WO2012090852A1 - Objective lens for optical pickup device, optical pickup device, and optical information record/play device - Google Patents

Objective lens for optical pickup device, optical pickup device, and optical information record/play device Download PDF

Info

Publication number
WO2012090852A1
WO2012090852A1 PCT/JP2011/079791 JP2011079791W WO2012090852A1 WO 2012090852 A1 WO2012090852 A1 WO 2012090852A1 JP 2011079791 W JP2011079791 W JP 2011079791W WO 2012090852 A1 WO2012090852 A1 WO 2012090852A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
basic structure
light
optical
diffracted light
Prior art date
Application number
PCT/JP2011/079791
Other languages
French (fr)
Japanese (ja)
Inventor
小嶋俊之
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012550898A priority Critical patent/JPWO2012090852A1/en
Publication of WO2012090852A1 publication Critical patent/WO2012090852A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths

Definitions

  • the present invention relates to an optical pickup device, an objective lens, and an optical information recording / reproducing apparatus capable of recording and / or reproducing (recording / reproducing) information interchangeably with different types of optical discs.
  • a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened.
  • a wavelength 390 such as a blue-violet semiconductor laser is used.
  • a laser light source of ⁇ 420 nm has been put into practical use.
  • these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used.
  • NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
  • BD Blu-ray Disc
  • the BD is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
  • the optical system for BD and the optical system for DVD or CD can be shared. It is preferable to reduce the number of optical components constituting the pickup device as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common.
  • an optical path difference providing structure such as a diffraction structure having a wavelength dependency of spherical aberration in the objective lens. is there.
  • Patent Document 1 has an objective lens that has a structure in which two basic structures each of which is a diffractive structure are superimposed, and can be used in common for three types of optical disks, and an optical pickup device equipped with this objective lens Is described.
  • the blaze wavelength (design wavelength) in the central region which is a common region used for both BD / DVD / CD, and the BD / DVD are used.
  • the blaze wavelength (design wavelength) in the intermediate region which is a region that is not used for CD, is equal to 395 nm.
  • An object of the present invention is to solve the above-described problems, and a condensing spot having an appropriate size can be obtained when using a DVD, and the compatibility of three types of optical discs of BD / DVD / CD is common. It is an object of the present invention to provide an optical pickup apparatus, an optical information recording / reproducing apparatus, and an objective lens suitable for the optical pickup apparatus including an objective lens that can be performed with the objective lens.
  • the objective lens according to claim 1 a first light source that emits a first light flux having a first wavelength ⁇ 1, a second light source that emits a second light flux having a second wavelength ⁇ 2 ( ⁇ 1 ⁇ 2), and a third wavelength.
  • a third light source that emits a third light beam of ⁇ 3 ( ⁇ 2 ⁇ 3), and records and / or reproduces information on a first optical disk having a protective substrate with a thickness of t1 using the first light beam. Recording and / or reproducing information on the second optical disc having a protective substrate having a thickness t2 (t1 ⁇ t2) using the second light flux, and a thickness t3 (t2 ⁇ t) using the third light flux.
  • the objective lens used in an optical pickup device for recording and / or reproducing information of a third optical disc having a protective substrate at t3)
  • the objective lens is a single lens made of plastic
  • the optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
  • the central region has a first optical path difference providing structure
  • the intermediate region has a second optical path difference providing structure
  • the objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area.
  • Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc.
  • Condensing so that information can be recorded and / or reproduced The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area.
  • Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc.
  • the objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area.
  • the second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc.
  • the first optical path difference providing structure has at least a first basic structure,
  • the first basic structure makes the A-order diffracted light amount of the first light beam that has passed through the first basic structure larger than any other order of diffracted light amount, and B of the second light beam that has passed through the first basic structure.
  • the second optical path difference providing structure has at least a third basic structure,
  • the third basic structure makes the A-order diffracted light amount of the A-th beam that has passed through the third basic structure larger than any other order diffracted light amount, and B of the second light beam that has passed through the third basic structure.
  • the blazed wavelength ⁇ b (3 ⁇ ) in the first basic structure is larger than the blazed wavelength ⁇ b (2 ⁇ ) in the third basic structure
  • the blazed wavelength ⁇ b (3 ⁇ ) in the first basic structure is smaller than the blazed wavelength ⁇ b (2 ⁇ ) in the third basic structure.
  • the inventor has found that the optical path difference providing structure provided to realize compatibility in the central region and the intermediate region of the objective lens used in common for the first light beam and the second light beam is separated from the optical axis. Accordingly, the diffraction pitch of the optical path difference providing structure formed in an aspherical surface is usually narrower. Therefore, the diffraction pitch is narrower in the intermediate region than in the central region, and the influence of the shadow of the step or the fine shape. Due to the manufacturing error resulting from the difficulty in forming the optical path difference providing structure with high precision, the light utilization efficiency of the intermediate region is lower than that in the central region. It has been found that the light utilization efficiency at the most periphery of the focused spot is reduced, and this is the cause of increasing the spot diameter. However, how to increase the light use efficiency around the condensing spot when using a DVD remains a problem.
  • the blazed wavelength is a wavelength at which the diffraction efficiency is highest in the structure.
  • the blazed wavelength ⁇ b (3 ⁇ ) in the first basic structure is larger than the blazed wavelength ⁇ b (2 ⁇ ) in the third basic structure.
  • the blazed wavelength ⁇ b (3 ⁇ ) in the first basic structure is made smaller than the blazed wavelength ⁇ b (2 ⁇ ) in the third basic structure.
  • the second optical path difference providing structure is designed to give priority to the second light flux, and the use efficiency of the light of the second light flux that passes through the intermediate region is increased, and the periphery of the spot that is focused on the information recording surface of the second optical disc such as a DVD
  • the spot diameter of the condensing spot on the information recording surface of the second optical disc can be set to an appropriate size without increasing.
  • region may fall.
  • the peripheral region outside the intermediate region is a region dedicated to the first light flux, the utilization efficiency of light passing through the peripheral region can be increased.
  • the efficiency of the spot focused on the information recording surface of the first optical disc such as BD is reduced in the intermediate region, but the peripheral efficiency can be kept high. Therefore, there is no problem that the diameter of the focused spot on the information recording surface of the first optical disc is increased, and an appropriate focused spot diameter can be maintained.
  • both the first basic structure and the third basic structure make the A-order diffracted light quantity of the first light beam larger than any other order diffracted light quantity, and the B-order diffracted light quantity of the second light beam becomes any other diffracted light quantity. Since the diffracted light amount of the third light beam is larger than the diffracted light amount of the third order, and the diffracted light amount of the third light beam is larger than any other order of diffracted light amount, Spherical aberration can be continuous, and higher order aberrations can be prevented.
  • the objective lens of claim 2 is the invention of claim 1,
  • the first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped,
  • the second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and the E of the second light beam that has passed through the second basic structure.
  • the second optical path difference providing structure is a structure in which at least the third basic structure and the fourth basic structure are overlapped,
  • the fourth foundation structure makes the D-order diffracted light quantity of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light quantity, and the E of the second light flux that has passed through the fourth foundation structure.
  • the next diffracted light amount is made larger than any other order diffracted light amount, and the F-order diffracted light amount of the third light beam that has passed through the fourth basic structure is made larger than any other order diffracted light amount.
  • the first optical path difference providing structure is formed by superimposing two types of structures, a first basic structure and a second basic structure
  • the second optical path difference providing structure is composed of two types of structures, a third basic structure and a fourth basic structure.
  • the optical path difference providing structure is formed with a single structure such as a staircase type by overlapping the structure, it is possible to secure a large degree of design freedom, which is particularly advantageous for an objective lens having a small effective diameter. is there.
  • the objective lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the first basic structure is a blazed structure, and the second basic structure is a blazed structure. Thereby, the utilization efficiency of light can be improved.
  • the objective lens according to claim 4 is the invention according to claim 2 or 3, wherein A, B, C, D, E, and F are respectively
  • 1
  • 1
  • 1
  • 2
  • 1
  • 1 It is characterized by satisfying.
  • 1/1/1 the most primary diffracted light is generated in any of the first light beam, the second light beam, and the third light beam
  • 2/1/1 the second-order diffracted light is generated most in the first light beam
  • the first-order diffracted light is generated most in the second light beam and the third light beam
  • the reason for this is that, due to the use of a blazed structure with a low step amount (height in the optical axis direction of the step), fluctuations in diffraction efficiency at the time of wavelength change can be prevented, resulting in shadow effects and manufacturing errors. A decrease in light utilization efficiency can be suppressed, and secondly, all three wavelengths have high diffraction efficiency.
  • the objective lens according to claim 5 is characterized in that, in the invention according to any one of claims 2 to 4, the blazed wavelength in the second basic structure is equal to the blazed wavelength in the fourth basic structure. To do.
  • the light use efficiency of the second light flux changes discontinuously at the boundary between the intermediate region and the central region.
  • the light use efficiency of the second light flux in the intermediate region across the boundary is higher than the light use efficiency of the second light flux in the central region.
  • the objective lens according to claim 7 is the objective lens according to any one of claims 1 to 6, wherein the blazed wavelength ⁇ b (3 ⁇ ) is 405 to 510 nm, and the blazed wavelength ⁇ b (2 ⁇ ) is 450 to 550 nm.
  • the objective lens according to claim 8 is the objective lens according to any one of claims 1 to 7, wherein the peripheral region has a third optical path difference providing structure, and a blazed wavelength ⁇ b in the third optical path difference providing structure. (1 ⁇ ) is 385 to 425 nm.
  • the blazed wavelength in the third optical path difference providing structure within the above range, the efficiency of the peripheral part of the focused spot when using the first optical disk can be increased, so that the spot becomes thicker when using the first optical disk. And an appropriate spot diameter can be obtained.
  • the objective lens according to claim 9 is the invention according to any one of claims 1 to 8, wherein the first basic structure provided in the central region is such that all steps are directed in a direction opposite to the optical axis. It is characterized by.
  • the objective lens according to claim 10 is the invention according to any one of claims 2 to 9, wherein in the second basic structure provided in the central region, all the steps are directed in the direction of the optical axis. It is characterized by.
  • the objective lens according to claim 11 is the invention according to any one of claims 1 to 10, wherein the first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region is an optical axis. It has both a step facing in the opposite direction and a step facing in the direction of the optical axis, The step amount d11 of the step facing the direction opposite to the optical axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (2) and (3). It is characterized by.
  • n the refractive index of the objective lens at ⁇ 1.
  • the objective lens according to claim 12 is characterized in that, in the invention according to claim 11, the conditional expressions (2) and (3) are satisfied in all regions of the central region.
  • the objective lens described in claim 13 is characterized in that, in the invention described in claim 11 or 12, the following conditional expression is satisfied. 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (2) " 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (3) "
  • the objective lens according to claim 14 is characterized in that, in the invention according to claim 13, the conditional expressions (2) "and (3)" are satisfied in all regions of the central region.
  • the objective lens according to claim 15 is the invention according to any one of claims 11 to 14, wherein, in the central region, the number of steps facing the direction opposite to the optical axis is equal to that of the optical axis. It is characterized by being larger than the number of steps facing the direction.
  • An objective lens according to a sixteenth aspect is characterized in that, in the invention according to any one of the first to fifteenth aspects, the following conditional expression is satisfied. 0.8 ⁇ d / f ⁇ 1.5 (4) However, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux.
  • the objective lens according to claim 17 is the invention according to any one of claims 1 to 16, wherein the second optical path difference providing structure is formed by overlapping a fifth basic structure in addition to the third basic structure.
  • the fifth basic structure has a zero-order diffracted light amount of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light amount, and has passed through the fifth basic structure.
  • the 0th-order diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity
  • the G-order diffracted light quantity of the third light flux that has passed through the fifth basic structure is made higher than any other order diffracted light quantity. It is also characterized by a structure that increases the size.
  • the objective lens according to claim 18 is characterized in that, in the invention according to any one of claims 1 to 16, the second optical path difference providing structure comprises only the third basic structure and the fourth basic structure.
  • the objective lens according to claim 19 is characterized in that, in the invention according to any one of claims 1 to 18, the following conditional expressions (5), (6), and (7) are satisfied.
  • m1 represents the magnification of the objective lens when the first light beam is incident on the objective lens
  • m2 represents the magnification of the objective lens when the second light beam is incident on the objective lens
  • m3 represents the magnification of the objective lens when the third light beam is incident on the objective lens.
  • An optical pickup device has the objective lens according to any one of claims 1 to 19.
  • An optical information recording / reproducing device has the optical pickup device according to claim 20.
  • the optical pickup device has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light flux on the information recording surface of the first optical disc, condenses the second light flux on the information recording surface of the second optical disc, and causes the third light flux to be third. It has a condensing optical system for condensing on the information recording surface of the optical disc.
  • the optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from the information recording surface of the first optical disc, the second optical disc, or the third optical disc.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD
  • the second optical disc is a DVD
  • the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • the recording density the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface. 0.050 mm ⁇ t1 ⁇ 0.125 mm (8) 0.5mm ⁇ t2 ⁇ 0.7mm (9) 1.0 mm ⁇ t3 ⁇ 1.3 mm (10)
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (11) and (12). 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (11) 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 (12)
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm to 440 nm, more preferably 390 nm to 415 nm
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm to 680 nm, more preferably.
  • the third wavelength ⁇ 3 of the third light source is preferably 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors.
  • a light receiving element may be used.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has an objective lens.
  • the condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens of the present invention is a single plastic lens.
  • a convex lens is preferable.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material
  • the resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the refractive index change rate dN / dT (° C.
  • the coupling lens is also a plastic lens.
  • a first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (1) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ⁇ 20 alkoxy groups or halogen groups.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV).
  • Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
  • R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group.
  • R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group.
  • the following additives may be added.
  • Stabilizer It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
  • phenol-based stabilizer conventionally known ones can be used.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate
  • 2 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like
  • JP-A Nos. 63-179953 and 1-168643 JP-A Nos. 63-179953 and 1-168643.
  • Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-but
  • the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl).
  • Phenyl) phosphite tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
  • each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
  • hydrophilic group of the surfactant examples include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms.
  • the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent.
  • Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like.
  • the aromatic ring include a phenyl group.
  • the surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
  • examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene
  • examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like.
  • amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
  • the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • the addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • Plasticizer The plasticizer is added as necessary to adjust the melt index of the copolymer.
  • Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisode
  • cycloolefin resins are preferably used.
  • ZEONEX manufactured by Nippon Zeon Co., Ltd. APEL manufactured by Mitsui Chemicals, Inc.
  • TOPAS® ADVANCED® POLYMERS manufactured by TOPAS and JSR manufactured by ARTON are preferable. Take as an example.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • At least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region.
  • the central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good.
  • the central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 1, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface.
  • a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area.
  • the peripheral region may be a refracting surface, or a third optical path difference providing structure may be provided in the peripheral region.
  • the central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the central area of the objective lens can be said to be a shared area of the first, second, and third optical disks used for recording / reproduction of the first optical disk, the second optical disk, and the third optical disk. That is, the objective lens condenses the first light flux that passes through the central area so that information can be recorded / reproduced on the information recording surface of the first optical disc, and the second light flux that passes through the central area becomes the second light flux. Information is recorded and / or reproduced on the information recording surface of the optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central area can be recorded / reproduced on the information recording surface of the third optical disc.
  • the first optical path difference providing structure provided in the central region has the thickness t1 of the protective substrate of the first optical disc and the second optical disc with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in the thickness t2 of the protective substrate / spherical aberration generated due to the difference between the wavelengths of the first light flux and the second light flux.
  • the first optical path difference providing structure has a thickness t1 of the protective substrate of the first optical disc and a thickness of the protective substrate of the third optical disc with respect to the first light beam and the third light beam that have passed through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference between t3 and spherical aberration generated due to the difference between the wavelengths of the first and third light beams.
  • the intermediate area of the objective lens is used for recording / reproduction of the first optical disk and the second optical disk, and can be said to be the first and second optical disk shared areas not used for recording / reproduction of the third optical disk. That is, the objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded / reproduced on the information recording surface of the first optical disc, and the second light flux that passes through the intermediate area becomes the second light flux. The light is condensed on the information recording surface of the optical disc so that information can be recorded / reproduced. On the other hand, the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the third optical disk.
  • the third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the third optical disc.
  • the light amount density is high in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a spot central portion SCN, a spot intermediate portion SMD having a light intensity density lower than that of the spot central portion, and a spot peripheral portion SOT having a light intensity density higher than that of the spot intermediate portion and lower than that of the spot central portion.
  • the center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc.
  • this spot peripheral part is called flare.
  • the spot peripheral part may be called a flare.
  • the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the third optical disc.
  • the peripheral area of the objective lens is used for recording / reproduction of the first optical disk, and can be said to be an area dedicated to the first optical disk that is not used for recording / reproduction of the second optical disk and the third optical disk. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the first optical disc.
  • the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the second optical disc, and the third light flux that passes through the peripheral area does not converge. The light is not condensed so that information can be recorded / reproduced on the information recording surface.
  • the second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surfaces of the second optical disc and the third optical disc. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surfaces of the second optical disc and the third optical disc.
  • the first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region.
  • the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
  • optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure of the present invention is preferably a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the optical path difference providing structure is a single aspherical lens
  • the incident angle of the light flux to the objective lens differs depending on the height from the optical axis.
  • Each will be slightly different.
  • the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the diffractive structure is a single aspherical lens
  • the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be.
  • the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
  • the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center.
  • the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape.
  • the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface.
  • the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 3 (a))
  • the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ).
  • V level means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the optical path difference providing structure illustrated in FIG. 3C is referred to as a five-level staircase structure
  • the optical path difference providing structure illustrated in FIG. 3D is referred to as a two-level staircase structure (also referred to as a binary structure). .
  • the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated.
  • the unit shape is periodically repeated here naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated. As shown in FIG. 3 (a), the same sawtooth shape may be repeated, and as shown in FIG. 3 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center).
  • the first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing.
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side. In other words, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
  • the first optical path difference providing structure has at least a first basic structure, and is preferably a structure in which a second basic structure is further overlapped.
  • the first optical path difference providing structure may be formed by the first basic structure alone.
  • the first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
  • the first basic structure is preferably a blazed structure. Further, the first basic structure makes the A-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order diffracted light quantity, and the B-order of the second light flux that has passed through the first basic structure. Is made larger than any other order of diffracted light, and the C-th order diffracted light of the third light beam that has passed through the first basic structure is made larger than any other order of diffracted light. In particular, it is preferable that
  • 1,
  • 1, and
  • 1. As a result, the step amount of the first basic structure does not become excessively large, which facilitates manufacturing, suppresses light loss due to manufacturing errors, and also reduces diffraction efficiency fluctuations during wavelength fluctuations. preferable.
  • the step may be directed in the direction of the optical axis or in the direction opposite to the optical axis.
  • step difference of a 1st foundation structure may be changed in the middle of the center area
  • FIG. 5A shows an example in which the step is directed toward the optical axis at a position close to the optical axis, but the direction of the step is changed halfway, and the step is directed in the opposite direction to the optical axis at a position far from the optical axis. It is.
  • the step is opposite to the optical axis at a position close to the optical axis, but the direction of the step is changed halfway, and the step is directed to the optical axis at a position far from the optical axis. It is. Moreover, although it is desirable that the direction of the step of the first foundation structure matches the direction of the step of the third foundation structure, it does not need to match. “The step is directed in the direction of the optical axis” means a state as shown in FIG. 4A, and “the step is directed in the direction opposite to the optical axis” is shown in FIG. 4B. Say like the state. However, preferably, the first basic structure provided in the central region is that all the steps are directed in a direction opposite to the optical axis.
  • CD is used even in thick objective lenses with a large on-axis thickness that are used interchangeably with three types of optical discs of BD / DVD / CD by directing the step of the first basic structure in the direction opposite to the optical axis. Sometimes it is possible to ensure a sufficient working distance.
  • the first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have paraxial power with respect to the light beam.
  • “having paraxial power” means that B 2 h 2 is not 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
  • the second basic structure is also preferably a blazed structure.
  • the second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order diffracted light amount, and the E-order diffraction of the second light beam that has passed through the second basic structure.
  • the amount of light is made larger than the diffracted light amount of any other order, and the F-order diffracted light amount of the third light flux that has passed through the second basic structure is made larger than the diffracted light amount of any other order.
  • 2,
  • 1, and
  • 1.
  • the step amount of the second basic structure does not become excessively large, which facilitates manufacturing, can suppress light loss due to manufacturing errors, and can also reduce diffraction efficiency fluctuations during wavelength fluctuations. preferable.
  • the step may be directed in the direction of the optical axis or in the direction opposite to the optical axis.
  • the direction of the steps of the second foundation structure may be switched in the middle of the central region.
  • the direction of the step of the second foundation structure matches the direction of the step of the fourth foundation structure, it does not need to match.
  • the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 5A, the step is directed in the direction of the optical axis when the second foundation structure is near the optical axis, but is switched halfway, and the step of the second foundation structure is located near the optical axis. It is good also as a shape which faces the reverse direction.
  • the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
  • the objective lens preferably has a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 60% or more for the wavelength ⁇ 2, and a diffraction efficiency of 50% or more for the wavelength ⁇ 3.
  • the objective lens has a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • both the third-order spherical aberration and the fifth-order spherical aberration that occur in the objective lens when the wavelength becomes longer are both under. (Insufficient correction) is preferable.
  • a more preferable first optical path providing structure includes a first basic structure in which
  • the height of the step can be very low. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
  • the first optical path difference providing structure in which the first basic structure that is 1 and the second basic structure in which
  • the first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis.
  • the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis preferably satisfy the following conditional expressions (2) and (3).
  • conditional expressions (2) and (3) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase. In the following conditional expression, the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account.
  • n represents the refractive index of the objective lens at the first wavelength ⁇ 1.
  • the first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis.
  • An optical path difference providing structure having both of the steps facing the direction of.
  • the optical path difference providing structure has a step existing between at least a half position in the direction perpendicular to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
  • the shape of the foundation structure is finely adjusted so that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure are matched.
  • d11 and d12 of the first optical path difference providing structure are the following conditional expressions (2) ′, ( 3) It is preferable to satisfy '. More preferably, the following conditional expressions (2) ′ and (3) ′ are satisfied in all regions of the central region. 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (2) ' 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (3) '
  • conditional expressions (2) "and (3)” are preferably satisfied. More preferably, the following conditional expressions (2) ′′ and (3) ′′ are satisfied in all the regions of the central region. 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (2) " 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (3) "
  • the spherical aberration when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (2 / In the second basic structure having the 1/1) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in the undercorrection direction (under).
  • the refractive index of the objective lens when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature.
  • the absolute value of the paraxial power of the first foundation structure is larger than that of the second foundation structure. That is, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure. Thereby, a working distance in the CD can be secured even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens.
  • ring zones of the first foundation structure are included in one ring zone closest to the optical axis of the second foundation structure.
  • the “ring zone” closest to the optical axis of the second foundation structure is described, but in practice, it is usually a “circle” including the optical axis.
  • the “annular zone closest to the optical axis” mentioned here includes a circular shape.
  • 1 to 5 ring zones of the first foundation structure are included in one ring zone of the second foundation structure. ) Is included.
  • first basic structure and the second basic structure are superimposed as they are, a convex portion with a narrow width may protrude, but if the width of the protruding portion is as narrow as 5 ⁇ m or less, the protruding portion is along the optical axis. Even if the projecting portion is eliminated, there is no significant effect, and thus, a plurality of zones of the first foundation structure can be placed exactly on one zone of the second foundation structure.
  • a dent may be eliminated in the same manner even when a dent having a width of 5 ⁇ m or less is generated.
  • ⁇ (nm) is the wavelength change amount of the first wavelength
  • ⁇ WD ( ⁇ m) is the chromatic aberration of the objective lens caused by the change ⁇ of the first wavelength
  • the ring zone of the first foundation structure is 2 to 1 ring zone closest to the optical axis of the second foundation structure. It is preferable to include 6 (particularly preferably 2 to 3).
  • the optical disc has a plurality of information recording surfaces while ensuring a working distance in the CD even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. This is preferable because the problem of stray light can be reduced and the temperature and wavelength characteristics can be improved when using a DVD.
  • the number N2 of the first foundation structure annular zones superimposed on one annular zone closest to the intermediate region in the second foundation structure is preferably equal to or smaller than N1, for example, 1 to 5 overlapping zones. It should be done.
  • the first basic structure has a negative diffraction power, so that a working distance when using a CD can be secured even for an objective lens having a large axial thickness such as an objective lens for BD / DVD / CD.
  • the second basic structure preferably has a positive diffraction power. As described above, since both the first basic structure and the second basic structure have diffraction power, when using an optical disk having a plurality of information recording surfaces, unnecessary light reflected by the information recording surface which is not a recording / reproducing object is required light. It is preferable because it can be further away from the center.
  • the first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (16).
  • the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range.
  • the first best focus position is the best focus position of the necessary light used for recording / reproduction of the third optical disc
  • the second best focus position is the largest amount of unnecessary light that is not used for recording / reproduction of the third optical disc. This is the best focus position for many luminous fluxes.
  • f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus
  • L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
  • conditional expression (15) ′ is satisfied. 0.10 ⁇ L / f13 ⁇ 0.25 (16) ′
  • FIG. 6 shows the first optical path difference providing structure ODS1 as a flat plate for convenience, it may be provided on a single aspherical convex lens.
  • are 2, 1, 1, respectively, and the second basic structure BS2 is
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS faces the direction opposite to the optical axis OA.
  • the steps of the first foundation structure BS1 and the second foundation structure BS2 are matched, and the positions of all the steps of the second foundation structure are matched with the positions of the steps of the first foundation structure, but this is not restrictive.
  • the average pitch of the first foundation structure BS1 is smaller than the average pitch of the second foundation structure BS2, and the number of steps facing the direction opposite to the optical axis of the first foundation structure is the second foundation structure. This is more than the number of steps facing the direction of the optical axis.
  • the second optical path difference providing structure has at least a third basic structure, and is preferably a structure in which a fourth basic structure is further overlapped.
  • the second optical path difference providing structure may be formed by the third basic structure alone.
  • the third basic structure makes the A-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order diffracted light amount, and the B-order diffraction of the second light beam that has passed through the third basic structure.
  • the light quantity is made larger than any other order of diffracted light quantity
  • the C-order diffracted light quantity of the third light flux that has passed through the third basic structure is made larger than any other order of diffracted light quantity.
  • the fourth basic structure makes the D-order diffracted light amount of the first light beam that has passed through the fourth basic structure larger than the diffracted light amount of any other order, and the E-order of the second light beam that has passed through the fourth basic structure. Is made larger than any other order of diffracted light
  • the F-order diffracted light of the third light beam that has passed through the fourth basic structure is made larger than any other order of diffracted light.
  • the A-order diffracted light amount of the first light beam is made larger than any other order diffracted light amount
  • the B-order diffracted light amount of the second light beam is set to any other order.
  • spherical aberration can be continuous in the central region and the intermediate region even during temperature changes and wavelength fluctuations, and generation of higher order aberrations can be prevented. That is, it is preferable that the first foundation structure and the third foundation structure are the same structure, and the second foundation structure and the fourth foundation structure are the same structure. That is, it is desirable that the first optical path difference providing structure and the second optical path difference providing structure are the same structure. However, the pitch may be different between the first optical path difference providing structure and the second optical path difference providing structure.
  • a 3rd foundation structure and a 4th foundation structure are blaze
  • the third basic structure makes the first-order diffracted light quantity of the first light flux that has passed through the third basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity of the second light flux that has passed through the third basic structure Is preferably larger than any other order of diffracted light.
  • the first-order diffracted light amount of the third light flux that has passed through the third basic structure is larger than any other order diffracted light amount.
  • the fourth foundation structure makes the second-order diffracted light amount of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light amount, and the first-order of the second light beam that has passed through the fourth foundation structure. Is preferably larger than any other order of diffracted light. Further, the first-order diffracted light amount of the third light flux that has passed through the fourth basic structure is made larger than any other order diffracted light amount.
  • A, B, C, D, E, and F are respectively
  • 1
  • 1
  • 1
  • 2
  • 1
  • 1 It is preferable to satisfy.
  • the blazed wavelength ⁇ b (3 ⁇ ) in the first basic structure is set to be larger than the blazed wavelength ⁇ b (2 ⁇ ) in the third basic structure.
  • the blazed wavelength ⁇ b (3 ⁇ ) in the first basic structure is made smaller than the blazed wavelength ⁇ b (2 ⁇ ) in the third basic structure.
  • the second optical path difference providing structure can be designed with priority on the second light flux.
  • the utilization efficiency of the light of the second light flux passing through the intermediate region can be increased, and the efficiency around the spot focused on the information recording surface of the second optical disk such as a DVD can be increased.
  • the spot diameter of the focused spot on the information recording surface can be made appropriate without increasing.
  • the light use efficiency of the second light flux changes discontinuously at the boundary between the intermediate area and the central area, and the light use efficiency of the second light flux in the intermediate area across the boundary changes the light use efficiency of the second light flux in the central area. It is preferable to make it higher than the utilization efficiency.
  • FIG. 8A is shown as an example. In FIG.
  • the diffraction efficiency of the second light flux when using the DVD as the second optical disk, changes discontinuously at the boundary between the central region and the intermediate region.
  • the diffraction efficiency of the second light beam just before the boundary of the intermediate region is higher than the diffraction efficiency of the second light beam just before the boundary of the central region.
  • the light use efficiency of the second light flux changes discontinuously at the boundary between the intermediate area and the central area, and the average value of the light use efficiency of the second light flux in the intermediate area is calculated as the second light flux in the central area. Is equal to or higher than the average value of the light utilization efficiency.
  • the blazed wavelength is a wavelength at which the diffraction efficiency is highest in a certain diffractive structure. In a diffractive structure in which a light beam having a different wavelength passes, depending on which wavelength the blazed wavelength is determined, The diffraction efficiency can be set arbitrarily.
  • the blazed wavelength ⁇ b (3 ⁇ ) is preferably ⁇ 1 ⁇ ⁇ b (3 ⁇ ) ⁇ 2. More preferably, ⁇ b (3 ⁇ ) is 405 to 510 nm.
  • the blazed wavelength ⁇ b (2 ⁇ ) is preferably ⁇ 1 ⁇ b (2 ⁇ ) ⁇ ⁇ 2. More preferably, ⁇ b (2 ⁇ ) is 450 to 550 nm.
  • the blazed wavelength in the second basic structure may be the same as or different from the blazed wavelength in the fourth basic structure.
  • the second optical path difference providing structure may be a structure in which the fifth basic structure is overlapped in addition to the third and fourth basic structures. However, in order to simplify the structure and suppress a decrease in light utilization efficiency due to manufacturing errors.
  • the second optical path difference providing structure preferably includes only the third basic structure and the fourth basic structure.
  • the fifth basic structure makes the 0th-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure.
  • the 0th-order diffracted light amount is made larger than any other order diffracted light amount
  • the G-th order diffracted light amount of the third light flux that has passed through the fifth basic structure is made larger than any other order diffracted light amount. It is preferable.
  • G is ⁇ 1.
  • the fifth basic structure is preferably a two-level step structure (also referred to as a binary structure) as shown in FIG.
  • the first optical path difference providing structure has a first difference as compared with the case where the second optical path difference providing structure does not have the fifth basic structure.
  • the decrease in the light utilization efficiency of the second optical path difference providing structure with respect to the optical path difference providing structure becomes larger, and the problem that the condensed spot becomes thicker when using the second optical disc becomes larger. Therefore, since the subject of this invention becomes a big aspect, the effect of this invention also becomes a big thing.
  • the third optical path difference providing structure preferably has a sixth basic structure.
  • the P-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than any other order diffracted light amount, and the Q-order diffraction of the second light beam that has passed through the sixth basic structure.
  • the light quantity is made larger than any other order of diffracted light quantity, and the R-order diffracted light quantity of the third light flux that has passed through the sixth basic structure is made larger than any other order of diffracted light quantity.
  • P is preferably 5 or less in order to suppress fluctuations in diffraction efficiency during wavelength fluctuations. More preferably, P is 2 or less.
  • the blazed wavelength ⁇ b (1 ⁇ ) in the sixth basic structure is preferably 385 to 425 nm.
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
  • NA2 NA1> NA2
  • NA3 NA2> NA3
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the boundary between the central region and the intermediate region of the objective lens is 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more, 1.15 ⁇ NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0.95 ⁇ NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion has a range of 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more and 1.15 ⁇ NA 3 or less) when the third light flux is used. It is preferable that it exists in.
  • the objective lens preferably satisfies the following conditional expression (4). 0.8 ⁇ d / f ⁇ 1.5 (4)
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux.
  • satisfying conditional expression (4) results in a thick objective lens with a thick on-axis objective lens, so that the working distance during CD recording / playback tends to be short.
  • the first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light.
  • all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable.
  • the imaging magnification m1 of the objective lens when the first light flux is incident on the objective lens satisfy the following formula (5). -0.01 ⁇ m1 ⁇ 0.01 (5)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following expression (6). Is preferred. -0.01 ⁇ m2 ⁇ 0.01 (6)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following expression (6) ′. . ⁇ 0.025 ⁇ m2 ⁇ ⁇ 0.01 (6) ′
  • the imaging magnification m3 of the objective lens when the third light beam enters the objective lens satisfies the following formula (7). Is preferred. -0.01 ⁇ m3 ⁇ 0.01 (7)
  • the imaging magnification m3 of the objective lens when the third light beam enters the objective lens satisfies the following expression (7) ′. . ⁇ 0.025 ⁇ m3 ⁇ ⁇ 0.01 (7) ′
  • the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.15 mm or more and 1.5 mm or less. Preferably, it is 0.3 mm or more and 0.9 mm or less.
  • the WD of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 1.3 mm or less.
  • the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • a thick objective lens having a thick on-axis thickness that is used interchangeably with three types of optical disks of BD / DVD / CD
  • temperature characteristics are improved while ensuring a working distance when using a CD. It becomes possible to do.
  • FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region.
  • (A), (b), (c) is a conceptual diagram of the 1st optical path difference providing structure.
  • FIG. 1 It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record and / or reproduce
  • (A) (b) is a figure which compares and shows an Example and a comparative example by taking diffraction efficiency on a vertical axis
  • FIG. 7 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks.
  • Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment.
  • the first optical path difference providing structure already described in detail is formed in the center region CN
  • the second optical path difference providing structure already described in detail is formed in the intermediate region MD.
  • a third optical path difference providing structure is formed in the peripheral region OT.
  • the third optical path difference providing structure is a blazed diffractive structure.
  • the objective lens of the present embodiment is a plastic lens.
  • the first optical path difference providing structure formed in the central region CN of the objective lens OL is a structure in which the first basic structure and the second basic structure are overlapped as shown in FIG.
  • the first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is set to any other order.
  • the first order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN.
  • the step is directed in the direction opposite to the optical axis.
  • the second-order diffracted light quantity of the first light flux that has passed through the second basic structure is more than the diffracted light quantity of any other order.
  • the primary of the second light flux that has passed through the second basic structure The diffracted light larger than the other diffracted light of any order, larger than the third light flux of the first-order diffracted light of other diffraction light amount of any order which has passed through the second basic structure.
  • the blazed wavelength ⁇ b (3 ⁇ ) in the first basic structure of the first optical path difference providing structure is smaller than the blazed wavelength ⁇ b (2 ⁇ ) in the third basic structure of the second optical path difference providing structure.
  • the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and by the collimating lens COL.
  • the converged light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1.
  • the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. Correction can be made by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL by changing the collimating lens COL as means in the optical axis direction.
  • the / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OL.
  • the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral portion) is recorded on the DVD through the protective substrate PL2. It becomes a spot formed on the surface RL2, and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a convergent light beam by the collimator lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on DVD can be read using the output signal of light receiving element PD.
  • the linearly polarized light is converted into circularly polarized light by the ⁇ / 4 wave plate QWP, and is incident on the objective lens OL.
  • the light beam collected by the central region of the objective lens OL (the light beam that has passed through the intermediate region and the peripheral region is flared and forms a spot peripheral part) is recorded on the CD through the protective substrate PL3. It becomes a spot formed on the surface RL3.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a convergent light beam by the collimating lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on CD can be read using the output signal of light receiving element PD.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
  • X (h) is an axis in the optical axis direction (with the light traveling direction being positive), ⁇ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
  • is the wavelength of the incident light beam
  • ⁇ B is the manufacturing wavelength (blazed wavelength)
  • dor is the diffraction order
  • B 2i is the coefficient of the optical path difference function.
  • Example 1 The objective lens of Example 1 is a plastic single lens.
  • FIG. 6 shows a conceptual diagram of the first optical path difference providing structure of the first embodiment (FIG. 6 is a conceptual diagram different from the actual shape of the first embodiment).
  • the first optical path difference providing structure of Example 1 is a 1/1/1 blaze-type diffractive structure in the second basic structure BS2, which is a 2/1/1 blaze-type diffractive structure, in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 is overlapped.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA.
  • the blazed wavelength ⁇ b (3 ⁇ ) of the first basic structure in the first optical path difference providing structure in the central region is set to 470 nm
  • the blazed wavelength ⁇ b (2 ⁇ ) of the three basic structures was set to 530 nm
  • the blazed wavelength of the fourth basic structure was set to 385 nm.
  • the blazed wavelength ⁇ b (3 ⁇ ) in the first basic structure is smaller than the blazed wavelength ⁇ b (2 ⁇ ) in the third basic structure.
  • the blazed wavelength ⁇ b (1 ⁇ ) of the sixth basic structure in the third optical path difference providing structure in the peripheral region is 405 nm.
  • the second optical path difference providing structure of Example 1 also has a 1/1/1 blaze type structure in the fourth basic structure BS4 that is a 2/1/1 blaze type diffraction structure in the entire intermediate region.
  • This is a structure in which the third basic structure BS3 which is a diffraction structure is overlapped.
  • the step of the third foundation structure faces in the direction opposite to the optical axis, and the step of the fourth foundation structure faces in the direction of the optical axis.
  • the third optical path difference providing structure of Example 1 is composed of only the sixth basic structure.
  • the second-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the sixth basic structure.
  • This is a blaze-type diffractive structure in which the amount of light is made larger than any other order of diffracted light, and the first order diffracted light of the third light beam that has passed through the sixth basic structure is made larger than any other order of diffracted light.
  • Table 1 shows the lens data of Example 1.
  • FIG. 8 is a diagram showing the diffraction efficiency on the vertical axis and the pupil radius on the horizontal axis, and shows the result of the simulation performed by the present inventor.
  • the diffraction efficiency at the time of using the DVD in the intermediate region is gradually lower than that in the central region, so that a phenomenon that the spot diameter becomes thick may occur.
  • Example 1 in which ⁇ b (3 ⁇ ) ⁇ b (2 ⁇ ), as shown in FIG.
  • the light use efficiency in the light changes discontinuously, and the light use efficiency in the DVD use light in the intermediate region across the boundary is higher than the light use efficiency in the DVD use light in the central region.
  • the phenomenon that the diameter increases can be suppressed.
  • the diffraction efficiency when using the DVD exceeds the diffraction efficiency when using the BD.
  • the diffraction efficiency of the intermediate region is low for BD, but the diffraction efficiency of the peripheral region is high. There is no.

