When the objective lens is a plastic lens, the coupling lens is preferably a plastic lens.
 脂環式炭化水素系重合体の好ましい例を幾つか、以下に示す。 Some preferred examples of the alicyclic hydrocarbon polymer are shown below.
 第1の好ましい例は、下記式(1)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(1)で表される繰り返し単位〔1〕並びに下記式(2)で表される繰り返し単位〔2〕または/および下記式(3)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなる樹脂組成物である。 A first preferred example is a polymer block [A] containing a repeating unit [1] represented by the following formula (1), a repeating unit [1] represented by the following formula (1) and the following formula ( 2) and / or polymer block [B] containing the repeating unit [3] represented by the following formula (3), and the repeating unit in the block [A] It consists of a block copolymer in which the relationship between the molar fraction a (mol%) of [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is a resin composition.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (式中、R1 は水素原子、または炭素数1~20のアルキル基を表し、R2-R12はそれぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基、またはハロゲン基である。) (Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ˜20 alkoxy groups or halogen groups.)
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
 (式中、R13は、水素原子、または炭素数1~20のアルキル基を表す。) (In the formula, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1~20のアルキル基を表す。) (Wherein R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
 次に、第2の好ましい例は、少なくとも炭素原子数2~20のα-オレフィンと下記一般式(4)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(A)と、炭素原子数2~20のα-オレフィンと下記一般式(5)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(B)とを含む樹脂組成物である。 Next, the second preferred example is obtained by addition polymerization of a monomer composition comprising at least an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (4). Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (5) ).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 〔式中、nは0または1であり、mは0または1以上の整数であり、qは0または1であり、R1~R18、Ra及びRbは、それぞれ独立に水素原子、ハロゲン原子または炭化水素基であり、R15~R18は互いに結合して単環または多環を形成していてもよく、括弧内の単環または多環が二重結合を有していてもよく、またR15とR16と、またはR17とR18とでアルキリデン基を形成していてもよい。〕 [Wherein n is 0 or 1, m is 0 or an integer of 1 or more, q is 0 or 1, and R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group. ]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 〔式中、R19~R26はそれぞれ独立に水素原子、ハロゲン原子または炭化水素基である。〕 [Wherein, R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group. ]
 樹脂材料に更なる性能を付加するために、以下のような添加剤を添加してもよい。 In order to add further performance to the resin material, the following additives may be added.
 (安定剤)
 フェノール系安定剤、ヒンダードアミン系安定剤、リン系安定剤及びイオウ系安定剤から選ばれた少なくとも1種の安定剤を添加することが好ましい。これらの安定剤を適宜選択し添加することで、例えば、405nmといった短波長の光を継続的に照射した場合の白濁や、屈折率の変動等の光学特性変動をより高度に抑制することができる。
(Stabilizer)
It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
 好ましいフェノール系安定剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニルプロピオネート))メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート))]、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。 As the preferred phenol-based stabilizer, conventionally known ones can be used. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate compounds described in Japanese Patent Publication No. 1; octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) ), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( , 5-di-tert-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenylpropionate)) methane [ie pentaerythris Limethyl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate))], triethylene glycol bis (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propionate) and other alkyl-substituted phenolic compounds; 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 4-bisoctylthio -1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5- Triazine group-containing phenol compounds such as triazine; and the like.
 また、好ましいヒンダードアミン系安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(N-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-ベンジルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクロイル-2,2,6,6-テトラメチル-4-ピペリジル)2,2-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1-[2-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル]-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート等が挙げられる。 Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1,2,2,6,6- Pentamethyl-4-piperidyl) decandioate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -1- [2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl] -2,2,6,6-tetramethylpiperidine, 2-methyl-2- ( 2,2,6,6-tetramethyl-4-piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6,6-tetramethyl -4-pi Lysyl) 1,2,3,4-butane tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate, and the like.
 また、好ましいリン系安定剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4’イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。 Further, the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl). Phenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 ′ isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
 また、好ましいイオウ系安定剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3’-チオジプロピピオネート、ジステアリル 3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ)-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。 Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
 これらの各安定剤の配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、脂環式炭化水素系共重合体100質量部に対して通常0.01~2質量部、好ましくは0.01~1質量部であることが好ましい。 The amount of each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
(界面活性剤)
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。界面活性剤は樹脂表面への水分の付着や上記表面からの水分の蒸発の速度を調節することで、樹脂組成物の白濁を防止することが可能となる。
(Surfactant)
A surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule. The surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
 界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基などが挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的に炭素数6以上のアルキル基、炭素数6以上のアルキル基を有するシリル基、炭素数6以上のフルオロアルキル基などが挙げられる。ここで、炭素数6以上のアルキル基は置換基として芳香環を有していてもよい。アルキル基としては、具体的にヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデセニル、ドデシル、トリデシル、テトラデシル、ミリスチル、ステアリル、ラウリル、パルミチル、シクロヘキシルなどが挙げられる。芳香環としてはフェニル基などが挙げられる。この界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。 Specific examples of the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned. Here, the amino group may be primary, secondary, or tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms. Here, the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent. Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like. Examples of the aromatic ring include a phenyl group. The surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
 このような界面活性剤としては、より具体的には、例えば、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、などが挙げられる。これらのうちでも、ヒドロキシアルキル基を有するアミン化合物またはアミド化合物が好ましく用いられる。本発明では、これら化合物を2種以上組合わせて用いてもよい。 More specifically, examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene Examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like. Among these, amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
 界面活性剤は、温度、湿度の変動に伴なう成形物の白濁を効果的に抑え、成形物の光透過率を高く維持するという観点から、脂環式炭化水素系重合体100質量部に対して0.01~10質量部添加されることが好ましい。界面活性剤の添加量は脂環式炭化水素系重合体100質量部に対して0.05~5質量部とすることがより好ましく、0.3~3質量部とすることが更に好ましい。 From the viewpoint of effectively suppressing the white turbidity of the molded product accompanying fluctuations in temperature and humidity and maintaining the light transmittance of the molded product high, the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer. On the other hand, it is preferable to add 0.01 to 10 parts by mass. The addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
(可塑剤)
 可塑剤は共重合体のメルトインデックスを調節するため、必要に応じて添加される。
(Plasticizer)
The plasticizer is added as necessary to adjust the melt index of the copolymer.
 可塑剤としては、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ビス(2-ブトキシエチル)、アゼライン酸ビス(2-エチルヘキシル)、ジプロピレングリコールジベンゾエート、クエン酸トリ-n-ブチル、クエン酸トリ-n-ブチルアセチル、エポキシ化大豆油、2-エチルヘキシルエポキシ化トール油、塩素化パラフィン、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、リン酸-t-ブチルフェニル、リン酸トリ-2-エチルヘキシルジフェニル、フタル酸ジブチル、フタル酸ジイソヘキシル、フタル酸ジヘプチル、フタル酸ジノニル、フタル酸ジウンデシル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジトリデシル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシル、セバシン酸ジ-2-エチルヘキシル、トリメリット酸トリ-2-エチルヘキシル、Santicizer 278、Paraplex G40、Drapex 334F、Plastolein 9720、Mesamoll、DNODP-610、HB-40等の公知のものが適用可能である。可塑剤の選定及び添加量の決定は、共重合体の透過性や環境変化に対する耐性を損なわないことを条件に適宜行なわれる。 Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, dicyclyl phthalate Known materials such as hexyl, di-2-ethylhexyl sebacate, tri-2-ethylhexyl trimellitic acid, Santizer 278, Paraplex G40, Drapex 334F, Plastolein 9720, Mesamol, DNODP-610, HB-40, etc. are applicable. . The selection of the plasticizer and the addition amount are appropriately performed under the condition that the permeability of the copolymer and the resistance to environmental changes are not impaired.
 これらの樹脂としては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As these resins, cycloolefin resins are preferably used. Specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, and JSR manufactured by ARTON are preferable. Take as an example.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 次に、対物レンズの正弦条件について説明する。本発明にかかる光ピックアップ装置用の対物レンズは、正弦条件を満たしていても良いし、満たしていなくても良い。 Next, the sine condition of the objective lens will be described. The objective lens for the optical pickup device according to the present invention may or may not satisfy the sine condition.
 正弦条件とは図4に示すように、光軸からの高さh1の光線が、レンズに対して光軸平行入射時に、かかる光線がレンズから出射した際の射出角度がUである時にh1/sinUが一定値を満たすことである。これが光軸からの高さh1からの高さに関わらず一定値である場合には、正弦条件が満たされて有効径内の各光線の横倍率が一定であるとみなせる。この正弦条件は軸上での計算値であるが、軸外の横倍率誤差(すなわち軸外コマ収差)補正を行う上では有効である。 As shown in FIG. 4, the sine condition is h when a light beam having a height h 1 from the optical axis is incident on the lens in parallel with the optical axis, and when the emission angle when the light beam is emitted from the lens is U. 1 / sinU satisfies a certain value. If this is a constant value regardless of the height from the height h 1 from the optical axis, the sine condition is satisfied and the lateral magnification of each ray within the effective diameter can be regarded as constant. This sine condition is a calculated value on the axis, but is effective in correcting off-axis lateral magnification error (ie off-axis coma).
 一方、h1/sinUが一定値にならない場合、OSC=h1/sinU-fを正弦条件違反量と定義する。図5は、対物レンズにおける正弦条件違反量を横軸にとり、光軸からの高さを縦軸にとって示したグラフである。正弦条件を満足する対物レンズの場合、グラフは縦軸に一致するが、正弦条件を満足しない対物レンズの場合、図5に示すようにグラフは縦軸から正側及び/又は負側に離れることとなる。また、正弦条件を満足しない対物レンズについて、光軸及び有効径付近で正弦条件を満足させるようにすると、正弦条件違反量は必ず極大値を持つ。ここで、正弦条件違反量の正側の極大値をOSCmaxとし、負側の極大値をOSCminとする。 On the other hand, when h 1 / sin U does not become a constant value, OSC = h 1 / sin U−f is defined as the sine condition violation amount. FIG. 5 is a graph showing the sine condition violation amount in the objective lens on the horizontal axis and the height from the optical axis on the vertical axis. In the case of an objective lens that satisfies the sine condition, the graph coincides with the vertical axis, but in the case of an objective lens that does not satisfy the sine condition, the graph moves away from the vertical axis to the positive side and / or the negative side as shown in FIG. It becomes. For an objective lens that does not satisfy the sine condition, if the sine condition is satisfied near the optical axis and effective diameter, the sine condition violation amount always has a maximum value. Here, the maximum value on the positive side of the sine condition violation amount is OSCmax, and the maximum value on the negative side is OSCmin.
 図5(a)に示す特性の対物レンズは、正弦条件違反量が負側の極大値OSCminを1つ有し、正側の極大値OSCmaxを有さない例である。このような対物レンズによれば、面シフト感度が小さく、また軸上厚誤差感度が小さいため、製造が容易である一方、カップリングレンズの移動に伴い、高次球面収差が増大し、倍率変化による球面収差の変化が小さいという特性を有する。従って、3層以上の光ディスクにおける情報記録面の選択のためカップリングレンズを移動する場合に、必要な移動量が増大する恐れがある。 The objective lens having the characteristics shown in FIG. 5A is an example in which the sine condition violation amount has one negative maximum value OSCmin and does not have a positive maximum value OSCmax. According to such an objective lens, since the surface shift sensitivity is small and the on-axis thickness error sensitivity is small, it is easy to manufacture. On the other hand, as the coupling lens moves, the higher-order spherical aberration increases and the magnification changes. It has the characteristic that the change in spherical aberration due to is small. Therefore, when the coupling lens is moved to select an information recording surface in an optical disc having three or more layers, there is a possibility that the necessary movement amount increases.
 これに対し、図5(b)や図5(c)に示す特性の対物レンズは、倍率M(-0.003≦M≦0.003)において、対物レンズの有効半径の7割から9割の間で正弦条件違反量が正側の極大値OSCmaxを少なくとも1つ有する。(好ましくは1つのみ)図5(b)や図5(c)に示すような、対物レンズの有効半径の7割から9割の間において正弦条件違反量が正側の極大値OSCmaxを有する対物レンズによれば、カップリングレンズの移動に伴って発生する高次球面収差が減少し、倍率変化による球面収差の変化が大きいという特性を有するため、3層以上の光ディスクにおける情報記録面の選択のためカップリングレンズを移動する場合に、必要な移動量を小さくできる。 On the other hand, the objective lens having the characteristics shown in FIGS. 5B and 5C has a magnification M (−0.003 ≦ M ≦ 0.003) and 70 to 90% of the effective radius of the objective lens. The sine condition violation amount has at least one maximum value OSCmax on the positive side. (Preferably only one) As shown in FIGS. 5B and 5C, the violating sine condition has a positive maximum value OSCmax between 70% and 90% of the effective radius of the objective lens. According to the objective lens, the high-order spherical aberration generated with the movement of the coupling lens is reduced, and the change of the spherical aberration due to the change in magnification is large. For this reason, when the coupling lens is moved, a necessary movement amount can be reduced.
 図5(b)の例においては、正弦条件違反量が、正側の極大値よりも光軸側に負側の極大値を一つ有している。また、図5(c)の例においては、正弦条件違反量が、正側の極大値のみを有し、負側の極大値を有していない。また、図5(b)の例においても、図5(c)の例においても、極大値より周辺部で正弦条件違反量が単調に減少している。 In the example of FIG. 5B, the sine condition violation amount has one negative maximum value on the optical axis side than the positive maximum value. In the example of FIG. 5C, the sine condition violation amount has only a positive maximum value and does not have a negative maximum value. In both the example of FIG. 5B and the example of FIG. 5C, the sine condition violation amount monotonously decreases in the peripheral portion from the maximum value.
 図5(b)に示すような、上述の倍率Mにおいて、有効半径の7割から9割の間で、正弦条件違反量が正の極大値を持ち、更に、正弦条件違反量が負の極大値を持つ場合、(特性1)フォーカスジャンプ時の残留高次球面収差を小さくでき、(特性2)フォーカスジャンプをする際のカップリングレンズの移動量を小さくでき、また、(特性3)基板厚が厚い方の情報記録面に対して情報の記録/再生を行う最中に環境温度が高温になった場合でもレンズチルト感度の低減をより抑えることが可能となることに加え、(特性4)対向する2つの光学面が製造誤差により光軸直交方向にシフトしてしまう場合の収差の発生量を抑えることができ、また、(特性5)光軸上のレンズ厚が製造誤差により光軸方向にずれてしまう場合の収差の発生量も抑えることが可能となるため、より製造しやすい対物レンズを提供することが可能となる。 In the above-mentioned magnification M as shown in FIG. 5B, the sine condition violation amount has a positive maximum value and the sine condition violation amount has a negative maximum value between 70% and 90% of the effective radius. (Characteristic 1) The residual higher-order spherical aberration at the time of focus jump can be reduced, (Characteristic 2) the amount of movement of the coupling lens at the time of focus jump can be reduced, and (Characteristic 3) the substrate thickness In addition to being able to further suppress the reduction in lens tilt sensitivity even when the environmental temperature becomes high during recording / reproducing information on the thicker information recording surface (Characteristic 4) It is possible to suppress the amount of aberration that occurs when two opposing optical surfaces are shifted in the direction perpendicular to the optical axis due to manufacturing errors. (Characteristic 5) The lens thickness on the optical axis depends on the manufacturing error in the optical axis direction. Occurrence of aberration in case of deviation Since it is possible to also suppress, it is possible to provide a more easily manufacturable objective lens.
 一方、図5(c)に示すような、上述の倍率Mにおいて、有効半径の7割から9割の間で、正弦条件違反量が正の極大値を持ち、正弦条件違反量が負の極大値を持たない場合、(特性1)フォーカスジャンプ時の残留高次球面収差をより一層小さくでき、(特性2)フォーカスジャンプをする際のカップリングレンズの移動量をより一層小さくでき、また、(特性3)基板厚が厚い方の情報記録面に対して情報の記録/再生を行う最中に環境温度が高温になった場合でもレンズチルト感度の低減をより一層抑えることが可能となる。 On the other hand, in the magnification M as shown in FIG. 5C, the sine condition violation amount has a positive maximum value and the sine condition violation amount has a negative maximum value between 70% and 90% of the effective radius. When there is no value, (Characteristic 1) the residual higher-order spherical aberration at the time of focus jump can be further reduced, (Characteristic 2) the amount of movement of the coupling lens at the time of focus jump can be further reduced, and ( Characteristic 3) Even when the environmental temperature becomes high during the recording / reproducing of information on the information recording surface having the larger substrate thickness, it is possible to further suppress the reduction of the lens tilt sensitivity.