Abstract

Provided are an optical pickup device and an optical information record/play device which are provided with an objective lens, whereby it is possible to carry out exchanges among three types of optical discs, BD/DVD/CD, with a common objective lens, and an objective lens which is optimal thereto. Enlarging the blaze wavelength λb(2λ) in a base structure of a second light path difference application structure with respect to the blaze wavelength λb(3λ) in a base structure of a first light path difference application structure increases usage efficiency of the light of a second light beam which passes through a central region, and maintains a proper spot diameter whereat said second light beam collects on the information recording face of a second optical disc.

Description

光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び/又は再生(記録/再生)を行える光ピックアップ装置、対物レンズ及び光情報記録再生装置に関する。 The present invention relates to an optical pickup device, an objective lens, and an optical information recording / reproducing apparatus capable of recording and / or reproducing (recording / reproducing) information interchangeably with different types of optical discs.
 近年、光ピックアップ装置において、光ディスクに記録された情報の再生や、光ディスクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進み、例えば、青紫色半導体レーザ等、波長390~420nmのレーザ光源が実用化されている。これら青紫色レーザ光源を使用すると、DVD(デジタルバーサタイルディスク)と同じ開口数(NA)の対物レンズを使用する場合で、直径12cmの光ディスクに対して、15~20GBの情報の記録が可能となり、対物光学素子のNAを0.85にまで高めた場合には、直径12cmの光ディスクに対して、23~25GBの情報の記録が可能となる。 In recent years, in an optical pickup device, a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened. For example, a wavelength 390 such as a blue-violet semiconductor laser is used. A laser light source of ˜420 nm has been put into practical use. When these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used. When the NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
 上述のようなNA0.85の対物レンズを使用する光ディスクの例として、BD(ブルーレイディスク)が挙げられる。光ディスクの傾き(スキュー)に起因して発生するコマ収差が増大するため、BDでは、DVD における場合よりも保護基板を薄く設計し(DVDの0.6mmに対して、0.1mm)、スキューによるコマ収差量を低減している。 BD (Blu-ray Disc) is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
 ところで、BDに対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDやCD(コンパクトディスク)が販売されている現実をふまえると、BDに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDやCDに対しても同様に適切に情報の記録/再生ができるようにすることが、BD用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、BD用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。 By the way, simply saying that information can be recorded / reproduced appropriately with respect to a BD cannot be said to be sufficient as a product of an optical disc player / recorder (optical information recording / reproducing apparatus). In light of the reality that DVDs and CDs (compact discs) on which a wide variety of information is recorded are currently being sold, it is not possible to record / reproduce information with respect to BDs. For example, DVDs owned by users, Similarly, it is possible to appropriately record / reproduce information on a CD, which leads to an increase in the commercial value of an optical disc player / recorder for BD. From such a background, the optical pickup device mounted on the BD optical disc player / recorder can record / reproduce information appropriately while maintaining compatibility with any of BD, DVD, and CD. It is desirable to have
 BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できるようにする方法として、BD用の光学系とDVDやCD用の光学系とを情報を記録/再生する光ディスクの記録密度に応じて選択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコストが増大する。 As a method for appropriately recording / reproducing information while maintaining compatibility with both BD and DVD, and further with CD, information between BD optical system and DVD or CD optical system is used. Although a method of selectively switching according to the recording density of the optical disc to be recorded / reproduced is conceivable, it requires a plurality of optical systems, which is disadvantageous for miniaturization and increases the cost.
 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性を有する光ピックアップ装置においても、BD用の光学系とDVDやCD用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らすのが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記録/再生波長が互いに異なる複数種類の光ディスクに対して共通な対物レンズを得るためには、球面収差の波長依存性を有する回折構造等の光路差付与構造を対物レンズに形成する必要がある。 Therefore, in order to simplify the configuration of the optical pickup device and reduce the cost, even in an optical pickup device having compatibility, the optical system for BD and the optical system for DVD or CD can be shared. It is preferable to reduce the number of optical components constituting the pickup device as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common. In order to obtain a common objective lens for a plurality of types of optical disks having different recording / reproducing wavelengths, it is necessary to form an optical path difference providing structure such as a diffraction structure having a wavelength dependency of spherical aberration in the objective lens. is there.
 特許文献1には、それぞれ回折構造である2つの基礎構造を重畳してなる構造を有し、3種類の光ディスクに対して共通に使用可能な対物レンズ、及びこの対物レンズを搭載した光ピックアップ装置が記載されている。 Patent Document 1 has an objective lens that has a structure in which two basic structures each of which is a diffractive structure are superimposed, and can be used in common for three types of optical disks, and an optical pickup device equipped with this objective lens Is described.
国際公開第08/146675号パンフレットInternational Publication No. 08/146675 Pamphlet
 ところで、特許文献1の実施例に記載される対物レンズにおいては、BD/DVD/CDに対して共に用いられる共用領域である中央領域でのブレーズ波長(設計波長)と、BD/DVDには用いられるがCDには用いられない領域である中間領域でのブレーズ波長(設計波長)とが共に395nmで等しい値となっている。本発明者らが鋭意研究の結果、このような対物レンズを用いて、DVDの情報記録面に対して集光スポットを形成したときには、スポット径が設計値よりも拡大するという現象が起き得ることが判明した。これを放置すると、DVD使用時にエラー信号の発生を招く恐れがある。 By the way, in the objective lens described in the example of Patent Document 1, the blaze wavelength (design wavelength) in the central region, which is a common region used for both BD / DVD / CD, and the BD / DVD are used. However, the blaze wavelength (design wavelength) in the intermediate region, which is a region that is not used for CD, is equal to 395 nm. As a result of diligent research by the present inventors, a phenomenon that the spot diameter is larger than the design value can occur when a focused spot is formed on the information recording surface of a DVD using such an objective lens. There was found. If this is left unattended, an error signal may be generated when the DVD is used.
 本発明は、上述の課題を解決することを目的としたものであり、DVD使用時に適切な大きさの集光スポットを得ることができ、BD/DVD/CDの3種類の光ディスクの互換を共通の対物レンズで行うことを可能とする対物レンズを備えた光ピックアップ装置並びに光情報記録再生装置及びそれに好適な対物レンズを提供することを目的とする。 An object of the present invention is to solve the above-described problems, and a condensing spot having an appropriate size can be obtained when using a DVD, and the compatibility of three types of optical discs of BD / DVD / CD is common. It is an object of the present invention to provide an optical pickup apparatus, an optical information recording / reproducing apparatus, and an objective lens suitable for the optical pickup apparatus including an objective lens that can be performed with the objective lens.
 請求項1に記載の対物レンズは、第1波長λ1の第1光束を射出する第1光源と、第2波長λ2(λ1<λ2)の第2光束を射出する第2光源と、第3波長λ3(λ2<λ3)の第3光束を射出する第3光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有する第1光ディスクの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有する第2光ディスクの情報の記録及び/又は再生を行い、前記第3光束を用いて厚さがt3(t2<t3)の保護基板を有する第3光ディスクの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
 前記対物レンズは、プラスチック製の単玉レンズであり、
 前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
 前記中央領域は第1光路差付与構造を有し、
 前記中間領域は第2光路差付与構造を有し、
 前記対物レンズは、前記中央領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、
 前記対物レンズは、前記中間領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記第1光路差付与構造は、少なくとも第1基礎構造を有し、
 前記第1基礎構造は、該第1基礎構造を通過した第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、該第1基礎構造を通過した第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、該第1基礎構造を通過した第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第2光路差付与構造は、少なくとも第3基礎構造を有し、
 前記第3基礎構造は、該第3基礎構造を通過した第A光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、該第3基礎構造を通過した第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 |A|・λ1>|B|・λ2の場合は、前記第1基礎構造におけるブレーズ化波長λb(3λ)が、前記第3基礎構造におけるブレーズ化波長λb(2λ)よりも大きく、
 |A|・λ1<|B|・λ2の場合は、前記第1基礎構造におけるブレーズ化波長λb(3λ)が、前記第3基礎構造におけるブレーズ化波長λb(2λ)よりも小さいことを特徴とする。
The objective lens according to claim 1, a first light source that emits a first light flux having a first wavelength λ1, a second light source that emits a second light flux having a second wavelength λ2 (λ1 <λ2), and a third wavelength. a third light source that emits a third light beam of λ3 (λ2 <λ3), and records and / or reproduces information on a first optical disk having a protective substrate with a thickness of t1 using the first light beam. Recording and / or reproducing information on the second optical disc having a protective substrate having a thickness t2 (t1 <t2) using the second light flux, and a thickness t3 (t2 <t) using the third light flux. an objective lens used in an optical pickup device for recording and / or reproducing information of a third optical disc having a protective substrate at t3),
The objective lens is a single lens made of plastic,
The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
The central region has a first optical path difference providing structure,
The intermediate region has a second optical path difference providing structure,
The objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc. Condensing so that information can be recorded and / or reproduced,
The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc. Without collecting light so that information can be recorded and / or reproduced.
The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area. The second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc. Do not concentrate so that information can be recorded and / or reproduced
The first optical path difference providing structure has at least a first basic structure,
The first basic structure makes the A-order diffracted light amount of the first light beam that has passed through the first basic structure larger than any other order of diffracted light amount, and B of the second light beam that has passed through the first basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, making the C-order diffracted light quantity of the third light flux that has passed through the first basic structure larger than any other order diffracted light quantity,
The second optical path difference providing structure has at least a third basic structure,
The third basic structure makes the A-order diffracted light amount of the A-th beam that has passed through the third basic structure larger than any other order diffracted light amount, and B of the second light beam that has passed through the third basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, and making the C-order diffracted light quantity of the third light flux that has passed through the third basic structure larger than any other order diffracted light quantity,
In the case of | A | · λ1> | B | · λ2, the blazed wavelength λb (3λ) in the first basic structure is larger than the blazed wavelength λb (2λ) in the third basic structure,
In the case of | A | · λ1 <| B | · λ2, the blazed wavelength λb (3λ) in the first basic structure is smaller than the blazed wavelength λb (2λ) in the third basic structure. To do.
 本発明者は鋭意研究の結果、第1光束と第2光束とに共通して用いられる対物レンズの中央領域及び中間領域に互換を実現すべく設けた光路差付与構造において、光軸から離れるに連れて非球面に形成した光路差付与構造の回折ピッチは通常狭くなっていくので、従って、中央領域に比べ中間領域の方が回折ピッチが狭くなり、段差の影の影響や、微細形状である光路差付与構造の高精度な成形が困難となった結果の製造誤差に起因して、中央領域に比べて中間領域の光の利用効率が低下してしまい、その結果、DVD使用時においては、集光スポットの最も周辺の光利用効率が低下してしまうことになり、これがスポット径を太らせている原因であることを突き止めた。しかるに、どのようにして、DVD使用時において、集光スポットの周辺における光の利用効率を高めるかが課題として残る。 As a result of diligent research, the inventor has found that the optical path difference providing structure provided to realize compatibility in the central region and the intermediate region of the objective lens used in common for the first light beam and the second light beam is separated from the optical axis. Accordingly, the diffraction pitch of the optical path difference providing structure formed in an aspherical surface is usually narrower. Therefore, the diffraction pitch is narrower in the intermediate region than in the central region, and the influence of the shadow of the step or the fine shape. Due to the manufacturing error resulting from the difficulty in forming the optical path difference providing structure with high precision, the light utilization efficiency of the intermediate region is lower than that in the central region. It has been found that the light utilization efficiency at the most periphery of the focused spot is reduced, and this is the cause of increasing the spot diameter. However, how to increase the light use efficiency around the condensing spot when using a DVD remains a problem.
 そこで本発明者は、かかる課題の解決に際し、光路差付与構造である基礎構造のブレーズ化波長に着目した。尚、ブレーズ化波長とは、その構造において回折効率が最も高くなる波長をいう。具体的には、|A|・λ1>|B|・λ2の場合は、第1基礎構造におけるブレーズ化波長λb(3λ)が、第3基礎構造におけるブレーズ化波長λb(2λ)よりも大きく、|A|・λ1<|B|・λ2の場合は、第1基礎構造におけるブレーズ化波長λb(3λ)が、第3基礎構造におけるブレーズ化波長λb(2λ)よりも小さくなるようにすることによって、以下のような効果が得られる。即ち、第2光路差付与構造を第2光束優先の設計として、中間領域を通過する第2光束の光の利用効率を高め、DVD等の第2光ディスクの情報記録面に集光するスポットの周辺の効率を高めることができ、その結果、第2光ディスクの情報記録面上における集光スポットのスポット径が太ることなく、適正な大きさとできる。尚、本発明の構成により、中間領域を通過する第1光束の光の利用効率は低下してしまうこともある。しかしながら、中間領域より外側の周辺領域は第1光束専用の領域であるため、前記周辺領域を通過する光の利用効率は高くできる。その結果、BD等の第1光ディスクの情報記録面に集光するスポットの、中間領域では効率が低下してしまうが、周辺の効率については高いまま維持できる。従って、第1光ディスクの情報記録面における集光スポット径が太ってしまう、という問題は発生せず、適切な集光スポット径を維持できるため、トータルでみれば特に影響が生じる恐れは少ない。 Therefore, the present inventor paid attention to the blazed wavelength of the basic structure, which is an optical path difference providing structure, in solving such a problem. The blazed wavelength is a wavelength at which the diffraction efficiency is highest in the structure. Specifically, in the case of | A | · λ1> | B | · λ2, the blazed wavelength λb (3λ) in the first basic structure is larger than the blazed wavelength λb (2λ) in the third basic structure, In the case of | A | · λ1 <| B | · λ2, the blazed wavelength λb (3λ) in the first basic structure is made smaller than the blazed wavelength λb (2λ) in the third basic structure. The following effects can be obtained. That is, the second optical path difference providing structure is designed to give priority to the second light flux, and the use efficiency of the light of the second light flux that passes through the intermediate region is increased, and the periphery of the spot that is focused on the information recording surface of the second optical disc such as a DVD As a result, the spot diameter of the condensing spot on the information recording surface of the second optical disc can be set to an appropriate size without increasing. In addition, with the structure of this invention, the utilization efficiency of the light of the 1st light beam which passes an intermediate | middle area | region may fall. However, since the peripheral region outside the intermediate region is a region dedicated to the first light flux, the utilization efficiency of light passing through the peripheral region can be increased. As a result, the efficiency of the spot focused on the information recording surface of the first optical disc such as BD is reduced in the intermediate region, but the peripheral efficiency can be kept high. Therefore, there is no problem that the diameter of the focused spot on the information recording surface of the first optical disc is increased, and an appropriate focused spot diameter can be maintained.
 また、第1基礎構造と第3基礎構造とは、共に第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくしているため、温度変化や波長変動時においても、中央領域と中間領域とで球面収差を連続と出来、高次収差の発生を防止できる。 Further, both the first basic structure and the third basic structure make the A-order diffracted light quantity of the first light beam larger than any other order diffracted light quantity, and the B-order diffracted light quantity of the second light beam becomes any other diffracted light quantity. Since the diffracted light amount of the third light beam is larger than the diffracted light amount of the third order, and the diffracted light amount of the third light beam is larger than any other order of diffracted light amount, Spherical aberration can be continuous, and higher order aberrations can be prevented.
 請求項2の対物レンズは、請求項1の発明において、
 前記第1光路差付与構造は、少なくとも前記第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
 前記第2基礎構造は、前記第2基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第2光路差付与構造は、少なくとも前記第3基礎構造と第4基礎構造とを重ね合わせた構造であり、
 前記第4基礎構造は、前記第4基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする。
The objective lens of claim 2 is the invention of claim 1,
The first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped,
The second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and the E of the second light beam that has passed through the second basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, and making the F-order diffracted light quantity of the third light flux that has passed through the second basic structure larger than any other order diffracted light quantity,
The second optical path difference providing structure is a structure in which at least the third basic structure and the fourth basic structure are overlapped,
The fourth foundation structure makes the D-order diffracted light quantity of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light quantity, and the E of the second light flux that has passed through the fourth foundation structure. The next diffracted light amount is made larger than any other order diffracted light amount, and the F-order diffracted light amount of the third light beam that has passed through the fourth basic structure is made larger than any other order diffracted light amount. To do.
 第1光路差付与構造が、第1基礎構造と第2基礎構造という2種類の構造を重畳してなり、また第2光路差付与構造が、第3基礎構造と第4基礎構造という2種類の構造を重畳してなり、階段型等の単一の構造で光路差付与構造を形成する場合に比して、設計の自由度を大きく確保できるため、特に、有効径が小さい対物レンズにおいて有利である。 The first optical path difference providing structure is formed by superimposing two types of structures, a first basic structure and a second basic structure, and the second optical path difference providing structure is composed of two types of structures, a third basic structure and a fourth basic structure. Compared to the case where the optical path difference providing structure is formed with a single structure such as a staircase type by overlapping the structure, it is possible to secure a large degree of design freedom, which is particularly advantageous for an objective lens having a small effective diameter. is there.
 請求項3に記載の対物レンズは、請求項1又は2に記載の発明において、前記第1基礎構造はブレーズ型構造であり、前記第2基礎構造はブレーズ型構造であることを特徴とする。これにより光の利用効率を高めることができる。 The objective lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the first basic structure is a blazed structure, and the second basic structure is a blazed structure. Thereby, the utilization efficiency of light can be improved.
 請求項4に記載の対物レンズは、請求項2又は3に記載の発明において、A,B,C,D,E,Fは、それぞれ、
 |A|=1
 |B|=1
 |C|=1
 |D|=2
 |E|=1
 |F|=1
を満たすことを特徴とする。
The objective lens according to claim 4 is the invention according to claim 2 or 3, wherein A, B, C, D, E, and F are respectively
| A | = 1
| B | = 1
| C | = 1
| D | = 2
| E | = 1
| F | = 1
It is characterized by satisfying.
 ここで、互換を行う基礎構造として、1/1/1(第1光束、第2光束、及び第3光束のいずれにおいても、1次回折光を最も多く発生)を第1及び第3基礎構造とし、2/1/1(第1光束において2次回折光を最も多く発生し、第2光束及び第3光束においては、1次回折光を最も多く発生)を第2及び第4の基礎構造とする組み合わせを選択した。その理由は、第一に、段差量(段差の光軸方向の高さ)の低いブレーズ構造を利用することで波長変化時の回折効率の変動を防止でき、影の効果や製造誤差に起因する光利用効率の低下も抑制できること、第二に、3波長全てが高い回折効率を有すること、が挙げられる。 Here, as the basic structure to be interchanged, 1/1/1 (the most primary diffracted light is generated in any of the first light beam, the second light beam, and the third light beam) is defined as the first and third basic structures. 2/1/1 (the second-order diffracted light is generated most in the first light beam, and the first-order diffracted light is generated most in the second light beam and the third light beam) Selected. The reason for this is that, due to the use of a blazed structure with a low step amount (height in the optical axis direction of the step), fluctuations in diffraction efficiency at the time of wavelength change can be prevented, resulting in shadow effects and manufacturing errors. A decrease in light utilization efficiency can be suppressed, and secondly, all three wavelengths have high diffraction efficiency.
 請求項5に記載の対物レンズは、請求項2乃至4のいずれかに記載の発明において、前記第2基礎構造におけるブレーズ化波長は、前記第4基礎構造におけるブレーズ化波長と等しいことを特徴とする。 The objective lens according to claim 5 is characterized in that, in the invention according to any one of claims 2 to 4, the blazed wavelength in the second basic structure is equal to the blazed wavelength in the fourth basic structure. To do.
 請求項6に記載の対物レンズは、請求項1乃至5のいずれかに記載の発明において、前記中間領域と前記中央領域の境界で、前記第2光束の光の利用効率が不連続に変化し、前記境界を挟んで前記中間領域における前記第2光束の光の利用効率は、前記中央領域における前記第2光束の光の利用効率より高いことを特徴とする。 According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the light use efficiency of the second light flux changes discontinuously at the boundary between the intermediate region and the central region. The light use efficiency of the second light flux in the intermediate region across the boundary is higher than the light use efficiency of the second light flux in the central region.
 請求項7に記載の対物レンズは、請求項1乃至6のいずれかに記載の発明において、前記ブレーズ化波長λb(3λ)は、405~510nmであり、前記ブレーズ化波長λb(2λ)は、450~550nmであることを特徴とする。 The objective lens according to claim 7 is the objective lens according to any one of claims 1 to 6, wherein the blazed wavelength λb (3λ) is 405 to 510 nm, and the blazed wavelength λb (2λ) is 450 to 550 nm.
 請求項8に記載の対物レンズは、請求項1乃至7のいずれかに記載の発明において、前記周辺領域は、第3光路差付与構造有し、前記第3光路差付与構造におけるブレーズ化波長λb(1λ)は、385~425nmであることを特徴とする。 The objective lens according to claim 8 is the objective lens according to any one of claims 1 to 7, wherein the peripheral region has a third optical path difference providing structure, and a blazed wavelength λb in the third optical path difference providing structure. (1λ) is 385 to 425 nm.
 第3光路差付与構造におけるブレーズ化波長を、上述の範囲にすることによって、第1光ディスク使用時の集光スポットの周辺部の効率を上げることができるため、第1光ディスク使用時にスポットが太ることなく、適切な大きさのスポット径を得ることができる。 By setting the blazed wavelength in the third optical path difference providing structure within the above range, the efficiency of the peripheral part of the focused spot when using the first optical disk can be increased, so that the spot becomes thicker when using the first optical disk. And an appropriate spot diameter can be obtained.
 請求項9に記載の対物レンズは、請求項1乃至8のいずれかに記載の発明において、前記中央領域に設けられる前記第1基礎構造は、全ての段差が光軸とは逆の方向を向いていることを特徴とする。 The objective lens according to claim 9 is the invention according to any one of claims 1 to 8, wherein the first basic structure provided in the central region is such that all steps are directed in a direction opposite to the optical axis. It is characterized by.
 請求項10に記載の対物レンズは、請求項2乃至9のいずれかに記載の発明において、前記中央領域に設けられる前記第2基礎構造は、全ての段差が光軸の方向を向いていることを特徴とする。 The objective lens according to claim 10 is the invention according to any one of claims 2 to 9, wherein in the second basic structure provided in the central region, all the steps are directed in the direction of the optical axis. It is characterized by.
 請求項11に記載の対物レンズは、請求項1乃至10のいずれかに記載の発明において、少なくとも前記中央領域の光軸付近に設けられている前記第1光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを共に有し、
 前記光軸とは逆の方向を向いている段差の段差量d11と、前記光軸の方向を向いている段差の段差量d12とが、以下の条件式(2)、(3)を満たすことを特徴とする。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (3)
0.6・(λ1/(n-1))<d12<1.5・(2λ1/(n-1))  (4)
但し、nは、λ1における対物レンズの屈折率を表す。
The objective lens according to claim 11 is the invention according to any one of claims 1 to 10, wherein the first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region is an optical axis. It has both a step facing in the opposite direction and a step facing in the direction of the optical axis,
The step amount d11 of the step facing the direction opposite to the optical axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (2) and (3). It is characterized by.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (3)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (2λ1 / (n-1)) (4)
Here, n represents the refractive index of the objective lens at λ1.
 請求項12に記載の対物レンズは、請求項11に記載の発明において、 前記中央領域の全ての領域において前記条件式(2)、(3)を満たすことを特徴とする。 The objective lens according to claim 12 is characterized in that, in the invention according to claim 11, the conditional expressions (2) and (3) are satisfied in all regions of the central region.
 請求項13に記載の対物レンズは、請求項11又は12に記載の発明において、以下の条件式を満たすことを特徴とする。
0.9・(λ1/(n-1))<d11<1.5・(λ1/(n-1))  (2)”
0.9・(λ1/(n-1))<d12<1.5・(λ1/(n-1))  (3)”
The objective lens described in claim 13 is characterized in that, in the invention described in claim 11 or 12, the following conditional expression is satisfied.
0.9 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (2) "
0.9 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (3) "
 請求項14に記載の対物レンズは、請求項13に記載の発明において、前記中央領域の全ての領域において前記条件式(2)”、(3)”を満たすことを特徴とする。 The objective lens according to claim 14 is characterized in that, in the invention according to claim 13, the conditional expressions (2) "and (3)" are satisfied in all regions of the central region.
 請求項15に記載の対物レンズは、請求項11乃至14のいずれかに記載の発明において、前記中央領域において、前記光軸とは逆の方向を向いている段差の数が、前記光軸の方向を向いている段差の数に比べて多いことを特徴とする。 The objective lens according to claim 15 is the invention according to any one of claims 11 to 14, wherein, in the central region, the number of steps facing the direction opposite to the optical axis is equal to that of the optical axis. It is characterized by being larger than the number of steps facing the direction.
 請求項16に記載の対物レンズは、請求項1乃至15のいずれかに記載の発明において、以下の条件式を満たすことを特徴とする。
0.8≦d/f≦1.5   (4)
但し、dは、前記対物レンズの光軸上の厚さ(mm)を表し、fは、前記第1光束における前記対物レンズの焦点距離を表す。
An objective lens according to a sixteenth aspect is characterized in that, in the invention according to any one of the first to fifteenth aspects, the following conditional expression is satisfied.
0.8 ≦ d / f ≦ 1.5 (4)
However, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux.
 請求項17に記載の対物レンズは、請求項1乃至16のいずれかに記載の発明において、前記第2光路差付与構造は、前記第3基礎構造に加えて、第5基礎構造を重ね合わせた構造であり、前記第5基礎構造は、前記第5基礎構造を通過した前記第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第5基礎構造を通過した前記第2光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第5基礎構造を通過した前記第3光束のG次の回折光量を他のいかなる次数の回折光量よりも大きくする構造であることを特徴とする。 The objective lens according to claim 17 is the invention according to any one of claims 1 to 16, wherein the second optical path difference providing structure is formed by overlapping a fifth basic structure in addition to the third basic structure. The fifth basic structure has a zero-order diffracted light amount of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light amount, and has passed through the fifth basic structure. The 0th-order diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity, and the G-order diffracted light quantity of the third light flux that has passed through the fifth basic structure is made higher than any other order diffracted light quantity. It is also characterized by a structure that increases the size.
 請求項18に記載の対物レンズは、請求項1乃至16のいずれかに記載の発明において、前記第2光路差付与構造は、前記第3基礎構造及び前記第4基礎構造のみからなることを特徴とする。 The objective lens according to claim 18 is characterized in that, in the invention according to any one of claims 1 to 16, the second optical path difference providing structure comprises only the third basic structure and the fourth basic structure. And
 請求項19に記載の対物レンズは、請求項1乃至18のいずれかに記載の発明において、以下の条件式(5)、(6)、(7)を満たすことを特徴とする。
-0.01<m1<0.01     (5)
-0.01<m2<0.01     (6)
-0.01<m3<0.01     (7)
但し、m1は、前記第1光束が前記対物レンズに入射する時の前記対物レンズの倍率を表し、m2は、前記第2光束が前記対物レンズに入射する時の前記対物レンズの倍率を表し、m3は、前記第3光束が前記対物レンズに入射する時の前記対物レンズの倍率を表す。
The objective lens according to claim 19 is characterized in that, in the invention according to any one of claims 1 to 18, the following conditional expressions (5), (6), and (7) are satisfied.
-0.01 <m1 <0.01 (5)
-0.01 <m2 <0.01 (6)
-0.01 <m3 <0.01 (7)
However, m1 represents the magnification of the objective lens when the first light beam is incident on the objective lens, m2 represents the magnification of the objective lens when the second light beam is incident on the objective lens, m3 represents the magnification of the objective lens when the third light beam is incident on the objective lens.
 請求項20に記載の光ピックアップ装置は、請求項1乃至19のいずれかに記載の対物レンズを有することを特徴とする。 An optical pickup device according to claim 20 has the objective lens according to any one of claims 1 to 19.
 請求項21に記載の光情報記録再生装置は、請求項20に記載の光ピックアップ装置を有することを特徴とする。 An optical information recording / reproducing device according to claim 21 has the optical pickup device according to claim 20.
 本発明に係る光ピックアップ装置は、第1光源、第2光源、第3光源の少なくとも3つの光源を有する。さらに、本発明の光ピックアップ装置は、第1光束を第1光ディスクの情報記録面上に集光させ、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光させるための集光光学系を有する。また、本発明の光ピックアップ装置は、第1光ディスク、第2光ディスク又は第3光ディスクの情報記録面からの反射光束を受光する受光素子を有する。 The optical pickup device according to the present invention has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light flux on the information recording surface of the first optical disc, condenses the second light flux on the information recording surface of the second optical disc, and causes the third light flux to be third. It has a condensing optical system for condensing on the information recording surface of the optical disc. The optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from the information recording surface of the first optical disc, the second optical disc, or the third optical disc.
 第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。なお、第1光ディスク、第2光ディスク又は第3光ディスクは、複数の情報記録面を有する複数層の光ディスクでもよい。 The first optical disc has a protective substrate having a thickness t1 and an information recording surface. The second optical disc has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The third optical disc has a protective substrate having a thickness t3 (t2 <t3) and an information recording surface. The first optical disc is preferably a BD, the second optical disc is a DVD, and the third optical disc is preferably a CD, but is not limited thereto. The first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層又はそれ以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(8)、(9)、(10)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
  0.050mm ≦ t1 ≦ 0.125mm   (8)
  0.5mm ≦ t2 ≦ 0.7mm         (9)
  1.0mm ≦ t3 ≦ 1.3mm         (10)
In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (8), (9), and (10), but is not limited thereto. The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
0.050 mm ≤ t1 ≤ 0.125 mm (8)
0.5mm ≤ t2 ≤ 0.7mm (9)
1.0 mm ≤ t3 ≤ 1.3 mm (10)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(11)、(12) を満たすことが好ましい。
  1.5・λ1 < λ2 < 1.7・λ1    (11)
  1.8・λ1 < λ3 < 2.0・λ1    (12)
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (11) and (12).
1.5 · λ1 <λ2 <1.7 · λ1 (11)
1.8 · λ1 <λ3 <2.0 · λ1 (12)
 第1光源の第1波長λ1は好ましくは、350nm 以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。 The first wavelength λ1 of the first light source is preferably 350 nm to 440 nm, more preferably 390 nm to 415 nm, and the second wavelength λ2 of the second light source is preferably 570 nm to 680 nm, more preferably. Is 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. A light receiving element may be used. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、対物レンズを有する。集光光学系は、対物レンズの他にコリメータ等のカップリングレンズを有していることが好ましい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメータは、カップリングレンズの一種で、コリメータに入射した光を平行光にして出射するレンズである。本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。また、本発明の対物レンズは、単玉のプラスチックレンズである。好ましくは、凸レンズである。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 The condensing optical system has an objective lens. The condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens. The coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam. The collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light. In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens of the present invention is a single plastic lens. A convex lens is preferable. The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 また、対物レンズを構成するプラスチック材料として、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用するのが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.54乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃ -1) が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズがプラスチックレンズである場合、カップリングレンズもプラスチックレンズとすることが好ましい。 Moreover, it is preferable to use an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material as a plastic material constituting the objective lens. The resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of −5 ° C. to 70 ° C. The refractive index change rate dN / dT (° C. −1 ) is -20 × 10 −5 to −5 × 10 −5 (more preferably −10 × 10 −5 to −8 × 10 −5 ). It is more preferable to use a certain resin material. When the objective lens is a plastic lens, it is preferable that the coupling lens is also a plastic lens.
 脂環式炭化水素系重合体の好ましい例を幾つか、以下に示す。 Some preferred examples of the alicyclic hydrocarbon polymer are shown below.
 第1の好ましい例は、下記式(I)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(1)で表される繰り返し単位〔1〕並びに下記式(II)で表される繰り返し単位〔2〕または/および下記式(III)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなる樹脂組成物である。 A first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (1) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (式中、R1 は水素原子、または炭素数1~20のアルキル基を表し、R2-R12はそれぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基、またはハロゲン基である。) (Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ˜20 alkoxy groups or halogen groups.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、R13は、水素原子、または炭素数1~20のアルキル基を表す。) (In the formula, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
  (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1~20のアルキル基を表す。) (Wherein R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
 次に、第2の好ましい例は、少なくとも炭素原子数2~20のα-オレフィンと下記一般式(IV)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(A)と、炭素原子数2~20のα-オレフィンと下記一般式(V)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(B)とを含む樹脂組成物である。 Next, a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV). Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 〔式中、nは0または1であり、mは0または1以上の整数であり、qは0または1であり、R1~R18、Ra及びRbは、それぞれ独立に水素原子、ハロゲン原子または炭化水素基であり、R15~R18は互いに結合して単環または多環を形成していてもよく、括弧内の単環または多環が二重結合を有していてもよく、またR15とR16と、またはR17とR18とでアルキリデン基を形成していてもよい。〕 [Wherein n is 0 or 1, m is 0 or an integer of 1 or more, q is 0 or 1, and R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group. ]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 〔式中、R19~R26はそれぞれ独立に水素原子、ハロゲン原子または炭化水素基である。〕 [Wherein, R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group. ]
 樹脂材料に更なる性能を付加するために、以下のような添加剤を添加してもよい。 In order to add further performance to the resin material, the following additives may be added.
 (安定剤)
 フェノール系安定剤、ヒンダードアミン系安定剤、リン系安定剤及びイオウ系安定剤から選ばれた少なくとも1種の安定剤を添加することが好ましい。これらの安定剤を適宜選択し添加することで、例えば、405nmといった短波長の光を継続的に照射した場合の白濁や、屈折率の変動等の光学特性変動をより高度に抑制することができる。
(Stabilizer)
It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
 好ましいフェノール系安定剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2′-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニルプロピオネート))メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート))]、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。 As the preferred phenol-based stabilizer, conventionally known ones can be used. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate compounds described in Japanese Patent Publication No. 1; octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) ), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( , 5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenylpropionate)) methane [ie pentaerythris Limethyl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate))], triethylene glycol bis (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propionate) and other alkyl-substituted phenolic compounds; 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 4-bisoctylthio -1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5- Triazine group-containing phenol compounds such as triazine; and the like.
 また、好ましいヒンダードアミン系安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(N-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-ベンジルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクロイル-2,2,6,6-テトラメチル-4-ピペリジル)2,2-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1-[2-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル]-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート等が挙げられる。 Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1,2,2,6,6- Pentamethyl-4-piperidyl) decandioate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -1- [2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl] -2,2,6,6-tetramethylpiperidine, 2-methyl-2- ( 2,2,6,6-tetramethyl-4-piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6,6-tetramethyl -4-pi Lysyl) 1,2,3,4-butane tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate, and the like.
 また、好ましいリン系安定剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。 Further, the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl). Phenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
 また、好ましいイオウ系安定剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3′-チオジプロピピオネート、ジステアリル 3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ)-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。 Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
 これらの各安定剤の配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、脂環式炭化水素系共重合体100質量部に対して通常0.01~2質量部、好ましくは0.01~1質量部であることが好ましい。 The amount of each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
(界面活性剤)
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。界面活性剤は樹脂表面への水分の付着や上記表面からの水分の蒸発の速度を調節することで、樹脂組成物の白濁を防止することが可能となる。
(Surfactant)
A surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule. The surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
 界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基などが挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的に炭素数6以上のアルキル基、炭素数6以上のアルキル基を有するシリル基、炭素数6以上のフルオロアルキル基などが挙げられる。ここで、炭素数6以上のアルキル基は置換基として芳香環を有していてもよい。アルキル基としては、具体的にヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデセニル、ドデシル、トリデシル、テトラデシル、ミリスチル、ステアリル、ラウリル、パルミチル、シクロヘキシルなどが挙げられる。芳香環としてはフェニル基などが挙げられる。この界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。 Specific examples of the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned. Here, the amino group may be primary, secondary, or tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms. Here, the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent. Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like. Examples of the aromatic ring include a phenyl group. The surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
 このような界面活性剤としては、より具体的には、例えば、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、などが挙げられる。これらのうちでも、ヒドロキシアルキル基を有するアミン化合物またはアミド化合物が好ましく用いられる。本発明では、これら化合物を2種以上組合わせて用いてもよい。 More specifically, examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene Examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like. Among these, amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
 界面活性剤は、温度、湿度の変動に伴なう成形物の白濁を効果的に抑え、成形物の光透過率を高く維持するという観点から、脂環式炭化水素系重合体100質量部に対して0.01~10質量部添加されることが好ましい。界面活性剤の添加量は脂環式炭化水素系重合体100質量部に対して0.05~5質量部とすることがより好ましく、0.3~3質量部とすることが更に好ましい。 From the viewpoint of effectively suppressing the white turbidity of the molded product accompanying fluctuations in temperature and humidity and maintaining the light transmittance of the molded product high, the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer. On the other hand, it is preferable to add 0.01 to 10 parts by mass. The addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
(可塑剤)
 可塑剤は共重合体のメルトインデックスを調節するため、必要に応じて添加される。
(Plasticizer)
The plasticizer is added as necessary to adjust the melt index of the copolymer.
 可塑剤としては、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ビス(2-ブトキシエチル)、アゼライン酸ビス(2-エチルヘキシル)、ジプロピレングリコールジベンゾエート、クエン酸トリ-n-ブチル、クエン酸トリ-n-ブチルアセチル、エポキシ化大豆油、2-エチルヘキシルエポキシ化トール油、塩素化パラフィン、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、リン酸-t-ブチルフェニル、リン酸トリ-2-エチルヘキシルジフェニル、フタル酸ジブチル、フタル酸ジイソヘキシル、フタル酸ジヘプチル、フタル酸ジノニル、フタル酸ジウンデシル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジトリデシル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシル、セバシン酸ジ-2-エチルヘキシル、トリメリット酸トリ-2-エチルヘキシル、Santicizer 278、Paraplex G40、Drapex 334F、Plastolein 9720、Mesamoll、DNODP-610、HB-40等の公知のものが適用可能である。可塑剤の選定及び添加量の決定は、共重合体の透過性や環境変化に対する耐性を損なわないことを条件に適宜行なわれる。 Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, dicyclyl phthalate Known materials such as hexyl, di-2-ethylhexyl sebacate, tri-2-ethylhexyl trimellitic acid, Santizer 278, Paraplex G40, Drapex 334F, Plastolein 9720, Mesamol, DNODP-610, HB-40, etc. are applicable. . The selection of the plasticizer and the addition amount are appropriately performed under the condition that the permeability of the copolymer and the resistance to environmental changes are not impaired.
 これらの樹脂としては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As these resins, cycloolefin resins are preferably used. Specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, and JSR manufactured by ARTON are preferable. Take as an example.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 対物レンズについて、以下に記載する。対物レンズの少なくとも一つの光学面が、中央領域と、中央領域の周りの中間領域と、中間領域の周りの周辺領域とを少なくとも有する。中央領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを中心領域(中央領域ともいう)としてもよい。中央領域、中間領域、及び周辺領域は同一の光学面上に設けられていることが好ましい。図1に示されるように、中央領域CN、中間領域MD、周辺領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。また、対物レンズの中央領域には第一光路差付与構造が設けられ、中間領域には第二光路差付与構造が設けられている。周辺領域は屈折面であってもよいし、周辺領域に第三光路差付与構造が設けられていてもよい。中央領域、中間領域、周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。 The objective lens is described below. At least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region. The central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good. The central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 1, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface. In addition, a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area. The peripheral region may be a refracting surface, or a third optical path difference providing structure may be provided in the peripheral region. The central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
 対物レンズの中央領域は、第1光ディスク、第2光ディスク及び第3光ディスクの記録/再生に用いられる第1、第2、第3光ディスク共用領域と言える。即ち、対物レンズは、中央領域を通過する第1光束を、第1光ディスクの情報記録面上に情報の記録/再生ができるように集光し、中央領域を通過する第2光束を、第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、中央領域を通過する第3光束を、前記第3光ディスクの情報記録面上に情報の記録/再生ができるように集光する。また、中央領域に設けられた第1光路差付与構造は、第1光路差付与構造を通過する第1光束及び第2光束に対して、第1光ディスクの保護基板の厚さt1と第2光ディスクの保護基板の厚さt2の違いにより発生する球面収差/第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。さらに、第1光路差付与構造は、第1光路差付与構造を通過した第1光束及び第3光束に対して、第1光ディスクの保護基板の厚さt1と第3光ディスクの保護基板の厚さt3との違いにより発生する球面収差/第1光束と第3光束の波長の違いにより発生する球面収差を補正することが好ましい。 The central area of the objective lens can be said to be a shared area of the first, second, and third optical disks used for recording / reproduction of the first optical disk, the second optical disk, and the third optical disk. That is, the objective lens condenses the first light flux that passes through the central area so that information can be recorded / reproduced on the information recording surface of the first optical disc, and the second light flux that passes through the central area becomes the second light flux. Information is recorded and / or reproduced on the information recording surface of the optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central area can be recorded / reproduced on the information recording surface of the third optical disc. Condensed to In addition, the first optical path difference providing structure provided in the central region has the thickness t1 of the protective substrate of the first optical disc and the second optical disc with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in the thickness t2 of the protective substrate / spherical aberration generated due to the difference between the wavelengths of the first light flux and the second light flux. Further, the first optical path difference providing structure has a thickness t1 of the protective substrate of the first optical disc and a thickness of the protective substrate of the third optical disc with respect to the first light beam and the third light beam that have passed through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference between t3 and spherical aberration generated due to the difference between the wavelengths of the first and third light beams.
 対物レンズの中間領域は、第1光ディスク、第2光ディスクの記録/再生に用いられ、第3光ディスクの記録/再生に用いられない第1、第2光ディスク共用領域と言える。即ち、対物レンズは、中間領域を通過する第1光束を、第1光ディスクの情報記録面上に情報の記録/再生ができるように集光し、中間領域を通過する第2光束を、第2光ディスクの情報記録面上に情報の記録/再生ができるように集光する。その一方で、中間領域を通過する第3光束を、第3光ディスクの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの中間領域を通過する第3光束は、第3光ディスクの情報記録面上でフレアを形成することが好ましい。図2に示すように、対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部SCN、光量密度がスポット中心部より低いスポット中間部SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部SOTを有することが好ましい。スポット中心部が、光ディスクの情報の記録/再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録/再生には用いられない。上記において、このスポット周辺部をフレアと言っている。但し、スポット中心部の周りにスポット中間部が存在せずスポット周辺部があるタイプ、即ち、集光スポットの周りに薄く光が大きなスポットを形成する場合も、そのスポット周辺部をフレアと呼んでもよい。つまり、対物レンズの中間領域を通過した第3光束は、第3光ディスクの情報記録面上でスポット周辺部を形成することが好ましいとも言える。 The intermediate area of the objective lens is used for recording / reproduction of the first optical disk and the second optical disk, and can be said to be the first and second optical disk shared areas not used for recording / reproduction of the third optical disk. That is, the objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded / reproduced on the information recording surface of the first optical disc, and the second light flux that passes through the intermediate area becomes the second light flux. The light is condensed on the information recording surface of the optical disc so that information can be recorded / reproduced. On the other hand, the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the third optical disk. The third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the third optical disc. As shown in FIG. 2, in the spot formed on the information recording surface of the third optical disc by the third light flux that has passed through the objective lens, the light amount density is high in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a spot central portion SCN, a spot intermediate portion SMD having a light intensity density lower than that of the spot central portion, and a spot peripheral portion SOT having a light intensity density higher than that of the spot intermediate portion and lower than that of the spot central portion. The center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare. However, there is no spot middle part around the center part of the spot and there is a spot peripheral part, that is, even when a light spot is formed thinly around the condensing spot, the spot peripheral part may be called a flare. Good. That is, it can be said that the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the third optical disc.