 また、高次球面収差をより抑制するためには、入射光の発散収束度の変化により対物レンズで発生する3次球面収差、及び、高次球面収差の変化が、フォーカスジャンプ時に発生する3次球面収差、及び、高次球面収差の変化とほぼ相似形となるように正弦条件の正の極大値を設定することが好ましい。 In order to further suppress higher-order spherical aberration, the third-order spherical aberration generated in the objective lens due to the change in the divergence / convergence of incident light and the third-order spherical aberration generated during the focus jump are generated. It is preferable to set the positive maximum value of the sine condition so as to be almost similar to the change of the spherical aberration and the higher order spherical aberration.
 対物レンズは、カップリングレンズの移動量を小さくすることを優先して、正弦条件違反量の形状が設定されていてもよいし、フォーカスジャンプ時の残留収差を小さく抑えることを優先して、正弦条件違反量の形状が設定されていてもよい。 The objective lens may be set in a shape that violates the sine condition, giving priority to reducing the amount of movement of the coupling lens, or giving priority to minimizing residual aberration during focus jump. The shape of the condition violation amount may be set.
 このように対物レンズが正弦条件を満たさない場合であって、後述する(特性1)、(特性2)、(特性3)に適合するには、光ディスクの透明基板厚(表面から情報記録/再生を行う情報記録層までの厚さをいう)のうち最大の透明基板厚をTMAX(mm)としたとき、常温(25±3℃)、かつ、(10)式を満たす厚みの透明基板厚T(mm)において、球面収差が最小となるときの倍率Mが(11)式を満たすとともに、前記倍率Mにおいて、有効半径の7割から9割の間で、正弦条件違反量が正の極大値を持つと好ましい。
 TMAX×0.85≦T≦TMAX×1.1   (10)
 -0.003≦M≦0.003   (11)
In this way, the objective lens does not satisfy the sine condition, and in order to meet (Characteristic 1), (Characteristic 2), and (Characteristic 3) described later, the transparent substrate thickness of the optical disc (information recording / reproduction from the surface) The thickness of the transparent substrate having a thickness satisfying the formula (10) at room temperature (25 ± 3 ° C.), where T MAX (mm) is the maximum transparent substrate thickness. At T (mm), the magnification M at which the spherical aberration is minimized satisfies the expression (11), and at the magnification M, the sine condition violation amount is a positive maximum between 70% and 90% of the effective radius. It is preferable to have a value.
T MAX × 0.85 ≦ T ≦ T MAX × 1.1 (10)
−0.003 ≦ M ≦ 0.003 (11)
 3層以上のBDに適した対物レンズにおける好ましい特性は、例えば以下の3つが挙げられる。
(特性1)フォーカスジャンプ時の残留高次球面収差が小さいこと。
(特性2)フォーカスジャンプをする際のカップリングレンズの移動量が小さいこと。
(特性3)基板厚が厚い方の情報記録面に対して情報の記録/再生を行う際の対物レンズのチルト感度が小さくなりすぎないこと。特に、プラスチック製の対物レンズを使用する場合には、基板厚が厚い方の情報記録面に対して情報の記録/再生を行う最中に環境温度が高温になった場合のレンズチルト感度が小さくなり過ぎないことが必要である。
 上記(特性1)から(特性3)の全ての特性を満たすというか点から好ましい対物レンズを以下に詳述する。
Examples of preferable characteristics in an objective lens suitable for a BD having three or more layers include the following three.
(Characteristic 1) Residual higher order spherical aberration at the time of focus jump is small.
(Characteristic 2) The amount of movement of the coupling lens when performing a focus jump is small.
(Characteristic 3) The tilt sensitivity of the objective lens when information is recorded / reproduced with respect to the information recording surface having the larger substrate thickness is not too small. In particular, when a plastic objective lens is used, the lens tilt sensitivity is small when the environmental temperature becomes high during the recording / reproducing of information on the information recording surface having the larger substrate thickness. It is necessary not to become too much.
An objective lens that is preferable from the viewpoint of satisfying all the characteristics (Characteristic 1) to (Characteristic 3) will be described in detail below.
(特性1)について
 (11)式を満たす前記倍率Mにおいて、有効半径の7割から9割の間で、正弦条件違反量が正の極大値を持つようにすることで、フォーカスジャンプ時における高次球面収差を有効に抑制できるため好ましい。
(Characteristic 1) In the magnification M satisfying the expression (11), the sine condition violation amount has a positive maximum value between 70% and 90% of the effective radius, so that the high at the time of focus jump This is preferable because secondary spherical aberration can be effectively suppressed.
(特性2)について
 フォーカスジャンプをする際のカップリングレンズの移動量を小さくするためには、倍率変化に対する球面収差変化量を大きくする必要がある。(11)式を満たす前記倍率Mにおいて、有効半径の7割から9割の間で、正弦条件違反量が正の極大値を持つようにすることで、フォーカスジャンプ時における高次球面収差を有効に抑制できるだけでなく、倍率変化に対する3次球面収差変化量も増大させることが可能となる。
(Characteristic 2) In order to reduce the amount of movement of the coupling lens when performing the focus jump, it is necessary to increase the amount of change in spherical aberration with respect to the change in magnification. Higher-order spherical aberration at the time of focus jump is effective by setting the sine condition violation amount to a positive maximum value between 70% and 90% of the effective radius at the magnification M satisfying equation (11). In addition, it is possible to increase the amount of change in the third-order spherical aberration with respect to the change in magnification.
(特性3)について
 2層BDに対して情報の記録/再生を行う光ピックアップ装置にはプラスチック製の対物レンズが搭載されているものがあり、かかる対物レンズは、基板厚が厚いほうの情報記録面L0(100μm)と基板厚が薄いほうの情報記録面L1(75μm)の中間の基板厚87.5μmと、ゼロの倍率(平行光束が入射する場合に相当する)との組み合わせにて球面収差が最小となるように設計されている。このように設計されたプラスチック製の対物レンズでは、レンズチルトした際に発生するコマ収差量が最小となるのは、情報記録面L0に対して情報の記録/再生を実行中に環境温度が高温になる場合であり、この状態において対物レンズがトラッキング(本明細書ではレンズシフトと呼ぶ)した際のチルトによる3次コマ収差発生量をCM(LT)とする。逆にいうと3層以上のBD用のプラスチック製の対物レンズは、レンズチルトした際に発生するコマ収差量の最小値がCM(LT)より大きくなるように設計されていれば実用に耐えうる、ということが出来る。情報記録面L0に対して情報の記録/再生を行う場合に、高温(55度)にて0.5度のレンズチルトをした状態の2層BD用のプラスチック製の対物レンズのコマ収差発生量CM(LT)は0.02λrms程度であり、同じ状態にて光ディスクを同量傾けた際に発生する3次コマ収差CM(DT)と、CM(LT)との比は、0.36程度となる。これらの値を目標値として、3層以上のBD用に好適なプラスチック製の対物レンズを検討した結果、常温(25±3℃)かつ(11)式を満たす倍率において、球面収差が最小となるときの設計基板厚が(10)式の下限以上となるように球面収差の補正状態を設定することで、CM(LT)の目標値をみたすことを見出した。
(Characteristic 3) Some optical pickup devices that record / reproduce information with respect to a two-layer BD have a plastic objective lens mounted thereon, and the objective lens has a thicker substrate thickness for information recording. Spherical aberration by combining a substrate thickness of 87.5 μm between the surface L0 (100 μm) and the thinner information recording surface L1 (75 μm) with a magnification of zero (corresponding to the case where a parallel light beam is incident) Is designed to be minimal. In the plastic objective lens designed in this manner, the amount of coma generated when the lens is tilted is minimized because the environmental temperature is high during the recording / reproducing of information on the information recording surface L0. In this state, the amount of third-order coma aberration due to tilt when the objective lens performs tracking (referred to as lens shift in this specification) is defined as CM (LT). Conversely, a plastic objective lens for BD having three or more layers can withstand practical use if it is designed so that the minimum amount of coma generated when the lens is tilted is greater than CM (LT). It can be said. When information is recorded / reproduced with respect to the information recording surface L0, the amount of coma aberration generated by a plastic objective lens for a two-layer BD with a lens tilt of 0.5 degrees at a high temperature (55 degrees) CM (LT) is about 0.02 λrms, and the ratio of the third-order coma aberration CM (DT) generated when the optical disk is tilted by the same amount in the same state and CM (LT) is about 0.36. Become. As a result of studying a plastic objective lens suitable for BD having three or more layers with these values as target values, spherical aberration is minimized at a normal temperature (25 ± 3 ° C.) and a magnification satisfying the expression (11). It has been found that the target value of CM (LT) is met by setting the spherical aberration correction state so that the design substrate thickness at that time is equal to or greater than the lower limit of the equation (10).
尚、本明細書において、「透明基板厚T」は、対物レンズの特性を比較する際に基準とする透明基板厚(設計基板厚ともいう)のことであり、光ディスクの仕様における透明基板厚TMIN~TMAXとは区別されるものである。 In the present specification, the “transparent substrate thickness T” is a transparent substrate thickness (also referred to as a design substrate thickness) used as a reference when comparing the characteristics of the objective lens. the MIN ~ T MAX is intended to be distinguished.
 更に、対物レンズは、以下の条件式(12)を満たすと好ましい。
 TMAX×0.85≦T≦TMAX×1.0   (12)
Furthermore, it is preferable that the objective lens satisfies the following conditional expression (12).
T MAX × 0.85 ≦ T ≦ T MAX × 1.0 (12)
 球面収差がゼロに補正される設計基板厚をTMAXよりも厚くしないことにより、透明基板厚が薄い方の情報記録面に対して情報の記録/再生を行う際に対物レンズに入射する光束の収束度合いが大きくなることをより一層防止できる。従って、透明基板厚が薄い方の情報記録面に対して情報の記録/再生を行う際に、対物レンズがレンズシフトした際のコマ収差発生が大きくなることをより一層防止できる。2層のBDよりも情報記録面の透明基板厚の最大差が大きい3層以上のBDでは、透明基板厚が最も薄い情報記録面に情報の記録/再生を行う際に対物レンズに入射する光束の収束度合いが大きくなりすぎて、レンズシフト特性が劣悪になりやすいので、かかる対物レンズにより、そういった3層以上のBDならではのより大きな課題を、解決することが可能となる。即ち、透明基板厚Tが(12)式の上限を満たすことにより、透明基板厚が最も薄い情報記録面に情報の記録/再生を行う際に対物レンズに入射する光束の収束度合いが大きくなりすぎることを更に抑制し、その結果として、レンズシフト特性を更に良好にでき、透明基板厚が最も薄い情報記録面へフォーカスジャンプした際の残留高次球面収差も更に小さく出来るため好ましい。 By the spherical aberration is not larger than T MAX design board thickness is corrected to zero, the light beam incident on the objective lens when recording / reproducing information for the information recording surface of the transparent towards the substrate thickness is thin An increase in the degree of convergence can be further prevented. Therefore, when information is recorded / reproduced on the information recording surface with the thinner transparent substrate, it is possible to further prevent the occurrence of coma aberration when the objective lens is shifted. In a BD having three or more layers, where the maximum difference in the thickness of the transparent substrate on the information recording surface is larger than that on the two-layer BD, the light beam incident on the objective lens when information is recorded / reproduced on the information recording surface having the thinnest transparent substrate thickness Since the degree of convergence of the lens becomes too large and the lens shift characteristic is likely to be deteriorated, such an objective lens can solve a larger problem unique to such a BD having three or more layers. That is, when the transparent substrate thickness T satisfies the upper limit of the expression (12), the degree of convergence of the light beam incident on the objective lens becomes too large when information is recorded / reproduced on the information recording surface with the thinnest transparent substrate thickness. This is further preferable, and as a result, the lens shift characteristics can be further improved, and the residual higher-order spherical aberration when the focus jump is made to the information recording surface having the thinnest transparent substrate can be further reduced.
 一方、別な対物レンズの設計例において、倍率をM、光ディスクの基板厚をTとしたときに、3次球面収差が最小になる組み合わせ(M、T)のうち、1つの組み合わせは、M=0、T=Tcen(μm)であり、
 又、それとは別な組み合わせであって、対物レンズティルトに対する単位角度あたりの3次コマ収差の値をLT、光ディスクティルトに対する単位角度あたりの3次コマ収差の値をDTとしたときに、││LT│-│DT││が最小となるものは、M=Mcmc、T=Tcmc(μm)であり、更に以下の式を満たすと好ましい。
 0.5・T0≦Tcen≦0.85・T0   (13)
 Tcen<Tcmc   (14)
 Mcmc<0   (15)
但し、T0:前記光ディスクの基板厚のうち最大の基板厚(μm)
On the other hand, in another objective lens design example, when the magnification is M and the substrate thickness of the optical disk is T, one of the combinations (M, T) that minimizes the third-order spherical aberration is M = 0, T = Tcen (μm),
In another combination, when the value of the third order coma aberration per unit angle with respect to the objective lens tilt is LT and the value of the third order coma aberration per unit angle with respect to the optical disc tilt is DT, It is M = Mcmc and T = Tcmc (μm) that minimize LT│-│DT││, and it is preferable that the following expression is satisfied.
0.5 · T0 ≦ Tcen ≦ 0.85 · T0 (13)
Tcen <Tcmc (14)
Mccm <0 (15)
However, T0: The maximum substrate thickness (μm) among the substrate thicknesses of the optical disk
 (13)式を満たすように、設計基板厚が薄い状態で対物レンズを設計することで、薄形化した光ピックアップ装置に好適な対物レンズを提供できるが、対物レンズティルト感度が低下するという問題に対し、敢えて正弦条件を崩すことで対物レンズティルト感度を増大させれば、対物レンズのティルト量に対するコマ収差補正量を増大させることができ、これにより粗悪光ディスク等にも対応できる許容度を確保できる。 By designing the objective lens so that the design substrate thickness is small so as to satisfy the expression (13), it is possible to provide an objective lens suitable for the thinned optical pickup device, but the objective lens tilt sensitivity is lowered. On the other hand, if the objective lens tilt sensitivity is increased by breaking the sine condition, the coma aberration correction amount with respect to the tilt amount of the objective lens can be increased. it can.
 尚、正弦条件を満たす対物レンズの場合、一般的には、M=0,設計基板厚Tcenのときに、単位角度だけ対物レンズを傾けた際に発生するコマ収差LTの絶対値と、単位角度だけ光ディスクを傾けた際に発生するコマ収差DTの絶対値とがほぼ一致する(│LT│≒│DT│)。ところが、正弦条件を満たさない場合には、(│LT│≠│DT│)となる。一方、3次球面収差が最小になる前記組み合わせ(M、T)として、M=Mcmc、T=Tcmcであるとき、││LT│-│DT││が最小となれば、かかる状態ではTcen<Tcmcとなり、つまり(14)式を満たせば正弦条件を満たしていないことになる。これにより上述の効果を得ることができる。本明細書中、「最小」というときは、実際の最小値に対して+10%の範囲の値も含むものとする。但し、透明基板厚は中間でも良い。 In the case of an objective lens that satisfies the sine condition, generally, when M = 0 and the design substrate thickness Tcen, the absolute value of the coma aberration LT generated when the objective lens is tilted by a unit angle and the unit angle. The absolute value of the coma aberration DT generated when the optical disk is tilted substantially coincides (| LT | ≈ | DT |). However, when the sine condition is not satisfied, (| LT | ≠ | DT |). On the other hand, as the combination (M, T) that minimizes the third-order spherical aberration, when M = Mcmc and T = Tcmc, if || LT |-| DT || Tcmc, that is, if the expression (14) is satisfied, the sine condition is not satisfied. Thereby, the above-mentioned effect can be acquired. In this specification, the term “minimum” includes a value in the range of + 10% with respect to the actual minimum value. However, the transparent substrate thickness may be intermediate.
 以上の対物レンズ明によれば、条件式(13)、(14)を満たすように設計することで、従来(現在使用しているレンズ)と同じ対物レンズティルト特性を有しながらも、光ピックアップ装置の小型化に貢献する対物レンズを実現できる。 According to the above objective lens, the optical pickup is designed to satisfy the conditional expressions (13) and (14), while having the same objective lens tilt characteristic as the conventional lens (currently used lens). An objective lens that contributes to miniaturization of the apparatus can be realized.