 対物レンズの周辺領域は、第1光ディスクの記録/再生に用いられ、第2光ディスク及び第3光ディスクの記録/再生に用いられない第1光ディスク専用領域と言える。即ち、対物レンズは、周辺領域を通過する第1光束を、第1光ディスクの情報記録面上に情報の記録/再生ができるように集光する。その一方で、周辺領域を通過する第2光束を、第2光ディスクの情報記録面上に情報の記録/再生ができるように集光せず、周辺領域を通過する第3光束を、第3光ディスクの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの周辺領域を通過する第2光束及び第3光束は、第2光ディスク及び第3光ディスクの情報記録面上でフレアを形成することが好ましい。つまり、対物レンズの周辺領域を通過した第2光束及び第3光束は、第2光ディスク及び第3光ディスクの情報記録面上でスポット周辺部を形成することが好ましい。 The peripheral area of the objective lens is used for recording / reproduction of the first optical disk, and can be said to be an area dedicated to the first optical disk that is not used for recording / reproduction of the second optical disk and the third optical disk. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the first optical disc. On the other hand, the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the second optical disc, and the third light flux that passes through the peripheral area does not converge. The light is not condensed so that information can be recorded / reproduced on the information recording surface. The second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surfaces of the second optical disc and the third optical disc. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surfaces of the second optical disc and the third optical disc.
 第1光路差付与構造は、対物レンズの中央領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第1光路差付与構造が、中央領域の全面に設けられていることである。第2光路差付与構造は、対物レンズの中間領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第2光路差付与構造が、中間領域の全面に設けられていることである。周辺領域が第3光路差付与構造を有する場合、第3光路差付与構造は、対物レンズの周辺領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第3光路差付与構造が、周辺領域の全面に設けられていることである。 The first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region. The second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region. When the peripheral region has the third optical path difference providing structure, the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
 なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含まれる。また、位相差付与構造には回折構造が含まれる。本発明の光路差付与構造は回折構造であることが好ましい。光路差付与構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光路差付与構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、光路差付与構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam. The optical path difference providing structure also includes a phase difference providing structure for providing a phase difference. The phase difference providing structure includes a diffractive structure. The optical path difference providing structure of the present invention is preferably a diffractive structure. The optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux. The optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. When the objective lens provided with the optical path difference providing structure is a single aspherical lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis. Each will be slightly different. For example, when the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、回折構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In addition, when the objective lens provided with the diffractive structure is a single aspherical lens, the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be. For example, when the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
 ところで、光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、光路差付与構造は、一般に、様々な断面形状(光軸を含む面での断面形状) をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。 Incidentally, it is preferable that the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center. In addition, the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
 ブレーズ型構造とは、図3(a)、(b)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということである。尚、図3の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に光路差付与構造が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという。(図3(a)、(b)参照)また、ブレーズの光軸に平行方向の段差の長さを段差量Bという。(図3(a)参照) As shown in FIGS. 3A and 3B, the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape. In the example of FIG. 3, it is assumed that the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface. In the blazed structure, the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P. (See FIGS. 3A and 3B.) The length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 3 (a))
 また、階段型構造とは、図3(c)、(d)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。尚、本明細書中、「Vレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、テラス面と称することもある)が、段差によって区分けされV個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有することになる。例えば、図3(c)に示す光路差付与構造を、5レベルの階段型構造といい、図3(d)に示す光路差付与構造を、2レベルの階段型構造(バイナリ構造ともいう)という。 In addition, as shown in FIGS. 3 (c) and 3 (d), the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ). In the present specification, “V level” means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones. Particularly, a three-level or higher staircase structure has a small step and a large step. For example, the optical path difference providing structure illustrated in FIG. 3C is referred to as a five-level staircase structure, and the optical path difference providing structure illustrated in FIG. 3D is referred to as a two-level staircase structure (also referred to as a binary structure). .
 尚、光路差付与構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。 ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。 The optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated. 「“ The unit shape is periodically repeated ”here naturally includes shapes in which the same shape is repeated in the same cycle. In addition, the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”. Suppose that
 光路差付与構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図3(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図3(b)に示されるように、光軸から離れる方向に進むに従って、徐々に鋸歯状形状のピッチが長くなっていく形状、又は、ピッチが短くなっていく形状であってもよい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。なお、このようにブレーズ型構造の段差の向きを途中で切り替える構造にする場合、輪帯ピッチを広げることが可能となり、光路差付与構造の製造誤差による透過率低下を抑制できる。本発明では、特に、図3(a)のブレーズ型構造が好ましい。 When the optical path difference providing structure has a blazed structure, the sawtooth shape as a unit shape is repeated. As shown in FIG. 3 (a), the same sawtooth shape may be repeated, and as shown in FIG. 3 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used. In addition, in some areas, the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area | region required in order to switch the direction of the level | step difference of a blaze | braze type | mold structure is provided in the meantime. In addition, when it is set as the structure which switches the direction of the level | step difference of a blaze | braze type structure in this way, it becomes possible to widen an annular zone pitch and it can suppress the transmittance | permeability fall by the manufacturing error of an optical path difference providing structure. In the present invention, the blazed structure shown in FIG.
 また、第1光路差付与構造及び第2光路差付与構造は、それぞれ対物レンズの異なる光学面に設けてもよいが、同一の光学面に設けることが好ましい。更に、第3光路差付与構造を設ける場合も、第1光路差付与構造及び第2光路差付与構造と同じ光学面に設けることが好ましい。同一の光学面に設けることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。別の言い方では、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの曲率半径の絶対値が小さい方の光学面に設けることが好ましい。 The first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. In addition, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side. In other words, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
 次に、中央領域に設けられる第1光路差付与構造について説明する。第1光路差付与構造は、少なくとも第1基礎構造を有しており、好ましくは更に第2基礎構造を重ね合わせた構造である。しかしながら、第1基礎構造単独で第1光路差付与構造を形成していてもよい。第1光路差付与構造は、第1基礎構造と第2基礎構造のみを重ね合わせた構造であることが好ましい。 Next, the first optical path difference providing structure provided in the central region will be described. The first optical path difference providing structure has at least a first basic structure, and is preferably a structure in which a second basic structure is further overlapped. However, the first optical path difference providing structure may be formed by the first basic structure alone. The first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
 第1基礎構造は、ブレーズ型構造であると好ましい。また、第1基礎構造は、第1基礎構造を通過した第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくする。特に、|A|=1、|B|=1、|C|=1であることが好ましい。これにより、第1基礎構造の段差量が大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The first basic structure is preferably a blazed structure. Further, the first basic structure makes the A-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order diffracted light quantity, and the B-order of the second light flux that has passed through the first basic structure. Is made larger than any other order of diffracted light, and the C-th order diffracted light of the third light beam that has passed through the first basic structure is made larger than any other order of diffracted light. In particular, it is preferable that | A | = 1, | B | = 1, and | C | = 1. As a result, the step amount of the first basic structure does not become excessively large, which facilitates manufacturing, suppresses light loss due to manufacturing errors, and also reduces diffraction efficiency fluctuations during wavelength fluctuations. preferable.
 また、第1基礎構造は、その段差が光軸の方向を向いていても良いし、光軸とは逆の方向を向いていてもよい。また、図5(a),(b)のように、中央領域の途中で第1基礎構造の段差の向きが入れ替わっていてもよい。図5(a)は光軸に近い位置では段差が光軸の方を向いているが、途中で段差の向きが入れ替わり、光軸から遠い位置では段差が光軸と逆の方向を向いた例である。図5(b)は光軸に近い位置では段差が光軸と逆の方を向いているが、途中で段差の向きが入れ替わり、光軸から遠い位置では段差が光軸の方向を向いた例である。また、第1基礎構造の段差の向きは、第3基礎構造の段差の向きと一致していることが望ましいが、一致していなくてもよい。「段差が光軸の方向を向いている」とは、図4(a)のような状態を言い、「段差が光軸とは逆の方向を向いている」とは、図4(b)のような状態を言う。但し、好ましくは、中央領域に設けられる第1基礎構造は、全ての段差が光軸とは逆の方向を向いていることである。 In the first basic structure, the step may be directed in the direction of the optical axis or in the direction opposite to the optical axis. Moreover, the direction of the level | step difference of a 1st foundation structure may be changed in the middle of the center area | region like Fig.5 (a), (b). FIG. 5A shows an example in which the step is directed toward the optical axis at a position close to the optical axis, but the direction of the step is changed halfway, and the step is directed in the opposite direction to the optical axis at a position far from the optical axis. It is. FIG. 5B shows an example in which the step is opposite to the optical axis at a position close to the optical axis, but the direction of the step is changed halfway, and the step is directed to the optical axis at a position far from the optical axis. It is. Moreover, although it is desirable that the direction of the step of the first foundation structure matches the direction of the step of the third foundation structure, it does not need to match. “The step is directed in the direction of the optical axis” means a state as shown in FIG. 4A, and “the step is directed in the direction opposite to the optical axis” is shown in FIG. 4B. Say like the state. However, preferably, the first basic structure provided in the central region is that all the steps are directed in a direction opposite to the optical axis.
 第1基礎構造の段差の向きを光軸と逆方向に向けることにより、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保することが可能となる。 CD is used even in thick objective lenses with a large on-axis thickness that are used interchangeably with three types of optical discs of BD / DVD / CD by directing the step of the first basic structure in the direction opposite to the optical axis. Sometimes it is possible to ensure a sufficient working distance.
 BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保するという観点からは、第1基礎構造が第1光束に対して近軸パワーを持つことが好ましい。ここで、「近軸パワーを持つ」とは、第1基礎構造の光路差関数を後述する数2式で表した場合、B22が0でないことを意味する。 The first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have paraxial power with respect to the light beam. Here, “having paraxial power” means that B 2 h 2 is not 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
 また、第2基礎構造も、ブレーズ型構造であることが好ましい。第2基礎構造は、第2基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくする。特に、|D|=2、|E|=1、|F|=1であることが好ましい。これにより、第2基礎構造の段差量が大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 Further, the second basic structure is also preferably a blazed structure. The second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order diffracted light amount, and the E-order diffraction of the second light beam that has passed through the second basic structure. The amount of light is made larger than the diffracted light amount of any other order, and the F-order diffracted light amount of the third light flux that has passed through the second basic structure is made larger than the diffracted light amount of any other order. In particular, it is preferable that | D | = 2, | E | = 1, and | F | = 1. As a result, the step amount of the second basic structure does not become excessively large, which facilitates manufacturing, can suppress light loss due to manufacturing errors, and can also reduce diffraction efficiency fluctuations during wavelength fluctuations. preferable.
 また、第2基礎構造は、その段差が光軸の方向を向いていても良いし、光軸とは逆の方向を向いていてもよい。また、また、図5(a),(b)のように、中央領域の途中で第2基礎構造の段差の向きが入れ替わってもよい。また、第2基礎構造の段差の向きは、第4基礎構造の段差の向きと一致していることが望ましいが、一致していなくてもよい。 In the second basic structure, the step may be directed in the direction of the optical axis or in the direction opposite to the optical axis. In addition, as shown in FIGS. 5A and 5B, the direction of the steps of the second foundation structure may be switched in the middle of the central region. Moreover, although it is desirable that the direction of the step of the second foundation structure matches the direction of the step of the fourth foundation structure, it does not need to match.
 例えば、中央領域の中間領域付近に設けられる第2基礎構造は、段差が光軸とは逆の方向を向いていてもよい。即ち、図5(a)に示すように、第2基礎構造が光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では第2基礎構造の段差が光軸とは逆の方向を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第2基礎構造は、全ての段差が光軸の方向を向いていることである。 For example, in the second basic structure provided near the middle region of the central region, the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 5A, the step is directed in the direction of the optical axis when the second foundation structure is near the optical axis, but is switched halfway, and the step of the second foundation structure is located near the optical axis. It is good also as a shape which faces the reverse direction. However, preferably, the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
 尚、段差の向きが異なるように、第1基礎構造と第2基礎構造を重ね合わせることにより、第1基礎構造と第2基礎構造の段差の向きが同じになるように重ね合わせた場合に比べて、重ね合わせた後の段差の高さが高くなることを抑制でき、それに伴い、製造誤差などに因る光量ロスを抑えることが可能となると共に、波長変動時の回折効率の変動を抑えることが可能となるものである。 Compared to the case where the first foundation structure and the second foundation structure are overlapped so that the direction of the steps is the same by overlapping the first foundation structure and the second foundation structure so that the direction of the steps is different. As a result, it is possible to suppress the height of the height difference after superimposing, and accordingly, it is possible to suppress the loss of light amount due to manufacturing errors, etc., and to suppress the fluctuation of diffraction efficiency at the time of wavelength fluctuation. Is possible.
 また、BD/DVD/CDの3種類の光ディスクの互換を可能とするだけでなく、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することが好ましい。例えば、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を60%以上、波長λ3に対する回折効率を50%以上とする対物レンズであることが好ましい。更には、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を70%以上、波長λ3に対する回折効率を60%以上とする対物レンズであることが好ましい。 Further, not only can the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD. It is preferable to provide a balanced objective lens. For example, the objective lens preferably has a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 60% or more for the wavelength λ2, and a diffraction efficiency of 50% or more for the wavelength λ3. Furthermore, it is preferable that the objective lens has a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 70% or more for the wavelength λ2, and a diffraction efficiency of 60% or more for the wavelength λ3.
 対物レンズがプラスチック製である場合に、温度変化時においても安定した性能を維持するためには、波長が長くなった際に対物レンズにおいて発生する3次球面収差及び5次球面収差が何れもアンダー(補正不足)であることが好ましい。 When the objective lens is made of plastic, in order to maintain stable performance even when the temperature changes, both the third-order spherical aberration and the fifth-order spherical aberration that occur in the objective lens when the wavelength becomes longer are both under. (Insufficient correction) is preferable.
 より好ましい第1光路付与構造は、|A|、|B|、|C|が、それぞれ、1、1、1(1/1/1構造ともいう)である第1基礎構造と、|D|、|E|、|F|が、それぞれ、2、1、1(2/1/1構造ともいう)である第2基礎構造とを重ね合わせたものである。このような第1光路差付与構造にすると、段差の高さを非常に低くできる。従って、より製造誤差を低減させることが可能となり、光量ロスを更に抑えることが可能となると共に、波長変動時の回折効率の変動をより抑えることが可能となる。 A more preferable first optical path providing structure includes a first basic structure in which | A |, | B |, and | C | are 1, 1, 1 (also referred to as 1/1/1 structure), and | D | , | E |, | F | are superimposed on a second basic structure of 2, 1, 1 (also referred to as 2/1/1 structure), respectively. With such a first optical path difference providing structure, the height of the step can be very low. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
 第1基礎構造と第2基礎構造とを重ね合わせた後の第1光路差付与構造の形状と段差量という観点から、|A|、|B|、|C|が、それぞれ、1、1、1である第1基礎構造と、|D|、|E|、|F|が、それぞれ、2、1、1である第2基礎構造とを重ね合わせた第1光路差付与構造を以下のように表現することができる。少なくとも中央領域の光軸付近に設けられている第1光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを共に有し、光軸とは逆の方向を向いている段差の段差量d11と、光軸の方向を向いている段差の段差量d12とが、以下の条件式(2)、(3)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(2)、(3)を満たすことである。尚、光路差付与構造を設けた対物レンズが単玉非球面の凸レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。下記条件式において上限に1.5を乗じているのは、当該段差量の増加を加味した故である。但し、nは、第1の波長λ1における対物レンズの屈折率を表す。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))  (2)
0.6・(λ1/(n-1))<d12<1.5・(2λ1/(n-1)) (3)
From the viewpoint of the shape and step amount of the first optical path difference providing structure after the first basic structure and the second basic structure are overlaid, | A |, | B |, | C | The first optical path difference providing structure in which the first basic structure that is 1 and the second basic structure in which | D |, | E |, and | F | Can be expressed in The first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis. The step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis preferably satisfy the following conditional expressions (2) and (3). More preferably, the following conditional expressions (2) and (3) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase. In the following conditional expression, the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account. Here, n represents the refractive index of the objective lens at the first wavelength λ1.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (2)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (2λ1 / (n-1)) (3)
 尚、「少なくとも中央領域の光軸付近」に設けられる第1光路差付与構造とは、少なくとも光軸に最も近い光軸とは逆の方向を向いている段差と、光軸に最も近い光軸の方向を向いている段差とを共に有する光路差付与構造をいう。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する段差を有する光路差付与構造である。 The first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis. An optical path difference providing structure having both of the steps facing the direction of. Preferably, the optical path difference providing structure has a step existing between at least a half position in the direction perpendicular to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm     (13)
 0.39μm<d12<2.31μm     (14)
0.39 μm <d11 <1.15 μm (13)
0.39 μm <d12 <2.31 μm (14)
 更に、第1基礎構造と第2基礎構造の重ね合わせ方としては、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせるように基礎構造の形状を微調整するか、第1基礎構造の全ての段差の位置と、第2基礎構造の段差の位置を合わせるように基礎構造の形状を微調整することが好ましい。 Further, as a method of overlapping the first foundation structure and the second foundation structure, the shape of the foundation structure is finely adjusted so that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure are matched. Alternatively, it is preferable to finely adjust the shape of the foundation structure so that the positions of all the steps of the first foundation structure and the positions of the steps of the second foundation structure are matched.
 上述のように第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせた場合、第1光路差付与構造のd11、d12は以下の条件式(2)’、(3)’を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(2)’、(3)’を満たすことである。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1)) (2)’
0.6・(λ1/(n-1))<d12<1.5・(λ1/(n-1)) (3)’
As described above, when the positions of all the steps of the second foundation structure are matched with the positions of the steps of the first foundation structure, d11 and d12 of the first optical path difference providing structure are the following conditional expressions (2) ′, ( 3) It is preferable to satisfy '. More preferably, the following conditional expressions (2) ′ and (3) ′ are satisfied in all regions of the central region.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (2) '
0.6 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (3) '
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm     (13)´
 0.39μm<d12<1.15μm     (14)´
0.39 μm <d11 <1.15 μm (13) ′
0.39 μm <d12 <1.15 μm (14) ′
 更に好ましくは、以下の条件式(2)”、(3)”を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(2)”、(3)”を満たすことである。
0.9・(λ1/(n-1))<d11<1.5・(λ1/(n-1)) (2)”
0.9・(λ1/(n-1))<d12<1.5・(λ1/(n-1)) (3)”
More preferably, the following conditional expressions (2) "and (3)" are preferably satisfied. More preferably, the following conditional expressions (2) ″ and (3) ″ are satisfied in all the regions of the central region.
0.9 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (2) "
0.9 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (3) "
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.59μm<d11<1.15μm   (13)”
 0.59μm<d12<1.15μm   (14)”
0.59 μm <d11 <1.15 μm (13) ”
0.59 μm <d12 <1.15 μm (14) ”
 また、(1/1/1)構造である第1基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化し、(2/1/1)構造である第2基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化すると好ましい。このような構成により、光ピックアップ装置の温度の上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の変化を補正して、適切な集光スポットを各光ディスクの情報記録面に形成できる。これにより、対物レンズがプラスチック製であっても、温度変化時においても安定した性能を維持できる対物レンズを提供することができる。 Further, in the first basic structure having the (1/1/1) structure, when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (2 / In the second basic structure having the 1/1) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in the undercorrection direction (under). With such a configuration, when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature. It is possible to correct a change in spherical aberration due to a change in the rate and form an appropriate focused spot on the information recording surface of each optical disc. Thereby, even if the objective lens is made of plastic, it is possible to provide an objective lens that can maintain stable performance even when the temperature changes.
 第2基礎構造に比べて、第1基礎構造の近軸パワーの絶対値が大きいことが好ましい。つまりは、第1基礎構造の平均ピッチが、第2基礎構造の平均ピッチに比べて小さいことが好ましい。これにより、BD/DVD/CD互換用対物レンズという軸上厚が厚い対物レンズにおいてもCDにおけるワーキングディスタンスを確保できる。更に、色収差を小さくし、光源が高周波重畳を起こしていても、良好な光スポットを形成させ、しかも、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させるためには、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯が2~6個(特に好ましくは2~3個)含まれていることが好ましい。尚、この場合、第2基礎構造の光軸に最も近い「輪帯」と記載しているが、実際は、光軸を含む「円」であることが通常である。従って、ここで言う「光軸に最も近い輪帯」には、円状の形状も含まれる。又、中間領域に最も近い第2基礎構造の1つの輪帯において、第2基礎構造の輪帯1つ分に、第1基礎構造の輪帯が1~5個(特に好ましくは2~3個)含まれていることである。 It is preferable that the absolute value of the paraxial power of the first foundation structure is larger than that of the second foundation structure. That is, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure. Thereby, a working distance in the CD can be secured even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. Furthermore, in order to reduce chromatic aberration, to form a good light spot even when the light source causes high-frequency superposition, and to reduce the problem of stray light when the optical disc has a plurality of information recording surfaces, In one optical path difference providing structure, 2 to 6 (particularly preferably 2 to 3) ring zones of the first foundation structure are included in one ring zone closest to the optical axis of the second foundation structure. Is preferred. In this case, the “ring zone” closest to the optical axis of the second foundation structure is described, but in practice, it is usually a “circle” including the optical axis. Accordingly, the “annular zone closest to the optical axis” mentioned here includes a circular shape. Further, in one ring zone of the second foundation structure closest to the intermediate region, 1 to 5 ring zones of the first foundation structure (particularly preferably 2 to 3 rings) are included in one ring zone of the second foundation structure. ) Is included.
 尚、第1基礎構造と第2基礎構造とをそのまま重畳すると、狭い幅の凸部が突出する場合があるが、突出部分の幅が5μm以下と狭ければ、突出した部分を光軸に沿って平行にシフトして、突出部分をなくしても大きな影響がなく、これにより第2基礎構造の1つの輪帯に、第1基礎構造の複数の輪帯が丁度のるようにできる。第1基礎構造と第2基礎構造をそのまま重畳した場合に、幅が5μm以下と狭い凹みが発生する場合も同様にして凹みをなくしてもよい。 If the first basic structure and the second basic structure are superimposed as they are, a convex portion with a narrow width may protrude, but if the width of the protruding portion is as narrow as 5 μm or less, the protruding portion is along the optical axis. Even if the projecting portion is eliminated, there is no significant effect, and thus, a plurality of zones of the first foundation structure can be placed exactly on one zone of the second foundation structure. When the first foundation structure and the second foundation structure are superimposed as they are, a dent may be eliminated in the same manner even when a dent having a width of 5 μm or less is generated.
 ここで、Δλ(nm)は第1波長の波長変化量、ΔWD(μm)は第1波長の変化Δλに起因して発生する対物レンズの色収差とすると、以下の式を満たす。尚、ここでいう「色収差」とは、光束の波長が変化した際に生じるフォーカス位置のずれである。即ち、光束の波長が変化した際に生じる「波面収差が最小となる位置」のずれである。
 0.3(μm/nm)≦ΔWD/Δλ≦0.6(μm/nm)   (15)
Here, if Δλ (nm) is the wavelength change amount of the first wavelength and ΔWD (μm) is the chromatic aberration of the objective lens caused by the change Δλ of the first wavelength, the following equation is satisfied. The “chromatic aberration” here is a shift in the focus position that occurs when the wavelength of the light beam changes. That is, it is a shift of “position where wavefront aberration is minimized” that occurs when the wavelength of the light beam changes.
0.3 (μm / nm) ≦ ΔWD / Δλ ≦ 0.6 (μm / nm) (15)
 このような構成とするためには、上述したように、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯が2~6個(特に好ましくは2~3個)含まれるようにすることが好ましい。色収差を上述の範囲にすることによって、BD/DVD/CD互換用対物レンズという軸上厚が厚い対物レンズにおいてもCDにおけるワーキングディスタンスを確保しながら、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させることができ、さらにDVD使用時の温度特性及び波長特性を良好にできるため好ましい。又、第2基礎構造における中間領域に最も近い1つの輪帯上に重畳された第1基礎構造の輪帯の数N2は、N1と等しいかN1より小さいことが望ましく、例えば1~5個重畳されていることがよい。 In order to obtain such a configuration, as described above, in the first optical path difference providing structure, the ring zone of the first foundation structure is 2 to 1 ring zone closest to the optical axis of the second foundation structure. It is preferable to include 6 (particularly preferably 2 to 3). By setting the chromatic aberration to the above-described range, the optical disc has a plurality of information recording surfaces while ensuring a working distance in the CD even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. This is preferable because the problem of stray light can be reduced and the temperature and wavelength characteristics can be improved when using a DVD. In addition, the number N2 of the first foundation structure annular zones superimposed on one annular zone closest to the intermediate region in the second foundation structure is preferably equal to or smaller than N1, for example, 1 to 5 overlapping zones. It should be done.
 第1基礎構造は負の回折パワーを持つことが好ましく、それによりBD/DVD/CD用の対物レンズといった軸上厚が厚い対物レンズにおいてもCD使用時のワーキングディスタンスを確保できる。また、第2基礎構造は正の回折パワーを持つことが好ましい。このように第1基礎構造と第2基礎構造が共に回折パワーを持つことにより、複数の情報記録面を有する光ディスクを使用した際に、記録再生対象でない情報記録面で反射した不要光を必要光からより遠ざけることが可能となるため好ましい。 It is preferable that the first basic structure has a negative diffraction power, so that a working distance when using a CD can be secured even for an objective lens having a large axial thickness such as an objective lens for BD / DVD / CD. The second basic structure preferably has a positive diffraction power. As described above, since both the first basic structure and the second basic structure have diffraction power, when using an optical disk having a plurality of information recording surfaces, unnecessary light reflected by the information recording surface which is not a recording / reproducing object is required light. It is preferable because it can be further away from the center.
 第1光路差付与構造を通過した第3光束によって、第3光束が形成するスポットの光強度が最も強い第1ベストフォーカス位置と、第3光束が形成するスポットの光強度が次に強い第2ベストフォーカス位置とが、以下の条件式(16)を満たすことが好ましい。なお、ここでいうベストフォーカス位置とは、ビームウェストが、或るデフォーカスの範囲でビームウェストが極小となる位置を指すものである。第1ベストフォーカス位置が第3光ディスクの記録/再生に用いられる必要光のベストフォーカス位置であり、第2ベストフォーカス位置が第3光ディスクの記録/再生に用いられない不要光のうち、最も光量が多い光束のベストフォーカス位置である。
 0.05≦L/f13≦0.35     (16)
 但し、f13[mm]は、第1光路差付与構造を通過し、第1ベストフォーカスを形成する第3光束の焦点距離を指し、L[mm]は、第1ベストフォーカスと第2ベストフォーカスの間の距離を指す。
The first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (16). Here, the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range. The first best focus position is the best focus position of the necessary light used for recording / reproduction of the third optical disc, and the second best focus position is the largest amount of unnecessary light that is not used for recording / reproduction of the third optical disc. This is the best focus position for many luminous fluxes.
0.05 ≦ L / f13 ≦ 0.35 (16)
However, f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus, and L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
 より好ましくは、以下の条件式(15)´を満たすことである。
 0.10≦L/f13≦0.25     (16)´
More preferably, the following conditional expression (15) ′ is satisfied.
0.10 ≦ L / f13 ≦ 0.25 (16) ′
 以上述べた第1光路差付与構造の好ましい一例を図6に示す。尚、図6は、便宜上、第1光路差付与構造ODS1が平板状に設けられたものとして示されているが、単玉非球面の凸レンズ上に設けられていてもよい。|D|、|E|、|F|が、それぞれ、2、1、1である第2基礎構造BS2に、|A|、|B|、|C|が、それぞれ、1、1、1である第1基礎構造BS1が重ねあわされている。また、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BSの段差は光軸OAとは逆の方向を向いている。更に、第1基礎構造BS1と第2基礎構造BS2の段差を合わせ、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置が合っているが、これに限られない。本例においては、d1=λ1/(n-1)であり、d2=λ1/(n-1)である。本例において、λ1=405nm(0.405μm)、n=1.5592とすると、d1=d2=0.72μmとなる。更に、第1基礎構造BS1の平均ピッチが、第2基礎構造BS2の平均ピッチに比べて小さく、第1基礎構造の光軸とは逆の方向を向いている段差の数が、第2基礎構造の光軸の方向を向いている段差の数に比べて多い。 A preferred example of the first optical path difference providing structure described above is shown in FIG. Although FIG. 6 shows the first optical path difference providing structure ODS1 as a flat plate for convenience, it may be provided on a single aspherical convex lens. | D |, | E |, | F | are 2, 1, 1, respectively, and the second basic structure BS2 is | A |, | B |, | C | A certain first basic structure BS1 is overlapped. Further, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS faces the direction opposite to the optical axis OA. Further, the steps of the first foundation structure BS1 and the second foundation structure BS2 are matched, and the positions of all the steps of the second foundation structure are matched with the positions of the steps of the first foundation structure, but this is not restrictive. In this example, d1 = λ1 / (n−1) and d2 = λ1 / (n−1). In this example, if λ1 = 405 nm (0.405 μm) and n = 1.5592, d1 = d2 = 0.72 μm. Further, the average pitch of the first foundation structure BS1 is smaller than the average pitch of the second foundation structure BS2, and the number of steps facing the direction opposite to the optical axis of the first foundation structure is the second foundation structure. This is more than the number of steps facing the direction of the optical axis.
 次に、中間領域に設けられる第2光路差付与構造について説明する。第2光路差付与構造は、少なくとも第3基礎構造を有しており、好ましくは更に第4基礎構造を重ね合わせた構造である。しかしながら、第3基礎構造単独で第2光路差付与構造を形成していてもよい。 Next, the second optical path difference providing structure provided in the intermediate region will be described. The second optical path difference providing structure has at least a third basic structure, and is preferably a structure in which a fourth basic structure is further overlapped. However, the second optical path difference providing structure may be formed by the third basic structure alone.
 第3基礎構造は、第3基礎構造を通過した第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくする。また、第4基礎構造は、第4基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくする。 The third basic structure makes the A-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order diffracted light amount, and the B-order diffraction of the second light beam that has passed through the third basic structure. The light quantity is made larger than any other order of diffracted light quantity, and the C-order diffracted light quantity of the third light flux that has passed through the third basic structure is made larger than any other order of diffracted light quantity. Further, the fourth basic structure makes the D-order diffracted light amount of the first light beam that has passed through the fourth basic structure larger than the diffracted light amount of any other order, and the E-order of the second light beam that has passed through the fourth basic structure. Is made larger than any other order of diffracted light, and the F-order diffracted light of the third light beam that has passed through the fourth basic structure is made larger than any other order of diffracted light.
 第1基礎構造においても第3基礎構造においても、第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくすることにより、ブレーズ化波長λbを第1基礎構造と第3基礎構造とで変えることで、中間領域の光の利用効率を増大させやすくなる。又、中央領域と中間領域で、光路差付与構造で発生する位相差を略等しくでき、中央領域と中間領域との間で位相ずれを低減できるため、好ましい。さらに、温度変化や波長変動時においても、中央領域と中間領域とで球面収差を連続と出来、高次収差の発生を防止できる。つまり、第1基礎構造と第3基礎構造が同じ構造であり、第2基礎構造と第4基礎構造が同じ構造であることが好ましい。即ち、第1光路差付与構造と第2光路差付与構造が同じ構造であることが望ましい。ただし、ピッチについては、第1光路差付与構造と第2光路差付与構造で異なっていてもよい。 In both the first basic structure and the third basic structure, the A-order diffracted light amount of the first light beam is made larger than any other order diffracted light amount, and the B-order diffracted light amount of the second light beam is set to any other order. By changing the blazed wavelength λb between the first basic structure and the third basic structure by making it larger than the diffracted light quantity and making the C-order diffracted light quantity of the third light beam larger than any other order diffracted light quantity. It becomes easy to increase the light use efficiency in the intermediate region. Further, it is preferable because the phase difference generated in the optical path difference providing structure can be substantially equal between the central region and the intermediate region, and the phase shift can be reduced between the central region and the intermediate region. Furthermore, spherical aberration can be continuous in the central region and the intermediate region even during temperature changes and wavelength fluctuations, and generation of higher order aberrations can be prevented. That is, it is preferable that the first foundation structure and the third foundation structure are the same structure, and the second foundation structure and the fourth foundation structure are the same structure. That is, it is desirable that the first optical path difference providing structure and the second optical path difference providing structure are the same structure. However, the pitch may be different between the first optical path difference providing structure and the second optical path difference providing structure.
 尚、第3基礎構造も第4基礎構造も、ブレーズ型構造であることが好ましい。また、第3基礎構造は、第3基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。又、第3基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。また、第4基礎構造は、第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。又、第4基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。これにより、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた第2光路差付与構造において、光軸方向の段差量を低減でき、それにより波長変動時の回折効率の低下を抑制できる。 In addition, it is preferable that a 3rd foundation structure and a 4th foundation structure are blaze | braze type | mold structures. Further, the third basic structure makes the first-order diffracted light quantity of the first light flux that has passed through the third basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity of the second light flux that has passed through the third basic structure Is preferably larger than any other order of diffracted light. In addition, it is preferable that the first-order diffracted light amount of the third light flux that has passed through the third basic structure is larger than any other order diffracted light amount. In addition, the fourth foundation structure makes the second-order diffracted light amount of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light amount, and the first-order of the second light beam that has passed through the fourth foundation structure. Is preferably larger than any other order of diffracted light. Further, the first-order diffracted light amount of the third light flux that has passed through the fourth basic structure is made larger than any other order diffracted light amount. Thereby, in the second optical path difference providing structure in which at least the third basic structure and the fourth basic structure are overlapped, the amount of step in the optical axis direction can be reduced, thereby suppressing the decrease in diffraction efficiency at the time of wavelength variation.
 まとめると、A,B,C,D,E,Fは、それぞれ、
 |A|=1
 |B|=1
 |C|=1
 |D|=2
 |E|=1
 |F|=1
を満たすことが好ましい。
In summary, A, B, C, D, E, and F are respectively
| A | = 1
| B | = 1
| C | = 1
| D | = 2
| E | = 1
| F | = 1
It is preferable to satisfy.
 |A|・λ1>|B|・λ2の場合は、第1基礎構造におけるブレーズ化波長λb(3λ)が、第3基礎構造におけるブレーズ化波長λb(2λ)よりも大きくなるようにする。一方、|A|・λ1<|B|・λ2の場合は、第1基礎構造におけるブレーズ化波長λb(3λ)が、第3基礎構造におけるブレーズ化波長λb(2λ)よりも小さくなるようにする。 In the case of | A | · λ1> | B | · λ2, the blazed wavelength λb (3λ) in the first basic structure is set to be larger than the blazed wavelength λb (2λ) in the third basic structure. On the other hand, in the case of | A | · λ1 <| B | · λ2, the blazed wavelength λb (3λ) in the first basic structure is made smaller than the blazed wavelength λb (2λ) in the third basic structure. .
 上記構成により、第2光路差付与構造を第2光束優先の設計とできる。結果として、中間領域を通過する第2光束の光の利用効率を高め、DVD等の第2光ディスクの情報記録面に集光するスポットの周辺の効率を高めることができ、その結果、第2光ディスクの情報記録面上における集光スポットのスポット径が太ることなく、適正な大きさとできる。
中間領域と中央領域の境界で、第2光束の光の利用効率が不連続に変化し、境界を挟んで中間領域における第2光束の光の利用効率を、中央領域における第2光束の光の利用効率より高くすることが好ましい。一例として図8(a)を示す。図8(a)において、第2光ディスクであるDVD使用時において、中央領域と中間領域の境界で第2光束の回折効率(一点鎖線)が不連続に変化しており、当該境界を挟んで、中間領域の境界間際における第2光束の回折効率が、中央領域の境界間際における第2光束の回折効率より高くなっている。より好ましくは、中間領域と中央領域の境界で、第2光束の光の利用効率が不連続に変化し、中間領域における第2光束の光の利用効率の平均値を、中央領域における第2光束の光の利用効率の平均値と同じ、または、より高くすることである。
With the above configuration, the second optical path difference providing structure can be designed with priority on the second light flux. As a result, the utilization efficiency of the light of the second light flux passing through the intermediate region can be increased, and the efficiency around the spot focused on the information recording surface of the second optical disk such as a DVD can be increased. Thus, the spot diameter of the focused spot on the information recording surface can be made appropriate without increasing.
The light use efficiency of the second light flux changes discontinuously at the boundary between the intermediate area and the central area, and the light use efficiency of the second light flux in the intermediate area across the boundary changes the light use efficiency of the second light flux in the central area. It is preferable to make it higher than the utilization efficiency. FIG. 8A is shown as an example. In FIG. 8 (a), when using the DVD as the second optical disk, the diffraction efficiency of the second light flux (the one-dot chain line) changes discontinuously at the boundary between the central region and the intermediate region. The diffraction efficiency of the second light beam just before the boundary of the intermediate region is higher than the diffraction efficiency of the second light beam just before the boundary of the central region. More preferably, the light use efficiency of the second light flux changes discontinuously at the boundary between the intermediate area and the central area, and the average value of the light use efficiency of the second light flux in the intermediate area is calculated as the second light flux in the central area. Is equal to or higher than the average value of the light utilization efficiency.
 ブレーズ化波長とは、或る回折構造において回折効率が最も高くなる波長をいい、異なる波長の光束が通過する回折構造においては、いずれの波長寄りにブレーズ化波長を決定するかで、波長毎の回折効率を任意に設定できる。ブレーズ化波長λb(3λ)は、λ1≦λb(3λ)<λ2であることが好ましい。より好ましくはλb(3λ)が405~510nmである。ブレーズ化波長λb(2λ)は、λ1<λb(2λ)≦λ2であることが好ましい。より好ましくはλb(2λ)は450~550nmである。 The blazed wavelength is a wavelength at which the diffraction efficiency is highest in a certain diffractive structure. In a diffractive structure in which a light beam having a different wavelength passes, depending on which wavelength the blazed wavelength is determined, The diffraction efficiency can be set arbitrarily. The blazed wavelength λb (3λ) is preferably λ1 ≦ λb (3λ) <λ2. More preferably, λb (3λ) is 405 to 510 nm. The blazed wavelength λb (2λ) is preferably λ1 <λb (2λ) ≦ λ2. More preferably, λb (2λ) is 450 to 550 nm.
 尚、第2基礎構造におけるブレーズ化波長は、第4基礎構造におけるブレーズ化波長と等しくしてもよいし、異ならせてもよい。 In addition, the blazed wavelength in the second basic structure may be the same as or different from the blazed wavelength in the fourth basic structure.
 第2光路差付与構造は第3、第4基礎構造に加えて、第5基礎構造を重ね合わせた構造としてもよいが、構造を単純にし、製造誤差による光利用効率の低下を抑えるためにも、第2光路差付与構造は、第3基礎構造及び第4基礎構造のみからなることが好ましい。 The second optical path difference providing structure may be a structure in which the fifth basic structure is overlapped in addition to the third and fourth basic structures. However, in order to simplify the structure and suppress a decrease in light utilization efficiency due to manufacturing errors. The second optical path difference providing structure preferably includes only the third basic structure and the fourth basic structure.
 尚、この時、第5基礎構造は、第5基礎構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第2光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第3光束のG次の回折光量を他のいかなる次数の回折光量よりも大きくする構造であることが好ましい。この様な第5基礎構造を重ね合わせることにより、対物レンズの中間領域を通過する第1光束、第2光束に悪影響を与えることなく、且つ、中央領域と中間領域との間で位相ずれを生じさせることなく、第3光束のみに、CDの情報記録面上でフレアを光スポットから遠い位置に形成させる作用を容易に与えることが可能となる。 At this time, the fifth basic structure makes the 0th-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure. The 0th-order diffracted light amount is made larger than any other order diffracted light amount, and the G-th order diffracted light amount of the third light flux that has passed through the fifth basic structure is made larger than any other order diffracted light amount. It is preferable. By superimposing such a fifth basic structure, a phase shift occurs between the central region and the intermediate region without adversely affecting the first light beam and the second light beam passing through the intermediate region of the objective lens. Accordingly, it is possible to easily give only the third light flux an effect of forming a flare at a position far from the light spot on the information recording surface of the CD.
 好ましくは、Gが±1である。Gが±1である場合に、第5基礎構造は、図3(d)に示すような2レベルの階段型構造(バイナリ構造とも言う)であることが好ましい。 Preferably, G is ± 1. When G is ± 1, the fifth basic structure is preferably a two-level step structure (also referred to as a binary structure) as shown in FIG.
 尚、第2光路差付与構造が、第3基礎構造に加えてこのような第5基礎構造を有する場合、第2光路差付与構造が第5基礎構造を有さない場合に比べて、第1光路差付与構造に対する第2光路差付与構造の光利用効率の低下幅がより大きくなり、第2光ディスク使用時に集光スポットが太るという問題がより大きなものとなる。従って、本発明の課題が大きな態様となるため、本発明の効果も大きなものとなる。 In addition, when the second optical path difference providing structure has such a fifth basic structure in addition to the third basic structure, the first optical path difference providing structure has a first difference as compared with the case where the second optical path difference providing structure does not have the fifth basic structure. The decrease in the light utilization efficiency of the second optical path difference providing structure with respect to the optical path difference providing structure becomes larger, and the problem that the condensed spot becomes thicker when using the second optical disc becomes larger. Therefore, since the subject of this invention becomes a big aspect, the effect of this invention also becomes a big thing.
 周辺構造に第3光路差付与構造を設ける場合、任意の光路差付与構造を設けることが可能である。第3光路差付与構造は、第6基礎構造を有することが好ましい。第6基礎構造は、第6基礎構造を通過した第1光束のP次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第2光束のQ次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第3光束のR次の回折光量を他のいかなる次数の回折光量よりも大きくする。尚、波長変動時の回折効率の変動を抑えるためにも、Pが5以下であることが好ましい。より好ましくはPが2以下であることである。第6基礎構造におけるブレーズ化波長λb(1λ)は、385~425nmであることが好ましい。 When providing the third optical path difference providing structure in the peripheral structure, it is possible to provide an arbitrary optical path difference providing structure. The third optical path difference providing structure preferably has a sixth basic structure. In the sixth basic structure, the P-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than any other order diffracted light amount, and the Q-order diffraction of the second light beam that has passed through the sixth basic structure. The light quantity is made larger than any other order of diffracted light quantity, and the R-order diffracted light quantity of the third light flux that has passed through the sixth basic structure is made larger than any other order of diffracted light quantity. Note that P is preferably 5 or less in order to suppress fluctuations in diffraction efficiency during wavelength fluctuations. More preferably, P is 2 or less. The blazed wavelength λb (1λ) in the sixth basic structure is preferably 385 to 425 nm.
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc. Is NA2 (NA1> NA2), and the image-side numerical aperture of the objective lens necessary for reproducing / recording information on the third optical disk is NA3 (NA2> NA3). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 対物レンズの中央領域と中間領域の境界は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中央領域と中間領域の境界が、NA3に相当する部分に形成されていることである。また、対物レンズの中間領域と周辺領域の境界は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.15・NA2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中間領域と周辺領域の境界が、NA2に相当する部分に形成されていることである。 The boundary between the central region and the intermediate region of the objective lens is 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more, 1.15 · NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 · NA 2 or more and 1.2 · NA 2 or less (more preferably 0.95 · NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