 対物レンズは、BD専用であっても良いし、BD/DVD/CD互換用であっても良い。以下、BD/DVD/CD互換用の対物レンズについて説明する。  The objective lens may be dedicated to BD or may be compatible with BD / DVD / CD. Hereinafter, an objective lens for BD / DVD / CD compatibility will be described. *
 対物レンズの少なくとも一つの光学面が、中央領域と、中央領域の周りの中間領域と、中間領域の周りの周辺領域(以下、専用領域と呼んで、請求項でいう「周辺領域」と区別する)とを少なくとも有する。中央領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを中央領域としてもよい。中央領域、中間領域、及び専用領域は同一の光学面上に設けられていることが好ましい。図6に示されるように、中央領域CN、中間領域MD、専用領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。また、対物レンズの中央領域には第一光路差付与構造が設けられ、中間領域には第二光路差付与構造が設けられている。専用領域は屈折面であってもよいし、専用領域に第三光路差付与構造が設けられていてもよい。中央領域、中間領域、専用領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。 At least one optical surface of the objective lens is distinguished from the “peripheral region” in the claims by the central region, the intermediate region around the central region, and the peripheral region around the intermediate region (hereinafter referred to as a dedicated region) ) At least. The central region is preferably a region including the optical axis of the objective lens. However, a minute region including the optical axis may be an unused region or a special purpose region, and the periphery thereof may be a central region. The central region, the intermediate region, and the dedicated region are preferably provided on the same optical surface. As shown in FIG. 6, it is preferable that the central region CN, the intermediate region MD, and the dedicated region OT are provided concentrically around the optical axis on the same optical surface. In addition, a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area. The dedicated area may be a refracting surface, or a third optical path difference providing structure may be provided in the dedicated area. The central region, intermediate region, and dedicated region are preferably adjacent to each other, but there may be a slight gap between them.
 対物レンズの中央領域は、BD、DVD及びCDの記録/再生に用いられるBD/DVD/CD共用領域と言える。即ち、対物レンズは、中央領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中央領域を通過する第2光束を、DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、中央領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光する。また、中央領域に設けられた第1光路差付与構造は、第1光路差付与構造を通過する第1光束及び第2光束に対して、BDの保護基板の厚さt1とDVDの保護基板の厚さt2の違いにより発生する球面収差/第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。さらに、第1光路差付与構造は、第1光路差付与構造を通過した第1光束及び第3光束に対して、BDの保護基板の厚さt1とCDの保護基板の厚さt3との違いにより発生する球面収差/第1光束と第3光束の波長の違いにより発生する球面収差を補正することが好ましい。 The central area of the objective lens can be said to be a BD / DVD / CD shared area used for recording / reproducing BD, DVD and CD. That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. The light is condensed so that information can be recorded and / or reproduced on the surface, and the third light flux passing through the central region is condensed so that information can be recorded / reproduced on the information recording surface of the CD. In addition, the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam. Further, the first optical path difference providing structure is different from the thickness t1 of the BD protective substrate and the thickness t3 of the CD protective substrate with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference in the wavelength of the first light beam and the third light beam.
 対物レンズの中間領域は、BD、DVDの記録/再生に用いられ、CDの記録/再生に用いられないBD/DVD共用領域と言える。即ち、対物レンズは、中間領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中間領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、中間領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの中間領域を通過する第3光束は、CDの情報記録面上でフレアを形成することが好ましい。図7に示すように、対物レンズを通過した第3光束がCDの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部SCN、光量密度がスポット中心部より低いスポット中間部SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部SOTを有することが好ましい。スポット中心部が、光ディスクの情報の記録/再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録/再生には用いられない。上記において、このスポット周辺部をフレアと言っている。但し、スポット中心部の周りにスポット中間部が存在せずスポット周辺部があるタイプ、即ち、集光スポットの周りに薄く光が大きなスポットを形成する場合も、そのスポット周辺部をフレアと呼んでもよい。つまり、対物レンズの中間領域を通過した第3光束は、CDの情報記録面上でスポット周辺部を形成することが好ましいとも言える。 The intermediate area of the objective lens is used for BD / DVD recording / reproduction and can be said to be a BD / DVD shared area not used for CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the intermediate area is recorded as information recording on the DVD. Light is collected so that information can be recorded / reproduced on the surface. On the other hand, the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the CD. The third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the CD. As shown in FIG. 7, in the spot formed on the information recording surface of the CD by the third light beam that has passed through the objective lens, the spot center having a high light amount density in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a portion SCN, a spot intermediate portion SMD whose light intensity density is lower than that of the spot central portion, and a spot peripheral portion SOT whose light intensity density is higher than that of the spot intermediate portion and lower than that of the spot central portion. The center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare. However, there is no spot middle part around the center part of the spot and there is a spot peripheral part, that is, even when a light spot is formed thinly around the condensing spot, the spot peripheral part may be called a flare. Good. In other words, it can be said that the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the CD.
 対物レンズの専用領域は、BDの記録/再生に用いられ、DVD及びCDの記録/再生に用いられないBD専用領域と言える。即ち、対物レンズは、専用領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、専用領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光せず、専用領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの専用領域を通過する第2光束及び第3光束は、DVD及びCDの情報記録面上でフレアを形成することが好ましい。つまり、対物レンズの専用領域を通過した第2光束及び第3光束は、DVD及びCDの情報記録面上でスポット周辺部を形成することが好ましい。 The dedicated area of the objective lens is used for BD recording / playback, and can be said to be a BD dedicated area not used for DVD / CD recording / playback. That is, the objective lens condenses the first light beam passing through the dedicated area so that information can be recorded / reproduced on the information recording surface of the BD. On the other hand, the second light beam passing through the dedicated area is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD, and the third light beam passing through the dedicated area is used as the information recording surface of the CD. Do not collect light so that information can be recorded / reproduced on top. It is preferable that the second light flux and the third light flux that pass through the dedicated area of the objective lens form a flare on the information recording surface of the DVD and CD. That is, it is preferable that the second light flux and the third light flux that have passed through the dedicated area of the objective lens form a spot peripheral portion on the information recording surface of DVD and CD.
 第1光路差付与構造を有する場合、対物レンズの中央領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第1光路差付与構造が、中央領域の全面に設けられていることである。第2光路差付与構造を有する場合、対物レンズの中間領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第2光路差付与構造が、中間領域の全面に設けられていることである。専用領域が第3光路差付与構造を有する場合、第3光路差付与構造は、対物レンズの専用領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第3光路差付与構造が、専用領域の全面に設けられていることである。 In the case of having the first optical path difference providing structure, it is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region. When it has a 2nd optical path difference providing structure, it is preferable to provide in the area | region 70% or more of the area of the intermediate area | region of an objective lens, and 90% or more is more preferable. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region. When the dedicated region has the third optical path difference providing structure, the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the dedicated region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the dedicated region.
 なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含まれる。また、位相差付与構造には回折構造が含まれる。本発明の光路差付与構造は回折構造であることが好ましい。光路差付与構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光路差付与構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、光路差付与構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam. The optical path difference providing structure also includes a phase difference providing structure for providing a phase difference. The phase difference providing structure includes a diffractive structure. The optical path difference providing structure of the present invention is preferably a diffractive structure. The optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux. The optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. When the objective lens provided with the optical path difference providing structure is a single aspherical lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis. Each will be slightly different. For example, when the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、回折構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In addition, when the objective lens provided with the diffractive structure is a single aspherical lens, the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be. For example, when the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
 ところで、光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、光路差付与構造は、一般に、様々な断面形状(光軸を含む面での断面形状) をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。 Incidentally, it is preferable that the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center. In addition, the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
 ブレーズ型構造とは、図8(a)、(b)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということである。尚、図8の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に光路差付与構造が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという。(図8(a)、(b)参照)また、ブレーズの光軸に平行方向の段差の長さを段差量Bという。(図8(a)参照) As shown in FIGS. 8A and 8B, the blaze type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape. In the example of FIG. 8, it is assumed that the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface. In the blazed structure, the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P. (See FIGS. 8A and 8B) The length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 8 (a))
 また、階段型構造とは、図8(c)、(d)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。尚、本明細書中、「Vレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、テラス面と称することもある)が、段差によって区分けされV個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有することになる。例えば、図8(c)に示す光路差付与構造を、5レベルの階段型構造といい、図8(d)に示す光路差付与構造を、2レベルの階段型構造(バイナリ構造ともいう)という。 In addition, as shown in FIGS. 8C and 8D, the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ). In the present specification, “V level” means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones. Particularly, a three-level or higher staircase structure has a small step and a large step. For example, the optical path difference providing structure illustrated in FIG. 8C is referred to as a five-level step structure, and the optical path difference providing structure illustrated in FIG. 8D is referred to as a two-level step structure (also referred to as a binary structure). .
 尚、光路差付与構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。 ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。 The optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated. 「“ The unit shape is periodically repeated ”here naturally includes shapes in which the same shape is repeated in the same cycle. In addition, the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”. Suppose that
 光路差付与構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図8(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図8(b)に示されるように、光軸から離れる方向に進むに従って、徐々に鋸歯状形状のピッチが長くなっていく形状、又は、ピッチが短くなっていく形状であってもよい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。なお、このようにブレーズ型構造の段差の向きを途中で切り替える構造にする場合、輪帯ピッチを広げることが可能となり、光路差付与構造の製造誤差による透過率低下を抑制できる。 When the optical path difference providing structure has a blazed structure, the sawtooth shape as a unit shape is repeated. As shown in FIG. 8 (a), the same sawtooth shape may be repeated, or as shown in FIG. 8 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used. In addition, in some areas, the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area | region required in order to switch the direction of the level | step difference of a blaze | braze type | mold structure is provided in the meantime. In addition, when it is set as the structure which switches the direction of the level | step difference of a blaze | braze type | mold in this way, it becomes possible to widen an annular zone pitch and it can suppress the transmittance | permeability fall by the manufacturing error of an optical path difference providing structure.
 また、第1光路差付与構造及び第2光路差付与構造を設ける場合、それぞれ対物レンズの異なる光学面に設けてもよいが、同一の光学面に設けることが好ましい。更に、第3光路差付与構造を設ける場合も、第1光路差付与構造及び第2光路差付与構造と同じ光学面に設けることが好ましい。同一の光学面に設けることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造を設ける場合、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。別の言い方では、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの曲率半径の絶対値が小さい方の光学面に設けることが好ましい。尚、第1基礎構造と第2基礎構造を重畳せずに、それぞれ異なる光学面に設けることも考えられる。第3基礎構造と第4基礎構造も、同様に重畳せずにそれぞれ異なる光学面に設けることも考えられる。 In addition, when the first optical path difference providing structure and the second optical path difference providing structure are provided, they may be provided on different optical surfaces of the objective lens, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. Moreover, when providing the 1st optical path difference providing structure, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure, it is preferable to provide in the light source side surface of an objective lens rather than the surface at the side of the optical disk of an objective lens. In other words, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens. It is also conceivable to provide the first basic structure and the second basic structure on different optical surfaces without overlapping. Similarly, the third basic structure and the fourth basic structure may be provided on different optical surfaces without overlapping.
 次に、中央領域に第1光路差付与構造を設ける場合について説明する。第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造を重ね合わせた構造であることが好ましいが、これに限られるものではない。第1光路差付与構造は、第1基礎構造と第2基礎構造のみを重ね合わせた構造であることが好ましい。 Next, a case where the first optical path difference providing structure is provided in the central region will be described. The first optical path difference providing structure is preferably a structure in which at least the first basic structure and the second basic structure are overlapped, but is not limited thereto. The first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
 第1基礎構造は、ブレーズ型構造であると好ましい。また、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。これを(1/1/1)構造と呼ぶ。特に、低次である1次回折光が発生するようにすると、第1基礎構造の段差量が大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The first basic structure is preferably a blazed structure. In addition, the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity that has passed through the first basic structure. Is preferably larger than any other order of diffracted light, and the first order diffracted light of the third light beam having passed through the first basic structure is preferably larger than any other order of diffracted light. This is called a (1/1/1) structure. In particular, if the first-order diffracted light that is low order is generated, the step amount of the first basic structure does not become too large, so that the manufacture is facilitated, and the light quantity loss due to the manufacturing error can be suppressed, and the wavelength It is preferable because the diffraction efficiency fluctuation at the time of fluctuation can be reduced.
 かかる場合、少なくとも中央領域の光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いていることが好ましい。「段差が光軸とは逆の方向を向いている」とは、図9(b)のような状態を言う。また、「少なくとも中央領域の光軸付近」に設けられる第1基礎構造とは、(1/1/1)構造の段差のうち、少なくとも最も光軸に近い段差を言う。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する(1/1/1)構造の段差が、光軸とは逆の方向を向いていることである。 In such a case, it is preferable that the first basic structure provided at least in the vicinity of the optical axis in the central region has a step in a direction opposite to the optical axis. “The step is directed in the direction opposite to the optical axis” means a state as shown in FIG. In addition, the first basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (1/1/1) structure. Preferably, at least a (1/1/1) structure step existing between the optical axis and the half-position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region is the optical axis. Is pointing in the opposite direction.
 例えば、中央領域の中間領域付近に設けられる第1基礎構造は、段差が光軸の方向を向いていてもよい。即ち、図10(b)に示すように、第1基礎構造が光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では第1基礎構造の段差が光軸の方を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第1基礎構造の全ての段差が光軸とは逆の方向を向いていることである。 For example, in the first basic structure provided near the middle region of the central region, the step may be directed in the direction of the optical axis. That is, as shown in FIG. 10B, the step is directed in the opposite direction to the optical axis when the first foundation structure is near the optical axis, but is switched halfway, and the step of the first foundation structure is near the intermediate region. It is good also as a shape which faces the direction of an optical axis. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
 このように、第1光束における回折次数が1次となる第1基礎構造の段差の向きを光軸と逆方向に向けることにより、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保することが可能となるのである。 In this way, the direction of the step of the first basic structure in which the diffraction order of the first light beam is the first order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a sufficient working distance can be secured when the CD is used.
 BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保するという観点からは、第1基礎構造が第1光束に対して負の近軸パワーを持つことが好ましい。ここで、「負の近軸パワーを持つ」とは、第1基礎構造の光路差関数を後述する数2式で表した場合、B22>0であることを意味する。 The first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have a negative paraxial power with respect to the luminous flux. Here, “having negative paraxial power” means that B 2 h 2 > 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
 また、第2基礎構造も、ブレーズ型構造であると好ましい。第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。これを(2/1/1)構造と呼ぶ。特に、低次である2次回折光又は1次回折光が発生するようにすると、第2基礎構造の段差量が大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 Also, the second basic structure is preferably a blazed structure. In the second basic structure, the second-order diffracted light amount of the first light beam that has passed through the second basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the first basic structure. It is preferable that the amount of light is made larger than any other order of diffracted light, and the first order diffracted light of the third light beam that has passed through the first basic structure is made larger than any other order of diffracted light. This is called a (2/1/1) structure. In particular, if low-order second-order diffracted light or first-order diffracted light is generated, the step amount of the second basic structure does not become too large, which facilitates manufacturing and suppresses light loss caused by manufacturing errors. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
 また、少なくとも中央領域の光軸付近に設けられる第2基礎構造は、その段差が光軸の方向を向いていることが好ましい。「段差が光軸の方向を向いている」とは、図9(a)のような状態を言う。また、「少なくとも中央領域の光軸付近」に設けられる第2基礎構造とは、(2/1/1)構造の段差のうち、少なくとも最も光軸に近い段差を言う。好ましくは、少なくとも光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する(2/1/1)構造の段差が光軸の方向を向いていることである。 Further, it is preferable that the step of the second basic structure provided at least in the vicinity of the optical axis in the central region is directed in the direction of the optical axis. “The step is directed in the direction of the optical axis” means a state as shown in FIG. The second basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (2/1/1) structure. Preferably, at least a half of the optical axis orthogonal direction from the optical axis to the boundary between the central region and the intermediate region and the (2/1/1) structure step existing between the optical axis and the optical axis direction It is suitable.
 例えば、中央領域の中間領域付近に設けられる第2基礎構造は、段差が光軸とは逆の方向を向いていてもよい。即ち、図10(a)に示すように、第2基礎構造が光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では第2基礎構造の段差が光軸とは逆の方向を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第2基礎構造は、全ての段差が光軸の方向を向いていることである。但し、本発明では、図10(b)に示す構造がより有効である。 For example, in the second basic structure provided near the middle region of the central region, the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 10A, the step is directed in the direction of the optical axis when the second foundation structure is in the vicinity of the optical axis, but is switched halfway, and the step of the second foundation structure is at the optical axis in the vicinity of the intermediate region. It is good also as a shape which faces the reverse direction. However, preferably, the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis. However, in the present invention, the structure shown in FIG. 10B is more effective.