 対物レンズを通過した第3光束を第3光ディスクの情報記録面上に集光する場合に、球面収差が少なくとも1箇所の不連続部を有することが好ましい。その場合、不連続部は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に存在することが好ましい。 When the third light flux that has passed through the objective lens is condensed on the information recording surface of the third optical disc, it is preferable that the spherical aberration has at least one discontinuous portion. In that case, the discontinuous portion has a range of 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more and 1.15 · NA 3 or less) when the third light flux is used. It is preferable that it exists in.
 また、対物レンズは、以下の条件式(4)を満たすことが好ましい。
0.8≦d/f≦1.5              (4)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。
The objective lens preferably satisfies the following conditional expression (4).
0.8 ≦ d / f ≦ 1.5 (4)
Here, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux.
 BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じるが、条件式(4)を満たすことにより非点収差や偏心コマ収差の発生を抑制することが可能となる。 When an optical disk with a short wavelength and high NA such as BD is used, there is a problem that astigmatism is likely to occur in the objective lens and decentration coma is likely to occur, but the conditional expression (4) is satisfied. As a result, it is possible to suppress the generation of astigmatism and decentration coma.
 また、条件式(4)を満たすことにより、対物レンズの軸上厚が厚めの厚肉対物レンズになるため、CDの記録/再生時におけるワーキングディスタンスが短くなりがちになるにも拘わらず、本発明の第1光路差付与構造を対物レンズに設けることにより、CDの記録/再生におけるワーキングディスタンスも十分に確保できるため、本発明の効果がより顕著なものとなる。 Also, satisfying conditional expression (4) results in a thick objective lens with a thick on-axis objective lens, so that the working distance during CD recording / playback tends to be short. By providing the objective lens with the first optical path difference providing structure of the invention, a working distance in CD recording / reproduction can be sufficiently ensured, so that the effect of the present invention becomes more remarkable.
 第1光束、第2光束及び第3光束は、平行光として対物レンズに入射してもよいし、発散光若しくは収束光として対物レンズに入射してもよい。トラッキング時においても、コマ収差が発生することを防止するためには、第1光束、第2光束、及び第3光束を全て平行光又は略平行光として対物レンズに入射させることが好ましい。本発明の第1光路差付与構造を用いることによって、第1光束、第2光束及び第3光束の全てを平行光又は略平行光として対物レンズに入射させることが可能となるため、本発明の効果がより顕著となる。第1光束が平行光又は略平行光になる場合、第1光束が対物レンズに入射する時の対物レンズの結像倍率m1が、下記の式(5)を満たすことが好ましい。
-0.01<m1<0.01     (5)
The first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light. By using the first optical path difference providing structure of the present invention, all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable. When the first light flux becomes parallel light or substantially parallel light, it is preferable that the imaging magnification m1 of the objective lens when the first light flux is incident on the objective lens satisfy the following formula (5).
-0.01 <m1 <0.01 (5)
 また、第2光束を平行光又は略平行光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(6)を満たすことが好ましい。
-0.01<m2<0.01     (6)
In addition, when the second light beam is incident on the objective lens as parallel light or substantially parallel light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following expression (6). Is preferred.
-0.01 <m2 <0.01 (6)
 一方で、第2光束を発散光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(6)´を満たすことが好ましい。
-0.025<m2≦-0.01     (6)´
On the other hand, when the second light beam is incident on the objective lens as diverging light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following expression (6) ′. .
−0.025 <m2 ≦ −0.01 (6) ′
 また、第3光束を平行光束又は略平行光束として対物レンズに入射させる場合、第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(7)を満たすことが好ましい。
-0.01<m3<0.01     (7)
When the third light beam is incident on the objective lens as a parallel light beam or a substantially parallel light beam, the imaging magnification m3 of the objective lens when the third light beam enters the objective lens satisfies the following formula (7). Is preferred.
-0.01 <m3 <0.01 (7)
 一方で、第3光束を発散光として対物レンズに入射させる場合、第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(7)´を満たすことが好ましい。
-0.025<m3≦-0.01     (7)´
On the other hand, when the third light beam is incident on the objective lens as diverging light, it is preferable that the imaging magnification m3 of the objective lens when the third light beam enters the objective lens satisfies the following expression (7) ′. .
−0.025 <m3 ≦ −0.01 (7) ′
 また、第3光ディスクを用いる際の対物光学素子のワーキングディスタンス(WD)は、0.15mm以上、1.5mm以下であることが好ましい。好ましくは、0.3mm以上、0.9mm以下である。次に、第2光ディスクを用いる際の対物光学素子のWDは、0.2mm以上、1.3mm以下であることが好ましい。さらに、第1光ディスクを用いる際の対物光学素子のWDは、0.25mm以上、1.0mm以下であることが好ましい。 Also, the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.15 mm or more and 1.5 mm or less. Preferably, it is 0.3 mm or more and 0.9 mm or less. Next, the WD of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 1.3 mm or less. Furthermore, the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいて、CD使用時にワーキングディスタンスを確保しながらも、温度特性を良好にすることが可能となる。さらに、光路差付与構造の段差の高さが高くなることを抑制でき、それに伴い、製造誤差などに因る光量ロスを抑えることが可能となると共に、波長変動時の回折効率の変動を抑えることが可能となる。また、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することも可能となる。これらの効果によって、BD/DVD/CDの3種類の光ディスクの記録/再生も、共通の対物レンズで良好に行うことが可能となるものである。 According to the present invention, in a thick objective lens having a thick on-axis thickness that is used interchangeably with three types of optical disks of BD / DVD / CD, temperature characteristics are improved while ensuring a working distance when using a CD. It becomes possible to do. Furthermore, it is possible to suppress an increase in the height of the step of the optical path difference providing structure, and accordingly, it is possible to suppress a light amount loss due to a manufacturing error or the like and to suppress a variation in diffraction efficiency at the time of a wavelength variation. Is possible. It is also possible to provide an objective lens with balanced light utilization efficiency that can maintain high light utilization efficiency for any of the three types of optical disks of BD / DVD / CD. With these effects, recording / reproduction of three types of optical discs of BD / DVD / CD can be performed well with a common objective lens.
本実施の形態にかかる単玉の対物レンズOLを光軸方向に見た図である。It is the figure which looked at the single objective lens OL concerning this Embodiment in the optical axis direction. 対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットを形成する状態を示す図である。It is a figure which shows the state which forms the spot which the 3rd light beam which passed the objective lens forms on the information recording surface of a 3rd optical disk. 光路差付与構造の例を示す軸線方向断面図であり、(a)、(b)はブレーズ型構造の例を示し、(c)、(d)は階段型構造の例を示す。It is an axial direction sectional view showing an example of an optical path difference grant structure, (a) and (b) show an example of a blaze type structure, and (c) and (d) show an example of a step type structure. (a)は段差が光軸の方向を向いている状態を示し、(b)は段差が光軸とは逆の方向を向いている状態を示す図である。(A) shows a state where the step is directed in the direction of the optical axis, and (b) is a diagram showing a state where the step is directed in the direction opposite to the optical axis. (a)は光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸とは逆の方を向くような形状を示し、(b)は光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸の方を向くような形状を示す図である。(A) shows a shape in which the step is in the direction of the optical axis in the vicinity of the optical axis, but changes in the middle, and in the vicinity of the intermediate region, the step is in the direction opposite to the optical axis. FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region. (a)、(b)、(c)は第1光路差付与構造の概念図である。(A), (b), (c) is a conceptual diagram of the 1st optical path difference providing structure. 異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record and / or reproduce | regenerate information appropriately with respect to BD, DVD, and CD which are different optical disks. (a)、(b)は縦軸に回折効率を取り、横軸に瞳半径をとって、実施例と比較例とを比較して示す図である。(A), (b) is a figure which compares and shows an Example and a comparative example by taking diffraction efficiency on a vertical axis | shaft and taking a pupil radius on a horizontal axis.
 以下、本発明の実施の形態を、図面を参照して説明する。図7は、異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 7 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU1は、対物レンズOL、λ/4波長板QWP、コリメートレンズCOL、偏光ビームスプリッタBS、ダイクロイックプリズムDP,BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=660nmのレーザ光束(第2光束)を射出する第2半導体レーザLD2(第2光源)及びCDに対して情報の記録/再生を行う場合に発光され波長λ3=785nmのレーザ光束(第3光束)を射出する第3半導体レーザLD3を一体化したレーザユニットLDP、センサレンズSEN、光検出器としての受光素子PD等を有する。 The optical pickup device PU1 emits light when recording / reproducing information with respect to the objective lens OL, the λ / 4 wavelength plate QWP, the collimating lens COL, the polarization beam splitter BS, and the dichroic prisms DP and BD, and has a wavelength of λ1 = 405 nm. A first semiconductor laser LD1 (first light source) that emits a laser beam (first beam) and a laser beam (second beam) that is emitted when recording / reproducing information on a DVD and has a wavelength λ2 = 660 nm. The second semiconductor laser LD2 (second light source) that emits and the third semiconductor laser LD3 that emits a laser beam (third beam) having a wavelength λ3 = 785 nm emitted when information is recorded / reproduced with respect to the CD are integrated. A laser unit LDP, a sensor lens SEN, a light receiving element PD as a photodetector, and the like.
 図1に示されるように、本実施の形態にかかる単玉の対物レンズOLにおいて、光源側の非球面光学面に光軸を含む中央領域CNと、その周囲に配置された中間領域MDと、更にその周囲に配置された周辺領域OTとが、光軸を中心とする同心円状に形成されている。図示していないが、中心領域CNには既に詳述した第1光路差付与構造が形成され、中間領域MDには既に詳述した第2光路差付与構造が形成されている。また、周辺領域OTには、第3光路差付与構造が形成されている。本実施の形態では、第3光路差付与構造はブレーズ型の回折構造である。また、本実施の形態の対物レンズはプラスチックレンズである。対物レンズOLの中心領域CNに形成された第1光路差付与構造は、図6に示すように、第1基礎構造と第2基礎構造とを重ね合わせた構造であり、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、少なくとも中心領域CNの光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いており、第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。第1光路差付与構造の第1基礎構造におけるブレーズ化波長λb(3λ)は、第2光路差付与構造の第3基礎構造におけるブレーズ化波長λb(2λ)よりも小さい。 As shown in FIG. 1, in the single objective lens OL according to the present embodiment, a central region CN including an optical axis on the aspherical optical surface on the light source side, an intermediate region MD arranged around the central region CN, Further, a peripheral region OT disposed around the periphery is formed concentrically with the optical axis as the center. Although not shown, the first optical path difference providing structure already described in detail is formed in the center region CN, and the second optical path difference providing structure already described in detail is formed in the intermediate region MD. In addition, a third optical path difference providing structure is formed in the peripheral region OT. In the present embodiment, the third optical path difference providing structure is a blazed diffractive structure. The objective lens of the present embodiment is a plastic lens. The first optical path difference providing structure formed in the central region CN of the objective lens OL is a structure in which the first basic structure and the second basic structure are overlapped as shown in FIG. The first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is set to any other order. The first order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN. In the basic structure, the step is directed in the direction opposite to the optical axis. In the second basic structure, the second-order diffracted light quantity of the first light flux that has passed through the second basic structure is more than the diffracted light quantity of any other order. And the primary of the second light flux that has passed through the second basic structure. The diffracted light larger than the other diffracted light of any order, larger than the third light flux of the first-order diffracted light of other diffraction light amount of any order which has passed through the second basic structure. The blazed wavelength λb (3λ) in the first basic structure of the first optical path difference providing structure is smaller than the blazed wavelength λb (2λ) in the third basic structure of the second optical path difference providing structure.
 青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、実線で示すように、ダイクロイックプリズムDPを通過し、偏光ビームスプリッタBSを通過した後、コリメートレンズCOLを通過して平行光となり、λ/4波長板QWPにより直線偏光から円偏光に変換され、不図示の絞りによりその光束径が規制され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域と周辺領域により集光された光束は、保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。 The divergent light beam of the first light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP, passes through the polarization beam splitter BS, and then passes through the collimating lens COL as shown by the solid line. It becomes parallel light, is converted from linearly polarized light into circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and enters the objective lens OL. Here, the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1.
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOL、不図示の絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、2軸アクチュエータAC1により対物レンズOLをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。ここで、第1光束に波長変動が生じた場合や、複数の情報記録層を有するBDの記録/再生を行う場合、波長変動や異なる情報記録層に起因して発生する球面収差を、倍率変更手段としてのコリメートレンズCOLを光軸方向に変化させて、対物光学素子OLに入射する光束の発散角又は収束角を変更することで補正できるようになっている。 The reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and by the collimating lens COL. The converged light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. The information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1. Here, when the wavelength fluctuation occurs in the first light flux or when recording / reproducing of a BD having a plurality of information recording layers, the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. Correction can be made by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL by changing the collimating lens COL as means in the optical axis direction.
 レーザユニットLDPの半導体レーザLD2から射出された第2光束(λ2=660nm)の発散光束は、点線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域により集光された(周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、保護基板PL2を介して、DVDの情報記録面RL2に形成されるスポットとなり、スポット中心部を形成する。 The divergent light beam of the second light beam (λ2 = 660 nm) emitted from the semiconductor laser LD2 of the laser unit LDP is reflected by the dichroic prism DP and passes through the polarization beam splitter BS and the collimating lens COL, as indicated by the dotted line. The / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OL. Here, the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral portion) is recorded on the DVD through the protective substrate PL2. It becomes a spot formed on the surface RL2, and forms the center of the spot.
 情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてDVDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a convergent light beam by the collimator lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD.
 レーザユニットLDPの半導体レーザLD3から射出された第3光束(λ3=785nm)の発散光束は、一点鎖線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域により集光された(中間領域及び周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、保護基板PL3を介して、CDの情報記録面RL3上に形成されるスポットとなる。 The divergent light beam of the third light beam (λ3 = 785 nm) emitted from the semiconductor laser LD3 of the laser unit LDP is reflected by the dichroic prism DP, as shown by the one-dot chain line, and passes through the polarization beam splitter BS and the collimating lens COL. The linearly polarized light is converted into circularly polarized light by the λ / 4 wave plate QWP, and is incident on the objective lens OL. Here, the light beam collected by the central region of the objective lens OL (the light beam that has passed through the intermediate region and the peripheral region is flared and forms a spot peripheral part) is recorded on the CD through the protective substrate PL3. It becomes a spot formed on the surface RL3.
 情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてCDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL3 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a convergent light beam by the collimating lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
(実施例)
 以下、上述した実施の形態に用いることができる実施例について説明する。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。また、対物レンズの光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
(Example)
Examples that can be used in the above-described embodiment will be described below. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). The optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (with the light traveling direction being positive), κ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
 また、回折構造を用いた実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。 Further, in the case of the embodiment using the diffractive structure, the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 尚、λは入射光束の波長、λBは製造波長(ブレーズ化波長)、dorは回折次数、B2iは光路差関数の係数である。 Here, λ is the wavelength of the incident light beam, λB is the manufacturing wavelength (blazed wavelength), dor is the diffraction order, and B 2i is the coefficient of the optical path difference function.
(実施例1)
 実施例1の対物レンズはプラスチック単玉レンズである。実施例1の第1光路差付与構造の概念図を図6に示す(図6は実施例1の実際の形状とは異なり、あくまでも概念図である。)。実施例1の第1光路差付与構造は、中央領域の全領域において、2/1/1のブレーズ型の回折構造である第2基礎構造BS2に、1/1/1のブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。また、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差は光軸OAとは逆の方向を向いている。λ1=405nmであり、λ2=660nmであるので、|A|・λ1は、405であり、|B|・λ2は660である。従って、|A|・λ1<|B|・λ2である。ここで、中央領域の第1光路差付与構造における第1基礎構造のブレーズ化波長λb(3λ)=470nm、第2基礎構造のブレーズ化波長385nmとし、中間領域の第2光路差付与構造における第3基礎構造のブレーズ化波長λb(2λ)=530nm、第4基礎構造のブレーズ化波長385nmとした。従って、第1基礎構造におけるブレーズ化波長λb(3λ)が、第3基礎構造におけるブレーズ化波長λb(2λ)よりも小さくなっている。又、周辺領域の第3光路差付与構造における第6基礎構造のブレーズ化波長λb(1λ)=405nmである。
Example 1
The objective lens of Example 1 is a plastic single lens. FIG. 6 shows a conceptual diagram of the first optical path difference providing structure of the first embodiment (FIG. 6 is a conceptual diagram different from the actual shape of the first embodiment). The first optical path difference providing structure of Example 1 is a 1/1/1 blaze-type diffractive structure in the second basic structure BS2, which is a 2/1/1 blaze-type diffractive structure, in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 is overlapped. Further, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA. Since λ1 = 405 nm and λ2 = 660 nm, | A | · λ1 is 405 and | B | · λ2 is 660. Therefore, | A | · λ1 <| B | · λ2. Here, the blazed wavelength λb (3λ) of the first basic structure in the first optical path difference providing structure in the central region is set to 470 nm, the blazed wavelength 385 nm of the second basic structure, and the second optical path difference providing structure in the intermediate region in the second optical path difference providing structure. The blazed wavelength λb (2λ) of the three basic structures was set to 530 nm, and the blazed wavelength of the fourth basic structure was set to 385 nm. Therefore, the blazed wavelength λb (3λ) in the first basic structure is smaller than the blazed wavelength λb (2λ) in the third basic structure. The blazed wavelength λb (1λ) of the sixth basic structure in the third optical path difference providing structure in the peripheral region is 405 nm.
 また、実施例1の第2光路差付与構造も、中間領域の全領域において、2/1/1のブレーズ型の回折構造である第4基礎構造BS4に、1/1/1のブレーズ型の回折構造である第3基礎構造BS3が重ねあわされた構造である。第3基礎構造の段差は光軸と逆の方を向いており、第4基礎構造の段差は光軸の方を向いている。 In addition, the second optical path difference providing structure of Example 1 also has a 1/1/1 blaze type structure in the fourth basic structure BS4 that is a 2/1/1 blaze type diffraction structure in the entire intermediate region. This is a structure in which the third basic structure BS3 which is a diffraction structure is overlapped. The step of the third foundation structure faces in the direction opposite to the optical axis, and the step of the fourth foundation structure faces in the direction of the optical axis.
 実施例1の第3光路差付与構造は、第6基礎構造のみからなっている。第6基礎構造は、第6基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくするブレーズ型の回折構造である。 The third optical path difference providing structure of Example 1 is composed of only the sixth basic structure. In the sixth basic structure, the second-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the sixth basic structure. This is a blaze-type diffractive structure in which the amount of light is made larger than any other order of diffracted light, and the first order diffracted light of the third light beam that has passed through the sixth basic structure is made larger than any other order of diffracted light.
 表1に実施例1のレンズデータを示す。 Table 1 shows the lens data of Example 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図8は、縦軸に回折効率を取り、横軸に瞳半径をとって示す図であり、本発明者が行ったシミュレーションの結果を示している。図8(b)は、実施例1と同様の仕様であるが、中央領域の第1光路差付与構造における第1基礎構造のブレーズ化波長λb(3λ)=470nm、第2基礎構造のブレーズ化波長385nmとし、中間領域の第2光路差付与構造における第3基礎構造のブレーズ化波長λb(2λ)=470nm、第4基礎構造のブレーズ化波長385nmとした比較例のシミュレーション結果である。明らかであるが、中間領域におけるDVD使用時の回折効率が中央領域に比して徐々に低下しているため、スポット径が太くなる現象が起きる恐れがある。 FIG. 8 is a diagram showing the diffraction efficiency on the vertical axis and the pupil radius on the horizontal axis, and shows the result of the simulation performed by the present inventor. FIG. 8B shows the same specifications as in Example 1, but the blazed wavelength λb (3λ) of the first basic structure in the first optical path difference providing structure in the central region is 470 nm, and the second basic structure is blazed. It is a simulation result of a comparative example with a wavelength of 385 nm, a blazed wavelength λb (2λ) of the third basic structure in the second optical path difference providing structure in the intermediate region = 470 nm, and a blazed wavelength of 385 nm of the fourth basic structure. Obviously, the diffraction efficiency at the time of using the DVD in the intermediate region is gradually lower than that in the central region, so that a phenomenon that the spot diameter becomes thick may occur.
 これに対し、λb(3λ)<λb(2λ)とした実施例1の場合、図8(a)に示すように、中間領域と中央領域の境界で、DVD使用時の回折効率、即ちDVD使用光における光の利用効率が不連続に変化し、その境界を挟んで中間領域におけるDVD使用光における光の利用効率は、中央領域におけるDVD使用光における光の利用効率より高くなるから、これによりスポット径が太くなる現象を抑制することができる。一方、中間領域にて、DVD使用時の回折効率がBD使用時の回折効率を上回った結果、BDについては中間領域の回折効率は低くなるが、周辺領域の回折効率は高いので、特に大きな影響はない。 On the other hand, in the case of Example 1 in which λb (3λ) <λb (2λ), as shown in FIG. The light use efficiency in the light changes discontinuously, and the light use efficiency in the DVD use light in the intermediate region across the boundary is higher than the light use efficiency in the DVD use light in the central region. The phenomenon that the diameter increases can be suppressed. On the other hand, in the intermediate region, the diffraction efficiency when using the DVD exceeds the diffraction efficiency when using the BD. As a result, the diffraction efficiency of the intermediate region is low for BD, but the diffraction efficiency of the peripheral region is high. There is no.
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
AC1 2軸アクチュエータ
BS 偏光ビームスプリッタ
CN 中央領域
COL コリメートレンズ
DP ダイクロイックプリズム
LD1 第1半導体レーザ又は青紫色半導体レーザ
LD2 第2半導体レーザ
LD3 第3半導体レーザ
LDP レーザユニット
MD 中間領域
OL 対物レンズ
OT 周辺領域
PD 受光素子
PL1 保護基板
PL2 保護基板
PL3 保護基板
PU1 光ピックアップ装置
QWP λ/4波長板
RL1 情報記録面
RL2 情報記録面
RL3 情報記録面
SEN センサレンズ
AC1 Biaxial actuator BS Polarizing beam splitter CN Central region COL Collimating lens DP Dichroic prism LD1 First semiconductor laser or blue-violet semiconductor laser LD2 Second semiconductor laser LD3 Third semiconductor laser LDP Laser unit MD Intermediate region OL Objective lens OT Peripheral region PD Light receiving element PL1 Protective substrate PL2 Protective substrate PL3 Protective substrate PU1 Optical pickup device QWP λ / 4 wavelength plate RL1 Information recording surface RL2 Information recording surface RL3 Information recording surface SEN Sensor lens

Claims (21)

  1.  第1波長λ1の第1光束を射出する第1光源と、第2波長λ2(λ1<λ2)の第2光束を射出する第2光源と、第3波長λ3(λ2<λ3)の第3光束を射出する第3光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有する第1光ディスクの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有する第2光ディスクの情報の記録及び/又は再生を行い、前記第3光束を用いて厚さがt3(t2<t3)の保護基板を有する第3光ディスクの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
     前記対物レンズは、プラスチック製の単玉レンズであり、
     前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
     前記中央領域は第1光路差付与構造を有し、
     前記中間領域は第2光路差付与構造を有し、
     前記対物レンズは、前記中央領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、
     前記対物レンズは、前記中間領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記第1光路差付与構造は、少なくとも第1基礎構造を有し、
     前記第1基礎構造は、該第1基礎構造を通過した第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、該第1基礎構造を通過した第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、該第1基礎構造を通過した第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第2光路差付与構造は、少なくとも第3基礎構造を有し、
     前記第3基礎構造は、該第3基礎構造を通過した第A光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、該第3基礎構造を通過した第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     |A|・λ1>|B|・λ2の場合は、前記第1基礎構造におけるブレーズ化波長λb(3λ)が、前記第3基礎構造におけるブレーズ化波長λb(2λ)よりも大きく、
     |A|・λ1<|B|・λ2の場合は、前記第1基礎構造におけるブレーズ化波長λb(3λ)が、前記第3基礎構造におけるブレーズ化波長λb(2λ)よりも小さいことを特徴とする対物レンズ。
    A first light source that emits a first light flux with a first wavelength λ1, a second light source that emits a second light flux with a second wavelength λ2 (λ1 <λ2), and a third light flux with a third wavelength λ3 (λ2 <λ3) And recording and / or reproducing information on a first optical disc having a protective substrate with a thickness of t1 using the first light flux, and using the second light flux to obtain a thickness. Records and / or reproduces information on the second optical disk having the protective substrate t2 (t1 <t2), and uses the third light flux to have the third optical disk having the protective substrate having the thickness t3 (t2 <t3) An objective lens used in an optical pickup device that records and / or reproduces information of
    The objective lens is a single lens made of plastic,
    The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
    The central region has a first optical path difference providing structure,
    The intermediate region has a second optical path difference providing structure,
    The objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc. Condensing so that information can be recorded and / or reproduced,
    The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc. Without collecting light so that information can be recorded and / or reproduced.
    The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area. The second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc. Do not concentrate so that information can be recorded and / or reproduced
    The first optical path difference providing structure has at least a first basic structure,
    The first basic structure makes the A-order diffracted light amount of the first light beam that has passed through the first basic structure larger than any other order of diffracted light amount, and B of the second light beam that has passed through the first basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, making the C-order diffracted light quantity of the third light flux that has passed through the first basic structure larger than any other order diffracted light quantity,
    The second optical path difference providing structure has at least a third basic structure,
    The third basic structure makes the A-order diffracted light amount of the A-th beam that has passed through the third basic structure larger than any other order diffracted light amount, and B of the second light beam that has passed through the third basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, and making the C-order diffracted light quantity of the third light flux that has passed through the third basic structure larger than any other order diffracted light quantity,
    In the case of | A | · λ1> | B | · λ2, the blazed wavelength λb (3λ) in the first basic structure is larger than the blazed wavelength λb (2λ) in the third basic structure,
    In the case of | A | · λ1 <| B | · λ2, the blazed wavelength λb (3λ) in the first basic structure is smaller than the blazed wavelength λb (2λ) in the third basic structure. Objective lens.
  2.  前記第1光路差付与構造は、少なくとも前記第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
     前記第2基礎構造は、前記第2基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第2光路差付与構造は、少なくとも前記第3基礎構造と第4基礎構造とを重ね合わせた構造であり、
     前記第4基礎構造は、前記第4基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする請求項1に記載の対物レンズ。
    The first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped,
    The second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and the E of the second light beam that has passed through the second basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, and making the F-order diffracted light quantity of the third light flux that has passed through the second basic structure larger than any other order diffracted light quantity,
    The second optical path difference providing structure is a structure in which at least the third basic structure and the fourth basic structure are overlapped,
    The fourth foundation structure makes the D-order diffracted light quantity of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light quantity, and the E of the second light flux that has passed through the fourth foundation structure. The next diffracted light amount is made larger than any other order diffracted light amount, and the F-order diffracted light amount of the third light beam that has passed through the fourth basic structure is made larger than any other order diffracted light amount. The objective lens according to claim 1.
  3.  前記第1基礎構造はブレーズ型構造であり、前記第2基礎構造はブレーズ型構造であることを特徴とする請求項1又は2に記載の対物レンズ。 3. The objective lens according to claim 1, wherein the first basic structure is a blazed structure, and the second basic structure is a blazed structure.
  4.  A,B,C,D,E,Fは、それぞれ、
     |A|=1
     |B|=1
     |C|=1
     |D|=2
     |E|=1
     |F|=1
    を満たすことを特徴とする請求項2又は3に記載の対物レンズ。
    A, B, C, D, E, and F are respectively
    | A | = 1
    | B | = 1
    | C | = 1
    | D | = 2
    | E | = 1
    | F | = 1
    The objective lens according to claim 2, wherein:
  5.  前記第2基礎構造におけるブレーズ化波長は、前記第4基礎構造におけるブレーズ化波長と等しいことを特徴とする請求項2乃至4のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 2 to 4, wherein the blazed wavelength in the second basic structure is equal to the blazed wavelength in the fourth basic structure.
  6.  前記中間領域と前記中央領域の境界で、前記第2光束の光の利用効率が不連続に変化し、前記境界を挟んで前記中間領域における前記第2光束の光の利用効率は、前記中央領域における前記第2光束の光の利用効率より高いことを特徴とする請求項1乃至5のいずれか1項に記載の対物レンズ。 The light utilization efficiency of the second light flux changes discontinuously at the boundary between the intermediate area and the central area, and the light utilization efficiency of the second light flux in the intermediate area across the boundary is the center area. The objective lens according to claim 1, wherein the use efficiency of the light of the second light flux is higher than that of the objective lens according to claim 1.
  7.  前記ブレーズ化波長λb(3λ)は、405~510nmであり、前記ブレーズ化波長λb(2λ)は、450~550nmであることを特徴とする請求項1乃至6のいずれか1項に記載の対物レンズ。 7. The objective according to claim 1, wherein the blazed wavelength λb (3λ) is 405 to 510 nm, and the blazed wavelength λb (2λ) is 450 to 550 nm. lens.
  8.  前記周辺領域は、第3光路差付与構造有し、前記第3光路差付与構造におけるブレーズ化波長λb(1λ)は、385~425nmであることを特徴とする請求項1乃至7のいずれか1項に記載の対物レンズ。 8. The peripheral region according to claim 1, wherein the peripheral region has a third optical path difference providing structure, and a blazed wavelength λb (1λ) in the third optical path difference providing structure is 385 to 425 nm. The objective lens described in the item.
  9.  前記中央領域に設けられる前記第1基礎構造は、全ての段差が光軸とは逆の方向を向いていることを特徴とする請求項1乃至8のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 8, wherein in the first basic structure provided in the central region, all steps are directed in a direction opposite to the optical axis.
  10.  前記中央領域に設けられる前記第2基礎構造は、全ての段差が光軸の方向を向いていることを特徴とする請求項2乃至9のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 2 to 9, wherein in the second basic structure provided in the central region, all the steps are directed in the direction of the optical axis.
  11.  少なくとも前記中央領域の光軸付近に設けられている前記第1光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを共に有し、
     前記光軸とは逆の方向を向いている段差の段差量d11と、前記光軸の方向を向いている段差の段差量d12とが、以下の条件式(2)、(3)を満たすことを特徴とする請求項1乃至10のいずれか1項に記載の対物レンズ。
    0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))          (3)
    0.6・(λ1/(n-1))<d12<1.5・(2λ1/(n-1))          (4)
    但し、nは、λ1における対物レンズの屈折率を表す。
    The first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step that faces the direction opposite to the optical axis and a step that faces the direction of the optical axis. ,
    The step amount d11 of the step facing the direction opposite to the optical axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (2) and (3). The objective lens according to claim 1, wherein:
    0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (3)
    0.6 · (λ1 / (n-1)) <d12 <1.5 · (2λ1 / (n-1)) (4)
    Here, n represents the refractive index of the objective lens at λ1.
  12.  前記中央領域の全ての領域において前記条件式(2)、(3)を満たすことを特徴とする請求項11に記載の対物レンズ。 The objective lens according to claim 11, wherein the conditional expressions (2) and (3) are satisfied in all regions of the central region.
  13.  以下の条件式を満たすことを特徴とする請求項11又は12に記載の対物レンズ。
    0.9・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (2)”
    0.9・(λ1/(n-1))<d12<1.5・(λ1/(n-1))   (3)”
    The objective lens according to claim 11, wherein the following conditional expression is satisfied.
    0.9 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (2) "
    0.9 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (3) "
  14.  前記中央領域の全ての領域において前記条件式(2)”、(3)”を満たすことを特徴とする請求項13に記載の対物レンズ。 The objective lens according to claim 13, wherein the conditional expressions (2) "and (3)" are satisfied in all the regions of the central region.
  15.  前記中央領域において、前記光軸とは逆の方向を向いている段差の数が、前記光軸の方向を向いている段差の数に比べて多いことを特徴とする請求項11乃至14のいずれか1項に記載の対物レンズ。 15. The number of steps in the central region facing in the direction opposite to the optical axis is greater than the number of steps in the direction of the optical axis. The objective lens according to claim 1.
  16.  以下の条件式を満たすことを特徴とする請求項1乃至15のいずれか1項に記載の対物レンズ。
    0.8≦d/f≦1.5   (4)
    但し、dは、前記対物レンズの光軸上の厚さ(mm)を表し、fは、前記第1光束における前記対物レンズの焦点距離を表す。
    The objective lens according to claim 1, wherein the following conditional expression is satisfied.
    0.8 ≦ d / f ≦ 1.5 (4)
    However, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux.
  17.  前記第2光路差付与構造は、前記第3基礎構造に加えて、第5基礎構造を重ね合わせた構造であり、
     前記第5基礎構造は、前記第5基礎構造を通過した前記第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第5基礎構造を通過した前記第2光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第5基礎構造を通過した前記第3光束のG次の回折光量を他のいかなる次数の回折光量よりも大きくする構造であることを特徴とする請求項1乃至16のいずれか1項に記載の対物レンズ。
    The second optical path difference providing structure is a structure in which a fifth basic structure is overlaid in addition to the third basic structure,
    The fifth basic structure makes the 0th-order diffracted light quantity of the first light beam that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure. The 0th-order diffracted light quantity is made larger than any other order diffracted light quantity, and the G-order diffracted light quantity of the third light flux that has passed through the fifth basic structure is made larger than any other order diffracted light quantity. The objective lens according to any one of claims 1 to 16, wherein the objective lens is.
  18.  前記第2光路差付与構造は、前記第3基礎構造及び前記第4基礎構造のみからなることを特徴とする請求項2乃至16のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 2 to 16, wherein the second optical path difference providing structure includes only the third basic structure and the fourth basic structure.
  19.  以下の条件式(5)、(6)、(7)を満たすことを特徴とする請求項1乃至18のいずれか1項に記載の対物レンズ。
    -0.01<m1<0.01         (5)
    -0.01<m2<0.01         (6)
    -0.01<m3<0.01         (7)
    但し、m1は、前記第1光束が前記対物レンズに入射する時の前記対物レンズの倍率を表し、m2は、前記第2光束が前記対物レンズに入射する時の前記対物レンズの倍率を表し、m3は、前記第3光束が前記対物レンズに入射する時の前記対物レンズの倍率を表す。
    The objective lens according to claim 1, wherein the following conditional expressions (5), (6), and (7) are satisfied.
    -0.01 <m1 <0.01 (5)
    -0.01 <m2 <0.01 (6)
    -0.01 <m3 <0.01 (7)
    However, m1 represents the magnification of the objective lens when the first light beam is incident on the objective lens, m2 represents the magnification of the objective lens when the second light beam is incident on the objective lens, m3 represents the magnification of the objective lens when the third light beam is incident on the objective lens.
  20.  請求項1乃至19のいずれか1項に記載の対物レンズを有することを特徴とする光ピックアップ装置。 An optical pickup device comprising the objective lens according to any one of claims 1 to 19.
  21.  請求項20に記載の光ピックアップ装置を有することを特徴とする光情報記録再生装置。 An optical information recording / reproducing apparatus comprising the optical pickup apparatus according to claim 20.
PCT/JP2011/079791 2010-12-28 2011-12-22 Objective lens for optical pickup device, optical pickup device, and optical information record/play device WO2012090852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550898A JPWO2012090852A1 (en) 2010-12-28 2011-12-22 Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010291976 2010-12-28
JP2010-291976 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090852A1 true WO2012090852A1 (en) 2012-07-05