 (1/1/1)構造である第1基礎構造と、(2/1/1)構造である第2基礎構造とを重ね合わせた第1光路差付与構造にすると、段差の高さを非常に低くできる。従って、より製造誤差を低減させることが可能となり、光量ロスを更に抑えることが可能となると共に、波長変動時の回折効率の変動をより抑えることが可能となる。 When the first optical path difference providing structure is formed by superimposing the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure, the height of the step is extremely high. Can be lowered. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
 さらに、少なくとも中央領域の光軸付近においては段差が光軸とは逆の方向を向いている第1基礎構造と、少なくとも中央領域の光軸付近においては段差が光軸の方向を向いている第2基礎構造を重ね合わせることにより、第1基礎構造と第2基礎構造の段差の向きが同じになるように重ね合わせた場合に比べて、重ね合わせた後の段差の高さが高くなることをより一層抑制でき、それに伴い、製造誤差などに因る光量ロスをより抑えることが可能となると共に、波長変動時の回折効率の変動もより抑えることが可能となる。 Furthermore, at least near the optical axis of the central region, the first basic structure in which the step is directed in the direction opposite to the optical axis, and at least near the optical axis of the central region, the step is directed in the direction of the optical axis. By superimposing two foundation structures, the height of the step after superposition is higher than when superimposing the steps so that the first and second foundation structures have the same step direction. As a result, it is possible to further suppress the light amount loss due to manufacturing errors and the like, and to further suppress the fluctuation of the diffraction efficiency at the time of wavelength fluctuation.
 また、BD/DVD/CDの3種類の光ディスクの互換を可能とするだけでなく、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することが好ましい。例えば、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を60%以上、波長λ3に対する回折効率を50%以上とする対物レンズを提供することが好ましい。更には、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を70%以上、波長λ3に対する回折効率を60%以上とする対物レンズも提供することがより好ましい。加えて、第1基礎構造の段差の向きを光軸と逆方向に向けることにより、波長が長波長側に変動した際に収差をアンダー(補正不足)の方向に変化させることがより容易に行える。 Further, not only can the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD. It is preferable to provide a balanced objective lens. For example, it is preferable to provide an objective lens that has a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 60% or more for the wavelength λ2, and a diffraction efficiency of 50% or more for the wavelength λ3. Furthermore, it is more preferable to provide an objective lens that has a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 70% or more for the wavelength λ2, and a diffraction efficiency of 60% or more for the wavelength λ3. In addition, by orienting the step of the first basic structure in the direction opposite to the optical axis, it is easier to change the aberration in the direction of under (undercorrection) when the wavelength changes to the long wavelength side. .
 段差が光軸とは逆を向いている第1基礎構造と段差が光軸の方を向いている第2基礎構造とを重ね合わせた後の第1光路差付与構造の形状と段差量という観点から、(1/1/1)構造である第1基礎構造と、(2/1/1)構造である第2基礎構造とを重ね合わせた第1光路差付与構造を以下のように表現することができる。少なくとも中央領域の光軸付近に設けられている第1光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを共に有し、光軸とは逆の方向を向いている段差の段差量d11と、光軸の方向を向いている段差の段差量d12とが、以下の条件式(16)、(17)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(16)、(17)を満たすことである。尚、光路差付与構造を設けた対物レンズが単玉非球面の凸レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。下記条件式において上限に1.5を乗じているのは、当該段差量の増加を加味した故である。但し、nは、第1の波長λ1における対物レンズの屈折率を表す。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (16)0.6・(λ1/(n-1))<d12<1.5・(2λ1/(n-1))   (17)
Viewpoint of the shape and step amount of the first optical path difference providing structure after the first basic structure in which the step is opposite to the optical axis and the second basic structure in which the step is directed toward the optical axis are overlapped Therefore, the first optical path difference providing structure in which the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure are overlapped is expressed as follows. be able to. The first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis. It is preferable that the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (16) and (17). More preferably, the following conditional expressions (16) and (17) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase. In the following conditional expression, the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account. Here, n represents the refractive index of the objective lens at the first wavelength λ1.
0.6 · (λ1 / (n−1)) <d11 <1.5 · (λ1 / (n−1)) (16) 0.6 · (λ1 / (n−1)) <d12 <1. 5. (2λ1 / (n-1)) (17)
 尚、「少なくとも中央領域の光軸付近」に設けられる第1光路差付与構造とは、少なくとも光軸に最も近い光軸とは逆の方向を向いている段差と、光軸に最も近い光軸の方向を向いている段差とを共に有する光路差付与構造をいう。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する段差を有する光路差付与構造である。 The first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis. An optical path difference providing structure having both of the steps facing the direction of. Preferably, the optical path difference providing structure has a step existing between at least a half position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm   (18)
 0.39μm<d12<2.31μm   (19)
0.39 μm <d11 <1.15 μm (18)
0.39 μm <d12 <2.31 μm (19)
 更に、第1基礎構造と第2基礎構造の重ね合わせ方としては、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせるように基礎構造の形状を微調整するか、第1基礎構造の全ての段差の位置と、第2基礎構造の段差の位置を合わせるように基礎構造の形状を微調整することが好ましい。 Further, as a method of overlapping the first foundation structure and the second foundation structure, the shape of the foundation structure is finely adjusted so that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure are matched. Alternatively, it is preferable to finely adjust the shape of the foundation structure so that the positions of all the steps of the first foundation structure and the positions of the steps of the second foundation structure are matched.
 上述のように第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせた場合、第1光路差付与構造のd11、d12は以下の条件式(20)、(21)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(20)、(21)を満たすことである。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (20)0.6・(λ1/(n-1))<d12<1.5・(λ1/(n-1))   (21) 
As described above, when the positions of all the steps of the second foundation structure are matched with the positions of the steps of the first foundation structure, d11 and d12 of the first optical path difference providing structure are the following conditional expressions (20) and (21 ) Is preferably satisfied. More preferably, the following conditional expressions (20) and (21) are satisfied in all the regions of the central region.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (20) 0.6 · (λ1 / (n-1)) <d12 <1. 5. (λ1 / (n-1)) (21)
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm   (22)
 0.39μm<d12<1.15μm   (23)
0.39 μm <d11 <1.15 μm (22)
0.39 μm <d12 <1.15 μm (23)
 更に好ましくは、以下の条件式(24)、(25)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(24)、(25)を満たすことである。
0.9・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (24)0.9・(λ1/(n-1))<d12<1.5・(λ1/(n-1))   (25) 
More preferably, the following conditional expressions (24) and (25) are preferably satisfied. More preferably, the following conditional expressions (24) and (25) are satisfied in all the regions of the central region.
0.9 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (24) 0.9 · (λ1 / (n-1)) <d12 <1. 5. (λ1 / (n-1)) (25)
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.59μm<d11<1.15μm   (26)
 0.59μm<d12<1.15μm   (27)
0.59 μm <d11 <1.15 μm (26)
0.59 μm <d12 <1.15 μm (27)
 また、(1/1/1)構造である第1基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化し、(2/1/1)構造である第2基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化すると好ましい。このような構成により、光ピックアップ装置の温度の上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の変化を補正して、適切な集光スポットを各光ディスクの情報記録面に形成できる。これにより、対物レンズがプラスチック製であっても、温度変化時においても安定した性能を維持できる対物レンズを提供することができる。 Further, in the first basic structure having the (1/1/1) structure, when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (2 / In the second basic structure having the 1/1) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in the undercorrection direction (under). With such a configuration, when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature. It is possible to correct a change in spherical aberration due to a change in the rate and form an appropriate focused spot on the information recording surface of each optical disc. Thereby, even if the objective lens is made of plastic, it is possible to provide an objective lens that can maintain stable performance even when the temperature changes.
 第2基礎構造に比べて、第1基礎構造の近軸パワーが大きいことが好ましい。つまりは、第1基礎構造の平均ピッチが、第2基礎構造の平均ピッチに比べて小さいことが好ましい。これにより、BD/DVD/CD互換用対物レンズという軸上厚が厚い対物レンズにおいてもCDにおけるワーキングディスタンスを確保できる。更に、色収差を小さくし、光源が高周波重畳を起こしていても、良好な光スポットを形成させ、しかも、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させ、更に、DVD使用時の温度特性と波長特性を良好にするためには、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯が2~6個(特に好ましくは2~3個)含まれていることが好ましい。尚、この場合、第2基礎構造の光軸に最も近い「輪帯」と記載しているが、実際は、光軸を含む「円」であることが通常である。従って、ここで言う「光軸に最も近い輪帯」には、円状の形状も含まれる。又、中間領域に最も近い第2基礎構造の1つの輪帯において、第2基礎構造の輪帯1つ分に、第1基礎構造の輪帯が1~5個(特に好ましくは2~3個)含まれていることである。 It is preferable that the paraxial power of the first foundation structure is larger than that of the second foundation structure. That is, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure. Thereby, a working distance in the CD can be secured even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. Furthermore, the chromatic aberration is reduced, a good light spot is formed even when the light source has a high frequency superposition, and the problem of stray light when the optical disk has a plurality of information recording surfaces is reduced. In order to improve the temperature characteristics and the wavelength characteristics at the time, in the first optical path difference providing structure, one ring zone closest to the optical axis of the second basic structure has two or more ring zones of the first basic structure. It is preferable that 6 (particularly preferably 2 to 3) are included. In this case, the “ring zone” closest to the optical axis of the second foundation structure is described, but in practice, it is usually a “circle” including the optical axis. Accordingly, the “annular zone closest to the optical axis” mentioned here includes a circular shape. Further, in one ring zone of the second foundation structure closest to the intermediate region, 1 to 5 ring zones of the first foundation structure (particularly preferably 2 to 3 rings) are included in one ring zone of the second foundation structure. ) Is included.
 尚、図11(d)に示すように、第1基礎構造と第2基礎構造とをそのまま重畳すると、点線で示すように一部が突出する場合があるが、突出部分の幅が5μm以下と狭ければ、突出した部分を光軸に沿って平行にシフトして、突出部分をなくしても大きな影響がなく、これにより第2基礎構造の1つの輪帯に、第1基礎構造の複数の輪帯が丁度のるようになる(実線参照)。よって、図11(d)の例では、第2基礎構造の1つの輪帯上に、3つの第1基礎構造の輪帯がのっているものとして扱う。第1基礎構造と第2基礎構造をそのまま重畳した場合に、幅が5μm以下と狭い凹みが発生する場合も同様にして凹みをなくしてもよい。 As shown in FIG. 11D, when the first basic structure and the second basic structure are directly overlapped, a part may protrude as shown by a dotted line, but the width of the protruding part is 5 μm or less. If it is narrow, the projecting portion is shifted in parallel along the optical axis, and eliminating the projecting portion has no significant effect, so that one annular zone of the second foundation structure can have a plurality of the first foundation structure. The zonal is just like that (see the solid line). Therefore, in the example of FIG. 11D, it is assumed that three annular zones of the first foundation structure are on one annular zone of the second foundation structure. When the first foundation structure and the second foundation structure are superimposed as they are, a dent may be eliminated in the same manner even when a dent having a width of 5 μm or less is generated.
 ここで、Δλ(nm)は第1波長の変化量、ΔWD(μm)は第1波長の変化Δλに起因して発生する対物レンズの色収差とすると、以下の式を満たすと好ましい。
 0.3(μm/nm)≦ΔWD/Δλ≦0.6(μm/nm)   (28)
Here, when Δλ (nm) is the amount of change in the first wavelength and ΔWD (μm) is the chromatic aberration of the objective lens caused by the change Δλ in the first wavelength, it is preferable that the following expression is satisfied.
0.3 (μm / nm) ≦ ΔWD / Δλ ≦ 0.6 (μm / nm) (28)
 このような構成とするためには、上述したように、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯N1が2~6個(特に好ましくは2~3個)含まれるようにすることが好ましい。色収差を上述の範囲にすることによって、BD/DVD/CD互換用対物レンズという軸上厚が厚い対物レンズにおいてもCDにおけるワーキングディスタンスを確保しながら、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させることができ、さらにDVD使用時の温度特性及び波長特性を良好にできるため好ましい。又、第2基礎構造における中間領域に最も近い1つの輪帯上に重畳された第1基礎構造の輪帯の数N2は、N1と等しいかN1より小さいことが望ましく、例えば1~5個重畳されていることがよい。 In order to obtain such a configuration, as described above, in the first optical path difference providing structure, two annular zones N1 of the first basic structure are equal to one annular zone closest to the optical axis of the second basic structure. It is preferable to include ˜6 (particularly preferably 2 to 3). By setting the chromatic aberration to the above-described range, the optical disc has a plurality of information recording surfaces while ensuring a working distance in the CD even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. This is preferable because the problem of stray light can be reduced and the temperature and wavelength characteristics can be improved when using a DVD. In addition, the number N2 of the first foundation structure annular zones superimposed on one annular zone closest to the intermediate region in the second foundation structure is preferably equal to or smaller than N1, for example, 1 to 5 overlapping zones. It should be done.
 第1基礎構造は正の回折パワーを持つことが好ましく、それによりBD/DVD/CD用の対物レンズといった軸上厚が厚い対物レンズにおいてもCD使用時のワーキングディスタンスを確保できる。また、第2基礎構造は負の回折パワーを持つことが好ましい。このように第1基礎構造と第2基礎構造が共に回折パワーを持つことにより、複数の情報記録面を有する光ディスクを使用した際に、記録再生対象でない情報記録面で反射した不要光を必要光からより遠ざけることが可能となるため好ましい。 The first basic structure preferably has a positive diffractive power, so that a working distance when using a CD can be secured even for an objective lens having a large axial thickness such as an objective lens for BD / DVD / CD. Further, the second basic structure preferably has a negative diffraction power. As described above, since both the first basic structure and the second basic structure have diffraction power, when using an optical disk having a plurality of information recording surfaces, unnecessary light reflected by the information recording surface which is not a recording / reproducing object is required light. It is preferable because it can be further away from the center.
 第1光路差付与構造を通過した第3光束によって、第3光束が形成するスポットの光強度が最も強い第1ベストフォーカス位置と、第3光束が形成するスポットの光強度が次に強い第2ベストフォーカス位置とが、以下の条件式(29)を満たすことが好ましい。なお、ここでいうベストフォーカス位置とは、ビームウェストが、或るデフォーカスの範囲でビームウェストが極小となる位置を指すものである。第1ベストフォーカス位置がCDの記録/再生に用いられる必要光のベストフォーカス位置であり、第2ベストフォーカス位置がCDの記録/再生に用いられない不要光のうち、最も光量が多い光束のベストフォーカス位置である。
 0.05≦L/f13≦0.35   (29)
 但し、f13[mm]は、第1光路差付与構造を通過し、第1ベストフォーカスを形成する第3光束の焦点距離を指し、L[mm]は、第1ベストフォーカスと第2ベストフォーカスの間の距離を指す。
The first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (29). Here, the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range. The first best focus position is the best focus position of the necessary light used for CD recording / reproduction, and the second best focus position is the best of the luminous flux having the largest light quantity among the unnecessary light that is not used for CD recording / reproduction. The focus position.
0.05 ≦ L / f13 ≦ 0.35 (29)
However, f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus, and L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
 より好ましくは、以下の条件式(29)´を満たすことである。
 0.10≦L/f13≦0.25   (29)´
More preferably, the following conditional expression (29) ′ is satisfied.
0.10 ≦ L / f13 ≦ 0.25 (29) ′
 以上述べた第1光路差付与構造の好ましい例をいくつか図11(a)、(b)、(c)として示す。尚、図11は、便宜上、第1光路差付与構造ODS1が平板状に設けられたものとして示されているが、単玉非球面の凸レンズ上に設けられていてもよい。(2/1/1)回折構造である第2基礎構造BS2に、(1/1/1)回折構造である第1基礎構造BS1が重ねあわされている。図11(a)においては、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差は光軸OAとは逆の方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。次に、図11(b)においては、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差も光軸OAの方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。次に、図11(c)においては、第1基礎構造BS1の段差は光軸OAと逆の方向を向いており、第2基礎構造BS2の段差も光軸OAと逆の方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。 Several preferred examples of the first optical path difference providing structure described above are shown in FIGS. 11 (a), (b), and (c). Although FIG. 11 shows the first optical path difference providing structure ODS1 as a flat plate for convenience, it may be provided on a single aspherical convex lens. The first basic structure BS1 which is a (1/1/1) diffraction structure is overlapped with the second basic structure BS2 which is a (2/1/1) diffraction structure. In FIG. 11 (a), the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA. Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1. Next, in FIG. 11B, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS1 also faces the direction of the optical axis OA. Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1. Next, in FIG. 11C, the step of the first basic structure BS1 faces in the direction opposite to the optical axis OA, and the step of the second basic structure BS2 also faces in the direction opposite to the optical axis OA. . Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
 更に、中央領域の総輪帯数をN、対物レンズの第1光束における焦点距離をf(mm)としたとき、以下の式を満たすと好ましい。これによりCDのワーキングディスタンスが短くなりすぎることを抑制すると共に、輪帯のピッチが小さくなりすぎて加工性が低下することを抑制できる。尚、中央領域における光軸に略平行な段差数を、中央領域の総輪帯数とみなしてよい。
 160(mm)≦N・f≦210(mm)   (30)
Furthermore, when the total number of annular zones in the central region is N and the focal length of the first light flux of the objective lens is f (mm), it is preferable that the following expression is satisfied. As a result, it is possible to prevent the working distance of the CD from becoming too short and to suppress the workability from being lowered due to the ring zone pitch becoming too small. Note that the number of steps substantially parallel to the optical axis in the central region may be regarded as the total number of annular zones in the central region.
160 (mm) ≤ N · f ≤ 210 (mm) (30)
 以上、第1光路差付与構造の好ましい構造について、ブレーズ型の(1/1/1)構造と、ブレーズ型の(2/1/1)構造とを重畳した構造を中心に説明してきたが、他の第1光路差付与構造の例としては以下が挙げられる。 As described above, the preferable structure of the first optical path difference providing structure has been described focusing on the structure in which the blaze type (1/1/1) structure and the blaze type (2/1/1) structure are superimposed. Examples of other first optical path difference providing structures include the following.
 例えば、(A)単一のブレーズ型構造のみの場合、(B)単一の階段型構造の場合、(C)複数のブレーズ型構造を重畳した場合、(D)ブレーズ型構造と階段型構造を重畳する場合等が挙げられる。(A)の好ましい例としては、対物レンズの倍率差を利用しつつブレーズ型の(2/1/1)構造のみからなる第1光路差付与構造や、(1/1/1)構造のみからなる第1光路差付与構造が挙げられる。(B)の好ましい例としては、7レベルの階段型構造である(1/-3/-4)構造のみからなる第1光路差付与構造や、7レベルの階段型構造である(1/-2/-3)構造のみからなる第1光路差付与構造や、6レベルの階段型構造である(1/-1/-2)構造のみからなる第1光路差付与構造等が挙げられる。(C)の好ましい例としては、ブレーズ型の(2/1/1)構造とブレーズ型の(1/1/1)構造を重畳させた第1光路差付与構造以外に、ブレーズ型の(2/1/1)構造とブレーズ型の(1/0/0)構造とを重畳させた第1光路差付与構造が挙げられる。(D)の好ましい例としては、ブレーズ型の(2/1/1)構造と4レベルの階段型構造である(1/0/0)構造とを重畳させた第1光路差付与構造や、ブレーズ型の(2/1/1)構造と2レベルの階段型構造である(0/0/1)構造とを重畳させた第1光路差付与構造が挙げられる。 For example, (A) in the case of only a single blazed structure, (B) in the case of a single staircase structure, (C) in the case of superimposing a plurality of blazed structures, (D) a blazed structure and a staircase structure For example. As a preferable example of (A), a first optical path difference providing structure composed only of a blazed (2/1/1) structure or a (1/1/1) structure alone while utilizing the magnification difference of the objective lens. The 1st optical path difference providing structure which becomes becomes. As a preferable example of (B), a first optical path difference providing structure consisting only of a (1 / −3 / −4) structure which is a 7-level staircase structure or a 7-level staircase structure (1 / −) 2 / -3) a first optical path difference providing structure consisting only of the structure, a first optical path difference providing structure consisting only of a (1 / -1 / -2) structure which is a 6-level stepped structure, and the like. As a preferable example of (C), in addition to the first optical path difference providing structure in which the blaze type (2/1/1) structure and the blaze type (1/1/1) structure are superimposed, the blaze type (2 / 1/1) structure and a blaze-type (1/0/0) structure may be mentioned as a first optical path difference providing structure. As a preferable example of (D), a first optical path difference providing structure in which a blaze type (2/1/1) structure and a (1/0/0) structure that is a four-level stepped structure are superimposed, There is a first optical path difference providing structure in which a blaze type (2/1/1) structure and a (0/0/1) structure that is a two-level stepped structure are superimposed.
 次に、中間領域に第2光路差付与構造を設ける場合について説明する。第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造の2つの基礎構造を重ね合わせた構造であることが好ましいが、これに限られるものではない。 Next, the case where the second optical path difference providing structure is provided in the intermediate region will be described. The second optical path difference providing structure is preferably a structure in which at least two basic structures of the third basic structure and the fourth basic structure are overlapped, but is not limited thereto.
 第3基礎構造も第4基礎構造も、ブレーズ型構造であることが好ましい。また、第3基礎構造は、第3基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。又、第3基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。また、第4基礎構造は、第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。又、第4基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。これにより、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた第2光路差付与構造において、光軸方向の段差量を低減でき、それにより波長変動時の回折効率の低下を抑制できる。また、第1基礎構造と第3基礎構造における最も光強度が高い回折光の次数が一致し、且つ第2基礎構造と第4基礎構造における最も光強度が高い回折光の次数が一致しているため、中央領域と中間領域を通過する光束について、温度や波長変化時においても球面収差を連続と出来、その結果、高次収差の発生を抑えることができる。 It is preferable that both the third basic structure and the fourth basic structure are blazed structures. Further, the third basic structure makes the first-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the third basic structure. Is preferably larger than any other order of diffracted light. In addition, it is preferable that the first-order diffracted light amount of the third light flux that has passed through the third basic structure is larger than any other order diffracted light amount. In addition, the fourth foundation structure makes the second-order diffracted light amount of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light amount, and the first-order of the second light beam that has passed through the fourth foundation structure. Is preferably larger than any other order of diffracted light. In addition, it is preferable that the first-order diffracted light amount of the third light flux that has passed through the fourth basic structure is larger than any other order diffracted light amount. Thereby, in the second optical path difference providing structure in which at least the third basic structure and the fourth basic structure are overlapped, the amount of step in the optical axis direction can be reduced, thereby suppressing the decrease in diffraction efficiency at the time of wavelength variation. Further, the orders of the diffracted light having the highest light intensity in the first basic structure and the third basic structure are matched, and the orders of the diffracted light having the highest light intensity in the second basic structure and the fourth basic structure are matched. Therefore, the spherical aberration can be made continuous even when the temperature and the wavelength change for the light flux passing through the central region and the intermediate region, and as a result, the occurrence of higher order aberrations can be suppressed.
 第2光路差付与構造は第3、第4基礎構造に加えて、第5基礎構造を重ね合わせた構造としてもよいが、構造を単純にし、製造誤差による光利用効率の低下を抑えるためにも、第2光路差付与構造は、第3基礎構造及び第4基礎構造のみからなることが好ましい。 The second optical path difference providing structure may be a structure in which the fifth basic structure is overlapped in addition to the third and fourth basic structures. However, in order to simplify the structure and suppress a decrease in light utilization efficiency due to manufacturing errors. The second optical path difference providing structure preferably includes only the third basic structure and the fourth basic structure.
 尚、この時、第5基礎構造は、第5基礎構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第2光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第3光束のG次の回折光量を他のいかなる次数の回折光量よりも大きくする構造であることが好ましい。この様な第5基礎構造を重ね合わせることにより、対物レンズの中間領域を通過する第1光束、第2光束に悪影響を与えることなく、且つ、中央領域と中間領域との間で位相ずれを生じさせることなく、第3光束のみに、CDの情報記録面上でフレアを光スポットから遠い位置に形成させる作用を容易に与えることが可能となる。 At this time, the fifth basic structure makes the 0th-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure. The 0th-order diffracted light amount is made larger than any other order diffracted light amount, and the G-th order diffracted light amount of the third light flux that has passed through the fifth basic structure is made larger than any other order diffracted light amount. It is preferable. By superimposing such a fifth basic structure, a phase shift occurs between the central region and the intermediate region without adversely affecting the first light beam and the second light beam passing through the intermediate region of the objective lens. Accordingly, it is possible to easily give only the third light flux an effect of forming a flare at a position far from the light spot on the information recording surface of the CD.
 好ましくは、Gが±1である。Gが±1である場合に、第5基礎構造は、図4(d)に示すような2レベルの階段型構造(バイナリ構造とも言う)であることが好ましい。 Preferably, G is ± 1. When G is ± 1, the fifth basic structure is preferably a two-level staircase structure (also referred to as a binary structure) as shown in FIG.
 また、第3基礎構造を通過した第1光束の3次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし((3/2)構造とも言う)、第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする((2/1)構造とも言う)ようにしてもよい。このような構成であると、BDにおける回折効率をより高めることができる。 Further, the third-order diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the second-order diffracted light amount of the second light beam that has passed through the third basic structure is changed to other values. The diffraction light quantity of any order is made larger (also referred to as (3/2) structure), the second-order diffraction light quantity of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffraction light quantity, The first-order diffracted light amount of the second light beam that has passed through the four basic structures may be made larger than any other order diffracted light amount (also referred to as a (2/1) structure). With such a configuration, the diffraction efficiency in BD can be further increased.
 尚、第3基礎構造と第4基礎構造が、(1/1)構造と(2/1)構造の組み合わせである場合も、(3/2)構造と(2/1)構造の組み合わせである場合も、少なくとも中間領域の、中央領域に最も近い位置に設けられる第3基礎構造は、その段差が光軸とは逆の方向を向いており、少なくとも中間領域の、中央領域に最も近い位置に設けられる第4基礎構造は、その段差が光軸の方向を向いていることが好ましい。より好ましくは、中間領域におけるすべての第3基礎構造の段差が光軸とは逆の方向を向いており、中間領域におけるすべての第4基礎構造の段差が光軸の方向を向いていることである。 In addition, even when the 3rd foundation structure and the 4th foundation structure are the combination of the (1/1) structure and the (2/1) structure, it is the combination of the (3/2) structure and the (2/1) structure. Even in this case, the third basic structure provided at least in the middle region at the position closest to the central region has the step in the direction opposite to the optical axis, and at least in the middle region at the position closest to the central region. As for the 4th foundation structure provided, it is preferred that the level | step difference has faced the direction of an optical axis. More preferably, the steps of all the third foundation structures in the intermediate region are directed in the direction opposite to the optical axis, and the steps of all the fourth foundation structures in the intermediate region are directed in the direction of the optical axis. is there.
 第3基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、第4基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化するようにしてもよい。 In the third basic structure, when the wavelength of the incident light beam changes so as to become longer, the spherical aberration changes in an undercorrected (under) direction, and in the fourth basic structure, the wavelength of the incident light beam becomes longer. If it changes, the spherical aberration may change in the direction of under-correction (under).
 このような構成とすると、第2光路差付与構造においても、光ピックアップ装置の温度上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の劣化を補正するため、環境温度の変化時に、より適切な集光スポットを各光ディスクの情報記録面に形成できる。 With such a configuration, even in the second optical path difference providing structure, when the refractive index of the objective lens changes due to the temperature increase of the optical pickup device, the wavelength of the light source also increases due to the increase in the environmental temperature. Is used to correct the deterioration of the spherical aberration due to the change in the refractive index of the objective lens, so that a more appropriate condensing spot can be formed on the information recording surface of each optical disc when the environmental temperature changes.
 一方で、第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化するようにしてもよい。 On the other hand, when one of the third basic structure and the fourth basic structure is changed so that the wavelength of the incident light beam becomes longer, the spherical aberration changes in the undercorrection (under) direction, and the incident light is incident on the other side. When the wavelength of the luminous flux to be changed is changed to be longer, the spherical aberration may be changed in the overcorrection (over) direction.
 第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化するようにすると、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の3次球面収差の変化量を、-30mλrms以上、+50mλrms以下にすることができるため好ましい。尚、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の3次球面収差の変化量を、-10mλrms以上、+10mλrms以下にすることがより好ましい。尚、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の5次球面収差の変化量は、-20mλrms以上、20mλrms以下であることが好ましい。より好ましくは、-10mλrms以上、+10mλrms以下である。 In one of the third basic structure and the fourth basic structure, when the wavelength of the incident light beam is changed so as to become longer, the spherical aberration changes in the undercorrection (under) direction. If the spherical aberration is changed in the overcorrection direction when the wavelength is changed to be longer, when the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the first aberration is changed. The amount of change of the third-order spherical aberration when the wavelength of one light beam changes by +5 nm can be set to −30 mλrms to +50 mλrms, which is preferable. When the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the amount of change in the third-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -10 mλrms or more and +10 mλrms or less. More preferably. When the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the amount of change in the fifth-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -20 mλrms or more and 20 mλrms or less. It is preferable that More preferably, it is −10 mλrms or more and +10 mλrms or less.
 このような構成とすると、第3基礎構造と第4基礎構造のうち何れか一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰方向に変化するので、第2光路差付与構造が、第3基礎構造と第4基礎構造のみからなっていても、CD使用時のフレア出しを容易に行うことが出来る。従って、CD使用時のフレア出しを、単純な形状の第2光路差付与構造で行えるため、影の効果による光利用効率の低下を抑制し、更に、製造誤差による光利用効率の低下も抑制し、結果として光利用効率を向上させることが可能となる。尚、これにより中間領域においてはBD使用時の温度特性補正効果が小さくなるが、中央領域の第1基礎構造と第2基礎構造が共に長波長において補正不足であるため、温度特性が悪くなりすぎることを防止でき、またBD使用時の波長特性補正効果を大きくすることができる。加えて、DVD使用時においては、DVDの温度特性及び波長特性を共に良好にすることができる。 With such a configuration, in either one of the third basic structure and the fourth basic structure, if the wavelength of the incident light beam is changed to be longer, the spherical aberration changes in the overcorrection direction. Even if the two-optical path difference providing structure is composed of only the third and fourth basic structures, flare can be easily produced when using the CD. Accordingly, flare out when using a CD can be performed with a simple second optical path difference providing structure, so that a decrease in light utilization efficiency due to a shadow effect is suppressed, and a decrease in light utilization efficiency due to manufacturing errors is also suppressed. As a result, the light utilization efficiency can be improved. This reduces the effect of correcting the temperature characteristics when using BD in the intermediate area, but the temperature characteristics are too poor because both the first basic structure and the second basic structure in the central area are insufficiently corrected at long wavelengths. This can be prevented, and the wavelength characteristic correction effect when using the BD can be increased. In addition, when the DVD is used, both the temperature characteristic and wavelength characteristic of the DVD can be improved.
 なお、第4基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、第3基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化すると、CD使用時にフレアをより遠くに飛ばしやすくできるため、好ましい。 When the wavelength of the incident light beam is changed to be longer in the fourth basic structure, the spherical aberration is changed in an undercorrected (under) direction, and the wavelength of the incident light beam is longer in the third basic structure. In this case, it is preferable that the spherical aberration changes in the overcorrected (over) direction because the flare can be easily moved farther when the CD is used.
 更にDVD使用時の波長特性を良好にするために、第2光路差付与構造において、第4基礎構造の中央領域に最も近い輪帯1つ分に、第3基礎構造の輪帯が1~3個(特に好ましくは2~3個)含まれていることが好ましい。より好ましくは、第2光路差付与構造において、第4基礎構造の専用領域に最も近い輪帯1つ分に、第3基礎構造の輪帯が1~5個(特に好ましくは2~3個)含まれていることである。 Further, in order to improve the wavelength characteristics when using the DVD, in the second optical path difference providing structure, the ring zone of the third basic structure is 1 to 3 in one ring zone closest to the central region of the fourth basic structure. It is preferable that the number (particularly preferably 2 to 3) is included. More preferably, in the second optical path difference providing structure, 1 to 5 (particularly preferably 2 to 3) ring zones of the third foundation structure are provided for one ring zone closest to the dedicated area of the fourth foundation structure. It is included.
 周辺構造に第3光路差付与構造を設ける場合、任意の光路差付与構造を設けることが可能である。第3光路差付与構造は、第6基礎構造を有することが好ましい。第6基礎構造は、第6基礎構造を通過した第1光束のP次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第2光束のQ次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第3光束のR次の回折光量を他のいかなる次数の回折光量よりも大きくする。尚、波長変動時の回折効率の変動を抑えるためにも、Pが5以下であることが好ましい。 When providing the third optical path difference providing structure in the peripheral structure, it is possible to provide an arbitrary optical path difference providing structure. The third optical path difference providing structure preferably has a sixth basic structure. In the sixth basic structure, the P-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than any other order diffracted light amount, and the Q-order diffraction of the second light beam that has passed through the sixth basic structure. The light quantity is made larger than any other order of diffracted light quantity, and the R-order diffracted light quantity of the third light flux that has passed through the sixth basic structure is made larger than any other order of diffracted light quantity. Note that P is preferably 5 or less in order to suppress fluctuations in diffraction efficiency during wavelength fluctuations.