Family

ID=46382958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079791 WO2012090852A1 (en) 2010-12-28 2011-12-22 Objective lens for optical pickup device, optical pickup device, and optical information record/play device

Country Status (2)

Country Link
JP (1) JPWO2012090852A1 (en)
WO (1) WO2012090852A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245575A (en) * 2007-07-30 2009-10-22 Sony Corp Objective lens, optical pickup, and optical disk device
JP2010097690A (en) * 2010-01-20 2010-04-30 Konica Minolta Holdings Inc Optical pickup device and objective lens thereof
WO2010128654A1 (en) * 2009-05-07 2010-11-11 コニカミノルタオプト株式会社 Objective, optical pick-up device, and optical information recording/reproducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245575A (en) * 2007-07-30 2009-10-22 Sony Corp Objective lens, optical pickup, and optical disk device
WO2010128654A1 (en) * 2009-05-07 2010-11-11 コニカミノルタオプト株式会社 Objective, optical pick-up device, and optical information recording/reproducing device
JP2010097690A (en) * 2010-01-20 2010-04-30 Konica Minolta Holdings Inc Optical pickup device and objective lens thereof

Also Published As

Publication number Publication date
JPWO2012090852A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5370539B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
WO2011132691A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2011136096A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
JP5152439B2 (en) Objective lens for optical pickup device and optical pickup device
WO2013146267A1 (en) Objective lens and optical pickup device
WO2013005672A1 (en) Optical pickup device
JP5713280B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5963120B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
JP5229657B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
WO2012090852A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
JP5093634B2 (en) Objective lens for optical pickup device and optical pickup device
WO2013114662A1 (en) Objective lens for optical pickup device, and optical pickup device
WO2013084558A1 (en) Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2012063850A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012133363A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
WO2013168692A1 (en) Objective lens and optical pickup device
WO2011132696A1 (en) Objective lens for an optical pickup device, optical pickup device, and optical information recording/reading device
WO2012133364A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
JP2013157049A (en) Objective lens for optical pickup apparatus, optical pickup apparatus and optical information recording and reproducing apparatus
JP2014164791A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording reproducer
JP2013206514A (en) Objective for optical pickup device, and optical pickup device and optical information recording and reproducing device
JP2012212497A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing device
JP2012104175A (en) Optical pickup device and optical information recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550898

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853701

Country of ref document: EP

Kind code of ref document: A1