 ここで、図12に好ましい対物レンズの模式図を示す。光軸OAを含む対物レンズの断面のうち、光軸よりも上半分を示した図である。尚、図12は、あくまでも模式図であり、実施例に基づいた正確な長さの比率などを表した図面ではない。 Here, FIG. 12 shows a schematic diagram of a preferable objective lens. It is the figure which showed the upper half from the optical axis among the cross sections of the objective lens containing optical axis OA. Note that FIG. 12 is a schematic diagram to the last, and is not a drawing showing an accurate length ratio or the like based on the embodiment.
 図12の対物レンズは、中央領域CN、中間領域MD、専用領域OTを有している。中央領域には第1光路差付与構造ODS1が設けられており、中間領域には第2光路差付与構造ODS2が設けられており、専用領域には第3光路差付与構造が設けられている。 12 has a central area CN, an intermediate area MD, and a dedicated area OT. A first optical path difference providing structure ODS1 is provided in the central area, a second optical path difference providing structure ODS2 is provided in the intermediate area, and a third optical path difference providing structure is provided in the dedicated area.
 図12の第1光路差付与構造ODS1は、(2/1/1)のブレーズ構造であって段差が光軸の方を向いている第2基礎構造BS2と、(1/1/1)のブレーズ構造であって段差が光軸と逆の方を向いている第1基礎構造BS1とが重畳した構造となっている。図12においては、第2基礎構造BS2は3輪帯であり、第2基礎構造BS2における光軸に最も近い輪帯(円状)上に、第1基礎構造BS1の輪帯が4個含まれている。また、第2基礎構造BS2における中間領域に最も近い1つの輪帯に、第1基礎構造BS1の輪帯が2個含まれている。 The first optical path difference providing structure ODS1 in FIG. 12 has a (2/1/1) blazed structure and a second basic structure BS2 whose level difference faces the optical axis, and (1/1/1). The blazed structure has a structure in which a first basic structure BS1 with a step facing away from the optical axis is superimposed. In FIG. 12, the second foundation structure BS2 has three annular zones, and four annular zones of the first foundation structure BS1 are included on the annular zone (circular shape) closest to the optical axis in the second foundation structure BS2. ing. In addition, two annular zones of the first foundation structure BS1 are included in one annular zone closest to the intermediate region in the second foundation structure BS2.
 図12の第2光路差付与構造ODS2は、(2/1/1)のブレーズ構造であって段差が光軸の方を向いている第4基礎構造BS4と、(1/1/1)のブレーズ構造であって段差が光軸と逆の方を向いている第3基礎構造BS3とが重畳した構造となっている。図12においては、第4基礎構造BS4は3輪帯であり、第4基礎構造BS4における中央領域に最も近い輪帯上に、第3基礎構造BS3の輪帯が3個含まれている。また、第4基礎構造BS4における専用領域に最も近い1つの輪帯に、第3基礎構造BS3の輪帯が1個含まれている。 The second optical path difference providing structure ODS2 in FIG. 12 is a (2/1/1) blazed structure in which a step is directed toward the optical axis and a (1/1/1) fourth basic structure BS4. The blazed structure has a structure in which a third basic structure BS3 having a level difference opposite to the optical axis is superimposed. In FIG. 12, 4th foundation structure BS4 is a 3 ring zone, and 3 ring zones of 3rd foundation structure BS3 are contained on the ring zone nearest to the center area | region in 4th foundation structure BS4. Further, one ring zone of the third foundation structure BS3 is included in one ring zone closest to the dedicated area in the fourth foundation structure BS4.
 図12の第3光路差付与構造ODS3は、(2/1/1)のブレーズ構造であって段差が光軸の方を向いている第6基礎構造BS6のみからなっている。 The third optical path difference providing structure ODS3 in FIG. 12 is a (2/1/1) blaze structure, and is composed only of the sixth basic structure BS6 in which the step is directed toward the optical axis.
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.8以上、0.95以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc. Is NA2 (NA1> NA2), and the image-side numerical aperture of the objective lens necessary for reproducing / recording information on the third optical disk is NA3 (NA2> NA3). NA1 is preferably 0.8 or more and 0.95 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 また、対物レンズは、BD専用対物レンズであっても、BD/DVD/CD互換対物レンズであっても、以下の条件式(31)を満たすことが好ましい。
 0.9≦d/f≦1.5   (31)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。なお、fは、1.0mm以上、1.8mm以下となることが好ましい。
Whether the objective lens is a BD-dedicated objective lens or a BD / DVD / CD compatible objective lens, it is preferable that the following conditional expression (31) is satisfied.
0.9 ≦ d / f ≦ 1.5 (31)
Here, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux. Note that f is preferably 1.0 mm or more and 1.8 mm or less.
 BDのような短波長、高NAの光ディスクに対応する対物レンズの場合、対物レンズの焦点距離に対する光軸上の厚さの比が大きくなりすぎると、対物レンズに対して軸外光束が入射した際に非点収差が発生しやすくなったり、作動距離が確保出来なくなるという課題が生じる。一方、対物レンズの焦点距離に対する光軸上の厚さの比が小さくなりすぎると、面シフト感度が大きくなるという課題が生じる。条件式(31)を満たすことにより非点収差の発生や面シフト感度を抑制することが可能となる。 In the case of an objective lens corresponding to an optical disk with a short wavelength and high NA such as BD, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too large, an off-axis light beam enters the objective lens. In this case, astigmatism tends to occur, and a working distance cannot be secured. On the other hand, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too small, there arises a problem that the surface shift sensitivity increases. By satisfying conditional expression (31), it is possible to suppress the generation of astigmatism and the surface shift sensitivity.
 また、第1光ディスクを用いる際の対物レンズの作動距離は、0.15mm以上、1.0mm以下であることが好ましい。 Also, the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、反射防止膜を利用して、フォーカスジャンプ時において対物レンズに比較的大きい発散角の光束が入射した場合にも、最適な集光スポットを形成できる光ピックアップ装置を提供することができる。 According to the present invention, there is provided an optical pickup device that can form an optimum focused spot even when a light beam having a relatively large divergence angle is incident on an objective lens at the time of focus jump using an antireflection film. Can do.
(a)は、或るタイプの光路差付与構造を有する対物レンズを成形する金型を加工する態様を示す図であり、(b)は、かかる金型によって成形された対物レンズの断面図である。(A) is a figure which shows the aspect which processes the metal mold | die which shape | molds the objective lens which has a certain type of optical path difference providing structure, (b) is sectional drawing of the objective lens shape | molded by this metal mold | die. is there. (a)は、別なタイプの光路差付与構造を有する対物レンズを成形する金型を加工する態様を示す図であり、(b)は、かかる金型によって成形された対物レンズの断面図である。(A) is a figure which shows the aspect which processes the metal mold | die which shape | molds the objective lens which has another type of optical path difference providing structure, (b) is sectional drawing of the objective lens shape | molded by this metal mold | die. is there. 本発明者が行った各ケース(a)~(d)の検討結果に基づく各球面収差を比較して示す図である。It is a figure which compares and shows each spherical aberration based on the examination result of each case (a)-(d) which the inventor performed. 正弦条件を説明するための図である。It is a figure for demonstrating a sine condition. 正弦条件不満足量の例(a)~(c)を示す図である。It is a figure which shows the example (a)-(c) of sine condition dissatisfied amount. 本実施の形態にかかる単玉の対物レンズOBJを光軸方向に見た図である。It is the figure which looked at the single objective lens OBJ concerning this Embodiment in the optical axis direction. 対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットを形成する状態を示す図である。It is a figure which shows the state which forms the spot which the 3rd light beam which passed the objective lens forms on the information recording surface of a 3rd optical disk. 光路差付与構造の例を示す軸線方向断面図であり、(a)、(b)はブレーズ型構造の例を示し、(c)、(d)は階段型構造の例を示す。It is an axial direction sectional view showing an example of an optical path difference grant structure, (a) and (b) show an example of a blaze type structure, and (c) and (d) show an example of a step type structure. (a)は段差が光軸の方向を向いている状態を示し、(b)は段差が光軸とは逆の方向を向いている状態を示す図である。(A) shows a state in which the step is directed in the direction of the optical axis, and (b) is a diagram showing a state in which the step is directed in a direction opposite to the optical axis. (a)は光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸とは逆の方を向くような形状を示し、(b)は光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸の方を向くような形状を示す図である。(A) shows a shape in which the step is in the direction of the optical axis in the vicinity of the optical axis, but changes in the middle, and in the vicinity of the intermediate region, the step is in the direction opposite to the optical axis. FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region. 第1光路差付与構造の概念図であり、(a)、(b)、(c)は第1光路差付与構造の好ましい例を示し、(d)は第1基礎構造と第2基礎構造とを重畳した例を示す図である。It is a conceptual diagram of a 1st optical path difference providing structure, (a), (b), (c) shows the preferable example of a 1st optical path difference providing structure, (d) is a 1st foundation structure and a 2nd foundation structure, It is a figure which shows the example which superimposed. 好ましい対物レンズの模式図である。It is a schematic diagram of a preferable objective lens. BD専用の光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1 only for BD. 異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU2の構成を概略的に示す図である。It is a figure which shows roughly the structure of optical pick-up apparatus PU2 of this Embodiment which can record and / or reproduce | regenerate information appropriately with respect to BD, DVD, and CD which are different optical disks. 実施例1について、縦軸に瞳半径をとり、横軸に球面収差及び正弦条件違反量をとって示すグラフである。5 is a graph showing the pupil radius on the vertical axis and the spherical aberration and the sine condition violation amount on the horizontal axis for Example 1. FIG. 実施例2について、縦軸に瞳半径をとり、横軸に球面収差及び正弦条件違反量をとって示すグラフである。In Example 2, the vertical axis represents the pupil radius, and the horizontal axis represents the spherical aberration and the sine condition violation amount. 実施例3について、縦軸に瞳半径をとり、横軸に球面収差及び正弦条件違反量をとって示すグラフである。In Example 3, the vertical axis represents the pupil radius, and the horizontal axis represents the spherical aberration and the sine condition violation amount. 実施例4について、縦軸に瞳半径をとり、横軸に球面収差及び正弦条件違反量をとって示すグラフである。In Example 4, the vertical axis represents the pupil radius and the horizontal axis represents the spherical aberration and the sine condition violation amount. 実施例5について、縦軸に瞳半径をとり、横軸に球面収差及び正弦条件違反量をとって示すグラフである。In Example 5, the vertical axis represents the pupil radius, and the horizontal axis represents the spherical aberration and the sine condition violation amount. 反射防止膜の第1設計例において、瞳半径(有効径を100%とする)と透過率との関係を示すグラフである。It is a graph which shows the relationship between a pupil radius (an effective diameter shall be 100%) and the transmittance | permeability in the 1st design example of an antireflection film. 反射防止膜の第2設計例において、瞳半径(有効径を100%とする)と透過率との関係を示すグラフである。It is a graph which shows the relationship between a pupil radius (an effective diameter shall be 100%) and the transmittance | permeability in the 2nd design example of an antireflection film.
(第1の実施の形態)
 以下、本発明の実施の形態を、図面を参照して説明する。図13は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。例えば、図13ではBD専用の光ピックアップ装置を示しているが、BD専用の対物レンズOBJと、DVD/CD互換用の対物レンズとを2つ用いることで、BD/DVD/CD互換用の光ピックアップ装置とすることもできる。また、BDXLに適応させるために、厚さ方向に4つの情報記録面を有する光ディスクに対して適用することも可能である。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 13 shows information recording appropriately on a BD that is an optical disc having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in ascending order of the distance from the light incident surface of the optical disc) in the thickness direction. FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device. The present invention is not limited to the present embodiment. For example, FIG. 13 shows a BD-dedicated optical pickup device, but by using two BD-dedicated objective lenses OBJ and DVD / CD-compatible objective lenses, light for BD / DVD / CD compatibility is used. A pickup device can also be used. Further, in order to adapt to BDXL, it can be applied to an optical disc having four information recording surfaces in the thickness direction.
 光ピックアップ装置PU1は、対物レンズOBJ、対物レンズOBJをフォーカシング方向及びトラッキング方向に移動させ、光ディスクのラジアル方向、及び/または、タンジェンシャル方向に傾ける3軸アクチュエータAC2、λ/4波長板QWP、正の屈折力を有する1枚の正レンズからなる正レンズ群L2と負の屈折力を有する1枚の負レンズからなる負レンズ群L3とを有するカップリングCL、正レンズ群L2のみ光軸方向に移動させる1軸アクチュエータAC1、偏光プリズムPBS、405nmのレーザ光束(光束)を射出する半導体レーザLD、センサ用レンズSL、BDの情報記録面RL1~RL3からの反射光束を受光する受光素子PDを有する。本実施の形態においては、カップリングレンズCLは、偏光プリズムPBSとλ/4波長板QWPとの間に配置されている。本実施の形態では、対物レンズOBJに光路差付与構造を設けなくても良いが、例えば温度変化に起因する球面収差を補正するために光路差付与構造を設ける場合、ブレーズ形状であって図10(b)に示すようなタイプを設けると望ましい。又、対物レンズOBJの第1面(光源側)に設けられた反射防止膜は2~4層であり、第2面(光ディスク側)に設けられた反射防止膜は2~4層である。尚、反射防止膜の層数は、第1面、第2面、ともに、3層、若しくは、4層であることが好ましく、3層であることが最も好ましい。 The optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the λ / 4 wavelength plate QWP, Coupling CL having a positive lens unit L2 composed of one positive lens having a refractive power and a negative lens unit L3 composed of one negative lens having a negative refractive power, only the positive lens unit L2 in the optical axis direction. A uniaxial actuator AC1 to be moved, a polarizing prism PBS, a semiconductor laser LD that emits a laser beam (beam) of 405 nm, a sensor lens SL, and a light receiving element PD that receives reflected beams from the information recording surfaces RL1 to RL3 of the BD. . In the present embodiment, the coupling lens CL is disposed between the polarizing prism PBS and the λ / 4 wavelength plate QWP. In this embodiment, the objective lens OBJ does not have to be provided with an optical path difference providing structure. However, for example, when an optical path difference providing structure is provided in order to correct a spherical aberration due to a temperature change, the objective lens OBJ has a blaze shape as shown in FIG. It is desirable to provide a type as shown in (b). Further, the antireflection film provided on the first surface (light source side) of the objective lens OBJ has 2 to 4 layers, and the antireflection film provided on the second surface (optical disk side) has 2 to 4 layers. The number of layers of the antireflection film is preferably 3 or 4 on both the first surface and the second surface, and most preferably 3 layers.
 又、対物レンズOBJはプラスチック製またはガラス製の単玉レンズであり、少なくとも光源側となる第1面S1に反射防止膜を形成してなる。第1面S1の像側開口数NAの10%より内側の円形の中心領域における透過率Tcと、第1面S1の像側開口数NAの90%より外側のリング状の周辺領域における透過率Tpとが、(1)式を満たす。
1.0<Tp/Tc<1.3   (1)
The objective lens OBJ is a single lens made of plastic or glass, and has an antireflection film formed on at least the first surface S1 on the light source side. The transmittance Tc in a circular central region inside 10% of the image-side numerical aperture NA of the first surface S1 and the transmittance in a ring-shaped peripheral region outside of 90% of the image-side numerical aperture NA of the first surface S1. Tp satisfies the equation (1).
1.0 <Tp / Tc <1.3 (1)
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により実線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、更に正レンズ群L2を通過して弱い収束光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの保護基板PL1を介して、実線で示すように第1の情報記録面RL1上に形成されるスポットとなる。 First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens group L3 of the collimator lens CL, and the divergence angle is increased. After passing through the lens unit L2 to be a weakly convergent light beam, it is converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the first thickness is obtained by the objective lens OBJ. Through the protective substrate PL1, the spot is formed on the first information recording surface RL1 as shown by the solid line.
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2及び負レンズ群L3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens group L2 and the negative lens group L3 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により一点鎖線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、更に正レンズ群L2を通過して略平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さ(第1の厚さより厚い)の保護基板PL2を介して、一点鎖線で示すように第2の情報記録面RL2上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the second information recording surface RL2 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens group L3 of the collimator lens CL, and the divergence angle is increased. After passing through the lens unit L2 to be a substantially parallel light beam, it is converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the second thickness is obtained by the objective lens OBJ. This is a spot formed on the second information recording surface RL2 as shown by the alternate long and short dash line through the protective substrate PL2 having a thickness (thicker than the first thickness).
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2及び負レンズ群L3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens group L2 and the negative lens group L3 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により点線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、更に正レンズ群L2を通過して弱い発散光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さ(第2の厚さより厚い)の保護基板PL3を介して、点線で示すように第3の情報記録面RL3上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the third information recording surface RL3 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens group L3 of the collimator lens CL, and the divergence angle is increased. After passing through the lens unit L2 to be a weak divergent light beam, it is converted from linearly polarized light into circularly polarized light by the λ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the third thickness is obtained by the objective lens OBJ. This is a spot formed on the third information recording surface RL3 as shown by the dotted line through the protective substrate PL3 (thicker than the second thickness).
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2及び負レンズ群L3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens group L2 and the negative lens group L3 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 また、以上の実施の形態において、光ディスクに対して情報の記録及び/または再生行う際に、光ディスクの反りや傾きにより発生するコマ収差を補正するために、3軸アクチュエータAC2で、対物レンズOBJを光ディスクのラジアル方向及び/またはタンジェンシャル方向に沿って傾ける。これにより、反りを持つ光ディスクに対する情報の記録及び/または再生を安定して行え、かつ、光ディスクが回転中に傾いた場合でも情報記録面上のスポットの品質を良好に保つことが可能になる。 In the above embodiment, in order to correct coma caused by warping or tilting of the optical disc when information is recorded and / or reproduced on the optical disc, the objective lens OBJ is attached by the triaxial actuator AC2. Tilt along the radial direction and / or tangential direction of the optical disc. As a result, it is possible to stably record and / or reproduce information on the warped optical disc, and to maintain a good spot quality on the information recording surface even when the optical disc is tilted during rotation.
(第2の実施の形態)
 図14は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDと、DVDと、CDとに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU2の構成を概略的に示す図である。かかる光ピックアップ装置PU2は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。また、BDXLに適応させるために、厚さ方向に4つの情報記録面を有する光ディスクに対して適用することも可能である。
(Second Embodiment)
FIG. 14 shows BD, DVD, and CD, which are optical discs having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in ascending order of distance from the light incident surface of the optical disc) in the thickness direction. It is a figure which shows roughly the structure of optical pick-up apparatus PU2 of this Embodiment which can record / reproduce information appropriately with respect to this. Such an optical pickup device PU2 can be mounted on an optical information recording / reproducing device. The present invention is not limited to the present embodiment. Further, in order to adapt to BDXL, it can be applied to an optical disc having four information recording surfaces in the thickness direction.
 光ピックアップ装置PU2は、対物レンズOBJ、λ/4波長板QWP、コリメートレンズCOL、偏光ビームスプリッタBS、ダイクロイックプリズムDP,BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=660nmのレーザ光束(第2光束)を射出する第2半導体レーザLD2(第2光源)及びCDに対して情報の記録/再生を行う場合に発光され波長λ3=785nmのレーザ光束(第3光束)を射出する第3半導体レーザLD3を一体化したレーザユニットLDP、センサレンズSEN、光検出器としての受光素子PD等を有する。 The optical pickup device PU2 emits light when recording / reproducing information with respect to the objective lens OBJ, the λ / 4 wavelength plate QWP, the collimating lens COL, the polarization beam splitter BS, and the dichroic prisms DP and BD, and has a wavelength of λ1 = 405 nm. A first semiconductor laser LD1 (first light source) that emits a laser beam (first beam) and a laser beam (second beam) that is emitted when recording / reproducing information on a DVD and has a wavelength λ2 = 660 nm. The second semiconductor laser LD2 (second light source) that emits and the third semiconductor laser LD3 that emits a laser beam (third beam) having a wavelength λ3 = 785 nm emitted when information is recorded / reproduced with respect to the CD are integrated. A laser unit LDP, a sensor lens SEN, a light receiving element PD as a photodetector, and the like.
 図6に示されるように、本実施の形態にかかる単玉の対物レンズOBJにおいて、光源側の非球面光学面に光軸を含む中央領域CNと、その周囲に配置された中間領域MDと、更にその周囲に配置された専用領域OTとが、光軸を中心とする同心円状に形成されている。図示していないが、中心領域CNには既に詳述した第1光路差付与構造が形成され、中間領域MDには既に詳述した第2光路差付与構造が形成されている。また、専用領域OTには、第3光路差付与構造が形成されている。本実施の形態では、第3光路差付与構造はブレーズ型の回折構造である。また、本実施の形態の対物レンズはプラスチックレンズである。対物レンズOBJの中心領域CNに形成された第1光路差付与構造は、図11に示すように、第1基礎構造と第2基礎構造とを重ね合わせた構造であり、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、少なくとも中心領域CNの光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いており、第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくしている。又、対物レンズOBJの第1面(光源側)に設けられた反射防止膜は2~4層であり、第2面(光ディスク側)に設けられた反射防止膜は5~9層である。尚、第1面の反射防止膜の層数は、3層、若しくは、4層が好ましく、3層であることが最も好ましい。また、第2面の反射防止膜の層数は、7層、8層、9層のいずれかであることが好ましく、7層であることが最も好ましい。 As shown in FIG. 6, in the single objective lens OBJ according to the present embodiment, a central region CN including the optical axis on the aspherical optical surface on the light source side, an intermediate region MD disposed around the central region CN, Further, a dedicated region OT disposed around the periphery is formed concentrically with the optical axis as the center. Although not shown, the first optical path difference providing structure already described in detail is formed in the center region CN, and the second optical path difference providing structure already described in detail is formed in the intermediate region MD. In addition, a third optical path difference providing structure is formed in the dedicated region OT. In the present embodiment, the third optical path difference providing structure is a blazed diffractive structure. The objective lens of the present embodiment is a plastic lens. As shown in FIG. 11, the first optical path difference providing structure formed in the central region CN of the objective lens OBJ is a structure in which the first basic structure and the second basic structure are overlapped. The first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is set to any other order. The first order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN. In the basic structure, the step is directed in the direction opposite to the optical axis, and in the second basic structure, the second-order diffracted light quantity of the first light beam that has passed through the second basic structure is greater than the diffracted light quantity of any other order. Of the second light flux that has passed through the second basic structure. The following diffracted light larger than the other diffracted light of any order, and larger than the third light flux of the first-order diffracted light of other diffraction light amount of any order which has passed through the second basic structure. The antireflection film provided on the first surface (light source side) of the objective lens OBJ has 2 to 4 layers, and the antireflection film provided on the second surface (optical disk side) has 5 to 9 layers. The number of antireflection films on the first surface is preferably 3 or 4, and most preferably 3 layers. Further, the number of antireflection films on the second surface is preferably 7 layers, 8 layers, or 9 layers, and most preferably 7 layers.
 又、対物レンズOBJはプラスチック製またはガラス製の単玉レンズであり、少なくとも光源側となる第1面S1に反射防止膜を形成してなる。第1面S1の像側開口数NAの10%より内側の円形の中心領域における透過率Tcと、第1面S1の像側開口数NAの90%より外側のリング状の周辺領域における透過率Tpとが、(1)式を満たす。
1.0<Tp/Tc<1.3   (1)
The objective lens OBJ is a single lens made of plastic or glass, and has an antireflection film formed on at least the first surface S1 on the light source side. The transmittance Tc in a circular central region inside 10% of the image-side numerical aperture NA of the first surface S1 and the transmittance in a ring-shaped peripheral region outside of 90% of the image-side numerical aperture NA of the first surface S1. Tp satisfies the equation (1).
1.0 <Tp / Tc <1.3 (1)
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCOLは、不図示の1軸アクチュエータにより第1の所定位置に移動させられる。ここで、青紫色半導体レーザLD1から射出された光束(λ1=405nm)の発散光束は、ダイクロイックプリズムDP、偏光プリズムBSを透過し、カップリングレンズCOLを通過して弱い収束光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの透明基板PL1を介して、第1の情報記録面RL1上に形成されるスポットとなる。 First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. In such a case, the coupling lens COL is moved to the first predetermined position by a single-axis actuator (not shown). Here, the divergent light beam of the light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP and the polarization prism BS, passes through the coupling lens COL, and becomes a weak convergent light beam. The first information recording surface is converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the objective lens OBJ passes through the transparent substrate PL1 having the first thickness. It becomes a spot formed on RL1.
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCOLを通過して収束光束とされ、偏光プリズムBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。 The reflected light flux modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and coupled to the coupling lens COL. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCOLは、不図示の1軸アクチュエータにより第2の所定位置に移動させられる。ここで、青紫色半導体レーザLD1から射出された光束(λ1=405nm)の発散光束は、ダイクロイックプリズムDP、偏光プリズムBSを透過し、カップリングレンズCOLを通過して平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さの透明基板PL2を介して、第2の情報記録面RL2上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the second information recording surface RL2 of the BD will be described. In such a case, the coupling lens COL is moved to the second predetermined position by a uniaxial actuator (not shown). Here, the divergent light beam of the light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP and the polarization prism BS, passes through the coupling lens COL, and is converted into a parallel light beam. / 4 wavelength plate QWP converts linearly polarized light into circularly polarized light, the diameter of the light beam is regulated by a diaphragm (not shown), and the second information recording surface RL2 is passed through the transparent substrate PL2 having the second thickness by the objective lens OBJ. It becomes a spot formed on the top.
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCOLを通過して収束光束とされ、偏光プリズムBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。 The reflected light flux modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and coupled to the coupling lens COL. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCOLは、不図示の1軸アクチュエータにより第3の所定位置に移動させられる。ここで、青紫色半導体レーザLD1から射出された光束(λ1=405nm)の発散光束は、ダイクロイックプリズムDP、偏光プリズムBSを透過し、カップリングレンズCOLを通過して弱い発散光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さの透明基板PL3を介して、第3の情報記録面RL3上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the third information recording surface RL3 of the BD will be described. In such a case, the coupling lens COL is moved to a third predetermined position by a uniaxial actuator (not shown). Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP and the polarization prism BS, passes through the coupling lens COL, and becomes a weak divergent beam. The linearly polarized light is converted into circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the third information recording surface is passed through the transparent substrate PL3 having the third thickness by the objective lens OBJ. It becomes a spot formed on RL3.
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCOLを通過して収束光束とされ、偏光プリズムBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 更に、DVDに対して情報の記録及び/又は再生を行う場合について述べる。レーザユニットLDPの半導体レーザLD2から射出された第2光束(λ2=660nm)の発散光束は、点線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOBJに入射する。ここで、対物レンズOBJの中央領域と中間領域により集光された(専用領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、保護基板PL4を介して、DVDの情報記録面RL4に形成されるスポットとなり、スポット中心部を形成する。 Furthermore, the case where information is recorded and / or reproduced on a DVD will be described. The divergent light beam of the second light beam (λ2 = 660 nm) emitted from the semiconductor laser LD2 of the laser unit LDP is reflected by the dichroic prism DP and passes through the polarization beam splitter BS and the collimating lens COL, as indicated by the dotted line. The / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OBJ. Here, the light beam condensed by the central region and the intermediate region of the objective lens OBJ (the light beam that has passed through the dedicated region is flared and forms a spot peripheral portion) is recorded on the DVD through the protective substrate PL4. It becomes a spot formed on the surface RL4 and forms the center of the spot.
 情報記録面RL4上で情報ピットにより変調された反射光束は、再び対物レンズOBJを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより平行光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてDVDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL4 is transmitted again through the objective lens OBJ, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a parallel light beam by the collimator lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD.
 更に、CDに対して情報の記録及び/又は再生を行う場合について述べる。レーザユニットLDPの半導体レーザLD3から射出された第3光束(λ3=785nm)の発散光束は、一点鎖線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOBJに入射する。ここで、対物レンズOBJの中央領域により集光された(中間領域及び専用領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、保護基板PL5を介して、CDの情報記録面RL5上に形成されるスポットとなる。 Furthermore, the case of recording and / or reproducing information on a CD will be described. The divergent light beam of the third light beam (λ3 = 785 nm) emitted from the semiconductor laser LD3 of the laser unit LDP is reflected by the dichroic prism DP, as shown by the one-dot chain line, and passes through the polarization beam splitter BS and the collimating lens COL. The linearly polarized light is converted into circularly polarized light by the λ / 4 wavelength plate QWP, and is incident on the objective lens OBJ. Here, the light beam collected by the central region of the objective lens OBJ (the light beam that has passed through the intermediate region and the dedicated region is flared and forms a spot peripheral portion) is recorded on the CD information record through the protective substrate PL5. This is a spot formed on the surface RL5.
 情報記録面RL5上で情報ピットにより変調された反射光束は、再び対物レンズOBJを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより平行光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてCDに記録された情報を読み取ることができる。 The reflected light flux modulated by the information pits on the information recording surface RL5 is again transmitted through the objective lens OBJ, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a parallel light flux by the collimator lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
 次に、上述の実施の形態に用いることができる対物レンズの実施例について以下に説明する。対物レンズの設計波長はBD=405nm、DVD=660nm、CD=785nm、以下の表中のrは曲率半径(mm)、dは面間距離(mm)、Nλ1は波長λ1における各面の屈折率、Nλ2は波長λ2における各面の屈折率、Nλ3は波長λ3における各面の屈折率、tは透明基板厚(mm)を表している。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表すものとする。対物レンズの光学面は、それぞれ数1式に表1に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。 Next, examples of objective lenses that can be used in the above-described embodiment will be described below. The design wavelength of the objective lens is BD = 405 nm, DVD = 660 nm, CD = 785 nm, r in the table below is the radius of curvature (mm), d is the distance between surfaces (mm), and Nλ1 is the refractive index of each surface at the wavelength λ1. , Nλ2 represents the refractive index of each surface at wavelength λ2, Nλ3 represents the refractive index of each surface at wavelength λ3, and t represents the transparent substrate thickness (mm). In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) is expressed by using E (for example, 2.5 × E-3). The optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by an equation in which the coefficient shown in Table 1 is substituted into Equation (1).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (the light traveling direction is positive), κ is a conical coefficient, A i is an aspheric coefficient, h is a height from the optical axis, and r is a paraxial curvature. Radius.
 又、回折構造を有する実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。 In the case of an embodiment having a diffractive structure, the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation obtained by substituting the coefficient shown in the table into the optical path difference function of Formula 2.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 尚、hは光軸からの高さ、λは入射光束の波長、mは回折次数、B2iは光路差関数の係数である。 Here, h is the height from the optical axis, λ is the wavelength of the incident light beam, m is the diffraction order, and B 2i is the coefficient of the optical path difference function.
(実施例1)
 実施例1は、屈折面のみからなるBD専用樹脂対物レンズである。表1に実施例1のレンズデータを示す。本実施例は3層以上の多層BD(TMAX=0.1mm、TMIN=0.05mm)に対応したプラスチック製の対物レンズであり、設計基板厚T=0.08mmとした。図15に実施例1の球面収差及び正弦条件違反量のグラフを示している。
Example 1
Example 1 is a BD-dedicated resin objective lens composed only of a refractive surface. Table 1 shows lens data of Example 1. This example is a plastic objective lens corresponding to a multilayer BD (T MAX = 0.1 mm, T MIN = 0.05 mm) having three or more layers, and has a design substrate thickness T = 0.08 mm. FIG. 15 shows a graph of spherical aberration and sine condition violation amount of Example 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例2)
 実施例2は、屈折面のみからなるBD専用樹脂対物レンズである。表2に実施例2のレンズデータを示す。本実施例は、3層以上の多層BD(TMAX=0.1mm、TMIN=0.05mm)に対応したプラスチック製の対物レンズであり、設計基板厚T=0.0875mmとした。図16に実施例2の球面収差及び正弦条件違反量のグラフを示している。
(Example 2)
Example 2 is a BD-dedicated resinous objective lens composed only of a refractive surface. Table 2 shows lens data of Example 2. This example is a plastic objective lens corresponding to a multilayer BD having three or more layers (T MAX = 0.1 mm, T MIN = 0.05 mm), and has a design substrate thickness T = 0.875 mm. FIG. 16 shows a graph of spherical aberration and sine condition violation amount of Example 2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(実施例3)
 実施例3は、光路差付与構造を有するBD専用樹脂対物レンズである。かかる光路差付与構造は、図10(b)に示すように途中で折り返されるタイプである。表3に実施例3のレンズデータを示す。本実施例は、3層以上の多層BD(TMAX=0.1mm、TMIN=0.05mm)に対応したプラスチック製の対物レンズであり、設計基板厚T=0.08mmとした。図17に実施例3の球面収差及び正弦条件違反量のグラフを示している。
(Example 3)
Example 3 is a BD-dedicated resin objective lens having an optical path difference providing structure. Such an optical path difference providing structure is a type that is folded back halfway as shown in FIG. Table 3 shows lens data of Example 3. This example is a plastic objective lens compatible with a multilayer BD of three or more layers (T MAX = 0.1 mm, T MIN = 0.05 mm), and has a design substrate thickness T = 0.08 mm. FIG. 17 shows a graph of spherical aberration and sine condition violation amount of Example 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(実施例4)
 実施例4は、光路差付与構造を有するBD専用樹脂対物レンズである。かかる光路差付与構造は、図9(a)に示すように、段差面が常に光軸を向いたタイプである。表4に実施例4のレンズデータを示す。本実施例は、3層以上の多層BD(TMAX=0.1mm、TMIN=0.05mm)に対応したプラスチック製の対物レンズであり、設計基板厚T=0.075mmとした。図18に実施例4の球面収差及び正弦条件違反量のグラフを示している。
(Example 4)
Example 4 is a BD-dedicated resin objective lens having an optical path difference providing structure. Such an optical path difference providing structure is a type in which the step surface is always directed to the optical axis, as shown in FIG. Table 4 shows lens data of Example 4. This example is a plastic objective lens corresponding to a multilayer BD having three or more layers (T MAX = 0.1 mm, T MIN = 0.05 mm), and has a design substrate thickness T = 0.075 mm. FIG. 18 shows a graph of spherical aberration and sine condition violation amount of Example 4.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例5)
 実施例5は、BD/DVD/CD互換用の回折構造を有する樹脂対物レンズである。表5に実施例5のレンズデータを示す。本実施例は、3層以上の多層BD(TMAX=0.1mm、TMIN=0.05mm)及びDVD、CDに対応したプラスチック製の対物レンズであり、設計基板厚T=0.0875mmとした。
(Example 5)
Example 5 is a resin objective lens having a diffraction structure compatible with BD / DVD / CD. Table 5 shows lens data of Example 5. The present embodiment is a plastic objective lens compatible with a multilayer BD (T MAX = 0.1 mm, T MIN = 0.05 mm), DVD, and CD having three or more layers, and has a design substrate thickness T = 0.875 mm. did.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例5において、対物レンズは光軸を中心とした3つの領域(中央領域、中間領域、専用領域)に分けられ、第1光路差付与構造は、中央領域の全領域において、(2、1、1)のブレーズ型の回折構造である第2基礎構造に、(1、1、1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。また、第2光路差付与構造は、中間領域の全領域において、(2、1、1)のブレーズ型の回折構造である第4基礎構造に、(1、1、1)のブレーズ型の回折構造である第3基礎構造が重ねあわされ、更に(0,0,1)のバイナリ型の回折構造である第5基礎構造が重ねあわされたた光路差付与構造となっている。更に、第3光路差付与構造は、専用領域の全領域において、(2、1、1)のブレーズ型の回折構造である。 In Example 5, the objective lens is divided into three regions (a central region, an intermediate region, and a dedicated region) centered on the optical axis, and the first optical path difference providing structure is (2, 1, The optical path difference providing structure is formed by superimposing the first basic structure, which is the blazed diffraction structure (1, 1, 1), on the second basic structure, which is the blazed diffraction structure 1). In addition, the second optical path difference providing structure has a (1, 1, 1) blazed diffraction pattern in a fourth basic structure that is a (2, 1, 1) blazed diffraction structure in the entire intermediate region. The third basic structure, which is a structure, is overlapped, and an optical path difference providing structure in which a fifth basic structure, which is a binary diffraction structure of (0, 0, 1), is further overlapped. Furthermore, the third optical path difference providing structure is a (2, 1, 1) blazed diffractive structure in the entire exclusive region.
 以上の実施例において、光源側の光学面に施されることができる反射防止膜の設計例を説明する。図20は、反射防止膜の第1設計例において、瞳半径(有効径を100%とする)と透過率との関係を示すグラフである。第1設計例においては、瞳半径が0から増大するに連れて透過率が漸次増大し、瞳半径65%で透過率が最大値(97%)を取り、その後漸次低下している。つまり、透過率は、光軸からの高さに応じて有効径内で連続的に変化している。 In the above embodiment, a design example of an antireflection film that can be applied to the optical surface on the light source side will be described. FIG. 20 is a graph showing the relationship between the pupil radius (effective diameter is 100%) and the transmittance in the first design example of the antireflection film. In the first design example, the transmittance gradually increases as the pupil radius increases from 0, the transmittance reaches the maximum value (97%) at the pupil radius of 65%, and then gradually decreases. That is, the transmittance continuously changes within the effective diameter according to the height from the optical axis.
 図21は、反射防止膜の第2設計例において、瞳半径(有効径を100%とする)と透過率との関係を示すグラフである。第1設計例においては、瞳半径が0から増大するに連れて透過率が漸次増大し、瞳半径75%で透過率が最大値(92%)を取り、その後漸次低下している。つまり、透過率は、光軸からの高さに応じて有効径内で連続的に変化している。 FIG. 21 is a graph showing the relationship between the pupil radius (effective diameter is 100%) and the transmittance in the second design example of the antireflection film. In the first design example, the transmittance gradually increases as the pupil radius increases from 0, the transmittance reaches the maximum value (92%) at the pupil radius of 75%, and then gradually decreases. That is, the transmittance continuously changes within the effective diameter according to the height from the optical axis.
 反射防止膜の設計例1,2は、ともに、上述した実施例1~5の対物レンズに形成された反射防止膜である。実施例1~5のそれぞれに、設計例1の反射防止膜を設ける例と、背径例2の反射防止膜を設ける例の、合計10の例が考えられることになる。尚、設計例1,2共に、第1面、第2面ともに3層構造を有する。設計例1,2に関して、請求項に示す値をまとめて表6に、各面に施された反射防止膜の具体的な数値構成を表7に示す。
表7中、第1層はレンズ面に接する層、第2層は第1層の上に重ねて施される層、第3層は第2層の上に重ねて施される層である。表7に示されるように、3層構造の反射防止膜においては、低屈折率の第1層、第3層で、高屈折率の第2層をサンドイッチする構成であることが好ましい。高屈折率の材料は、ジルコニウムの酸化物であることが好ましく、低屈折率の材料はケイ素の酸化物であることが好ましいが、これに限られるものではない。
The design examples 1 and 2 of the antireflection film are both antireflection films formed on the objective lenses of Examples 1 to 5 described above. In each of Examples 1 to 5, a total of 10 examples can be considered: an example in which the antireflection film of design example 1 is provided, and an example in which the antireflection film of back diameter example 2 is provided. In both design examples 1 and 2, the first surface and the second surface have a three-layer structure. For design examples 1 and 2, the values shown in the claims are summarized in Table 6, and the specific numerical configuration of the antireflection film applied to each surface is shown in Table 7.
In Table 7, the first layer is a layer in contact with the lens surface, the second layer is a layer applied over the first layer, and the third layer is a layer applied over the second layer. As shown in Table 7, the antireflection film having a three-layer structure preferably has a structure in which a high refractive index second layer is sandwiched between a low refractive index first layer and a third layer. The high refractive index material is preferably an oxide of zirconium, and the low refractive index material is preferably an oxide of silicon, but is not limited thereto.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
OBJ     対物レンズ
PU1、PU2 光ピックアップ装置
LD、LD1  青紫色半導体レーザ
LD2     赤色半導体レーザ
LD3     赤外半導体レーザ
LDP     レーザユニット
AC1     1軸アクチュエータ
AC2     3軸アクチュエータ
BS      偏光ビームスプリッタ
PBS     偏光プリズム
CL      カップリングレンズ
COL     コリメートレンズ
DP      ダイクロイックプリズム
L2      正レンズ群
L3      負レンズ群
QWP     λ/4波長板
PL1~PL5 保護基板
RL1~RL5 情報記録面
SEN     センサレンズ
SL      センサ用レンズ
OBJ Objective lenses PU1, PU2 Optical pickup device LD, LD1 Blue-violet semiconductor laser LD2 Red semiconductor laser LD3 Infrared semiconductor laser LDP Laser unit AC1 Single-axis actuator AC2 Three-axis actuator BS Polarizing beam splitter PBS Polarizing prism CL Coupling lens COL Collimating lens DP Dichroic prism L2 Positive lens group L3 Negative lens group QWP λ / 4 wavelength plates PL1 to PL5 Protection substrates RL1 to RL5 Information recording surface SEN Sensor lens SL Sensor lens

Claims (8)

  1.  波長λ1(390nm<λ1<415nm)の光束を出射する光源と、カップリングレンズと、対物レンズとを有し、前記カップリングレンズを光軸方向に変位させることによって、光束入射面からの距離(透明基板厚)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクにおけるいずれかの情報記録面を選択し、前記光源から出射された波長λ1の光束を前記対物レンズにより前記選択された情報記録面に集光することによって、情報の記録及び/または再生を行う光ピックアップ装置であって、
     前記対物レンズは、像側開口数(NA)が0.8以上、0.95未満の単玉レンズであり、少なくとも光源側となる第1面に反射防止膜を形成してなり、
     前記反射防止膜が形成された前記対物レンズにおいて、前記像側開口数NAの10%より内側の中心領域における透過率Tcと、前記像側開口数NAの90%より外側の周辺領域における透過率Tpとが、(1)式を満たすことを特徴とする光ピックアップ装置。
    1.0<Tp/Tc<1.3   (1)
    A light source that emits a light beam having a wavelength of λ1 (390 nm <λ1 <415 nm), a coupling lens, and an objective lens are provided, and the distance from the light beam incident surface (by shifting the coupling lens in the optical axis direction ( One of the information recording surfaces in the optical disc having three or more information recording surfaces in the thickness direction is selected from the transparent substrate thickness), and the light beam having the wavelength λ1 emitted from the light source is selected by the objective lens. An optical pickup device that records and / or reproduces information by focusing on an information recording surface,
    The objective lens is a single lens having an image-side numerical aperture (NA) of 0.8 or more and less than 0.95, and an antireflection film is formed at least on the first surface on the light source side,
    In the objective lens on which the antireflection film is formed, the transmittance Tc in a central region inside 10% of the image-side numerical aperture NA and the transmittance in a peripheral region outside 90% of the image-side numerical aperture NA. An optical pickup device, wherein Tp satisfies the expression (1).
    1.0 <Tp / Tc <1.3 (1)
  2.  前記第1面に施された反射防止膜は、垂直入射光に対する反射率が最小となる波長λ0(nm)と、前記波長λ1(nm)とが(2)式を満たすことを特徴とする請求項1に記載の光ピックアップ装置。
    1.30<λ0/λ1<1.90   (2)
    The antireflection film provided on the first surface is characterized in that the wavelength λ0 (nm) at which the reflectance with respect to normal incident light is minimum and the wavelength λ1 (nm) satisfy the expression (2). Item 4. The optical pickup device according to Item 1.
    1.30 <λ0 / λ1 <1.90 (2)
  3.  前記反射防止膜の透過率は、光軸からの高さに応じて有効径内で連続的に変化することを特徴とする請求項1又は2に記載光ピックアップ装置。 The optical pickup device according to claim 1 or 2, wherein the transmittance of the antireflection film continuously changes within an effective diameter in accordance with a height from the optical axis.
  4.  前記対物レンズは樹脂製であることを特徴とする請求項1~3のいずれかに記載光ピックアップ装置。 4. The optical pickup device according to claim 1, wherein the objective lens is made of resin.
  5.  前記対物レンズの光学面には、前記対物レンズにおいて温度変化が生じた際に発生する球面収差を補正するための光路差付与構造が形成されていることを特徴とする請求項4に記載の光ピックアップ装置。 5. The light according to claim 4, wherein an optical path difference providing structure for correcting spherical aberration generated when a temperature change occurs in the objective lens is formed on the optical surface of the objective lens. Pickup device.
  6.  前記光路差付与構造は前記光源側の光学面に形成され、前記光軸に沿って延在する段差面と、輪帯状の面とを交互に接続してなり、前記光路差付与構造において、前記光軸付近には、前記段差面が光軸とは逆側を向いた負の段差構造が設けられ、前記負の段差構造より前記光軸から遠い位置には、前記段差面が光軸側を向いた正の段差構造が設けられ、前記負の段差構造における段差面は前記光軸に対して平行であり、前記正の段差構造における段差面は前記光軸に対して非平行であることを特徴とする請求項5に記載の光ピックアップ装置。 The optical path difference providing structure is formed on an optical surface on the light source side, and is formed by alternately connecting step surfaces extending along the optical axis and ring-shaped surfaces, and in the optical path difference providing structure, In the vicinity of the optical axis, a negative step structure is provided with the step surface facing away from the optical axis, and the step surface faces the optical axis side at a position farther from the optical axis than the negative step structure. A positive step structure is provided, the step surface in the negative step structure is parallel to the optical axis, and the step surface in the positive step structure is non-parallel to the optical axis. 6. The optical pickup device according to claim 5, wherein
  7.  前記カップリングレンズは、前記対物レンズにおいて温度変化が生じた際に発生する球面収差を補正するために光軸方向に変位されるようになっていることを特徴とする請求項4~6のいずれかに記載の光ピックアップ装置。 7. The coupling lens according to claim 4, wherein the coupling lens is displaced in an optical axis direction in order to correct spherical aberration that occurs when a temperature change occurs in the objective lens. An optical pickup device according to claim 1.
  8.  前記対物レンズの素材は、前記波長λ1に対する屈折率が1.58よりも小さく、前記第1面に施された反射防止膜は2~4層であることを特徴とする請求項1~7のいずれかに記載の光ピックアップ装置。 8. The objective lens material according to claim 1, wherein a refractive index with respect to the wavelength λ1 is smaller than 1.58, and the antireflection film provided on the first surface has two to four layers. The optical pick-up apparatus in any one.
PCT/JP2012/066702 2011-07-07 2012-06-29 Optical pickup device WO2013005672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-150770 2011-07-07
JP2011150770 2011-07-07

Publications (1)

Publication Number Publication Date
WO2013005672A1 true WO2013005672A1 (en) 2013-01-10

Family

ID=47437024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066702 WO2013005672A1 (en) 2011-07-07 2012-06-29 Optical pickup device

Country Status (1)

Country Link
WO (1) WO2013005672A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118392A1 (en) * 2012-02-09 2013-08-15 三洋電機株式会社 Object lens and light pickup device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008217886A (en) * 2007-03-02 2008-09-18 Sanyo Electric Co Ltd Optical pickup apparatus
JP2009176381A (en) * 2007-01-29 2009-08-06 Hoya Corp Objective lens of optical pickup
WO2011052469A1 (en) * 2009-10-28 2011-05-05 コニカミノルタオプト株式会社 Light pickup device
JP2011096350A (en) * 2009-09-29 2011-05-12 Konica Minolta Opto Inc Objective lens for optical pickup device, optical pickup device, and optical information recording/reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176381A (en) * 2007-01-29 2009-08-06 Hoya Corp Objective lens of optical pickup
JP2008217886A (en) * 2007-03-02 2008-09-18 Sanyo Electric Co Ltd Optical pickup apparatus
JP2011096350A (en) * 2009-09-29 2011-05-12 Konica Minolta Opto Inc Objective lens for optical pickup device, optical pickup device, and optical information recording/reproducing device
WO2011052469A1 (en) * 2009-10-28 2011-05-05 コニカミノルタオプト株式会社 Light pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118392A1 (en) * 2012-02-09 2013-08-15 三洋電機株式会社 Object lens and light pickup device

Similar Documents

Publication Publication Date Title
JP5370539B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
WO2011040227A1 (en) Object lens for optical pickup device, optical pickup device, and optical information recording/reproducing device
WO2013047202A1 (en) Objective lens and optical pickup device
WO2011136096A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2011132691A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2013005672A1 (en) Optical pickup device
JP6065347B2 (en) Objective lens and optical pickup device
JP5963120B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
JP5229657B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5713280B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5585879B2 (en) Optical pickup device and optical information recording / reproducing device
WO2012133364A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
JPWO2012043506A1 (en) Objective lens for optical pickup device and optical pickup device
WO2012090852A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2012133363A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
WO2013114662A1 (en) Objective lens for optical pickup device, and optical pickup device
WO2012063850A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2013168692A1 (en) Objective lens and optical pickup device
WO2013084558A1 (en) Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2013121615A1 (en) Objective lens for optical pickup device and optical pickup device
WO2013027622A1 (en) Objective lens and optical pickup device
WO2011132696A1 (en) Objective lens for an optical pickup device, optical pickup device, and optical information recording/reading device
JP2012212497A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing device
JP2013157049A (en) Objective lens for optical pickup apparatus, optical pickup apparatus and optical information recording and reproducing apparatus
JP2013206515A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP