WO2012133364A1 - Objective lens for optical pickup device, optical pickup device, and optical information recorder / player - Google Patents

Objective lens for optical pickup device, optical pickup device, and optical information recorder / player Download PDF

Info

Publication number
WO2012133364A1
WO2012133364A1 PCT/JP2012/057854 JP2012057854W WO2012133364A1 WO 2012133364 A1 WO2012133364 A1 WO 2012133364A1 JP 2012057854 W JP2012057854 W JP 2012057854W WO 2012133364 A1 WO2012133364 A1 WO 2012133364A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
light
basic structure
optical
light beam
Prior art date
Application number
PCT/JP2012/057854
Other languages
French (fr)
Japanese (ja)
Inventor
立山清乃
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to JP2013507581A priority Critical patent/JPWO2012133364A1/en
Publication of WO2012133364A1 publication Critical patent/WO2012133364A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths

Definitions

  • the present invention relates to an objective lens for an optical pickup device, an optical pickup device, and an optical information recording / reproducing device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm.
  • the optical system for BD and the optical system for DVD or CD are used in common. It is preferable to reduce the number of optical components constituting the apparatus as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common.
  • an optical path difference providing structure such as a diffraction structure having a wavelength dependency of spherical aberration in the objective lens. is there.
  • the problem of spherical aberration becomes more apparent as the number of information recording surfaces increases (that is, as the distance between the information recording surface having the smallest distance from the surface and the information recording surface having the largest distance from the surface increases).
  • the coupling lens disposed between the light source and the objective lens in the optical axis direction, it is possible to correct spherical aberration caused by the difference in substrate thickness.
  • convergent light or divergent light is incident on the objective lens, and there is a problem of how to adjust the skew of the BD.
  • the operation of changing the information recording surface on which information is to be recorded / reproduced from one information recording surface to another information recording surface may be referred to as “focus jump” in this specification.
  • Patent Document 1 describes an objective lens that can be used for a BD, a DVD, and a CD having three or more information recording surfaces, and an optical pickup device equipped with the objective lens.
  • the BD skew adjustment and securing of off-axis characteristics in CD are generally in a trade-off relationship.
  • the technology of Patent Document 1 creates a lens tilt sensitivity for performing skew adjustment in BD as an issue.
  • the off-axis characteristics of BD, DVD, and CD are not considered.
  • the present invention has been made to solve the above-mentioned problems, and while keeping both the BD skew adjustment and the off-axis characteristics in the CD, the unnecessary diffracted light that causes an error signal is kept away, and further, the BD / CD.
  • Optical pickup apparatus, optical information recording / reproducing apparatus, and optical information recording / reproducing apparatus including an objective lens capable of performing compatibility of at least two types of BD / CD optical discs with a common objective lens
  • An object is to provide a suitable objective lens.
  • Information recording surfaces having three light sources and an objective lens and having different distances from the light incident surface are 3 in the thickness direction.
  • An objective lens used in the apparatus A first optical path difference providing structure in a region where the first light flux and the third light flux are commonly incident;
  • the magnification M at which the third-order spherical aberration is minimized in the objective lens on which the first light flux is incident is ( 2)
  • the sine condition violation amount at the magnification M is the first maximum value at the pupil radius H1, the second maximum value at the pupil radius H2, and the pupil radius H3 is 0.9 or more.
  • Equation (3) (however, the pupil radii H1, H2, and H3 are relative values when the effective radius of the objective lens is 1), and the derivative ⁇ (h) of the sine condition violation amount is Satisfy equations (4) to (6)
  • the following formula is satisfied.
  • fB3 WD1 + t1 ⁇ (1-1 / n1)
  • fB3 WD3 + t3 ⁇ (1-1 / n3)
  • Abbe number m1 of the material of the objective lens
  • m1 Imaging magnification when the light beam having the first wavelength ⁇ 1 is incident on the objective lens
  • m3 Result when the light beam having the third wavelength ⁇ 3 is incident on the objective lens
  • d On-axis thickness of the objective lens (mm)
  • WD1 Working distance when using the BD (mm)
  • WD3 Working distance when using the CD (mm)
  • n1 Refractive index of the protective substrate of the BD with respect to the light beam with the first wavelength ⁇ 1
  • n3 Refractive index of the protective substrate of the CD with respect to the light beam
  • the sine condition that defines the off-axis characteristics of the objective lens is determined by (a) the thickness of the protective substrate of the optical disc, (b) the magnification, and (c) the paraxial diffraction power. Since the protective substrate thickness of the optical disk is different, if the sine condition is satisfied in one optical disk, the sine condition may not be satisfied in another optical disk. In such a case, when an off-axis light beam enters an optical disk that does not satisfy the sine condition, a relatively large coma aberration is generated. Usually, since the sine condition at the time of BD use with strict spot standards is often satisfied, in such a case, there is a risk that the sine condition at the time of CD use may not be satisfied.
  • skew adjustment is performed on the information recording surface having the thickest substrate, and a low-order spherical surface due to a difference in thickness due to a change in magnification.
  • magnification M 0
  • the paraxial diffraction power when the paraxial diffraction power is within a certain range, it is as shown in FIG.
  • the CD sine condition changes to approach 0 as shown in [1] in FIG. 15 and the off-axis characteristics of the CD become good, but the first optical path difference providing structure Undesired diffracted light (diffracted light other than the used diffracted light used for recording / reproducing information) may approach the used diffracted light and be detected by the photodetector to generate an error signal, or the CD working distance
  • the risk of the objective lens colliding with the CD is remarkably increased.
  • the paraxial diffraction power when the paraxial diffraction power is increased, the CD sine condition changes to the positive side as shown in [2] in FIG. 15, the off-axis characteristics of the CD deteriorate, and the diffraction pitch decreases, but 1/1 / 1 structure can keep away unnecessary light, can suppress the false detection detected by the photodetector together with the main light, and can ensure a sufficient working distance in the CD.
  • the adjustment of the paraxial diffraction power is effective, if the sine condition is adjusted with priority on BD, the CD sine condition may become inappropriate, and coma aberration generated when off-axis light is incident may increase. There is.
  • the CD sine condition and WD are prioritized within the effective diameter range of the CD, and the BD sine condition is prioritized outside the effective diameter of the CD.
  • the BD sine condition violation amount is adjusted to have a minimum value SCmin on the negative side within the effective diameter range of the CD, and the BD sine condition violation amount is on the positive side outside the CD effective diameter range. It adjusted so that it might have local maximum SCmax (refer FIG. 1).
  • the sine condition violation amount when the sine condition violation amount when using BD is plotted on the horizontal axis and the pupil radius (height from the optical axis) with the BD effective diameter being 1 is plotted on the vertical axis, the sine condition violation amount is The pupil radius H1 that takes the first maximum value, the pupil radius H2 that takes the second maximum value, and the pupil radius H3 that is 90% or more of the effective diameter satisfy the above equation (3), and from the optical axis The derivative ⁇ (h) of the sine condition violation amount with the height h as a variable satisfies the equations (4) to (6). That is, the sine condition violation amount draws an inverted S-curve as shown in FIG.
  • paraxial diffraction power is too low, unnecessary diffracted light (diffracted light other than the used diffracted light used for recording / reproducing information) generated from the first optical path difference providing structure approaches the used diffracted light, and light detection is performed. May cause an error signal to be detected by the detector, or the working distance of the CD may be shortened and the objective lens may collide with the CD. Therefore, formula (9) is defined as the optimum range of paraxial diffraction power.
  • equation (9) is equal to or greater than the lower limit, unnecessary light emitted from the first optical path difference providing structure can be kept away, and a working distance in the CD is ensured, while ( 9) If the value of the equation is equal to or less than the upper limit, the difference between the sine conditions when using BD and when using CD becomes small, and off-axis characteristics when using CD can be improved.
  • At least the following two characteristics are required for an objective lens that has high performance stability and is easy to manufacture.
  • (Characteristic 3) Even when the opposing optical surfaces are shifted in the direction perpendicular to the optical axis due to manufacturing errors (referred to as surface shift), the coma aberration does not become too large.
  • the second maximum at the second pupil radius H2 is obtained by causing the sine condition violation amount to have the first minimum value at the position of the first pupil radius H1. Since it is possible to suppress the value from becoming too large, it is possible to suppress the amount of coma aberration generated during the surface shift.
  • the second maximum at the second pupil radius H2 is obtained by causing the sine condition violation amount to have the first minimum value at the position of the first pupil radius H1. Since it is possible to suppress the value from becoming too large, it is possible to suppress the generation amount of spherical aberration when a lens thickness error occurs, and thus it is possible to provide an objective lens that is easier to manufacture.
  • the objective lens according to claim 1 has (Characteristic 1) small residual high-order spherical aberration at the time of focus jump, and (Characteristic 2) small movement amount of the coupling lens at the time of focus jump.
  • (Characteristic 3) it is possible to suppress the amount of coma aberration generated when the surface is shifted
  • (Characteristic 4) it is also possible to suppress the amount of spherical aberration generated when the lens thickness error occurs. Since the objective lens of the present invention is used, an optical disc having three or more information recording surfaces that is small, low cost, and excellent in recording / reproducing characteristics can be provided. It becomes possible to provide an optical pickup device for use.
  • the “transparent substrate thickness” is the distance from the light beam incident surface of the optical disc to the information recording surface.
  • each information recording surface is transparent.
  • the substrate thickness will be different from each other.
  • an objective lens for an optical pickup is combined with a cover glass having a predetermined thickness, and the correction state of the spherical aberration is determined so that the spherical aberration is minimized (the thickness of the cover glass is determined as the design cover glass). Also called thickness).
  • the design cover glass thickness may be the same as or different from the transparent substrate thickness of any information recording surface of the optical disc. When the thickness of the cover glass changes, the characteristics of the objective lens also change.
  • cover glass thickness is used to distinguish it from the “transparent substrate (also simply referred to as a substrate)” of the optical disk. (Note that although the term “cover glass” is used, the cover glass thickness is not limited to glass, but a resin may be added.)
  • the objective lens described in claim 2 is characterized in that, in the invention described in claim 1, equation (10) is satisfied. 0.7 ⁇ H2 ⁇ 0.9 (10)
  • the objective lens according to a third aspect is the objective lens according to the first or second aspect, wherein only the objective lens is collected when condensing a light beam incident at a magnification M on the information recording surface of the transparent substrate thickness T of the BD.
  • a third-order coma aberration LTCM3 ( ⁇ rms) that occurs when the lens is tilted by a predetermined angle and a third-order coma aberration DTCM3 ( ⁇ rms) that occurs when only the BD is tilted at the predetermined angle in the same direction as the objective lens.
  • >>
  • skew adjustment can be performed even when a divergent light beam is incident on the information recording surface having the largest substrate thickness in the BD, and the assembly of the optical pickup device is facilitated. .
  • the objective lens described in claim 4 is characterized in that, in the invention described in any one of claims 1 to 3, the following expression is satisfied. ⁇ 0.05 ⁇ (fB3 ⁇ fB1) /d ⁇ 0.05 (6 ′)
  • the WD of the CD can be extended by the diffraction power, which is effective for a slim type objective lens.
  • the objective lens according to any one of the first to third aspects, wherein the optical pickup device includes a second light flux having a second wavelength ⁇ 2 (630 nm ⁇ ⁇ 2 ⁇ 670 nm) at an imaging magnification m2.
  • the objective lens condenses the second light flux on the information recording surface of a DVD having a protective substrate with a transparent substrate thickness of t2 (mm) (t1 ⁇ t2 ⁇ t3).
  • Information is recorded and / or reproduced.
  • information can be recorded and / or reproduced on DVD.
  • the objective lens according to claim 6 is the invention according to claim 4 or 5, wherein the height h from the optical axis at which the sine condition when using the BD turns from negative to positive satisfies the following expression. It is characterized by. 0.8h CDNA ⁇ h ⁇ h DVDNA (12) However, h CDNA : Relative value representing the height in the optical axis direction corresponding to the numerical aperture when the CD is used as the BD effective radius of the objective lens is 1 h DVDNA : Optical axis direction corresponding to the numerical aperture when the DVD is used Relative value expressing height as BD effective radius of the objective lens is 1
  • the sine condition violation amount when using the BD within the CD effective diameter becomes negative, so that the sine condition violation amount when using the CD can be reduced.
  • the objective lens according to claim 7 is the invention according to claim 5 or 6,
  • the optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
  • the central region has the first optical path difference providing structure,
  • the objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region.
  • the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the intermediate area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the intermediate region is recorded and / or recorded on the information recording surface of the CD. Or do not concentrate so that it can be regenerated,
  • the objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area.
  • the first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped, The first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and 1 of the second light flux that has passed through the first basic structure.
  • the second basic structure makes the second-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and 1 of the second light beam that has passed through the second basic structure.
  • the next diffracted light amount is made larger than any other order diffracted light amount
  • the first diffracted light amount of the third light beam that has passed through the second basic structure is made larger than any other order diffracted light amount.
  • the first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped, and the first basic structure includes the first basic structure.
  • the first-order diffracted light amount of the first light beam that has passed is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is greater than any other order of diffracted light amount.
  • the first-order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount (sometimes referred to as a 1/1/1 structure), and the second The basic structure makes the second-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and the first-order diffraction of the second light beam that has passed through the second basic structure.
  • the common objective lens While used, it is possible to provide an objective lens having a balanced light utilization efficiency while maintaining a high light utilization efficiency for any of the three types of optical disks of BD / DVD / CD.
  • the objective lens according to claim 8 is the objective lens according to claim 7, wherein the first foundation structure and the second foundation structure are blazed, and one objective lens closest to the optical axis in the second foundation structure is provided. 2 to 6 ring zones of the first basic structure are included on the ring zone.
  • two to six ring zones of the first basic structure are superimposed on one ring zone closest to the optical axis in the second basic structure, so that BD / DVD / CD compatibility is achieved.
  • the objective lens according to claim 9 is the objective lens according to claim 8, wherein the step of the first basic structure provided at least in the vicinity of the optical axis of the central region is directed in a direction opposite to the optical axis. And
  • the second basic structure provided at least in the vicinity of the optical axis of the central region is characterized in that the step is directed in the direction of the optical axis.
  • the level difference in the optical axis direction can be further reduced, thereby further suppressing the decrease in diffraction efficiency when the wavelength varies. it can.
  • An objective lens according to a tenth aspect is the invention according to the eighth or ninth aspect, wherein the intermediate region has a second optical path difference providing structure in which at least a third basic structure and a fourth basic structure are overlapped.
  • the third basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the third basic structure larger than any other order of diffracted light quantity, so that 1 of the second light flux that has passed through the third basic structure.
  • the second-order diffracted light amount of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffracted light amount, and 1st of the second light beam that has passed through the fourth basic structure. It is characterized in that the next diffracted light quantity is made larger than any other order diffracted light quantity.
  • the step amount in the optical axis direction can be reduced, thereby reducing the diffraction efficiency at the time of wavelength variation. Can be suppressed.
  • the orders of the diffracted light having the highest light intensity in the first basic structure and the third basic structure are matched, and the orders of the diffracted light having the highest light intensity in the second basic structure and the fourth basic structure are matched. Therefore, the spherical aberration can be made continuous even when the temperature and the wavelength of the light flux passing through the central region and the intermediate region are changed, and the occurrence of higher order aberrations can be suppressed.
  • the pupil transmittance distribution is almost flat between the intermediate region and the peripheral region, and it is possible to effectively suppress the spot thickening that occurs when the amount of light changes greatly at the boundary due to abolishment or the like. It is also possible to ensure the degree of freedom in designing the objective lens.
  • the objective lens according to claim 11 is the objective lens according to claim 10, wherein the third foundation structure and the fourth foundation structure are blazed, and one objective lens closest to the central region in the fourth foundation structure is provided.
  • One to three annular zones of the third basic structure are included on the annular zone.
  • the condensing position of unnecessary light generated by passing through the intermediate region is the information recording layer other than the information recording layer for recording / reproducing information. It can be separated from the information recording device. In addition, the wavelength characteristics when using a DVD can be improved.
  • the step in the invention according to the tenth or eleventh aspect, is directed in a direction opposite to the optical axis.
  • the fourth foundation structure provided in the vicinity of the boundary with the central region is characterized in that the step is directed in the direction of the optical axis.
  • the level difference in the optical axis direction can be further reduced, thereby further suppressing the decrease in diffraction efficiency at the time of wavelength fluctuation. it can.
  • the objective lens according to claim 13 is the invention according to any one of claims 10 to 12, wherein the annular zone of the third foundation structure is disposed on one annular zone closest to the peripheral region in the fourth foundation structure. 1 to 5 are included.
  • An objective lens according to a fourteenth aspect is the invention according to any one of the tenth to thirteenth aspects, wherein the intermediate region is provided with only the third base structure and the fourth base structure, and the other bases. The structure is not provided.
  • the objective lens according to claim 15 is the invention according to any one of claims 1 to 14, wherein the annular zone of the first foundation structure is disposed on one annular zone closest to the intermediate region in the second foundation structure. 1 to 5 are included.
  • An objective lens according to a sixteenth aspect is characterized in that, in the invention according to any one of the first to fifteenth aspects, the following expression is satisfied. 160 (mm) ⁇ N ⁇ f ⁇ 210 (mm) (13)
  • the total number of annular zones in the central region is N
  • the focal length of the objective lens in the first light flux is f (mm).
  • An optical pickup device has the objective lens according to any one of claims 1 to 16.
  • An optical information recording / reproducing device has the optical pickup device according to claim 17.
  • the optical pickup device preferably includes at least two light sources, a first light source and a third light source, and further includes a second light source. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing the first light beam on the information recording surface of the BD and condensing the third light beam on the information recording surface of the CD. The condensing optical system preferably condenses the second light flux on the information recording surface of the DVD.
  • the optical pickup device of the present invention preferably includes a light receiving element that receives a reflected light beam from the information recording surface of the BD and CD, and the light receiving element receives a reflected light beam from the information recording surface of the DVD.
  • the BD has three or more information recording surfaces stacked in the thickness direction.
  • the BD is an optical disc having three or more information recording surfaces in the thickness direction that have different distances from the light beam incident surface of the optical disc to the information recording surface (this is referred to as “transparent substrate thickness” in this specification). .
  • the thickness of the protective substrate that is the thickest in the BD is t1.
  • the DVD has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the CD has a protective substrate having a thickness of t3 (t2 ⁇ t3) and an information recording surface.
  • the DVD or CD may also be a multi-layer optical disk having a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • the recording density the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface. 0.01mm ⁇ t1 ⁇ 0.125mm (15) 0.5mm ⁇ t2 ⁇ 0.7mm (16) 1.0 mm ⁇ t3 ⁇ 1.3 mm (17)
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (18) and (19). 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (18) 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 (19)
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm to 440 nm, more preferably 390 nm to 415 nm
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm to 680 nm, more preferably.
  • the third wavelength ⁇ 3 of the third light source is preferably 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
  • first light source the second light source
  • third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • first light source, the second light source, and the third light source may all be fixedly housed in one package.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors.
  • a light receiving element may be used.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has an objective lens.
  • the condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens of the present invention is preferably a single plastic lens, but may be a glass lens.
  • a convex lens is preferable.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material
  • the resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the refractive index change rate dN / dT (° C.
  • the coupling lens is also a plastic lens.
  • a first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (1) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ⁇ 20 alkoxy groups or halogen groups.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV).
  • Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
  • R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group.
  • R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group.
  • the following additives may be added.
  • Stabilizer It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
  • phenol-based stabilizer conventionally known ones can be used.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate
  • 2 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like
  • JP-A Nos. 63-179953 and 1-168643 JP-A Nos. 63-179953 and 1-168643.
  • Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-but
  • the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl).
  • Phenyl) phosphite tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
  • each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
  • hydrophilic group of the surfactant examples include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms.
  • the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent.
  • Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like.
  • the aromatic ring include a phenyl group.
  • the surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
  • examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene
  • examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like.
  • amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
  • the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • the addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • Plasticizer The plasticizer is added as necessary to adjust the melt index of the copolymer.
  • Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisode
  • cycloolefin resins are preferably used.
  • ZEONEX manufactured by Nippon Zeon Co., Ltd. APEL manufactured by Mitsui Chemicals, Inc.
  • TOPAS® ADVANCED® POLYMERS manufactured by TOPAS and JSR manufactured by ARTON are preferable. Take as an example.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • the objective lens will be described below, but here, an objective lens for BD / DVD / CD compatibility will be described.
  • an objective lens for BD / CD compatibility there are only two regions, a central region and a peripheral region described below, and details thereof are omitted.
  • At least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region.
  • the central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good.
  • the central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 2, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface.
  • a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area.
  • the peripheral region may be a refracting surface, or a third optical path difference providing structure may be provided in the peripheral region.
  • the central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the central area of the objective lens can be said to be a BD / DVD / CD shared area used for recording / reproducing BD, DVD and CD. That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. The light is condensed so that information can be recorded and / or reproduced on the surface, and the third light flux passing through the central region is condensed so that information can be recorded / reproduced on the information recording surface of the CD.
  • the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam. Further, the first optical path difference providing structure is different from the thickness t1 of the BD protective substrate and the thickness t3 of the CD protective substrate with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference in the wavelength of the first light beam and the third light beam.
  • the intermediate area of the objective lens is used for BD / DVD recording / reproduction and can be said to be a BD / DVD shared area not used for CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the intermediate area is recorded as information recording on the DVD. Light is collected so that information can be recorded / reproduced on the surface.
  • the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the CD.
  • the third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the CD. As shown in FIG.
  • the spot center having a high light quantity density in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a portion SCN, a spot intermediate portion SMD whose light intensity density is lower than that of the spot central portion, and a spot peripheral portion SOT whose light intensity density is higher than that of the spot intermediate portion and lower than that of the spot central portion.
  • the center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare.
  • the spot peripheral part may be called a flare.
  • the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the CD.
  • the peripheral region of the objective lens is used for BD recording / reproduction, and can be said to be a BD-dedicated region that is not used for DVD / CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the BD.
  • the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD, and the third light flux that passes through the peripheral area does not converge. Do not collect light so that information can be recorded / reproduced on top.
  • the second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surface of DVD and CD. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surface of DVD and CD.
  • the first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region.
  • the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
  • optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure of the present invention is preferably a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the optical path difference providing structure is a single aspherical lens
  • the incident angle of the light flux to the objective lens differs depending on the height from the optical axis.
  • Each will be slightly different.
  • the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the diffractive structure is a single aspherical lens
  • the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be.
  • the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
  • the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center.
  • the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape.
  • the upper side is the light source side and the lower side is the optical disk side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface.
  • the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 4 (a))
  • the staircase structure has a small staircase shape in cross section including the optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ).
  • V level means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the optical path difference providing structure illustrated in FIG. 4C is referred to as a five-level step structure
  • the optical path difference providing structure illustrated in FIG. 4D is referred to as a two-level step structure (also referred to as a binary structure). .
  • the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated.
  • the unit shape is periodically repeated here naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated. As shown in FIG. 4 (a), the same sawtooth shape may be repeated, and as shown in FIG. 4 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center).
  • the first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing.
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side.
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens. It is also conceivable to provide the first basic structure and the second basic structure on different optical surfaces without overlapping. Similarly, the third basic structure and the fourth basic structure may be provided on different optical surfaces without overlapping.
  • the first optical path difference providing structure is preferably a structure in which at least the first basic structure and the second basic structure are overlapped, but is not limited thereto.
  • the first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
  • the first basic structure is a blaze type structure.
  • the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity that has passed through the first basic structure. Is made larger than any other order of the diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. This is called a (1/1/1) structure.
  • the step amount of the first basic structure does not become too large, so that the manufacture is facilitated, and the light quantity loss due to the manufacturing error can be suppressed, and the wavelength It is preferable because the diffraction efficiency fluctuation at the time of fluctuation can be reduced.
  • the first basic structure provided at least in the vicinity of the optical axis in the central region has a step in a direction opposite to the optical axis.
  • the step is directed in the direction opposite to the optical axis means a state as shown in FIG.
  • the first basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (1/1/1) structure.
  • at least a (1/1/1) structure step existing between the optical axis and the half-position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region is the optical axis. Is pointing in the opposite direction.
  • the step may be directed in the direction of the optical axis. That is, as shown in FIG. 6 (b), when the first foundation structure is in the vicinity of the optical axis, the step is directed in the opposite direction to the optical axis. It is good also as a shape which faces the direction of an optical axis. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
  • the direction of the step of the first basic structure in which the diffraction order of the first light beam is the first order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a sufficient working distance can be secured when the CD is used.
  • the first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have a negative paraxial power with respect to the luminous flux.
  • “having negative paraxial power” means that C 2 h 2 > 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
  • the second basic structure is also a blaze type structure.
  • the second-order diffracted light amount of the first light beam that has passed through the second basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the first basic structure.
  • the light quantity is made larger than any other order of diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. This is called a (2/1/1) structure.
  • the step amount of the second basic structure does not become too large, which facilitates manufacturing and suppresses light loss caused by manufacturing errors. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
  • the step of the second basic structure provided at least in the vicinity of the optical axis in the central region is directed in the direction of the optical axis.
  • the step is directed in the direction of the optical axis means a state as shown in FIG.
  • the second basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (2/1/1) structure.
  • the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 6A, the step is directed in the direction of the optical axis when the second foundation structure is near the optical axis, but is switched halfway, and the step of the second foundation structure is near the optical axis near the intermediate region. It is good also as a shape which faces the reverse direction.
  • the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
  • the first optical path difference providing structure is formed by superimposing the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure, the height of the step is extremely high. Can be lowered. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
  • the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD.
  • an objective lens that has a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • a diffraction efficiency of 80% or more for the wavelength ⁇ 1 a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • the first optical path difference providing structure in which the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure are overlapped is expressed as follows. be able to.
  • the first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis.
  • the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (20) and (21). More preferably, the following conditional expressions (20) and (21) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase.
  • n the refractive index of the objective lens at the first wavelength ⁇ 1.
  • the first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis.
  • An optical path difference providing structure having both of the steps facing the direction of.
  • the optical path difference providing structure has a step existing between at least a half position in the direction perpendicular to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
  • the shape of the foundation structure is finely adjusted so that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure are matched.
  • d11 and d12 of the first optical path difference providing structure are the following conditional expressions (24) and (25 ) Is preferably satisfied. More preferably, the following conditional expressions (24) and (25) are satisfied in all the regions of the central region. 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (24) 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (25)
  • conditional expressions (22) ′ and (23) ′ are preferably satisfied. More preferably, the following conditional expressions (24) ′ and (25) ′ are satisfied in all the regions of the central region. 0.9 ⁇ ( ⁇ 1 / (n ⁇ 1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n ⁇ 1)) (24) ′ 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (25) '
  • the spherical aberration when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (2 / In the second basic structure having the 1/1) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in the undercorrection direction (under).
  • the refractive index of the objective lens when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature.
  • the paraxial power of the first foundation structure is larger than that of the second foundation structure. That is, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure.
  • a working distance in the CD can be secured even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens.
  • the chromatic aberration is reduced, a good light spot is formed even when the light source has a high frequency superposition, and the problem of stray light when the optical disk has a plurality of information recording surfaces is reduced.
  • one ring zone closest to the optical axis of the second basic structure has two or more ring zones of the first basic structure. It is preferable that 6 (particularly preferably 2 to 3) are included.
  • the “ring zone” closest to the optical axis of the second foundation structure is described, but in practice, it is usually a “circle” including the optical axis. Accordingly, the “annular zone closest to the optical axis” mentioned here includes a circular shape.
  • 1 to 5 ring zones of the first foundation structure are included in one ring zone of the second foundation structure. ) Is included.
  • FIG. 7D when the first basic structure and the second basic structure are superimposed as they are, a part may protrude as shown by a dotted line, but the width of the protruding part is 5 ⁇ m or less. If it is narrow, the projecting portion is shifted in parallel along the optical axis, and eliminating the projecting portion has no significant effect, so that one annular zone of the second foundation structure can have a plurality of the first foundation structure.
  • the zonal is just like that (see the solid line). Therefore, in the example of FIG.7 (d), it handles as the ring zone of three 1st foundation structures on one ring zone of a 2nd foundation structure.
  • a dent may be eliminated in the same manner even when a dent having a width of 5 ⁇ m or less is generated.
  • the optical disc has a plurality of information recording surfaces while ensuring a working distance in the CD even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. This is preferable because the problem of stray light can be reduced and the temperature and wavelength characteristics can be improved when using a DVD.
  • the number N2 of the first foundation structure annular zones superimposed on one annular zone closest to the intermediate region in the second foundation structure is preferably equal to or smaller than N1, for example, 1 to 5 overlapping zones. It should be done.
  • the first basic structure preferably has a positive diffractive power, so that a working distance when using a CD can be secured even for an objective lens having a large axial thickness such as an objective lens for BD / DVD / CD.
  • the second basic structure preferably has a negative diffraction power. As described above, since both the first basic structure and the second basic structure have diffraction power, when using an optical disk having a plurality of information recording surfaces, unnecessary light reflected by the information recording surface which is not a recording / reproducing object is required light. It is preferable because it can be further away from the center.
  • the first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (27).
  • the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range.
  • the first best focus position is the best focus position of the necessary light used for CD recording / reproduction
  • the second best focus position is the best of the luminous flux having the largest light quantity among the unnecessary light that is not used for CD recording / reproduction. The focus position.
  • f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus
  • L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
  • conditional expression (27) ′ is satisfied. 0.10 ⁇ L / f13 ⁇ 0.25 (27) ′
  • FIGS. 7A, 7B, and 7C Several preferable examples of the first optical path difference providing structure described above are shown in FIGS. 7A, 7B, and 7C.
  • FIG. 7 shows the first optical path difference providing structure ODS1 as a flat plate for convenience, it may be provided on a single aspherical convex lens.
  • the first basic structure BS1 which is a (1/1/1) diffraction structure is overlapped with the second basic structure BS2 which is a (2/1/1) diffraction structure.
  • the step of the second basic structure BS2 faces the direction of the optical axis OA
  • the step of the first basic structure BS1 faces the direction opposite to the optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • step difference of 2nd foundation structure BS2 has faced the direction of optical axis OA
  • step difference of 1st foundation structure BS1 has also faced the direction of optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • step difference of 1st foundation structure BS1 has faced the direction opposite to optical axis OA
  • step difference of 2nd foundation structure BS2 has also faced the direction opposite to optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • the focal length of the first light flux of the objective lens is f (mm)
  • the focal length of the first light flux of the objective lens is f (mm)
  • the following expression is satisfied.
  • the number of steps substantially parallel to the optical axis in the central region may be regarded as the total number of annular zones in the central region.
  • first optical path difference providing structure As described above, the preferable structure of the first optical path difference providing structure has been described focusing on the structure in which the blaze type (1/1/1) structure and the blaze type (2/1/1) structure are superimposed. Examples of other first optical path difference providing structures include the following.
  • a first optical path difference providing structure composed only of a blazed (2/1/1) structure or a (1/1/1) structure alone while utilizing the magnification difference of the objective lens.
  • the 1st optical path difference providing structure which becomes becomes.
  • Preferred examples of (B) include a first optical path difference providing structure consisting only of a (1/3/4) structure which is a 7-level staircase structure, and a 7-level staircase structure (1 / -2 / -3) a first optical path difference providing structure consisting only of a structure, a first optical path difference providing structure consisting only of a (1 / -1 / -2) structure which is a six-level stepped structure, and the like.
  • the blaze type (2/1/1) structure and a blaze-type (1/0/0) structure may be mentioned as a first optical path difference providing structure.
  • a first optical path difference providing structure in which a blaze type (2/1/1) structure and a (1/0/0) structure that is a four-level step structure are overlapped.
  • a first optical path difference providing structure in which a blaze type (2/1/1) structure and a (0/0/1) structure that is a two-level stepped structure are superimposed.
  • the second optical path difference providing structure is preferably a structure in which at least two basic structures of the third basic structure and the fourth basic structure are overlapped, but is not limited thereto.
  • both the third basic structure and the fourth basic structure are blazed structures.
  • the third basic structure makes the first-order diffracted light quantity of the first light flux that has passed through the third basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity of the second light flux that has passed through the third basic structure Is preferably larger than any other order of diffracted light.
  • the first-order diffracted light amount of the third light flux that has passed through the third basic structure is larger than any other order diffracted light amount.
  • the fourth foundation structure makes the second-order diffracted light amount of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light amount, and the first-order of the second light beam that has passed through the fourth foundation structure. Is preferably larger than any other order of diffracted light. Further, the first-order diffracted light amount of the third light flux that has passed through the fourth basic structure is made larger than any other order diffracted light amount.
  • the orders of the diffracted light having the highest light intensity in the first basic structure and the third basic structure are matched, and the orders of the diffracted light having the highest light intensity in the second basic structure and the fourth basic structure are matched. Therefore, the spherical aberration can be made continuous even when the temperature and the wavelength change for the light flux passing through the central region and the intermediate region, and as a result, the occurrence of higher order aberrations can be suppressed.
  • the second optical path difference providing structure may be a structure in which the fifth basic structure is overlapped in addition to the third and fourth basic structures. However, in order to simplify the structure and suppress a decrease in light utilization efficiency due to manufacturing errors.
  • the second optical path difference providing structure preferably includes only the third basic structure and the fourth basic structure.
  • the fifth basic structure makes the 0th-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure.
  • the 0th-order diffracted light amount is made larger than any other order diffracted light amount
  • the G-th order diffracted light amount of the third light flux that has passed through the fifth basic structure is made larger than any other order diffracted light amount. It is preferable.
  • G is ⁇ 1.
  • the fifth basic structure is preferably a two-level staircase structure (also referred to as a binary structure) as shown in FIG.
  • the third-order diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the second-order diffracted light amount of the second light beam that has passed through the third basic structure is changed to other values.
  • the diffraction light quantity of any order is made larger (also referred to as (3/2) structure)
  • the second-order diffraction light quantity of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffraction light quantity
  • the first-order diffracted light amount of the second light beam that has passed through the four basic structures may be made larger than any other order diffracted light amount (also referred to as a (2/1) structure). With such a configuration, the diffraction efficiency in BD can be further increased.
  • the 3rd foundation structure and the 4th foundation structure are the combination of the (1/1) structure and the (2/1) structure, it is the combination of the (3/2) structure and the (2/1) structure.
  • the third basic structure provided at least in the middle region at the position closest to the central region has the step in the direction opposite to the optical axis, and at least in the middle region at the position closest to the central region.
  • step difference has faced the direction of an optical axis. More preferably, the steps of all the third foundation structures in the intermediate region are directed in the direction opposite to the optical axis, and the steps of all the fourth foundation structures in the intermediate region are directed in the direction of the optical axis. is there.
  • the spherical aberration changes in an undercorrected (under) direction
  • the wavelength of the incident light beam becomes longer. If it changes, the spherical aberration may change in the direction of under-correction (under).
  • the wavelength of the light source also increases due to the increase in the environmental temperature. Is used to correct the deterioration of the spherical aberration due to the change in the refractive index of the objective lens, so that a more appropriate condensing spot can be formed on the information recording surface of each optical disc when the environmental temperature changes.
  • the spherical aberration changes in the undercorrection (under) direction, and the incident light is incident on the other side.
  • the spherical aberration may be changed in the overcorrection (over) direction.
  • the spherical aberration when the wavelength of the incident light beam is changed so as to become longer, the spherical aberration changes in the undercorrection (under) direction. If the spherical aberration is changed in the overcorrection direction when the wavelength is changed to be longer, when the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the first aberration is changed.
  • the amount of change of the third-order spherical aberration when the wavelength of one light beam changes by +5 nm can be set to ⁇ 30 m ⁇ rms to +50 m ⁇ rms, which is preferable.
  • the amount of change in the third-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -10 m ⁇ rms or more and +10 m ⁇ rms or less. More preferably.
  • the amount of change in the fifth-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -20 m ⁇ rms or more and 20 m ⁇ rms or less. It is preferable that More preferably, it is ⁇ 10 m ⁇ rms or more and +10 m ⁇ rms or less.
  • the two-optical path difference providing structure is composed of only the third and fourth basic structures, flare can be easily produced when using the CD. Accordingly, flare out when using a CD can be performed with a simple second optical path difference providing structure, so that a decrease in light utilization efficiency due to a shadow effect is suppressed, and a decrease in light utilization efficiency due to manufacturing errors is also suppressed. As a result, the light use efficiency can be improved.
  • the spherical aberration is changed in an undercorrected (under) direction, and the wavelength of the incident light beam is longer in the third basic structure.
  • the spherical aberration changes in the overcorrected (over) direction because the flare can be easily moved farther when the CD is used.
  • the ring zone of the third basic structure is 1 to 3 in one ring zone closest to the central region of the fourth basic structure. It is preferable that the number (particularly preferably 2 to 3) is included. More preferably, in the second optical path difference providing structure, 1 to 5 (particularly preferably 2 to 3) ring zones of the third foundation structure are provided for one ring zone closest to the peripheral region of the fourth foundation structure. It is included.
  • the third optical path difference providing structure preferably has a sixth basic structure.
  • the P-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than any other order diffracted light amount, and the Q-order diffraction of the second light beam that has passed through the sixth basic structure.
  • the light quantity is made larger than any other order of diffracted light quantity, and the R-order diffracted light quantity of the third light flux that has passed through the sixth basic structure is made larger than any other order of diffracted light quantity.
  • P is preferably 5 or less in order to suppress fluctuations in diffraction efficiency during wavelength fluctuations.
  • FIG. 8 shows a schematic diagram of a preferable objective lens. It is the figure which showed the upper half from the optical axis among the cross sections of the objective lens containing optical axis OA. Note that FIG. 8 is a schematic diagram to the last, and is not a drawing showing an accurate length ratio or the like based on the embodiment.
  • a first optical path difference providing structure ODS1 is provided in the central area
  • a second optical path difference providing structure ODS2 is provided in the middle area
  • a third optical path difference providing structure is provided in the peripheral area.
  • the first optical path difference providing structure ODS1 in FIG. 8 is a (2/1/1) blazed structure in which the step is directed toward the optical axis and a (1/1/1) second basic structure BS2.
  • the blazed structure has a structure in which a first basic structure BS1 with a step facing away from the optical axis is superimposed.
  • the second foundation structure BS2 has three annular zones, and four annular zones of the first foundation structure BS1 are included on the annular zone (circular shape) closest to the optical axis in the second foundation structure BS2. ing.
  • two annular zones of the first foundation structure BS1 are included in one annular zone closest to the intermediate region in the second foundation structure BS2.
  • the second optical path difference providing structure ODS2 in FIG. 8 is a (2/1/1) blazed structure in which a step is directed toward the optical axis, and a (1/1/1) fourth basic structure BS4.
  • the blazed structure has a structure in which a third basic structure BS3 having a level difference opposite to the optical axis is superimposed.
  • the fourth foundation structure BS4 is a three-ring zone, and three ring zones of the third foundation structure BS3 are included on the zone closest to the central region in the fourth foundation structure BS4. Further, one ring zone of the third foundation structure BS3 is included in one ring zone closest to the peripheral region in the fourth foundation structure BS4.
  • the third optical path difference providing structure ODS3 in FIG. 8 is a (2/1/1) blazed structure, and is composed only of the sixth basic structure BS6 in which the step is directed toward the optical axis.
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the boundary between the central region and the intermediate region of the objective lens is 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more, 1.15 ⁇ NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0.95 ⁇ NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion has a range of 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more and 1.15 ⁇ NA 3 or less) when the third light flux is used. It is preferable that it exists in.
  • the objective lens preferably satisfies the following conditional expression (28). 0.8 ⁇ d / f ⁇ 1.5 (28)
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux.
  • the objective lens When an optical disk with a short wavelength and high NA such as BD is used, the objective lens is likely to generate astigmatism and decent coma, but the conditional expression (28) is satisfied. As a result, it is possible to suppress the generation of astigmatism and decentration coma.
  • conditional expression (28) since the objective lens becomes a thick objective lens with a thick on-axis thickness, the working distance at the time of CD recording / reproduction tends to be shortened, so the upper limit value of conditional expression (28) may not be exceeded. preferable.
  • the objective lens according to the present invention when the third-order spherical aberration is minimized in the objective lens incident with the first light beam at room temperature (25 ⁇ 3 ° C.) and the cover glass thickness T (mm) satisfying the expression (1).
  • the sine condition violation amount at the magnification M takes the first maximum value at the pupil radius H1, the second maximum value at the pupil radius H2, and the pupil radius H3 to 0.9.
  • the expression (3) is satisfied (however, the pupil radii H1, H2, and H3 are relative values when the effective radius of the objective lens is 1), and the derivative ⁇ ( h) satisfies the expressions (4) to (6).
  • fB3 WD1 + t1 ⁇ (1-1 / n1)
  • fB3 WD3 + t3 ⁇ (1-1 / n3)
  • Abbe number of the material of the objective lens
  • m1 Imaging magnification when the light beam having the first wavelength ⁇ 1 is incident on the objective lens
  • m3 Imaging magnification when the light beam having the third wavelength ⁇ 3 is incident on the objective lens
  • d Objective Lens axial thickness (mm)
  • WD1 Working distance when using BD (mm)
  • WD3 Working distance when using CD (mm)
  • n1 Refractive index of the BD protective substrate for the light beam having the first wavelength ⁇ 1
  • n3 Refractive index of the CD protective substrate for the light beam having the third wavelength ⁇ 3
  • the sine condition violation amount has a positive maximum value and the sine condition violation amount has a negative minimum value between 70% and 90% of the effective radius.
  • the negative minimum value is preferably between 20% and 60% of the effective radius.
  • the value of the sine condition violation amount at 100% of the effective radius is substantially zero. Incidentally, almost 0 means ⁇ 0.001 to 0.001 mm.
  • the third-order coma aberration LTCM3 generated when only the objective lens is tilted by a predetermined angle, and the same direction as the objective lens satisfies the following expression.
  • the first light beam, the second light beam, and the third light beam are incident on the objective lens as parallel light or substantially parallel light.
  • the second light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light.
  • all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable.
  • the imaging magnification m1 of the objective lens in the first light flux incident on the objective lens as parallel light or substantially parallel light satisfies the following formula (7). -0.01 ⁇ m1 ⁇ 0.01 (7)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following expression (29). Is preferred. -0.01 ⁇ m2 ⁇ 0.01 (29)
  • the imaging magnification m2 of the objective lens when the second light flux is incident on the objective lens satisfies the following formula (29) ′. m2 ⁇ 0 (29) '
  • m2 The imaging magnification when the light beam having the second wavelength ⁇ 2 is incident on the objective lens preferably satisfies the following (29) ′′. ⁇ 0.025 ⁇ m2 ⁇ ⁇ 0.01 (29) ”
  • the imaging magnification m3 of the objective lens in the third light beam incident on the objective lens as the parallel light beam or the substantially parallel light beam satisfies the following formula (8). -0.01 ⁇ m3 ⁇ 0.01 (8)
  • the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.15 mm or more and 1.5 mm or less. Preferably, it is 0.2 mm or more and 0.5 mm or less.
  • the WD of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 1.3 mm or less.
  • the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
  • the coupling lens may have an actuator through which at least the first light beam and the second light beam pass and move the coupling lens in the optical axis direction.
  • the BD has a plurality of information recording surfaces such as two layers or three layers or more
  • the difference in the thickness of the transparent substrate is required. Therefore, spherical aberration generated due to the difference in thickness must be corrected. It is conceivable to correct the generated spherical aberration by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens. Further, spherical aberration that occurs when the temperature or wavelength changes can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
  • the position of the coupling lens in the optical axis direction is fixed when using DVD. It is preferable.
  • the reason is that flare does not occur when using BD, but flare occurs when using DVD.
  • the flare aberration changes, and as a result, the flare is recorded / reproduced.
  • the reason is that there is a possibility of adversely affecting the driving force, and the reason why it is desired to simplify the control of the displacement of the coupling lens in the drive.
  • the wavelength of the incident light beam in one of the third basic structure and the fourth basic structure constituting the second optical path difference providing structure of the objective lens So that the spherical aberration changes in the direction of insufficient correction, and on the other side, the spherical aberration changes in the direction of overcorrection when the wavelength of the incident light beam changes longer.
  • both the temperature characteristic and the wavelength characteristic when using the DVD can be improved, and as a result, when using the DVD, the position of the coupling lens in the optical axis direction is fixed when the second light beam passes.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an optical information recording / reproducing apparatus including an objective lens that can be performed in the above-described manner, and an objective lens suitable for the optical pickup apparatus.
  • FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region.
  • FIG. 1 It is a conceptual diagram of a 1st optical path difference providing structure, (a) thru
  • SA longitudinal spherical aberration amount
  • SC sine condition unsatisfied amount
  • FIG. 9 shows BD, DVD, and CD, which are optical discs having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in ascending order of distance from the light incident surface of the optical disc) in the thickness direction. It is a figure which shows roughly the structure of optical pick-up apparatus PU1 of this Embodiment which can record / reproduce information appropriately with respect to this. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment.
  • the first optical path difference providing structure already described in detail is formed in the center region CN
  • the second optical path difference providing structure already described in detail is formed in the intermediate region MD.
  • a third optical path difference providing structure is formed in the peripheral region OT.
  • the third optical path difference providing structure is a blazed diffractive structure.
  • the objective lens of the present embodiment is a plastic lens.
  • the first optical path difference providing structure formed in the center region CN of the objective lens OBJ is a structure in which the first basic structure and the second basic structure are overlapped.
  • the first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is set to any other order.
  • the first order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN.
  • the step is directed in the direction opposite to the optical axis, and in the second basic structure, the second-order diffracted light quantity of the first light beam that has passed through the second basic structure is greater than the diffracted light quantity of any other order. 1 of the second light flux that has passed through the second basic structure. Diffracted light quantity of any other order is made larger, the first order diffracted light quantity of the third light flux that has passed through the second basic structure is made larger than any other order diffracted light quantity, and the room temperature (25 ⁇ 3 [deg.] C.
  • the magnification M at which the third-order spherical aberration is minimized in the objective lens on which the first light beam is incident satisfies the expression (2)
  • the sine condition violation amount at the magnification M is the first maximum value at the pupil radius H1 and the second maximum value at the pupil radius H2
  • the equation (3) is satisfied when the pupil radius H3 is 0.9 or more.
  • the pupil radii H1, H2, and H3 are relative values when the effective radius of the objective lens is set to 1.
  • the derivative ⁇ (h) of the sine condition violation amount satisfies the equations (4) to (6). Fulfill.
  • fB3 WD1 + t1 ⁇ (1-1 / n1)
  • fB3 WD3 + t3 ⁇ (1-1 / n3)
  • Abbe number of the material of the objective lens
  • m1 Imaging magnification when the light beam having the first wavelength ⁇ 1 is incident on the objective lens
  • m3 Imaging magnification when the light beam having the third wavelength ⁇ 3 is incident on the objective lens
  • d Objective Lens axial thickness (mm)
  • WD1 Working distance when using BD (mm)
  • WD3 Working distance when using CD (mm)
  • n1 Refractive index of the BD protective substrate for the light beam having the first wavelength ⁇ 1
  • n3 Refractive index of the CD protective substrate for the light beam having the third wavelength ⁇ 3
  • the coupling lens COL is moved to the first predetermined position by a single-axis actuator (not shown).
  • the first information recording surface is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the objective lens OBJ passes through the transparent substrate PL1 having the first thickness. It becomes a spot formed on RL1.
  • the reflected light flux modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and coupled to the coupling lens COL. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the coupling lens COL is moved to the second predetermined position by a uniaxial actuator (not shown).
  • the / 4 wavelength plate QWP converts linearly polarized light into circularly polarized light
  • the diameter of the light beam is regulated by a diaphragm (not shown)
  • the second information recording surface RL2 is passed through the transparent substrate PL2 having the second thickness by the objective lens OBJ. It becomes a spot formed on the top.
  • the reflected light flux modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and coupled to the coupling lens COL. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the coupling lens COL is moved to a third predetermined position by a uniaxial actuator (not shown).
  • the linearly polarized light is converted into circularly polarized light by the ⁇ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the third information recording surface is passed through the transparent substrate PL3 having the third thickness by the objective lens OBJ. It becomes a spot formed on RL3.
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OBJ.
  • the light beam collected by the central region and the intermediate region of the objective lens OBJ (the light beam that has passed through the peripheral region is flared to form a spot peripheral portion) is recorded on the DVD through the protection substrate PL4 It becomes a spot formed on the surface RL4 and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL4 is transmitted again through the objective lens OBJ, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a parallel light beam by the collimator lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on DVD can be read using the output signal of light receiving element PD.
  • the linearly polarized light is converted into circularly polarized light by the ⁇ / 4 wavelength plate QWP, and is incident on the objective lens OBJ.
  • the light beam collected by the central region of the objective lens OBJ (the light beam that has passed through the intermediate region and the peripheral region is flared to form a spot peripheral portion) is recorded on the CD through the protective substrate PL5 This is a spot formed on the surface RL5.
  • the reflected light flux modulated by the information pits on the information recording surface RL5 is again transmitted through the objective lens OBJ, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a parallel light flux by the collimator lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on CD can be read using the output signal of light receiving element PD.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
  • X (h) is an axis in the optical axis direction (with the light traveling direction being positive), ⁇ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
  • wavelength used
  • m diffraction order
  • ⁇ B manufacturing wavelength
  • h distance in the direction perpendicular to the optical axis from the optical axis.
  • the pitch P (h) ⁇ B / ( ⁇ (2i ⁇ C i ⁇ h 2i-1 )).
  • Example 1 The objective lens of Example 1 is a plastic single lens. Table 1 shows lens data.
  • a conceptual diagram of the first optical path difference providing structure of the first embodiment is shown in FIG. 6A (FIG. 6A is a conceptual diagram different from the actual shape of the first embodiment).
  • the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region.
  • the first basic structure BS1 which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA.
  • 0.060 ( ⁇ rms),
  • 0.046 ( ⁇ rms).
  • FIG. 10A is a diagram showing longitudinal spherical aberration SA and sine condition dissatisfaction amount SC when BD is used in the objective lens of Example 1
  • FIG. 10B is the use of CD in the objective lens of Example 1.
  • FIG. 6 is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfactory amount SC, with the vertical axis indicating 1 as the height from the optical axis corresponding to each effective diameter of BD / CD.
  • the third-order spherical aberration is minimized in the objective lens on which the first light beam is incident at room temperature (25 ⁇ 3 ° C.) and the cover glass thickness T (mm) satisfying the expression (1).
  • Example 2 The objective lens of Example 2 is a plastic single lens.
  • Table 2 shows lens data.
  • a conceptual diagram of the first optical path difference providing structure of Example 2 is shown in FIG. 6A (FIG. 6A is a conceptual diagram different from the actual shape of Example 2).
  • the (1/0/0) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze type diffraction structure in the entire central region.
  • 0.057 ( ⁇ rms) and
  • 0.043 ( ⁇ rms).
  • FIG. 11A is a diagram showing longitudinal spherical aberration SA and sine condition dissatisfaction amount SC when BD is used in the objective lens of Example 2
  • FIG. 11B is a diagram showing CD use in the objective lens of Example 2.
  • FIG. 6 is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfactory amount SC, with the vertical axis indicating 1 as the height from the optical axis corresponding to each effective diameter of BD / CD.
  • the third-order spherical aberration is minimized in the objective lens on which the first light flux is incident at room temperature (25 ⁇ 3 ° C.) and the cover glass thickness T (mm) satisfying the expression (1).
  • Example 3 The objective lens of Example 3 is a plastic single lens. Table 3 shows lens data.
  • a conceptual diagram of the first optical path difference providing structure of the third embodiment is shown in FIG. 6A (FIG. 6A is a conceptual diagram different from the actual shape of the third embodiment).
  • the first optical path difference providing structure of Example 3 is a two-level step-type structure in the second basic structure BS2 that is a (2/1/1) blazed diffraction structure in the entire central region ( This is an optical path difference providing structure in which the first basic structure BS1 which is another diffraction structure of 0/0/1) structure is overlapped.
  • 0.066 ( ⁇ rms), and
  • 0.047 ( ⁇ rms).
  • FIG. 12A is a diagram showing longitudinal spherical aberration SA and sine condition dissatisfaction amount SC when BD is used in the objective lens of Example 3, and FIG. 12B is CD use in the objective lens of Example 3.
  • FIG. 6 is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfactory amount SC, with the vertical axis indicating 1 as the height from the optical axis corresponding to each effective diameter of BD / CD.
  • the third-order spherical aberration is minimized in the objective lens on which the first light beam is incident at room temperature (25 ⁇ 3 ° C.) and the cover glass thickness T (mm) satisfying the expression (1).
  • Example 4 The objective lens of Example 4 is a plastic single lens. Table 4 shows the lens data.
  • a conceptual diagram of the first optical path difference providing structure of the fourth embodiment is shown in FIG. 6A (FIG. 6A is a conceptual diagram different from the actual shape of the fourth embodiment).
  • the first optical path difference providing structure of Example 4 is a (1/3/4) seven-level step-type diffractive structure in the entire central region.
  • (FB2-fB1) 0.00 mm,
  • 0.056 ( ⁇ rms), and
  • 0.042 ( ⁇ rms).
  • FIG. 13A is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfied amount SC when BD is used in the objective lens of Example 4, and FIG. 13B is CD use in the objective lens of Example 1.
  • FIG. 6 is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfactory amount SC, with the vertical axis indicating 1 as the height from the optical axis corresponding to each effective diameter of BD / CD.
  • the third-order spherical aberration is minimized in the objective lens that is incident with the first light flux at room temperature (25 ⁇ 3 ° C.) and at the cover glass thickness T (mm) satisfying the expression (1).
  • Table 5 summarizes the numerical values of the formulas defined in the claims corresponding to each example.

Abstract

Provided are an optical pickup device with objective lens, an optical information recorder / player, and an objective lens optimal for use therein which, while simultaneously achieving both BD skew adjustment and off-axis characteristics suitable for CDs, keep away unnecessary diffracted light prone to result in error signals, and, while further having excellent off-axis characteristics with all BDs and CDs, are capable of achieving compatibility with at least two types of optical discs, BDs and CDs, with a common objective lens. When the paraxial power is adjusted giving priority to BDs, the CD sine condition may become inadequate and coma aberration occurring during incidence of off-axis light may increase. Then, using the fact that BDs and CDs have different effective diameters, in the CD effective diameter range, a design is used which gives priority to the CD sine condition, and outside of the CD effective diameter range, a design is used which gives priority to the BD sine condition. Specifically, in the CD effective diameter range, the offense against the sine condition of BDs is adjusted so as to have a maximum value SCmin on the negative side, and outside of the CD effective diameters, the offense against the sine condition of BDs is adjusted so as to have a maximum value SCmax on the positive side.

Description

光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
 本発明は、厚さ方向に3つ以上の情報記録面を有する光ディスクに対して情報の記録及び/又は再生を行える光ピックアップ装置用の対物レンズ及び光ピックアップ装置並びに光情報記録再生装置に関する。 The present invention relates to an objective lens for an optical pickup device, an optical pickup device, and an optical information recording / reproducing device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction.
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。 There is known a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm. As an example, an optical disc for recording / reproducing information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-ray Disc (hereinafter referred to as BD), DVD (NA 0.6, light source wavelength 650 nm, storage capacity 4. It is possible to record 25 GB of information per layer on an optical disk having a diameter of 12 cm, which is the same size as 7 GB).
 ところで、BDに対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDやCD(コンパクトディスク)が販売されている現実をふまえると、BDに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDやCDに対しても同様に適切に情報の記録/再生ができるようにすることが、BD用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、BD用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、BDと、DVDやCDに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。 By the way, simply saying that information can be recorded / reproduced appropriately with respect to a BD cannot be said to be sufficient as a product of an optical disc player / recorder (optical information recording / reproducing apparatus). In light of the reality that DVDs and CDs (compact discs) on which a wide variety of information is recorded are currently being sold, it is not possible to record / reproduce information with respect to BDs. For example, DVDs owned by users, Similarly, it is possible to appropriately record / reproduce information on a CD, which leads to an increase in the commercial value of an optical disc player / recorder for BD. From such a background, the optical pickup device mounted on the optical disc player / recorder for BD has a performance capable of appropriately recording / reproducing information while maintaining compatibility with BD and DVD and CD. Is desired.
 BDと、DVDやCDに対しても互換性を維持しながら適切に情報を記録/再生できるようにする方法として、BD用の光学系とDVDやCD用の光学系とを情報を記録/再生する光ディスクの記録密度に応じて選択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコストが増大する。 As a method for recording / reproducing information appropriately while maintaining compatibility with BD and DVD / CD, information is recorded / reproduced between BD optical system and DVD / CD optical system. Although a method of selectively switching according to the recording density of the optical disk to be used is conceivable, a plurality of optical systems are required, which is disadvantageous for downsizing and increases the cost.
 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性を有する光ピックアップ装置では、BD用の光学系とDVDやCD用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らすのが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記録/再生波長が互いに異なる複数種類の光ディスクに対して共通な対物レンズを得るためには、球面収差の波長依存性を有する回折構造等の光路差付与構造を対物レンズに形成する必要がある。 Therefore, in order to simplify the configuration of the optical pickup device and to reduce the cost, in the compatible optical pickup device, the optical system for BD and the optical system for DVD or CD are used in common. It is preferable to reduce the number of optical components constituting the apparatus as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common. In order to obtain a common objective lens for a plurality of types of optical disks having different recording / reproducing wavelengths, it is necessary to form an optical path difference providing structure such as a diffraction structure having a wavelength dependency of spherical aberration in the objective lens. is there.
 更に、従来のBDは1層もしくは2層の情報記録面を有しているものが多いが、1枚のBDに、より大きなデータを保存したいという市場の要求から、3層以上の情報記録面を有するBDについても実用化を目指して研究が進んでいる。しかるに、情報の記録/再生を行う際の光束のNAが0.85と大きいため、3つ以上の情報記録面を有するBDでは、一の情報記録面に対して最小の球面収差を付与するようにすると、基板厚さが異なる他の情報記録面においては球面収差が増大し、適切に情報の記録/再生を行えなくなるという問題がある。かかる球面収差の問題は情報記録面の数が多くなるほど(すなわち、表面からの距離が最も小さい情報記録面と表面からの距離が最も大きい情報記録面との間隔が大きくなるほど)顕在化する。これに対し、光源と対物レンズとの間に配置されたカップリングレンズを光軸方向に移動させることにより、基板厚が異なることにより生ずる球面収差を補正することができる。しかしながら、このような方式の場合、対物レンズには収束光や発散光が入射することとなり、BDのスキュー調整をどのように行うかという問題がある。尚、情報の記録/再生を行うべき情報記録面をある情報記録面から他の情報記録面へと変える動作を、本明細書では「フォーカスジャンプ」と呼ぶことがある。 Furthermore, many of the conventional BDs have one or two layers of information recording surface, but due to the market demand to store larger data on one BD, the information recording surface of three or more layers. Research is also progressing with the aim of commercialization of BDs having the same. However, since the NA of the luminous flux when recording / reproducing information is as large as 0.85, in a BD having three or more information recording surfaces, a minimum spherical aberration is imparted to one information recording surface. In this case, spherical aberration increases on other information recording surfaces with different substrate thicknesses, and there is a problem that information cannot be recorded / reproduced appropriately. The problem of spherical aberration becomes more apparent as the number of information recording surfaces increases (that is, as the distance between the information recording surface having the smallest distance from the surface and the information recording surface having the largest distance from the surface increases). On the other hand, by moving the coupling lens disposed between the light source and the objective lens in the optical axis direction, it is possible to correct spherical aberration caused by the difference in substrate thickness. However, in such a system, convergent light or divergent light is incident on the objective lens, and there is a problem of how to adjust the skew of the BD. The operation of changing the information recording surface on which information is to be recorded / reproduced from one information recording surface to another information recording surface may be referred to as “focus jump” in this specification.
 ここで、特許文献1には、3つ以上の情報記録面を有するBD、DVD、CDに使用可能な対物レンズ、及びこの対物レンズを搭載した光ピックアップ装置が記載されている。しかるに、BDのスキュー調整とCDにおける軸外特性の確保は、一般的にはトレードオフの関係となるところ、特許文献1の技術は、BDでスキュー調整を行うためのレンズティルト感度を課題として創成されたものであって、BD、DVD、CDの軸外特性は考慮されていない。 Here, Patent Document 1 describes an objective lens that can be used for a BD, a DVD, and a CD having three or more information recording surfaces, and an optical pickup device equipped with the objective lens. However, the BD skew adjustment and securing of off-axis characteristics in CD are generally in a trade-off relationship. However, the technology of Patent Document 1 creates a lens tilt sensitivity for performing skew adjustment in BD as an issue. The off-axis characteristics of BD, DVD, and CD are not considered.
特開2010-170634号公報JP 2010-170634 A
 本発明は、上述の課題を解決することを目的としたものであり、BDのスキュー調整とCDにおける軸外特性を両立しつつ、エラー信号を招く不要な回折光を遠ざけ、更にはBD/CDの全てで軸外特性を良好としながら、BD/CDの少なくとも2種類の光ディスクの互換を共通の対物レンズで行うことを可能とする対物レンズを備えた光ピックアップ装置並びに光情報記録再生装置及びそれに好適な対物レンズを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and while keeping both the BD skew adjustment and the off-axis characteristics in the CD, the unnecessary diffracted light that causes an error signal is kept away, and further, the BD / CD. Optical pickup apparatus, optical information recording / reproducing apparatus, and optical information recording / reproducing apparatus including an objective lens capable of performing compatibility of at least two types of BD / CD optical discs with a common objective lens An object is to provide a suitable objective lens.
 請求項1に記載の対物レンズは、波長λ1(390nm<λ1<415nm)の第1光束を出射する第1光源と、第3波長λ3(760nm≦λ3≦820nm)の第3光束を出射する第3光源と、対物レンズとを有し、光束入射面からの距離(透明基板厚とするが、最も厚い透明基板厚をTMAX(mm)とする)が互いに異なる情報記録面を厚さ方向に3つ以上有するBDにおけるいずれかの情報記録面を選択して、前記第1光束を前記対物レンズにより前記選択された情報記録面に集光することによって、情報の記録及び/または再生を行うと共に、前記第3光束を前記対物レンズにより透明基板厚がt3(mm)(t1<t3)の保護基板を有するCDの情報記録面に集光することによって情報の記録及び/又は再生を行う光ピックアップ装置に使用される対物レンズであって、
 前記第1光束と前記第3光束とが共通して入射する領域に第1光路差付与構造を有し、
 常温(25±3℃)、かつ、(1)式を満たすカバーガラス厚T(mm)において、前記第1光束を入射した前記対物レンズにおいて3次球面収差が最小となるときの倍率Mが(2)式を満たすとともに、倍率Mでの正弦条件違反量が瞳半径H1で第1極大値を、瞳半径H2で第2極大値をそれぞれとり、瞳半径H3を0.9以上としたときに(3)式を満たし(但し、前記瞳半径H1、H2、H3は前記対物レンズの有効半径を1としたときの相対値とする)、更に前記正弦条件違反量の導関数Φ(h)が(4)~(6)式を満たし、
 TMAX×0.78≦T≦TMAX×1.1   (1)
 -0.003≦M≦0.003   (2)
 H1<H2<H3   (3)
 φ(h)<0.0(h<H1)   (4)
 φ(h)>0.0(H1<h<H2)   (5)
 φ(h)<0.0(H2<h<H3)   (6)
更に、以下の式を満たすことを特徴とする。
 -0.01≦m1≦0.01   (7)
 -0.01≦m3≦0.01   (8)
 -0.05≦(fB3-fB1)/d≦0.10   (9)
但し、
fB1=WD1+t1×(1-1/n1)
fB3=WD3+t3×(1-1/n3)
ν:前記対物レンズの素材のアッベ数
m1:前記第1波長λ1の光束が前記対物レンズに入射する時の結像倍率
m3:前記第3波長λ3の光束が前記対物レンズに入射する時の結像倍率
d:前記対物レンズの軸上厚(mm)
WD1:前記BD使用時のワーキングディスタンス(mm)
WD3:前記CD使用時のワーキングディスタンス(mm)
n1:前記第1波長λ1の光束に対する前記BDの保護基板の屈折率
n3:前記第3波長λ3の光束に対する前記CDの保護基板の屈折率
The objective lens according to claim 1, wherein a first light source that emits a first light beam with a wavelength λ1 (390 nm <λ1 <415 nm) and a third light beam with a third wavelength λ3 (760 nm ≦ λ3 ≦ 820 nm) are emitted. Information recording surfaces having three light sources and an objective lens and having different distances from the light incident surface (thickness of the transparent substrate, but the thickest transparent substrate thickness being TMAX (mm)) are 3 in the thickness direction. Recording and / or reproducing information by selecting any one information recording surface in the BD having two or more and condensing the first light flux on the selected information recording surface by the objective lens; An optical pickup for recording and / or reproducing information by condensing the third light flux on the information recording surface of a CD having a protective substrate having a transparent substrate thickness of t3 (mm) (t1 <t3) by the objective lens. An objective lens used in the apparatus,
A first optical path difference providing structure in a region where the first light flux and the third light flux are commonly incident;
At normal temperature (25 ± 3 ° C.) and a cover glass thickness T (mm) satisfying the expression (1), the magnification M at which the third-order spherical aberration is minimized in the objective lens on which the first light flux is incident is ( 2) When the formula is satisfied, the sine condition violation amount at the magnification M is the first maximum value at the pupil radius H1, the second maximum value at the pupil radius H2, and the pupil radius H3 is 0.9 or more. Equation (3) is satisfied (however, the pupil radii H1, H2, and H3 are relative values when the effective radius of the objective lens is 1), and the derivative Φ (h) of the sine condition violation amount is Satisfy equations (4) to (6)
TMAX × 0.78 ≦ T ≦ TMAX × 1.1 (1)
-0.003 ≦ M ≦ 0.003 (2)
H1 <H2 <H3 (3)
φ (h) <0.0 (h <H1) (4)
φ (h)> 0.0 (H1 <h <H2) (5)
φ (h) <0.0 (H2 <h <H3) (6)
Furthermore, the following formula is satisfied.
-0.01 ≦ m1 ≦ 0.01 (7)
-0.01 ≦ m3 ≦ 0.01 (8)
−0.05 ≦ (fB3−fB1) /d≦0.10 (9)
However,
fB1 = WD1 + t1 × (1-1 / n1)
fB3 = WD3 + t3 × (1-1 / n3)
ν: Abbe number m1 of the material of the objective lens m1: Imaging magnification when the light beam having the first wavelength λ1 is incident on the objective lens m3: Result when the light beam having the third wavelength λ3 is incident on the objective lens Image magnification d: On-axis thickness of the objective lens (mm)
WD1: Working distance when using the BD (mm)
WD3: Working distance when using the CD (mm)
n1: Refractive index of the protective substrate of the BD with respect to the light beam with the first wavelength λ1 n3: Refractive index of the protective substrate of the CD with respect to the light beam with the third wavelength λ3
 対物レンズの軸外特性を規定する正弦条件は、(a)光ディスクの保護基板厚さと、(b)倍率と、(c)近軸回折パワーとで決定されるが、(a)については、各光ディスクの保護基板厚が異なるので、ある光ディスクで正弦条件を満たすと、他の光ディスクでは必ず正弦条件を満たさなくなるということがある。かかる場合、正弦条件を満たさない光ディスクに軸外光束が入射すると、比較的大きなコマ収差を発生することになる。通常は、スポット規格が厳しいBD使用時の正弦条件を満足させることが多いので、かかる場合、CD使用時の正弦条件を満たさないままに使用を余儀なくされる恐れがある。特に、厚さ方向に3つ以上の情報記録面を有するBDの場合、最も基板厚が厚い情報記録面に対してスキュー調整を行うようにし、且つ倍率変化により厚さの差による低次の球面収差を補正した場合に高次球面収差の発生を抑制するためには、設計中心(倍率M=0)の基板厚において正弦条件を正側にシフトさせる必要があるが、これによりCD使用時の正弦条件が大きく崩れることとなる。 The sine condition that defines the off-axis characteristics of the objective lens is determined by (a) the thickness of the protective substrate of the optical disc, (b) the magnification, and (c) the paraxial diffraction power. Since the protective substrate thickness of the optical disk is different, if the sine condition is satisfied in one optical disk, the sine condition may not be satisfied in another optical disk. In such a case, when an off-axis light beam enters an optical disk that does not satisfy the sine condition, a relatively large coma aberration is generated. Usually, since the sine condition at the time of BD use with strict spot standards is often satisfied, in such a case, there is a risk that the sine condition at the time of CD use may not be satisfied. In particular, in the case of a BD having three or more information recording surfaces in the thickness direction, skew adjustment is performed on the information recording surface having the thickest substrate, and a low-order spherical surface due to a difference in thickness due to a change in magnification. In order to suppress the occurrence of higher order spherical aberration when the aberration is corrected, it is necessary to shift the sine condition to the positive side at the substrate thickness at the design center (magnification M = 0). The sine condition will be greatly broken.
 これに対し、(b)倍率を変えることで、各光ディスク毎に正弦条件を満足させることも可能である。しかしながら、倍率を変えることで異なる2つの波長の光束の光路を一致させることが困難となり、また光ピックアップ装置の構成も大型化し、更には対物レンズのトラッキング時にコマ収差が発生しやすくなるという問題もあるため、好ましくない。 In contrast, (b) it is possible to satisfy the sine condition for each optical disk by changing the magnification. However, changing the magnification makes it difficult to match the optical paths of light beams of two different wavelengths, and the optical pickup device is also increased in size, and further coma aberration is likely to occur during tracking of the objective lens. This is not preferable.
 そこで、本発明者は鋭意研究の結果、光学系倍率が(7)、(8)を満たす前提の下、(c)近軸回折パワーを調整し、BDの正弦条件の形を工夫することで、最適な正弦条件を確保できることを見出した。ここで、近軸回折パワーを用いない場合、レンズの屈折パワーにより(fB3-fB1)がほぼ一意的に決定されるが、回折パワーを用いると各ディスクに異なる回折パワーを付与することが可能となるため、(fB3-fB1)を任意に設定することが可能となる。概念図をもって説明すると、近軸回折パワーを用いない場合、各正弦条件は図14に示すものとなるが、近軸回折パワーを一定の範囲内にすると図15に示すものとなる。一方、近軸回折パワーを小さく抑えすぎるとCDの正弦条件は図15の[1]のように0に近づくように変化し、CDの軸外特性は良好となるが、第1光路差付与構造から発生する不要回折光(情報の記録/再生に用いられる使用回折光以外の回折光)が使用回折光に近づき、光検出器にて検出されてエラー信号を発生させる恐れや、CDのワーキングディスタンスが短くなり、特にスリムタイプの光ピックアップ装置では、対物レンズがCDに衝突する恐れが顕著に高まる。これに対し近軸回折パワーを大きくすると、CD正弦条件は図15の[2]のように正側へと変化し、CDの軸外特性は悪化し、回折ピッチは小さくなるが、1/1/1構造の不要光を遠ざけることが出来、メイン光と共に光検出器により検出されてしまう誤検出を抑制でき、更にはCDにおけるワーキングディスタンスが十分確保されることとなる。しかるに、近軸回折パワーの調整が有効であるとしても、BD優先で正弦条件を調整すると、CDの正弦条件が不適切となる恐れがあり、軸外光入射時に発生するコマ収差が増大する恐れがある。そこで、BDとCDの有効径が異なることを利用し、CDの有効径の範囲内では、CDの正弦条件とWDを優先した設計とし、CDの有効径外では、BDの正弦条件を優先した設計とする。具体的には、CDの有効径の範囲内では、BDの正弦条件違反量が負側において極小値SCminを持つよう調整し、CDの有効径外では、BDの正弦条件違反量が正側において極大値SCmaxを持つように調整した(図1参照)。 Therefore, as a result of earnest research, the present inventor has adjusted the paraxial diffraction power and devised the shape of the BD sine condition under the premise that the optical system magnification satisfies (7) and (8). It was found that the optimum sine condition can be secured. Here, when the paraxial diffraction power is not used, (fB3-fB1) is almost uniquely determined by the refractive power of the lens. However, when the diffraction power is used, it is possible to give different diffraction power to each disk. Therefore, (fB3-fB1) can be set arbitrarily. Describing with a conceptual diagram, when the paraxial diffraction power is not used, each sine condition is as shown in FIG. 14, but when the paraxial diffraction power is within a certain range, it is as shown in FIG. On the other hand, if the paraxial diffraction power is kept too low, the CD sine condition changes to approach 0 as shown in [1] in FIG. 15 and the off-axis characteristics of the CD become good, but the first optical path difference providing structure Undesired diffracted light (diffracted light other than the used diffracted light used for recording / reproducing information) may approach the used diffracted light and be detected by the photodetector to generate an error signal, or the CD working distance In particular, in the slim type optical pickup device, the risk of the objective lens colliding with the CD is remarkably increased. On the other hand, when the paraxial diffraction power is increased, the CD sine condition changes to the positive side as shown in [2] in FIG. 15, the off-axis characteristics of the CD deteriorate, and the diffraction pitch decreases, but 1/1 / 1 structure can keep away unnecessary light, can suppress the false detection detected by the photodetector together with the main light, and can ensure a sufficient working distance in the CD. However, even if the adjustment of the paraxial diffraction power is effective, if the sine condition is adjusted with priority on BD, the CD sine condition may become inappropriate, and coma aberration generated when off-axis light is incident may increase. There is. Therefore, by utilizing the fact that the effective diameters of BD and CD are different, the CD sine condition and WD are prioritized within the effective diameter range of the CD, and the BD sine condition is prioritized outside the effective diameter of the CD. Design. Specifically, the BD sine condition violation amount is adjusted to have a minimum value SCmin on the negative side within the effective diameter range of the CD, and the BD sine condition violation amount is on the positive side outside the CD effective diameter range. It adjusted so that it might have local maximum SCmax (refer FIG. 1).
 これにより、BD使用時の正弦条件違反量を横軸に、BDの有効径を1とした瞳半径(光軸からの高さ)を縦軸にとってグラフにしたときに、前記正弦条件違反量が第1の極大値をとる瞳半径H1と、第2の極大値をとる瞳半径H2と、有効径の9割以上である瞳半径H3とが、上記(3)式を満たし、また光軸からの高さhを変数とする前記正弦条件違反量の導関数φ(h)が(4)~(6)式を満たすようになる。即ち、正弦条件違反量が、図1に示すように逆S字カーブを描くこととなる。 As a result, when the sine condition violation amount when using BD is plotted on the horizontal axis and the pupil radius (height from the optical axis) with the BD effective diameter being 1 is plotted on the vertical axis, the sine condition violation amount is The pupil radius H1 that takes the first maximum value, the pupil radius H2 that takes the second maximum value, and the pupil radius H3 that is 90% or more of the effective diameter satisfy the above equation (3), and from the optical axis The derivative φ (h) of the sine condition violation amount with the height h as a variable satisfies the equations (4) to (6). That is, the sine condition violation amount draws an inverted S-curve as shown in FIG.
 尚、近軸回折パワーを小さく抑えすぎると、第1光路差付与構造から発生する不要回折光(情報の記録/再生に用いられる使用回折光以外の回折光)が使用回折光に近づき、光検出器にて検出されてエラー信号を発生させる恐れや、CDのワーキングディスタンスが短くなり対物レンズがCDに衝突する恐れがある。そこで、近軸回折パワーの最適範囲として(9)式を定めている。より具体的には、(9)式の値が下限以上であれば、第1光路差付与構造から出射される不要光を遠ざけることが出来、且つ、CDにおけるワーキングディスタンスが確保され、一方、(9)式の値が上限以下であれば、BD使用時とCD使用時の正弦条件の差が小さくなり、CD使用時の軸外特性を向上できる。 If the paraxial diffraction power is too low, unnecessary diffracted light (diffracted light other than the used diffracted light used for recording / reproducing information) generated from the first optical path difference providing structure approaches the used diffracted light, and light detection is performed. May cause an error signal to be detected by the detector, or the working distance of the CD may be shortened and the objective lens may collide with the CD. Therefore, formula (9) is defined as the optimum range of paraxial diffraction power. More specifically, if the value of equation (9) is equal to or greater than the lower limit, unnecessary light emitted from the first optical path difference providing structure can be kept away, and a working distance in the CD is ensured, while ( 9) If the value of the equation is equal to or less than the upper limit, the difference between the sine conditions when using BD and when using CD becomes small, and off-axis characteristics when using CD can be improved.
 次に、(4)~(6)式により3層以上のBD用対物レンズに適した特性として、以下の2つの効果が得られる。
(特性1)フォーカスジャンプ時の残留高次球面収差が小さいこと。
(特性2)フォーカスジャンプをする際のカップリングレンズの移動量が小さいこと。
 本発明者は、鋭意検討の結果、上記(特性1)及び(特性2)を実用に耐えうるレベルで有する3層以上のBDに適した対物レンズを見出した。以下に詳述する。
Next, the following two effects can be obtained as characteristics suitable for a BD objective lens having three or more layers according to the equations (4) to (6).
(Characteristic 1) Residual higher order spherical aberration at the time of focus jump is small.
(Characteristic 2) The amount of movement of the coupling lens when performing a focus jump is small.
As a result of intensive studies, the present inventors have found an objective lens suitable for a BD having three or more layers having the above (Characteristic 1) and (Characteristic 2) at a level that can be practically used. This will be described in detail below.
(特性1)について
 本発明者は、対物レンズの設計において正弦条件を満たすべきとする従来の技術常識から離れ、正弦条件をあえて崩すことによって従来技術の問題を解消できないか検討した。しかしながら、特許文献2に示すように、設計倍率を負(発散光入射)とし、かつ、設計倍率における正弦条件を有効半径内の全領域において満足するようにコマ収差の補正状態を設定すると、倍率変化した際に発生する3次球面収差と5次球面収差の比が、カバーガラス厚が変化した際の3次球面収差と5次球面収差の比(約5:1)から大きくかけ離れるため、フォーカスジャンプ時に高次球面収差が残留してしまうことがわかった。かかる知見に基づき本発明者は、(1)式を満たす前記倍率Mにおいて、正弦条件違反量が正の極大値を持つようにすることで、フォーカスジャンプ時における高次球面収差を有効に抑制できることを見出したのである。
Regarding (Characteristic 1) The present inventor has departed from the conventional common sense that the sine condition should be satisfied in the design of the objective lens, and examined whether the problem of the conventional technique could be solved by deliberately breaking the sine condition. However, as shown in Patent Literature 2, if the coma aberration correction state is set so that the design magnification is negative (incident divergent light) and the sine condition in the design magnification is satisfied in all regions within the effective radius, the magnification Since the ratio between the third-order spherical aberration and the fifth-order spherical aberration that occurs when the cover glass thickness changes, the ratio between the third-order spherical aberration and the fifth-order spherical aberration when the cover glass thickness changes (approximately 5: 1) greatly differs. It was found that higher-order spherical aberration remained during focus jump. Based on this knowledge, the present inventor can effectively suppress high-order spherical aberration at the time of focus jump by making the sine condition violation amount have a positive maximum value at the magnification M satisfying the equation (1). Was found.
(特性2)について
 フォーカスジャンプをする際のカップリングレンズの移動量を小さくするためには、倍率変化に対する3次球面収差変化量を大きくする必要がある。本発明者は、検討の結果、(1)式を満たす前記倍率Mにおいて、正弦条件違反量が正の極大値を持つようにすることで、倍率変化に対する3次球面収差変化量も増大させることが可能となることを見出した。
(Characteristic 2) In order to reduce the amount of movement of the coupling lens when performing the focus jump, it is necessary to increase the amount of change in the third-order spherical aberration with respect to the change in magnification. As a result of the study, the present inventor increases the third-order spherical aberration change amount with respect to the magnification change by setting the sine condition violation amount to have a positive maximum value at the magnification M satisfying the expression (1). Found that it would be possible.
 また、性能安定性が高く、製造しやすい対物レンズに要求される特性は、少なくとも以下の2つである。
(特性3)対向する光学面が製造誤差によって光軸直交方向にシフトしてずれた時(面シフトという)であっても、コマ収差が大きくなりすぎないこと。
(特性4)対向する光学面が製造誤差によって光軸方向にずれた時(レンズ厚誤差という)であっても、球面収差が大きくなりすぎないこと。
In addition, at least the following two characteristics are required for an objective lens that has high performance stability and is easy to manufacture.
(Characteristic 3) Even when the opposing optical surfaces are shifted in the direction perpendicular to the optical axis due to manufacturing errors (referred to as surface shift), the coma aberration does not become too large.
(Characteristic 4) Spherical aberration should not be too large even when the opposing optical surfaces are displaced in the optical axis direction due to manufacturing errors (referred to as lens thickness error).
 本発明者の鋭意研究の結果、上記の3層以上のBDに適した(特性1)及び(特性2)の2つの特性を満たすだけでなく、(特性3)及び(特性4)について以下の条件を満たすことにより、3層以上のBDに適した対物レンズであって、しかも、性能安定性が高く製造しやすい対物レンズを提供することが可能となることを見出した。
(特性3)について
 本発明によれば、第1の瞳半径H1の位置で、正弦条件違反量が第1の極小値を持つようにすることで、第2の瞳半径H2における第2の極大値が大きくなりすぎることを抑制できるため、面シフト時のコマ収差の発生量を抑えることができる。
As a result of diligent research by the present inventors, not only satisfying the two characteristics (characteristic 1) and (characteristic 2) suitable for the above-described BD having three or more layers, It has been found that, by satisfying the conditions, it is possible to provide an objective lens suitable for BD having three or more layers and having high performance stability and easy to manufacture.
(Characteristic 3) According to the present invention, the second maximum at the second pupil radius H2 is obtained by causing the sine condition violation amount to have the first minimum value at the position of the first pupil radius H1. Since it is possible to suppress the value from becoming too large, it is possible to suppress the amount of coma aberration generated during the surface shift.
(特性4)について
 本発明によれば、第1の瞳半径H1の位置で、正弦条件違反量が第1の極小値を持つようにすることで、第2の瞳半径H2における第2の極大値が大きくなりすぎることを抑制できるため、レンズ厚誤差発生時の球面収差の発生量も抑えることが可能となるため、より製造しやすい対物レンズを提供することが可能となる。
(Characteristic 4) According to the present invention, the second maximum at the second pupil radius H2 is obtained by causing the sine condition violation amount to have the first minimum value at the position of the first pupil radius H1. Since it is possible to suppress the value from becoming too large, it is possible to suppress the generation amount of spherical aberration when a lens thickness error occurs, and thus it is possible to provide an objective lens that is easier to manufacture.
 以上説明したように、請求項1に記載の対物レンズは、(特性1)フォーカスジャンプ時の残留高次球面収差が小さく、(特性2)フォーカスジャンプをする際のカップリングレンズの移動量が小さく、しかも、(特性3)面シフト時のコマ収差の発生量を抑えることができ、また、(特性4)レンズ厚誤差発生時の球面収差の発生量も抑えることが可能となるため、より製造しやすい対物レンズを提供することが可能となるので、本発明の対物レンズを使用することで、小型、低コスト、かつ、記録/再生特性に優れた、3つ以上の情報記録面を有する光ディスク用の光ピックアップ装置を提供することが可能となる。尚、本明細書において、「透明基板厚」は光ディスクの光束入射面から情報記録面までの距離のことであり、情報記録面を厚さ方向に複数有する光ディスクでは、それぞれの情報記録面の透明基板厚は互いに異なることになる。また、一般的に、光ピックアップ用の対物レンズは、所定の厚みのカバーガラスと組み合わせて球面収差が最小となるように球面収差の補正状態が決定される(かかるカバーガラスの厚みを設計カバーガラス厚ともいう)。設計カバーガラス厚は、光ディスクのいずれかの情報記録面の透明基板厚と同じである場合もあれば、異なる場合もある。カバーガラスの厚みが変わると対物レンズの特性も変わるので、光ピックアップ用の対物レンズの特性を議論する際には、カバーガラス厚もセットで考える必要がある。そのため、本明細書では、対物レンズの特性に関して述べる際には、「カバーガラス」なる言葉を使用し、光ディスクの「透明基板(単に基板ともいう)」と区別することにする。(尚、「カバーガラス」という文言を使用しているが、カバーガラス厚は、ガラスに限定されるものではなく、樹脂であってもよい旨を付言する。) As described above, the objective lens according to claim 1 has (Characteristic 1) small residual high-order spherical aberration at the time of focus jump, and (Characteristic 2) small movement amount of the coupling lens at the time of focus jump. In addition, (Characteristic 3) it is possible to suppress the amount of coma aberration generated when the surface is shifted, and (Characteristic 4) it is also possible to suppress the amount of spherical aberration generated when the lens thickness error occurs. Since the objective lens of the present invention is used, an optical disc having three or more information recording surfaces that is small, low cost, and excellent in recording / reproducing characteristics can be provided. It becomes possible to provide an optical pickup device for use. In this specification, the “transparent substrate thickness” is the distance from the light beam incident surface of the optical disc to the information recording surface. In an optical disc having a plurality of information recording surfaces in the thickness direction, each information recording surface is transparent. The substrate thickness will be different from each other. In general, an objective lens for an optical pickup is combined with a cover glass having a predetermined thickness, and the correction state of the spherical aberration is determined so that the spherical aberration is minimized (the thickness of the cover glass is determined as the design cover glass). Also called thickness). The design cover glass thickness may be the same as or different from the transparent substrate thickness of any information recording surface of the optical disc. When the thickness of the cover glass changes, the characteristics of the objective lens also change. Therefore, when discussing the characteristics of the objective lens for the optical pickup, it is necessary to consider the cover glass thickness as a set. Therefore, in this specification, when describing the characteristics of the objective lens, the term “cover glass” is used to distinguish it from the “transparent substrate (also simply referred to as a substrate)” of the optical disk. (Note that although the term “cover glass” is used, the cover glass thickness is not limited to glass, but a resin may be added.)
 請求項2に記載の対物レンズは、請求項1に記載の発明において、式(10)を満たすことを特徴とする。
 0.7≦H2≦0.9   (10)
The objective lens described in claim 2 is characterized in that, in the invention described in claim 1, equation (10) is satisfied.
0.7 ≦ H2 ≦ 0.9 (10)
 (10)式を満たすことにより、前記対物レンズの対向する2つの光学面が製造誤差により光軸直交方向にシフトしてしまう場合の収差の発生量を抑えることができ、また、光軸上のレンズ厚が製造誤差により光軸方向にずれてしまう場合の収差の発生量も抑えることが可能となるため、より製造しやすい対物レンズを提供することが可能となる。 By satisfying the expression (10), it is possible to suppress the amount of aberration generated when the two optical surfaces facing each other of the objective lens shift in the direction perpendicular to the optical axis due to manufacturing errors. Since it is possible to suppress the amount of aberration generated when the lens thickness is shifted in the optical axis direction due to a manufacturing error, it is possible to provide an objective lens that is easier to manufacture.
 請求項3に記載の対物レンズは、請求項1又は2に記載の発明において、前記BDの透明基板厚Tの情報記録面に倍率Mで入射した光束を集光する場合において、前記対物レンズだけが所定角チルトした場合に発生する3次コマ収差LTCM3(λrms)と、前記対物レンズと同じ方向に前記BDだけが前記所定角チルトした場合に発生する3次コマ収差DTCM3(λrms)とが、以下の式を満たすことを特徴とする。
 |LTCM3|>|DTCM3|   (11)
The objective lens according to a third aspect is the objective lens according to the first or second aspect, wherein only the objective lens is collected when condensing a light beam incident at a magnification M on the information recording surface of the transparent substrate thickness T of the BD. Is a third-order coma aberration LTCM3 (λrms) that occurs when the lens is tilted by a predetermined angle, and a third-order coma aberration DTCM3 (λrms) that occurs when only the BD is tilted at the predetermined angle in the same direction as the objective lens. The following formula is satisfied.
| LTCM3 | >> | DTCM3 | (11)
 (11)式を満たすようにすれば、BDにおける基板厚が最も厚い情報記録面に対して発散光束を入射させる場合でも、スキュー調整を行うことが出来、光ピックアップ装置の組付けが容易になる。 If the expression (11) is satisfied, skew adjustment can be performed even when a divergent light beam is incident on the information recording surface having the largest substrate thickness in the BD, and the assembly of the optical pickup device is facilitated. .
 請求項4に記載の対物レンズは、請求項1~3のいずれかに記載の発明において、以下の式を満たすことを特徴とする。
 -0.05≦(fB3-fB1)/d≦0.05   (6’)
The objective lens described in claim 4 is characterized in that, in the invention described in any one of claims 1 to 3, the following expression is satisfied.
−0.05 ≦ (fB3−fB1) /d≦0.05 (6 ′)
 (6’)式を満たすようにすれば、回折パワーによりCDのWDを伸ばすことが可能となるため、スリムタイプの対物レンズに有効である。 If the expression (6 ′) is satisfied, the WD of the CD can be extended by the diffraction power, which is effective for a slim type objective lens.
 請求項5に記載の対物レンズは、請求項1~3のいずれかに記載の発明において、前記光ピックアップ装置は、結像倍率m2で第2波長λ2(630nm≦λ2≦670nm)の第2光束を出射する第2光源を有し、前記対物レンズは、前記第2光束を透明基板厚がt2(mm)(t1<t2<t3)の保護基板を有するDVDの情報記録面に集光することによって情報の記録及び/又は再生を行うようになっている。これにより、BD、CDに加えて、DVDに対しても情報の記録及び/又は再生を行える。 According to a fifth aspect of the present invention, there is provided the objective lens according to any one of the first to third aspects, wherein the optical pickup device includes a second light flux having a second wavelength λ2 (630 nm ≦ λ2 ≦ 670 nm) at an imaging magnification m2. The objective lens condenses the second light flux on the information recording surface of a DVD having a protective substrate with a transparent substrate thickness of t2 (mm) (t1 <t2 <t3). Information is recorded and / or reproduced. Thereby, in addition to BD and CD, information can be recorded and / or reproduced on DVD.
 請求項6に記載の対物レンズは、請求項4又は5に記載の発明において、前記BD使用時の正弦条件が、負から正に転じる光軸からの高さhは、以下の式を満たすことを特徴とする。
 0.8hCDNA≦h≦hDVDNA   (12)
但し、
CDNA:前記CD使用時の開口数に相当する光軸方向高さを、前記対物レンズのBD有効半径を1として表した相対値
DVDNA:前記DVD使用時の開口数に相当する光軸方向高さを、前記対物レンズのBD有効半径を1として表した相対値
The objective lens according to claim 6 is the invention according to claim 4 or 5, wherein the height h from the optical axis at which the sine condition when using the BD turns from negative to positive satisfies the following expression. It is characterized by.
0.8h CDNA ≤ h ≤ h DVDNA (12)
However,
h CDNA : Relative value representing the height in the optical axis direction corresponding to the numerical aperture when the CD is used as the BD effective radius of the objective lens is 1 h DVDNA : Optical axis direction corresponding to the numerical aperture when the DVD is used Relative value expressing height as BD effective radius of the objective lens is 1
 (12)式を満たすことで、CD有効径内のBD使用時における正弦条件違反量が負となるため、CD使用時における正弦条件違反量を小さくすることができる。 When the equation (12) is satisfied, the sine condition violation amount when using the BD within the CD effective diameter becomes negative, so that the sine condition violation amount when using the CD can be reduced.
 請求項7に記載の対物レンズは、請求項5又は6に記載の発明において、
 前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
 前記中央領域は前記第1光路差付与構造を有し、
 前記対物レンズは、前記中央領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光し、
 前記対物レンズは、前記中間領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
 前記第1基礎構造は、前記第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第2基礎構造は、前記第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする。
The objective lens according to claim 7 is the invention according to claim 5 or 6,
The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
The central region has the first optical path difference providing structure,
The objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region. Are recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the central region is recorded and / or recorded on the information recording surface of the CD. Or collect it so that it can be regenerated,
The objective lens condenses the first light flux passing through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the intermediate area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the intermediate region is recorded and / or recorded on the information recording surface of the CD. Or do not concentrate so that it can be regenerated,
The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the peripheral area is recorded on the information recording surface of the CD. And / or do not collect light for playback
The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
The first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and 1 of the second light flux that has passed through the first basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, making the first order diffracted light quantity of the third light flux that has passed through the first basic structure larger than any other order diffracted light quantity,
The second basic structure makes the second-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and 1 of the second light beam that has passed through the second basic structure. The next diffracted light amount is made larger than any other order diffracted light amount, and the first diffracted light amount of the third light beam that has passed through the second basic structure is made larger than any other order diffracted light amount. To do.
 本発明の対物レンズのように、前記第1光路差付与構造が、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、前記第1基礎構造は、前記第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし(1/1/1構造と称することもある)、前記第2基礎構造が、前記第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする(2/1/1構造と称することもある)ことで、共通の対物レンズを用いながらも、BD/DVD/CDの3種類の何れの光ディスクに対しても高い光利用効率を維持しつつ、光利用効率のバランスが取れた対物レンズを提供することができる。 As in the objective lens of the present invention, the first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped, and the first basic structure includes the first basic structure. The first-order diffracted light amount of the first light beam that has passed is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is greater than any other order of diffracted light amount. The first-order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount (sometimes referred to as a 1/1/1 structure), and the second The basic structure makes the second-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and the first-order diffraction of the second light beam that has passed through the second basic structure. Make the light intensity larger than any other order of diffracted light, By making the first-order diffracted light amount of the third light flux that has passed through the second basic structure larger than any other order diffracted light amount (sometimes referred to as a 2/1/1 structure), the common objective lens While used, it is possible to provide an objective lens having a balanced light utilization efficiency while maintaining a high light utilization efficiency for any of the three types of optical disks of BD / DVD / CD.
 請求項8に記載の対物レンズは、請求項7に記載の発明において、前記第1基礎構造及び前記第2基礎構造はブレーズ形状であり、前記第2基礎構造における前記光軸に最も近い1つの輪帯上に、前記第1基礎構造の輪帯が2~6個含まれていることを特徴とする。 The objective lens according to claim 8 is the objective lens according to claim 7, wherein the first foundation structure and the second foundation structure are blazed, and one objective lens closest to the optical axis in the second foundation structure is provided. 2 to 6 ring zones of the first basic structure are included on the ring zone.
 本発明によれば、前記第2基礎構造における前記光軸に最も近い1つの輪帯上に、前記第1基礎構造の輪帯を2~6個重畳することで、BD/DVD/CDの互換を取りながら、CD使用時のワーキングディスタンスを確保できる。又、複数層を有する光ディスク使用時の不要光(他層で反射する光束)の問題を低減でき、DVD使用時の温度特性及び波長特性を良好なものとできる。 According to the present invention, two to six ring zones of the first basic structure are superimposed on one ring zone closest to the optical axis in the second basic structure, so that BD / DVD / CD compatibility is achieved. You can secure a working distance when using a CD. Further, it is possible to reduce the problem of unnecessary light (light flux reflected by other layers) when using an optical disk having a plurality of layers, and to improve the temperature characteristics and wavelength characteristics when using a DVD.
 請求項9に記載の対物レンズは、請求項8に記載の発明において、少なくとも前記中央領域の光軸付近に設けられる前記第1基礎構造は、その段差が光軸とは逆の方向を向いており、
 少なくとも前記中央領域の光軸付近に設けられる前記第2基礎構造は、その段差が光軸の方向を向いていることを特徴とする。
The objective lens according to claim 9 is the objective lens according to claim 8, wherein the step of the first basic structure provided at least in the vicinity of the optical axis of the central region is directed in a direction opposite to the optical axis. And
The second basic structure provided at least in the vicinity of the optical axis of the central region is characterized in that the step is directed in the direction of the optical axis.
 これによって、第1基礎構造と第2基礎構造とを重ね合わせた前記第1光路差付与構造において、光軸方向の段差量をさらに低減でき、それにより波長変動時の回折効率の低下をさらに抑制できる。 As a result, in the first optical path difference providing structure in which the first basic structure and the second basic structure are overlapped, the level difference in the optical axis direction can be further reduced, thereby further suppressing the decrease in diffraction efficiency when the wavelength varies. it can.
 請求項10に記載の対物レンズは、請求項8又は9に記載の発明において、前記中間領域は、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた第2光路差付与構造を有し、
 前記第3基礎構造は、前記第3基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
  前記第4基礎構造は、前記第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする。
An objective lens according to a tenth aspect is the invention according to the eighth or ninth aspect, wherein the intermediate region has a second optical path difference providing structure in which at least a third basic structure and a fourth basic structure are overlapped. ,
The third basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the third basic structure larger than any other order of diffracted light quantity, so that 1 of the second light flux that has passed through the third basic structure. Make the next diffracted light quantity larger than any other order diffracted light quantity,
In the fourth basic structure, the second-order diffracted light amount of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffracted light amount, and 1st of the second light beam that has passed through the fourth basic structure. It is characterized in that the next diffracted light quantity is made larger than any other order diffracted light quantity.
 これにより、少なくとも前記第3基礎構造と前記第4基礎構造とを重ね合わせた前記第2光路差付与構造において、光軸方向の段差量を低減でき、それにより波長変動時の回折効率の低下を抑制できる。また、第1基礎構造と第3基礎構造における最も光強度が高い回折光の次数が一致し、且つ第2基礎構造と第4基礎構造における最も光強度が高い回折光の次数が一致しているため、中央領域と中間領域を通過する光束について、温度や波長変化時においても、球面収差を連続とでき、高次収差の発生を抑えることができる。又、中間領域と周辺領域とで、瞳透過率分布がフラットに近くなり、アボダイゼーション等による境界で光量が大きく変化した場合に生じるスポットの太りなどを効果的に抑えることができる。また、対物レンズの設計の自由度を確保することも可能となる。 Thereby, in the second optical path difference providing structure in which at least the third basic structure and the fourth basic structure are overlapped, the step amount in the optical axis direction can be reduced, thereby reducing the diffraction efficiency at the time of wavelength variation. Can be suppressed. Further, the orders of the diffracted light having the highest light intensity in the first basic structure and the third basic structure are matched, and the orders of the diffracted light having the highest light intensity in the second basic structure and the fourth basic structure are matched. Therefore, the spherical aberration can be made continuous even when the temperature and the wavelength of the light flux passing through the central region and the intermediate region are changed, and the occurrence of higher order aberrations can be suppressed. In addition, the pupil transmittance distribution is almost flat between the intermediate region and the peripheral region, and it is possible to effectively suppress the spot thickening that occurs when the amount of light changes greatly at the boundary due to abolishment or the like. It is also possible to ensure the degree of freedom in designing the objective lens.
 請求項11に記載の対物レンズは、請求項10に記載の発明において、前記第3基礎構造及び前記第4基礎構造はブレーズ形状であり、前記第4基礎構造における前記中央領域に最も近い1つの輪帯上に、前記第3基礎構造の輪帯が1~3個含まれていることを特徴とする。 The objective lens according to claim 11 is the objective lens according to claim 10, wherein the third foundation structure and the fourth foundation structure are blazed, and one objective lens closest to the central region in the fourth foundation structure is provided. One to three annular zones of the third basic structure are included on the annular zone.
 これにより、複数の情報記録層を有するBD使用時やDVD使用時において、中間領域を通過することにより発生した不要光の集光位置を、情報の記録/再生を行うとする情報記録層以外の情報記録装置から離すことができる。又、DVD使用時の波長特性を良好なものとできる。 Thereby, when using a BD having a plurality of information recording layers or when using a DVD, the condensing position of unnecessary light generated by passing through the intermediate region is the information recording layer other than the information recording layer for recording / reproducing information. It can be separated from the information recording device. In addition, the wavelength characteristics when using a DVD can be improved.
 請求項12に記載の対物レンズは、請求項10又は11に記載の発明において、中央領域との境界付近に設けられる前記第3基礎構造は、その段差が光軸とは逆の方向を向いており、
 中央領域との境界付近に設けられる前記第4基礎構造は、その段差が光軸の方向を向いていることを特徴とする。
According to a twelfth aspect of the present invention, in the invention according to the tenth or eleventh aspect, in the third basic structure provided near the boundary with the central region, the step is directed in a direction opposite to the optical axis. And
The fourth foundation structure provided in the vicinity of the boundary with the central region is characterized in that the step is directed in the direction of the optical axis.
 これによって、第3基礎構造と第4基礎構造とを重ね合わせた前記第2光路差付与構造において、光軸方向の段差量をさらに低減でき、それにより波長変動時の回折効率の低下をさらに抑制できる。 As a result, in the second optical path difference providing structure in which the third basic structure and the fourth basic structure are overlapped, the level difference in the optical axis direction can be further reduced, thereby further suppressing the decrease in diffraction efficiency at the time of wavelength fluctuation. it can.
 請求項13に記載の対物レンズは、請求項10~12のいずれかに記載の発明において、前記第4基礎構造における前記周辺領域に最も近い1つの輪帯に、前記第3基礎構造の輪帯が1~5個含まれていることを特徴とする。 The objective lens according to claim 13 is the invention according to any one of claims 10 to 12, wherein the annular zone of the third foundation structure is disposed on one annular zone closest to the peripheral region in the fourth foundation structure. 1 to 5 are included.
 請求項14に記載の対物レンズは、請求項10~13のいずれかに記載の発明において、前記中間領域は、前記第3基礎構造と前記第4基礎構造のみが設けられており、他の基礎構造が設けられていないことを特徴とする。 An objective lens according to a fourteenth aspect is the invention according to any one of the tenth to thirteenth aspects, wherein the intermediate region is provided with only the third base structure and the fourth base structure, and the other bases. The structure is not provided.
 請求項15に記載の対物レンズは、請求項1~14のいずれかに記載の発明において、前記第2基礎構造における前記中間領域に最も近い1つの輪帯に、前記第1基礎構造の輪帯が1~5個含まれていることを特徴とする。 The objective lens according to claim 15 is the invention according to any one of claims 1 to 14, wherein the annular zone of the first foundation structure is disposed on one annular zone closest to the intermediate region in the second foundation structure. 1 to 5 are included.
 請求項16に記載の対物レンズは、請求項1~15のいずれかに記載の発明において、以下の式を満たすことを特徴とする。
 160(mm)≦N・f≦210(mm)   (13)
ここで、前記中央領域の総輪帯数をN、前記対物レンズの前記第1光束における焦点距離をf(mm)とする。
An objective lens according to a sixteenth aspect is characterized in that, in the invention according to any one of the first to fifteenth aspects, the following expression is satisfied.
160 (mm) ≤ N · f ≤ 210 (mm) (13)
Here, the total number of annular zones in the central region is N, and the focal length of the objective lens in the first light flux is f (mm).
 (13)式の値を下限以上とすることで、CDのワーキングディスタンスを確保でき、光ディスクと干渉して傷をつける可能性を低減できる。一方、(13)式の値を上限以下とすることで、ピッチが小さくなりすぎることを防止できるため、加工性の低下を防ぎ、形状誤差を低減でき、結果として回折効率の低下を防止できる。 By setting the value of equation (13) above the lower limit, the CD working distance can be secured, and the possibility of scratching by interference with the optical disk can be reduced. On the other hand, by setting the value of the expression (13) below the upper limit, it is possible to prevent the pitch from becoming too small, thereby preventing the workability from being lowered and reducing the shape error, and as a result, preventing the diffraction efficiency from being lowered.
 請求項17に記載の光ピックアップ装置は、請求項1~16のいずれかに記載の対物レンズを有することを特徴とする。 An optical pickup device according to claim 17 has the objective lens according to any one of claims 1 to 16.
 請求項18に記載の光情報記録再生装置は、請求項17に記載の光ピックアップ装置を有することを特徴とする。 An optical information recording / reproducing device according to claim 18 has the optical pickup device according to claim 17.
 本発明に係る光ピックアップ装置は、第1光源、第3光源の少なくとも2つの光源を有し、更に第2光源を有すると好ましい。さらに、本発明の光ピックアップ装置は、第1光束をBDの情報記録面上に集光させ、第3光束をCDの情報記録面上に集光させるための集光光学系を有し、かかる集光光学系は第2光束をDVDの情報記録面上に集光させると好ましい。また、本発明の光ピックアップ装置は、BDとCDの情報記録面からの反射光束を受光する受光素子を有し、かかる受光素子はDVDの情報記録面からの反射光束を受光すると好ましい。 The optical pickup device according to the present invention preferably includes at least two light sources, a first light source and a third light source, and further includes a second light source. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing the first light beam on the information recording surface of the BD and condensing the third light beam on the information recording surface of the CD. The condensing optical system preferably condenses the second light flux on the information recording surface of the DVD. The optical pickup device of the present invention preferably includes a light receiving element that receives a reflected light beam from the information recording surface of the BD and CD, and the light receiving element receives a reflected light beam from the information recording surface of the DVD.
 BDは、厚み方向に重ねて3つ以上の情報記録面を有するものである。即ち、BDは、光ディスクの光束入射面から情報記録面までの距離(これを、本明細書で「透明基板厚」という)が互いに異なる情報記録面を厚さ方向に3つ以上有する光ディスクである。当然、4つ以上の情報記録面を有していてもよい。BDで最も厚い保護基板の厚さをt1とする。DVDは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。CDは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。なお、DVD又はCDも、複数の情報記録面を有する複数層の光ディスクでもよい。 BD has three or more information recording surfaces stacked in the thickness direction. In other words, the BD is an optical disc having three or more information recording surfaces in the thickness direction that have different distances from the light beam incident surface of the optical disc to the information recording surface (this is referred to as “transparent substrate thickness” in this specification). . Of course, you may have four or more information recording surfaces. The thickness of the protective substrate that is the thickest in the BD is t1. The DVD has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The CD has a protective substrate having a thickness of t3 (t2 <t3) and an information recording surface. Note that the DVD or CD may also be a multi-layer optical disk having a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層又はそれ以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(15)、(16)、(17)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
  0.01mm ≦ t1 ≦ 0.125mm   (15)
  0.5mm ≦ t2 ≦ 0.7mm         (16)
  1.0mm ≦ t3 ≦ 1.3mm         (17)
In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (15), (16), and (17), but is not limited thereto. The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
0.01mm ≦ t1 ≦ 0.125mm (15)
0.5mm ≤ t2 ≤ 0.7mm (16)
1.0 mm ≤ t3 ≤ 1.3 mm (17)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(18)、(19) を満たすことが好ましい。
  1.5・λ1 < λ2 < 1.7・λ1    (18)
  1.8・λ1 < λ3 < 2.0・λ1    (19)
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (18) and (19).
1.5 · λ1 <λ2 <1.7 · λ1 (18)
1.8 · λ1 <λ3 <2.0 · λ1 (19)
 第1光源の第1波長λ1は好ましくは、350nm 以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。 The first wavelength λ1 of the first light source is preferably 350 nm to 440 nm, more preferably 390 nm to 415 nm, and the second wavelength λ2 of the second light source is preferably 570 nm to 680 nm, more preferably. Is 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。もちろん、第1光源、第2光源及び第3光源を全て1パッケージに固定収納するようにしてもよい。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. Of course, the first light source, the second light source, and the third light source may all be fixedly housed in one package. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. A light receiving element may be used. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、対物レンズを有する。集光光学系は、対物レンズの他にコリメータ等のカップリングレンズを有していることが好ましい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメータは、カップリングレンズの一種で、コリメータに入射した光を平行光にして出射するレンズである。本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。また、本発明の対物レンズは、単玉のプラスチックレンズであることが好ましいが、ガラスレンズでも良い。好ましくは、凸レンズである。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 The condensing optical system has an objective lens. The condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens. The coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam. The collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light. In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens of the present invention is preferably a single plastic lens, but may be a glass lens. A convex lens is preferable. The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 また、対物レンズを構成するプラスチック材料として、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用するのが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.54乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃ -1) が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズがプラスチックレンズである場合、カップリングレンズもプラスチックレンズとすることが好ましい。 Moreover, it is preferable to use an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material as a plastic material constituting the objective lens. The resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of −5 ° C. to 70 ° C. The refractive index change rate dN / dT (° C. −1 ) is -20 × 10 −5 to −5 × 10 −5 (more preferably −10 × 10 −5 to −8 × 10 −5 ). It is more preferable to use a certain resin material. When the objective lens is a plastic lens, it is preferable that the coupling lens is also a plastic lens.
 脂環式炭化水素系重合体の好ましい例を幾つか、以下に示す。 Some preferred examples of the alicyclic hydrocarbon polymer are shown below.
 第1の好ましい例は、下記式(I)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(1)で表される繰り返し単位〔1〕並びに下記式(II)で表される繰り返し単位〔2〕または/および下記式(III)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなる樹脂組成物である。 A first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (1) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (式中、R1 は水素原子、または炭素数1~20のアルキル基を表し、R2-R12はそれぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基、またはハロゲン基である。) (Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ˜20 alkoxy groups or halogen groups.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、R13は、水素原子、または炭素数1~20のアルキル基を表す。) (In the formula, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
  (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1~20のアルキル基を表す。) (Wherein R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
 次に、第2の好ましい例は、少なくとも炭素原子数2~20のα-オレフィンと下記一般式(IV)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(A)と、炭素原子数2~20のα-オレフィンと下記一般式(V)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(B)とを含む樹脂組成物である。 Next, a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV). Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 〔式中、nは0または1であり、mは0または1以上の整数であり、qは0または1であり、R1~R18、Ra及びRbは、それぞれ独立に水素原子、ハロゲン原子または炭化水素基であり、R15~R18は互いに結合して単環または多環を形成していてもよく、括弧内の単環または多環が二重結合を有していてもよく、またR15とR16と、またはR17とR18とでアルキリデン基を形成していてもよい。〕 [Wherein n is 0 or 1, m is 0 or an integer of 1 or more, q is 0 or 1, and R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group. ]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 〔式中、R19~R26はそれぞれ独立に水素原子、ハロゲン原子または炭化水素基である。〕 [Wherein, R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group. ]
 樹脂材料に更なる性能を付加するために、以下のような添加剤を添加してもよい。 In order to add further performance to the resin material, the following additives may be added.
 (安定剤)
 フェノール系安定剤、ヒンダードアミン系安定剤、リン系安定剤及びイオウ系安定剤から選ばれた少なくとも1種の安定剤を添加することが好ましい。これらの安定剤を適宜選択し添加することで、例えば、405nmといった短波長の光を継続的に照射した場合の白濁や、屈折率の変動等の光学特性変動をより高度に抑制することができる。
(Stabilizer)
It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
 好ましいフェノール系安定剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2′-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニルプロピオネート))メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート))]、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。 As the preferred phenol-based stabilizer, conventionally known ones can be used. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate compounds described in Japanese Patent Publication No. 1; octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) ), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( , 5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenylpropionate)) methane [ie pentaerythris Limethyl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate))], triethylene glycol bis (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propionate) and other alkyl-substituted phenolic compounds; 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 4-bisoctylthio -1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5- Triazine group-containing phenol compounds such as triazine; and the like.
 また、好ましいヒンダードアミン系安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(N-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-ベンジルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクロイル-2,2,6,6-テトラメチル-4-ピペリジル)2,2-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1-[2-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル]-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート等が挙げられる。 Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1,2,2,6,6- Pentamethyl-4-piperidyl) decandioate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -1- [2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl] -2,2,6,6-tetramethylpiperidine, 2-methyl-2- ( 2,2,6,6-tetramethyl-4-piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6,6-tetramethyl -4-pi Lysyl) 1,2,3,4-butane tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate, and the like.
 また、好ましいリン系安定剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。 Further, the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl). Phenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
 また、好ましいイオウ系安定剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3′-チオジプロピピオネート、ジステアリル 3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ)-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。 Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
 これらの各安定剤の配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、脂環式炭化水素系共重合体100質量部に対して通常0.01~2質量部、好ましくは0.01~1質量部であることが好ましい。 The amount of each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
(界面活性剤)
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。界面活性剤は樹脂表面への水分の付着や上記表面からの水分の蒸発の速度を調節することで、樹脂組成物の白濁を防止することが可能となる。
(Surfactant)
A surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule. The surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
 界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基などが挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的に炭素数6以上のアルキル基、炭素数6以上のアルキル基を有するシリル基、炭素数6以上のフルオロアルキル基などが挙げられる。ここで、炭素数6以上のアルキル基は置換基として芳香環を有していてもよい。アルキル基としては、具体的にヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデセニル、ドデシル、トリデシル、テトラデシル、ミリスチル、ステアリル、ラウリル、パルミチル、シクロヘキシルなどが挙げられる。芳香環としてはフェニル基などが挙げられる。この界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。 Specific examples of the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned. Here, the amino group may be primary, secondary, or tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms. Here, the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent. Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like. Examples of the aromatic ring include a phenyl group. The surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
 このような界面活性剤としては、より具体的には、例えば、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、などが挙げられる。これらのうちでも、ヒドロキシアルキル基を有するアミン化合物またはアミド化合物が好ましく用いられる。本発明では、これら化合物を2種以上組合わせて用いてもよい。 More specifically, examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene Examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like. Among these, amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
 界面活性剤は、温度、湿度の変動に伴なう成形物の白濁を効果的に抑え、成形物の光透過率を高く維持するという観点から、脂環式炭化水素系重合体100質量部に対して0.01~10質量部添加されることが好ましい。界面活性剤の添加量は脂環式炭化水素系重合体100質量部に対して0.05~5質量部とすることがより好ましく、0.3~3質量部とすることが更に好ましい。 From the viewpoint of effectively suppressing the white turbidity of the molded product accompanying fluctuations in temperature and humidity and maintaining the light transmittance of the molded product high, the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer. On the other hand, it is preferable to add 0.01 to 10 parts by mass. The addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
(可塑剤)
 可塑剤は共重合体のメルトインデックスを調節するため、必要に応じて添加される。
(Plasticizer)
The plasticizer is added as necessary to adjust the melt index of the copolymer.
 可塑剤としては、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ビス(2-ブトキシエチル)、アゼライン酸ビス(2-エチルヘキシル)、ジプロピレングリコールジベンゾエート、クエン酸トリ-n-ブチル、クエン酸トリ-n-ブチルアセチル、エポキシ化大豆油、2-エチルヘキシルエポキシ化トール油、塩素化パラフィン、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、リン酸-t-ブチルフェニル、リン酸トリ-2-エチルヘキシルジフェニル、フタル酸ジブチル、フタル酸ジイソヘキシル、フタル酸ジヘプチル、フタル酸ジノニル、フタル酸ジウンデシル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジトリデシル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシル、セバシン酸ジ-2-エチルヘキシル、トリメリット酸トリ-2-エチルヘキシル、Santicizer 278、Paraplex G40、Drapex 334F、Plastolein 9720、Mesamoll、DNODP-610、HB-40等の公知のものが適用可能である。可塑剤の選定及び添加量の決定は、共重合体の透過性や環境変化に対する耐性を損なわないことを条件に適宜行なわれる。 Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, dicyclyl phthalate Known materials such as hexyl, di-2-ethylhexyl sebacate, tri-2-ethylhexyl trimellitic acid, Santizer 278, Paraplex G40, Drapex 334F, Plastolein 9720, Mesamol, DNODP-610, HB-40, etc. are applicable. . The selection of the plasticizer and the addition amount are appropriately performed under the condition that the permeability of the copolymer and the resistance to environmental changes are not impaired.
 これらの樹脂としては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As these resins, cycloolefin resins are preferably used. Specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, and JSR manufactured by ARTON are preferable. Take as an example.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 対物レンズについて、以下に記載するが、ここではBD/DVD/CD互換用の対物レンズについて説明する。尚、BD/CD互換用の対物レンズの場合には、以下に述べる中央領域と周辺領域の2領域のみが存在するものであり、詳細は省略する。 The objective lens will be described below, but here, an objective lens for BD / DVD / CD compatibility will be described. In the case of an objective lens for BD / CD compatibility, there are only two regions, a central region and a peripheral region described below, and details thereof are omitted.
 対物レンズの少なくとも一つの光学面が、中央領域と、中央領域の周りの中間領域と、中間領域の周りの周辺領域とを少なくとも有する。中央領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを中心領域(中央領域ともいう)としてもよい。中央領域、中間領域、及び周辺領域は同一の光学面上に設けられていることが好ましい。図2に示されるように、中央領域CN、中間領域MD、周辺領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。また、対物レンズの中央領域には第一光路差付与構造が設けられ、中間領域には第二光路差付与構造が設けられている。周辺領域は屈折面であってもよいし、周辺領域に第三光路差付与構造が設けられていてもよい。中央領域、中間領域、周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。 At least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region. The central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good. The central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 2, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface. In addition, a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area. The peripheral region may be a refracting surface, or a third optical path difference providing structure may be provided in the peripheral region. The central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
 対物レンズの中央領域は、BD、DVD及びCDの記録/再生に用いられるBD/DVD/CD共用領域と言える。即ち、対物レンズは、中央領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中央領域を通過する第2光束を、DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、中央領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光する。また、中央領域に設けられた第1光路差付与構造は、第1光路差付与構造を通過する第1光束及び第2光束に対して、BDの保護基板の厚さt1とDVDの保護基板の厚さt2の違いにより発生する球面収差/第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。さらに、第1光路差付与構造は、第1光路差付与構造を通過した第1光束及び第3光束に対して、BDの保護基板の厚さt1とCDの保護基板の厚さt3との違いにより発生する球面収差/第1光束と第3光束の波長の違いにより発生する球面収差を補正することが好ましい。 The central area of the objective lens can be said to be a BD / DVD / CD shared area used for recording / reproducing BD, DVD and CD. That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. The light is condensed so that information can be recorded and / or reproduced on the surface, and the third light flux passing through the central region is condensed so that information can be recorded / reproduced on the information recording surface of the CD. In addition, the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam. Further, the first optical path difference providing structure is different from the thickness t1 of the BD protective substrate and the thickness t3 of the CD protective substrate with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference in the wavelength of the first light beam and the third light beam.
 対物レンズの中間領域は、BD、DVDの記録/再生に用いられ、CDの記録/再生に用いられないBD/DVD共用領域と言える。即ち、対物レンズは、中間領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中間領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、中間領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの中間領域を通過する第3光束は、CDの情報記録面上でフレアを形成することが好ましい。図3に示すように、対物レンズを通過した第3光束がCDの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部SCN、光量密度がスポット中心部より低いスポット中間部SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部SOTを有することが好ましい。スポット中心部が、光ディスクの情報の記録/再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録/再生には用いられない。上記において、このスポット周辺部をフレアと言っている。但し、スポット中心部の周りにスポット中間部が存在せずスポット周辺部があるタイプ、即ち、集光スポットの周りに薄く光が大きなスポットを形成する場合も、そのスポット周辺部をフレアと呼んでもよい。つまり、対物レンズの中間領域を通過した第3光束は、CDの情報記録面上でスポット周辺部を形成することが好ましいとも言える。 The intermediate area of the objective lens is used for BD / DVD recording / reproduction and can be said to be a BD / DVD shared area not used for CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the intermediate area is recorded as information recording on the DVD. Light is collected so that information can be recorded / reproduced on the surface. On the other hand, the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the CD. The third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the CD. As shown in FIG. 3, in the spot formed on the information recording surface of the CD by the third light beam that has passed through the objective lens, the spot center having a high light quantity density in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a portion SCN, a spot intermediate portion SMD whose light intensity density is lower than that of the spot central portion, and a spot peripheral portion SOT whose light intensity density is higher than that of the spot intermediate portion and lower than that of the spot central portion. The center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare. However, there is no spot middle part around the center part of the spot and there is a spot peripheral part, that is, even when a light spot is formed thinly around the condensing spot, the spot peripheral part may be called a flare. Good. In other words, it can be said that the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the CD.
 対物レンズの周辺領域は、BDの記録/再生に用いられ、DVD及びCDの記録/再生に用いられないBD専用領域と言える。即ち、対物レンズは、周辺領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、周辺領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光せず、周辺領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの周辺領域を通過する第2光束及び第3光束は、DVD及びCDの情報記録面上でフレアを形成することが好ましい。つまり、対物レンズの周辺領域を通過した第2光束及び第3光束は、DVD及びCDの情報記録面上でスポット周辺部を形成することが好ましい。 The peripheral region of the objective lens is used for BD recording / reproduction, and can be said to be a BD-dedicated region that is not used for DVD / CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the BD. On the other hand, the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD, and the third light flux that passes through the peripheral area does not converge. Do not collect light so that information can be recorded / reproduced on top. The second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surface of DVD and CD. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surface of DVD and CD.
 第1光路差付与構造は、対物レンズの中央領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第1光路差付与構造が、中央領域の全面に設けられていることである。第2光路差付与構造は、対物レンズの中間領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第2光路差付与構造が、中間領域の全面に設けられていることである。周辺領域が第3光路差付与構造を有する場合、第3光路差付与構造は、対物レンズの周辺領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第3光路差付与構造が、周辺領域の全面に設けられていることである。 The first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region. The second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region. When the peripheral region has the third optical path difference providing structure, the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
 なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含まれる。また、位相差付与構造には回折構造が含まれる。本発明の光路差付与構造は回折構造であることが好ましい。光路差付与構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光路差付与構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、光路差付与構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam. The optical path difference providing structure also includes a phase difference providing structure for providing a phase difference. The phase difference providing structure includes a diffractive structure. The optical path difference providing structure of the present invention is preferably a diffractive structure. The optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux. The optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. When the objective lens provided with the optical path difference providing structure is a single aspherical lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis. Each will be slightly different. For example, when the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、回折構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In addition, when the objective lens provided with the diffractive structure is a single aspherical lens, the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be. For example, when the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
 ところで、光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、光路差付与構造は、一般に、様々な断面形状(光軸を含む面での断面形状) をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。 Incidentally, it is preferable that the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center. In addition, the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
 ブレーズ型構造とは、図4(a)、(b)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということである。尚、図4の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に光路差付与構造が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという。(図4(a)、(b)参照)また、ブレーズの光軸に平行方向の段差の長さを段差量Bという。(図4(a)参照) As shown in FIGS. 4A and 4B, the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape. In the example of FIG. 4, it is assumed that the upper side is the light source side and the lower side is the optical disk side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface. In the blazed structure, the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P. (See FIGS. 4A and 4B.) The length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 4 (a))
 また、階段型構造とは、図4(c)、(d)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。尚、本明細書中、「Vレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、テラス面と称することもある)が、段差によって区分けされV個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有することになる。例えば、図4(c)に示す光路差付与構造を、5レベルの階段型構造といい、図4(d)に示す光路差付与構造を、2レベルの階段型構造(バイナリ構造ともいう)という。 In addition, as shown in FIGS. 4C and 4D, the staircase structure has a small staircase shape in cross section including the optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ). In the present specification, “V level” means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones. Particularly, a three-level or higher staircase structure has a small step and a large step. For example, the optical path difference providing structure illustrated in FIG. 4C is referred to as a five-level step structure, and the optical path difference providing structure illustrated in FIG. 4D is referred to as a two-level step structure (also referred to as a binary structure). .
 尚、光路差付与構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。 ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。 The optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated. 「“ The unit shape is periodically repeated ”here naturally includes shapes in which the same shape is repeated in the same cycle. In addition, the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”. Suppose that
 光路差付与構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図4(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図4(b)に示されるように、光軸から離れる方向に進むに従って、徐々に鋸歯状形状のピッチが長くなっていく形状、又は、ピッチが短くなっていく形状であってもよい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。なお、このようにブレーズ型構造の段差の向きを途中で切り替える構造にする場合、輪帯ピッチを広げることが可能となり、光路差付与構造の製造誤差による透過率低下を抑制できる。 When the optical path difference providing structure has a blazed structure, the sawtooth shape as a unit shape is repeated. As shown in FIG. 4 (a), the same sawtooth shape may be repeated, and as shown in FIG. 4 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used. In addition, in some areas, the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area | region required in order to switch the direction of the level | step difference of a blaze | braze type | mold structure is provided in the meantime. In addition, when it is set as the structure which switches the direction of the level | step difference of a blaze | braze type structure in this way, it becomes possible to widen an annular zone pitch and it can suppress the transmittance | permeability fall by the manufacturing error of an optical path difference providing structure.
 また、第1光路差付与構造及び第2光路差付与構造は、それぞれ対物レンズの異なる光学面に設けてもよいが、同一の光学面に設けることが好ましい。更に、第3光路差付与構造を設ける場合も、第1光路差付与構造及び第2光路差付与構造と同じ光学面に設けることが好ましい。同一の光学面に設けることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。別の言い方では、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの曲率半径の絶対値が小さい方の光学面に設けることが好ましい。尚、第1基礎構造と第2基礎構造を重畳せずに、それぞれ異なる光学面に設けることも考えられる。第3基礎構造と第4基礎構造も、同様に重畳せずにそれぞれ異なる光学面に設けることも考えられる。 The first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. In addition, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side. In other words, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens. It is also conceivable to provide the first basic structure and the second basic structure on different optical surfaces without overlapping. Similarly, the third basic structure and the fourth basic structure may be provided on different optical surfaces without overlapping.
 次に、中央領域に設けられる第1光路差付与構造について説明する。第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造を重ね合わせた構造であることが好ましいが、これに限られるものではない。第1光路差付与構造は、第1基礎構造と第2基礎構造のみを重ね合わせた構造であることが好ましい。 Next, the first optical path difference providing structure provided in the central region will be described. The first optical path difference providing structure is preferably a structure in which at least the first basic structure and the second basic structure are overlapped, but is not limited thereto. The first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
 第1基礎構造は、ブレーズ型構造である。また、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。これを(1/1/1)構造と呼ぶ。特に、低次である1次回折光が発生するようにすると、第1基礎構造の段差量が大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The first basic structure is a blaze type structure. In addition, the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity that has passed through the first basic structure. Is made larger than any other order of the diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. This is called a (1/1/1) structure. In particular, if the first-order diffracted light that is low order is generated, the step amount of the first basic structure does not become too large, so that the manufacture is facilitated, and the light quantity loss due to the manufacturing error can be suppressed, and the wavelength It is preferable because the diffraction efficiency fluctuation at the time of fluctuation can be reduced.
 また、少なくとも中央領域の光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いていることが好ましい。「段差が光軸とは逆の方向を向いている」とは、図5(b)のような状態を言う。また、「少なくとも中央領域の光軸付近」に設けられる第1基礎構造とは、(1/1/1)構造の段差のうち、少なくとも最も光軸に近い段差を言う。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する(1/1/1)構造の段差が、光軸とは逆の方向を向いていることである。 Further, it is preferable that the first basic structure provided at least in the vicinity of the optical axis in the central region has a step in a direction opposite to the optical axis. “The step is directed in the direction opposite to the optical axis” means a state as shown in FIG. In addition, the first basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (1/1/1) structure. Preferably, at least a (1/1/1) structure step existing between the optical axis and the half-position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region is the optical axis. Is pointing in the opposite direction.
 例えば、中央領域の中間領域付近に設けられる第1基礎構造は、段差が光軸の方向を向いていてもよい。即ち、図6(b)に示すように、第1基礎構造が光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では第1基礎構造の段差が光軸の方を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第1基礎構造の全ての段差が光軸とは逆の方向を向いていることである。 For example, in the first basic structure provided near the middle region of the central region, the step may be directed in the direction of the optical axis. That is, as shown in FIG. 6 (b), when the first foundation structure is in the vicinity of the optical axis, the step is directed in the opposite direction to the optical axis. It is good also as a shape which faces the direction of an optical axis. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
 このように、第1光束における回折次数が1次となる第1基礎構造の段差の向きを光軸と逆方向に向けることにより、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保することが可能となるのである。 In this way, the direction of the step of the first basic structure in which the diffraction order of the first light beam is the first order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a sufficient working distance can be secured when the CD is used.
 BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保するという観点からは、第1基礎構造が第1光束に対して負の近軸パワーを持つことが好ましい。ここで、「負の近軸パワーを持つ」とは、第1基礎構造の光路差関数を後述する数2式で表した場合、C22>0であることを意味する。 The first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have a negative paraxial power with respect to the luminous flux. Here, “having negative paraxial power” means that C 2 h 2 > 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
 また、第2基礎構造も、ブレーズ型構造である。第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。これを(2/1/1)構造と呼ぶ。特に、低次である2次回折光又は1次回折光が発生するようにすると、第2基礎構造の段差量が大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The second basic structure is also a blaze type structure. In the second basic structure, the second-order diffracted light amount of the first light beam that has passed through the second basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the first basic structure. The light quantity is made larger than any other order of diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. This is called a (2/1/1) structure. In particular, if low-order second-order diffracted light or first-order diffracted light is generated, the step amount of the second basic structure does not become too large, which facilitates manufacturing and suppresses light loss caused by manufacturing errors. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
 また、少なくとも中央領域の光軸付近に設けられる第2基礎構造は、その段差が光軸の方向を向いていることが好ましい。「段差が光軸の方向を向いている」とは、図5(a)のような状態を言う。また、「少なくとも中央領域の光軸付近」に設けられる第2基礎構造とは、(2/1/1)構造の段差のうち、少なくとも最も光軸に近い段差を言う。好ましくは、少なくとも光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する(2/1/1)構造の段差が光軸の方向を向いていることである。 Further, it is preferable that the step of the second basic structure provided at least in the vicinity of the optical axis in the central region is directed in the direction of the optical axis. “The step is directed in the direction of the optical axis” means a state as shown in FIG. The second basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (2/1/1) structure. Preferably, at least a half of the optical axis orthogonal direction from the optical axis to the boundary between the central region and the intermediate region and the (2/1/1) structure step existing between the optical axis and the optical axis direction It is suitable.
 例えば、中央領域の中間領域付近に設けられる第2基礎構造は、段差が光軸とは逆の方向を向いていてもよい。即ち、図6(a)に示すように、第2基礎構造が光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では第2基礎構造の段差が光軸とは逆の方向を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第2基礎構造は、全ての段差が光軸の方向を向いていることである。 For example, in the second basic structure provided near the middle region of the central region, the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 6A, the step is directed in the direction of the optical axis when the second foundation structure is near the optical axis, but is switched halfway, and the step of the second foundation structure is near the optical axis near the intermediate region. It is good also as a shape which faces the reverse direction. However, preferably, the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
 (1/1/1)構造である第1基礎構造と、(2/1/1)構造である第2基礎構造とを重ね合わせた第1光路差付与構造にすると、段差の高さを非常に低くできる。従って、より製造誤差を低減させることが可能となり、光量ロスを更に抑えることが可能となると共に、波長変動時の回折効率の変動をより抑えることが可能となる。 When the first optical path difference providing structure is formed by superimposing the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure, the height of the step is extremely high. Can be lowered. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
 さらに、少なくとも中央領域の光軸付近においては段差が光軸とは逆の方向を向いている第1基礎構造と、少なくとも中央領域の光軸付近においては段差が光軸の方向を向いている第2基礎構造を重ね合わせることにより、第1基礎構造と第2基礎構造の段差の向きが同じになるように重ね合わせた場合に比べて、重ね合わせた後の段差の高さが高くなることをより一層抑制でき、それに伴い、製造誤差などに因る光量ロスをより抑えることが可能となると共に、波長変動時の回折効率の変動もより抑えることが可能となる。 Furthermore, at least near the optical axis of the central region, the first basic structure in which the step is directed in the direction opposite to the optical axis, and at least near the optical axis of the central region, the step is directed in the direction of the optical axis. By superimposing two foundation structures, the height of the step after superposition is higher than when superimposing the steps so that the first and second foundation structures have the same step direction. As a result, it is possible to further suppress the light amount loss due to manufacturing errors and the like, and to further suppress the fluctuation of the diffraction efficiency at the time of wavelength fluctuation.
 また、BD/DVD/CDの3種類の光ディスクの互換を可能とするだけでなく、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することが好ましい。例えば、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を60%以上、波長λ3に対する回折効率を50%以上とする対物レンズを提供することが好ましい。更には、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を70%以上、波長λ3に対する回折効率を60%以上とする対物レンズも提供することがより好ましい。加えて、第1基礎構造の段差の向きを光軸と逆方向に向けることにより、波長が長波長側に変動した際に収差をアンダー(補正不足)の方向に変化させることがより容易に行える。 Further, not only can the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD. It is preferable to provide a balanced objective lens. For example, it is preferable to provide an objective lens that has a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 60% or more for the wavelength λ2, and a diffraction efficiency of 50% or more for the wavelength λ3. Furthermore, it is more preferable to provide an objective lens that has a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 70% or more for the wavelength λ2, and a diffraction efficiency of 60% or more for the wavelength λ3. In addition, by orienting the step of the first basic structure in the direction opposite to the optical axis, it is easier to change the aberration in the direction of under (undercorrection) when the wavelength changes to the long wavelength side. .
 段差が光軸とは逆を向いている第1基礎構造と段差が光軸の方を向いている第2基礎構造とを重ね合わせた後の第1光路差付与構造の形状と段差量という観点から、(1/1/1)構造である第1基礎構造と、(2/1/1)構造である第2基礎構造とを重ね合わせた第1光路差付与構造を以下のように表現することができる。少なくとも中央領域の光軸付近に設けられている第1光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを共に有し、光軸とは逆の方向を向いている段差の段差量d11と、光軸の方向を向いている段差の段差量d12とが、以下の条件式(20)、(21)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(20)、(21)を満たすことである。尚、光路差付与構造を設けた対物レンズが単玉非球面の凸レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。下記条件式において上限に1.5を乗じているのは、当該段差量の増加を加味した故である。但し、nは、第1の波長λ1における対物レンズの屈折率を表す。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1)) (20)
0.6・(λ1/(n-1))<d12<1.5・(2λ1/(n-1))(21)
Viewpoint of the shape and step amount of the first optical path difference providing structure after the first basic structure in which the step is opposite to the optical axis and the second basic structure in which the step is directed toward the optical axis are overlapped Therefore, the first optical path difference providing structure in which the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure are overlapped is expressed as follows. be able to. The first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis. It is preferable that the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (20) and (21). More preferably, the following conditional expressions (20) and (21) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase. In the following conditional expression, the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account. Here, n represents the refractive index of the objective lens at the first wavelength λ1.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (20)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (2λ1 / (n-1)) (21)
 尚、「少なくとも中央領域の光軸付近」に設けられる第1光路差付与構造とは、少なくとも光軸に最も近い光軸とは逆の方向を向いている段差と、光軸に最も近い光軸の方向を向いている段差とを共に有する光路差付与構造をいう。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する段差を有する光路差付与構造である。 The first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis. An optical path difference providing structure having both of the steps facing the direction of. Preferably, the optical path difference providing structure has a step existing between at least a half position in the direction perpendicular to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm             (22)
 0.39μm<d12<2.31μm             (23)
0.39 μm <d11 <1.15 μm (22)
0.39 μm <d12 <2.31 μm (23)
 更に、第1基礎構造と第2基礎構造の重ね合わせ方としては、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせるように基礎構造の形状を微調整するか、第1基礎構造の全ての段差の位置と、第2基礎構造の段差の位置を合わせるように基礎構造の形状を微調整することが好ましい。 Further, as a method of overlapping the first foundation structure and the second foundation structure, the shape of the foundation structure is finely adjusted so that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure are matched. Alternatively, it is preferable to finely adjust the shape of the foundation structure so that the positions of all the steps of the first foundation structure and the positions of the steps of the second foundation structure are matched.
 上述のように第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせた場合、第1光路差付与構造のd11、d12は以下の条件式(24)、(25)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(24)、(25)を満たすことである。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1)) (24)
0.6・(λ1/(n-1))<d12<1.5・(λ1/(n-1)) (25)
As described above, when the positions of all the steps of the second foundation structure are matched with the positions of the steps of the first foundation structure, d11 and d12 of the first optical path difference providing structure are the following conditional expressions (24) and (25 ) Is preferably satisfied. More preferably, the following conditional expressions (24) and (25) are satisfied in all the regions of the central region.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (24)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (25)
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm             (22)´
 0.39μm<d12<1.15μm             (23)´
0.39 μm <d11 <1.15 μm (22) ′
0.39 μm <d12 <1.15 μm (23) ′
 更に好ましくは、以下の条件式(22)´、(23)´を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(24)´、(25)´を満たすことである。
0.9・(λ1/(n-1))<d11<1.5・(λ1/(n-1)) (24)´
0.9・(λ1/(n-1))<d12<1.5・(λ1/(n-1)) (25)´
More preferably, the following conditional expressions (22) ′ and (23) ′ are preferably satisfied. More preferably, the following conditional expressions (24) ′ and (25) ′ are satisfied in all the regions of the central region.
0.9 · (λ1 / (n−1)) <d11 <1.5 · (λ1 / (n−1)) (24) ′
0.9 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (25) '
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.59μm<d11<1.15μm             (22)´´
 0.59μm<d12<1.15μm             (23)´´
0.59 μm <d11 <1.15 μm (22) ″
0.59 μm <d12 <1.15 μm (23) ″
 また、(1/1/1)構造である第1基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化し、(2/1/1)構造である第2基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化すると好ましい。このような構成により、光ピックアップ装置の温度の上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の変化を補正して、適切な集光スポットを各光ディスクの情報記録面に形成できる。これにより、対物レンズがプラスチック製であっても、温度変化時においても安定した性能を維持できる対物レンズを提供することができる。 Further, in the first basic structure having the (1/1/1) structure, when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (2 / In the second basic structure having the 1/1) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in the undercorrection direction (under). With such a configuration, when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature. It is possible to correct a change in spherical aberration due to a change in the rate and form an appropriate focused spot on the information recording surface of each optical disc. Thereby, even if the objective lens is made of plastic, it is possible to provide an objective lens that can maintain stable performance even when the temperature changes.
 第2基礎構造に比べて、第1基礎構造の近軸パワーが大きいことが好ましい。つまりは、第1基礎構造の平均ピッチが、第2基礎構造の平均ピッチに比べて小さいことが好ましい。これにより、BD/DVD/CD互換用対物レンズという軸上厚が厚い対物レンズにおいてもCDにおけるワーキングディスタンスを確保できる。更に、色収差を小さくし、光源が高周波重畳を起こしていても、良好な光スポットを形成させ、しかも、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させ、更に、DVD使用時の温度特性と波長特性を良好にするためには、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯が2~6個(特に好ましくは2~3個)含まれていることが好ましい。尚、この場合、第2基礎構造の光軸に最も近い「輪帯」と記載しているが、実際は、光軸を含む「円」であることが通常である。従って、ここで言う「光軸に最も近い輪帯」には、円状の形状も含まれる。又、中間領域に最も近い第2基礎構造の1つの輪帯において、第2基礎構造の輪帯1つ分に、第1基礎構造の輪帯が1~5個(特に好ましくは2~3個)含まれていることである。 It is preferable that the paraxial power of the first foundation structure is larger than that of the second foundation structure. That is, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure. Thereby, a working distance in the CD can be secured even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. Furthermore, the chromatic aberration is reduced, a good light spot is formed even when the light source has a high frequency superposition, and the problem of stray light when the optical disk has a plurality of information recording surfaces is reduced. In order to improve the temperature characteristics and the wavelength characteristics at the time, in the first optical path difference providing structure, one ring zone closest to the optical axis of the second basic structure has two or more ring zones of the first basic structure. It is preferable that 6 (particularly preferably 2 to 3) are included. In this case, the “ring zone” closest to the optical axis of the second foundation structure is described, but in practice, it is usually a “circle” including the optical axis. Accordingly, the “annular zone closest to the optical axis” mentioned here includes a circular shape. Further, in one ring zone of the second foundation structure closest to the intermediate region, 1 to 5 ring zones of the first foundation structure (particularly preferably 2 to 3 rings) are included in one ring zone of the second foundation structure. ) Is included.
 尚、図7(d)に示すように、第1基礎構造と第2基礎構造とをそのまま重畳すると、点線で示すように一部が突出する場合があるが、突出部分の幅が5μm以下と狭ければ、突出した部分を光軸に沿って平行にシフトして、突出部分をなくしても大きな影響がなく、これにより第2基礎構造の1つの輪帯に、第1基礎構造の複数の輪帯が丁度のるようになる(実線参照)。よって、図7(d)の例では、第2基礎構造の1つの輪帯上に、3つの第1基礎構造の輪帯がのっているものとして扱う。第1基礎構造と第2基礎構造をそのまま重畳した場合に、幅が5μm以下と狭い凹みが発生する場合も同様にして凹みをなくしてもよい。 As shown in FIG. 7D, when the first basic structure and the second basic structure are superimposed as they are, a part may protrude as shown by a dotted line, but the width of the protruding part is 5 μm or less. If it is narrow, the projecting portion is shifted in parallel along the optical axis, and eliminating the projecting portion has no significant effect, so that one annular zone of the second foundation structure can have a plurality of the first foundation structure. The zonal is just like that (see the solid line). Therefore, in the example of FIG.7 (d), it handles as the ring zone of three 1st foundation structures on one ring zone of a 2nd foundation structure. When the first foundation structure and the second foundation structure are superimposed as they are, a dent may be eliminated in the same manner even when a dent having a width of 5 μm or less is generated.
 ここで、Δλ(nm)は第1波長の変化量、ΔWD(μm)は第1波長の変化Δλに起因して発生する対物レンズの色収差とすると、以下の式を満たす。
0.3(μm/nm)≦ΔWD/Δλ≦0.6(μm/nm) (26)
Here, if Δλ (nm) is the amount of change in the first wavelength, and ΔWD (μm) is the chromatic aberration of the objective lens caused by the change in the first wavelength Δλ, the following equation is satisfied.
0.3 (μm / nm) ≦ ΔWD / Δλ ≦ 0.6 (μm / nm) (26)
 このような構成とするためには、上述したように、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯N1が2~6個(特に好ましくは2~3個)含まれるようにすることが好ましい。色収差を上述の範囲にすることによって、BD/DVD/CD互換用対物レンズという軸上厚が厚い対物レンズにおいてもCDにおけるワーキングディスタンスを確保しながら、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させることができ、さらにDVD使用時の温度特性及び波長特性を良好にできるため好ましい。又、第2基礎構造における中間領域に最も近い1つの輪帯上に重畳された第1基礎構造の輪帯の数N2は、N1と等しいかN1より小さいことが望ましく、例えば1~5個重畳されていることがよい。 In order to obtain such a configuration, as described above, in the first optical path difference providing structure, two annular zones N1 of the first basic structure are equal to one annular zone closest to the optical axis of the second basic structure. It is preferable to include ˜6 (particularly preferably 2 to 3). By setting the chromatic aberration to the above-described range, the optical disc has a plurality of information recording surfaces while ensuring a working distance in the CD even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. This is preferable because the problem of stray light can be reduced and the temperature and wavelength characteristics can be improved when using a DVD. In addition, the number N2 of the first foundation structure annular zones superimposed on one annular zone closest to the intermediate region in the second foundation structure is preferably equal to or smaller than N1, for example, 1 to 5 overlapping zones. It should be done.
 第1基礎構造は正の回折パワーを持つことが好ましく、それによりBD/DVD/CD用の対物レンズといった軸上厚が厚い対物レンズにおいてもCD使用時のワーキングディスタンスを確保できる。また、第2基礎構造は負の回折パワーを持つことが好ましい。このように第1基礎構造と第2基礎構造が共に回折パワーを持つことにより、複数の情報記録面を有する光ディスクを使用した際に、記録再生対象でない情報記録面で反射した不要光を必要光からより遠ざけることが可能となるため好ましい。 The first basic structure preferably has a positive diffractive power, so that a working distance when using a CD can be secured even for an objective lens having a large axial thickness such as an objective lens for BD / DVD / CD. Further, the second basic structure preferably has a negative diffraction power. As described above, since both the first basic structure and the second basic structure have diffraction power, when using an optical disk having a plurality of information recording surfaces, unnecessary light reflected by the information recording surface which is not a recording / reproducing object is required light. It is preferable because it can be further away from the center.
 第1光路差付与構造を通過した第3光束によって、第3光束が形成するスポットの光強度が最も強い第1ベストフォーカス位置と、第3光束が形成するスポットの光強度が次に強い第2ベストフォーカス位置とが、以下の条件式(27)を満たすことが好ましい。なお、ここでいうベストフォーカス位置とは、ビームウェストが、或るデフォーカスの範囲でビームウェストが極小となる位置を指すものである。第1ベストフォーカス位置がCDの記録/再生に用いられる必要光のベストフォーカス位置であり、第2ベストフォーカス位置がCDの記録/再生に用いられない不要光のうち、最も光量が多い光束のベストフォーカス位置である。
 0.05≦L/f13≦0.35         (27)
 但し、f13[mm]は、第1光路差付与構造を通過し、第1ベストフォーカスを形成する第3光束の焦点距離を指し、L[mm]は、第1ベストフォーカスと第2ベストフォーカスの間の距離を指す。
The first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (27). Here, the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range. The first best focus position is the best focus position of the necessary light used for CD recording / reproduction, and the second best focus position is the best of the luminous flux having the largest light quantity among the unnecessary light that is not used for CD recording / reproduction. The focus position.
0.05 ≦ L / f13 ≦ 0.35 (27)
However, f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus, and L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
 より好ましくは、以下の条件式(27)´を満たすことである。
 0.10≦L/f13≦0.25         (27)´
More preferably, the following conditional expression (27) ′ is satisfied.
0.10 ≦ L / f13 ≦ 0.25 (27) ′
 以上述べた第1光路差付与構造の好ましい例をいくつか図7(a)、(b)、(c)として示す。尚、図7は、便宜上、第1光路差付与構造ODS1が平板状に設けられたものとして示されているが、単玉非球面の凸レンズ上に設けられていてもよい。(2/1/1)回折構造である第2基礎構造BS2に、(1/1/1)回折構造である第1基礎構造BS1が重ねあわされている。図7(a)においては、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差は光軸OAとは逆の方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。次に、図7(b)においては、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差も光軸OAの方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。次に、図7(c)においては、第1基礎構造BS1の段差は光軸OAと逆の方向を向いており、第2基礎構造BS2の段差も光軸OAと逆の方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。 Several preferable examples of the first optical path difference providing structure described above are shown in FIGS. 7A, 7B, and 7C. Although FIG. 7 shows the first optical path difference providing structure ODS1 as a flat plate for convenience, it may be provided on a single aspherical convex lens. The first basic structure BS1 which is a (1/1/1) diffraction structure is overlapped with the second basic structure BS2 which is a (2/1/1) diffraction structure. In FIG. 7A, the step of the second basic structure BS2 faces the direction of the optical axis OA, and the step of the first basic structure BS1 faces the direction opposite to the optical axis OA. Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1. Next, in FIG.7 (b), the level | step difference of 2nd foundation structure BS2 has faced the direction of optical axis OA, and the level | step difference of 1st foundation structure BS1 has also faced the direction of optical axis OA. Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1. Next, in FIG.7 (c), the level | step difference of 1st foundation structure BS1 has faced the direction opposite to optical axis OA, and the level | step difference of 2nd foundation structure BS2 has also faced the direction opposite to optical axis OA. . Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
 更に、中央領域の総輪帯数をN、対物レンズの第1光束における焦点距離をf(mm)としたとき、以下の式を満たすと好ましい。これによりCDのワーキングディスタンスが短くなりすぎることを抑制すると共に、輪帯のピッチが小さくなりすぎて加工性が低下することを抑制できる。尚、中央領域における光軸に略平行な段差数を、中央領域の総輪帯数とみなしてよい。
 160(mm)≦N・f≦210(mm)   (13)
Furthermore, when the total number of annular zones in the central region is N and the focal length of the first light flux of the objective lens is f (mm), it is preferable that the following expression is satisfied. As a result, it is possible to prevent the working distance of the CD from becoming too short and to suppress the workability from being lowered due to the ring zone pitch becoming too small. Note that the number of steps substantially parallel to the optical axis in the central region may be regarded as the total number of annular zones in the central region.
160 (mm) ≤ N · f ≤ 210 (mm) (13)
 以上、第1光路差付与構造の好ましい構造について、ブレーズ型の(1/1/1)構造と、ブレーズ型の(2/1/1)構造とを重畳した構造を中心に説明してきたが、他の第1光路差付与構造の例としては以下が挙げられる。 As described above, the preferable structure of the first optical path difference providing structure has been described focusing on the structure in which the blaze type (1/1/1) structure and the blaze type (2/1/1) structure are superimposed. Examples of other first optical path difference providing structures include the following.
 例えば、(A)単一のブレーズ型構造のみの場合、(B)単一の階段型構造の場合、(C)複数のブレーズ型構造を重畳した場合、(D)ブレーズ型構造と階段型構造を重畳する場合等が挙げられる。(A)の好ましい例としては、対物レンズの倍率差を利用しつつブレーズ型の(2/1/1)構造のみからなる第1光路差付与構造や、(1/1/1)構造のみからなる第1光路差付与構造が挙げられる。(B)の好ましい例としては、7レベルの階段型構造である(1/3/4)構造のみからなる第1光路差付与構造や、7レベルの階段型構造である(1/-2/-3)構造のみからなる第1光路差付与構造や、6レベルの階段型構造である(1/-1/-2)構造のみからなる第1光路差付与構造等が挙げられる。(C)の好ましい例としては、ブレーズ型の(2/1/1)構造とブレーズ型の(1/1/1)構造を重畳させた第1光路差付与構造以外に、ブレーズ型の(2/1/1)構造とブレーズ型の(1/0/0)構造とを重畳させた第1光路差付与構造が挙げられる。(D)の好ましい例としては、ブレーズ型の(2/1/1)構造と4レベルの階段型構造である(1/0/0)構造とを重畳させた第1光路差付与構造がや、ブレーズ型の(2/1/1)構造と2レベルの階段型構造である(0/0/1)構造とを重畳させた第1光路差付与構造が挙げられる。 For example, (A) in the case of only a single blazed structure, (B) in the case of a single staircase structure, (C) in the case of superimposing a plurality of blazed structures, (D) a blazed structure and a staircase structure For example. As a preferable example of (A), a first optical path difference providing structure composed only of a blazed (2/1/1) structure or a (1/1/1) structure alone while utilizing the magnification difference of the objective lens. The 1st optical path difference providing structure which becomes becomes. Preferred examples of (B) include a first optical path difference providing structure consisting only of a (1/3/4) structure which is a 7-level staircase structure, and a 7-level staircase structure (1 / -2 / -3) a first optical path difference providing structure consisting only of a structure, a first optical path difference providing structure consisting only of a (1 / -1 / -2) structure which is a six-level stepped structure, and the like. As a preferable example of (C), in addition to the first optical path difference providing structure in which the blaze type (2/1/1) structure and the blaze type (1/1/1) structure are superimposed, the blaze type (2 / 1/1) structure and a blaze-type (1/0/0) structure may be mentioned as a first optical path difference providing structure. As a preferred example of (D), there is a first optical path difference providing structure in which a blaze type (2/1/1) structure and a (1/0/0) structure that is a four-level step structure are overlapped. There is a first optical path difference providing structure in which a blaze type (2/1/1) structure and a (0/0/1) structure that is a two-level stepped structure are superimposed.
 次に、中間領域に設けられる第2光路差付与構造について説明する。第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造の2つの基礎構造を重ね合わせた構造であることが好ましいが、これに限られるものではない。 Next, the second optical path difference providing structure provided in the intermediate region will be described. The second optical path difference providing structure is preferably a structure in which at least two basic structures of the third basic structure and the fourth basic structure are overlapped, but is not limited thereto.
 第3基礎構造も第4基礎構造も、ブレーズ型構造であることが好ましい。また、第3基礎構造は、第3基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。又、第3基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。また、第4基礎構造は、第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすると好ましい。又、第4基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。これにより、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた第2光路差付与構造において、光軸方向の段差量を低減でき、それにより波長変動時の回折効率の低下を抑制できる。また、第1基礎構造と第3基礎構造における最も光強度が高い回折光の次数が一致し、且つ第2基礎構造と第4基礎構造における最も光強度が高い回折光の次数が一致しているため、中央領域と中間領域を通過する光束について、温度や波長変化時においても球面収差を連続と出来、その結果、高次収差の発生を抑えることができる。 It is preferable that both the third basic structure and the fourth basic structure are blazed structures. Further, the third basic structure makes the first-order diffracted light quantity of the first light flux that has passed through the third basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity of the second light flux that has passed through the third basic structure Is preferably larger than any other order of diffracted light. In addition, it is preferable that the first-order diffracted light amount of the third light flux that has passed through the third basic structure is larger than any other order diffracted light amount. In addition, the fourth foundation structure makes the second-order diffracted light amount of the first light beam that has passed through the fourth foundation structure larger than any other order of diffracted light amount, and the first-order of the second light beam that has passed through the fourth foundation structure. Is preferably larger than any other order of diffracted light. Further, the first-order diffracted light amount of the third light flux that has passed through the fourth basic structure is made larger than any other order diffracted light amount. Thereby, in the second optical path difference providing structure in which at least the third basic structure and the fourth basic structure are overlapped, the amount of step in the optical axis direction can be reduced, thereby suppressing the decrease in diffraction efficiency at the time of wavelength variation. Further, the orders of the diffracted light having the highest light intensity in the first basic structure and the third basic structure are matched, and the orders of the diffracted light having the highest light intensity in the second basic structure and the fourth basic structure are matched. Therefore, the spherical aberration can be made continuous even when the temperature and the wavelength change for the light flux passing through the central region and the intermediate region, and as a result, the occurrence of higher order aberrations can be suppressed.
 第2光路差付与構造は第3、第4基礎構造に加えて、第5基礎構造を重ね合わせた構造としてもよいが、構造を単純にし、製造誤差による光利用効率の低下を抑えるためにも、第2光路差付与構造は、第3基礎構造及び第4基礎構造のみからなることが好ましい。 The second optical path difference providing structure may be a structure in which the fifth basic structure is overlapped in addition to the third and fourth basic structures. However, in order to simplify the structure and suppress a decrease in light utilization efficiency due to manufacturing errors. The second optical path difference providing structure preferably includes only the third basic structure and the fourth basic structure.
 尚、この時、第5基礎構造は、第5基礎構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第2光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第3光束のG次の回折光量を他のいかなる次数の回折光量よりも大きくする構造であることが好ましい。この様な第5基礎構造を重ね合わせることにより、対物レンズの中間領域を通過する第1光束、第2光束に悪影響を与えることなく、且つ、中央領域と中間領域との間で位相ずれを生じさせることなく、第3光束のみに、CDの情報記録面上でフレアを光スポットから遠い位置に形成させる作用を容易に与えることが可能となる。 At this time, the fifth basic structure makes the 0th-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure. The 0th-order diffracted light amount is made larger than any other order diffracted light amount, and the G-th order diffracted light amount of the third light flux that has passed through the fifth basic structure is made larger than any other order diffracted light amount. It is preferable. By superimposing such a fifth basic structure, a phase shift occurs between the central region and the intermediate region without adversely affecting the first light beam and the second light beam passing through the intermediate region of the objective lens. Accordingly, it is possible to easily give only the third light flux an effect of forming a flare at a position far from the light spot on the information recording surface of the CD.
 好ましくは、Gが±1である。Gが±1である場合に、第5基礎構造は、図4(d)に示すような2レベルの階段型構造(バイナリ構造とも言う)であることが好ましい。 Preferably, G is ± 1. When G is ± 1, the fifth basic structure is preferably a two-level staircase structure (also referred to as a binary structure) as shown in FIG.
 また、第3基礎構造を通過した第1光束の3次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし((3/2)構造とも言う)、第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする((2/1)構造とも言う)ようにしてもよい。このような構成であると、BDにおける回折効率をより高めることができる。 Further, the third-order diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the second-order diffracted light amount of the second light beam that has passed through the third basic structure is changed to other values. The diffraction light quantity of any order is made larger (also referred to as (3/2) structure), the second-order diffraction light quantity of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffraction light quantity, The first-order diffracted light amount of the second light beam that has passed through the four basic structures may be made larger than any other order diffracted light amount (also referred to as a (2/1) structure). With such a configuration, the diffraction efficiency in BD can be further increased.
 尚、第3基礎構造と第4基礎構造が、(1/1)構造と(2/1)構造の組み合わせである場合も、(3/2)構造と(2/1)構造の組み合わせである場合も、少なくとも中間領域の、中央領域に最も近い位置に設けられる第3基礎構造は、その段差が光軸とは逆の方向を向いており、少なくとも中間領域の、中央領域に最も近い位置に設けられる第4基礎構造は、その段差が光軸の方向を向いていることが好ましい。より好ましくは、中間領域におけるすべての第3基礎構造の段差が光軸とは逆の方向を向いており、中間領域におけるすべての第4基礎構造の段差が光軸の方向を向いていることである。 In addition, even when the 3rd foundation structure and the 4th foundation structure are the combination of the (1/1) structure and the (2/1) structure, it is the combination of the (3/2) structure and the (2/1) structure. Even in this case, the third basic structure provided at least in the middle region at the position closest to the central region has the step in the direction opposite to the optical axis, and at least in the middle region at the position closest to the central region. As for the 4th foundation structure provided, it is preferred that the level | step difference has faced the direction of an optical axis. More preferably, the steps of all the third foundation structures in the intermediate region are directed in the direction opposite to the optical axis, and the steps of all the fourth foundation structures in the intermediate region are directed in the direction of the optical axis. is there.
 第3基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、第4基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化するようにしてもよい。 In the third basic structure, when the wavelength of the incident light beam changes so as to become longer, the spherical aberration changes in an undercorrected (under) direction, and in the fourth basic structure, the wavelength of the incident light beam becomes longer. If it changes, the spherical aberration may change in the direction of under-correction (under).
 このような構成とすると、第2光路差付与構造においても、光ピックアップ装置の温度上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の劣化を補正するため、環境温度の変化時に、より適切な集光スポットを各光ディスクの情報記録面に形成できる。 With such a configuration, even in the second optical path difference providing structure, when the refractive index of the objective lens changes due to the temperature increase of the optical pickup device, the wavelength of the light source also increases due to the increase in the environmental temperature. Is used to correct the deterioration of the spherical aberration due to the change in the refractive index of the objective lens, so that a more appropriate condensing spot can be formed on the information recording surface of each optical disc when the environmental temperature changes.
 一方で、第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化するようにしてもよい。 On the other hand, when one of the third basic structure and the fourth basic structure is changed so that the wavelength of the incident light beam becomes longer, the spherical aberration changes in the undercorrection (under) direction, and the incident light is incident on the other side. When the wavelength of the luminous flux to be changed is changed to be longer, the spherical aberration may be changed in the overcorrection (over) direction.
 第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化するようにすると、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の3次球面収差の変化量を、-30mλrms以上、+50mλrms以下にすることができるため好ましい。尚、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の3次球面収差の変化量を、-10mλrms以上、+10mλrms以下にすることがより好ましい。尚、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の5次球面収差の変化量は、-20mλrms以上、20mλrms以下であることが好ましい。より好ましくは、-10mλrms以上、+10mλrms以下である。 In one of the third basic structure and the fourth basic structure, when the wavelength of the incident light beam is changed so as to become longer, the spherical aberration changes in the undercorrection (under) direction. If the spherical aberration is changed in the overcorrection direction when the wavelength is changed to be longer, when the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the first aberration is changed. The amount of change of the third-order spherical aberration when the wavelength of one light beam changes by +5 nm can be set to −30 mλrms to +50 mλrms, which is preferable. When the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the amount of change in the third-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -10 mλrms or more and +10 mλrms or less. More preferably. When the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the amount of change in the fifth-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -20 mλrms or more and 20 mλrms or less. It is preferable that More preferably, it is −10 mλrms or more and +10 mλrms or less.
 このような構成とすると、第3基礎構造と第4基礎構造のうち何れか一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰方向に変化するので、第2光路差付与構造が、第3基礎構造と第4基礎構造のみからなっていても、CD使用時のフレア出しを容易に行うことが出来る。従って、CD使用時のフレア出しを、単純な形状の第2光路差付与構造で行えるため、影の効果による光利用効率の低下を抑制し、更に、製造誤差による光利用効率の低下も抑制し、結果として光利用効率を向上させることが可能となる。尚、これにより中間領域においてはBD使用時の温度特性補正効果が小さくなるが、中央領域の第1基礎構造と第2基礎構造が共に長波長において補正不足であるため、温度特性が悪くなりすぎることを防止でき、またBD使用時の波長特性補正効果を大きくすることができる。加えて、DVD使用時においては、DVDの温度特性及び波長特性を共に良好にすることができる。 With such a configuration, in either one of the third basic structure and the fourth basic structure, when the wavelength of the incident light beam is changed to be longer, the spherical aberration changes in the overcorrection direction. Even if the two-optical path difference providing structure is composed of only the third and fourth basic structures, flare can be easily produced when using the CD. Accordingly, flare out when using a CD can be performed with a simple second optical path difference providing structure, so that a decrease in light utilization efficiency due to a shadow effect is suppressed, and a decrease in light utilization efficiency due to manufacturing errors is also suppressed. As a result, the light use efficiency can be improved. This reduces the effect of correcting the temperature characteristics when using BD in the intermediate area, but the temperature characteristics are too poor because both the first basic structure and the second basic structure in the central area are insufficiently corrected at long wavelengths. This can be prevented, and the wavelength characteristic correction effect when using the BD can be increased. In addition, when the DVD is used, both the temperature characteristic and wavelength characteristic of the DVD can be improved.
 なお、第4基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、第3基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化すると、CD使用時にフレアをより遠くに飛ばしやすくできるため、好ましい。 When the wavelength of the incident light beam is changed to be longer in the fourth basic structure, the spherical aberration is changed in an undercorrected (under) direction, and the wavelength of the incident light beam is longer in the third basic structure. In this case, it is preferable that the spherical aberration changes in the overcorrected (over) direction because the flare can be easily moved farther when the CD is used.
 更にDVD使用時の波長特性を良好にするために、第2光路差付与構造において、第4基礎構造の中央領域に最も近い輪帯1つ分に、第3基礎構造の輪帯が1~3個(特に好ましくは2~3個)含まれていることが好ましい。より好ましくは、第2光路差付与構造において、第4基礎構造の周辺領域に最も近い輪帯1つ分に、第3基礎構造の輪帯が1~5個(特に好ましくは2~3個)含まれていることである。 Further, in order to improve the wavelength characteristics when using the DVD, in the second optical path difference providing structure, the ring zone of the third basic structure is 1 to 3 in one ring zone closest to the central region of the fourth basic structure. It is preferable that the number (particularly preferably 2 to 3) is included. More preferably, in the second optical path difference providing structure, 1 to 5 (particularly preferably 2 to 3) ring zones of the third foundation structure are provided for one ring zone closest to the peripheral region of the fourth foundation structure. It is included.
 周辺構造に第3光路差付与構造を設ける場合、任意の光路差付与構造を設けることが可能である。第3光路差付与構造は、第6基礎構造を有することが好ましい。第6基礎構造は、第6基礎構造を通過した第1光束のP次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第2光束のQ次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第3光束のR次の回折光量を他のいかなる次数の回折光量よりも大きくする。尚、波長変動時の回折効率の変動を抑えるためにも、Pが5以下であることが好ましい。 When providing the third optical path difference providing structure in the peripheral structure, it is possible to provide an arbitrary optical path difference providing structure. The third optical path difference providing structure preferably has a sixth basic structure. In the sixth basic structure, the P-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than any other order diffracted light amount, and the Q-order diffraction of the second light beam that has passed through the sixth basic structure. The light quantity is made larger than any other order of diffracted light quantity, and the R-order diffracted light quantity of the third light flux that has passed through the sixth basic structure is made larger than any other order of diffracted light quantity. Note that P is preferably 5 or less in order to suppress fluctuations in diffraction efficiency during wavelength fluctuations.
 ここで、図8に好ましい対物レンズの模式図を示す。光軸OAを含む対物レンズの断面のうち、光軸よりも上半分を示した図である。尚、図8は、あくまでも模式図であり、実施例に基づいた正確な長さの比率などを表した図面ではない。 Here, FIG. 8 shows a schematic diagram of a preferable objective lens. It is the figure which showed the upper half from the optical axis among the cross sections of the objective lens containing optical axis OA. Note that FIG. 8 is a schematic diagram to the last, and is not a drawing showing an accurate length ratio or the like based on the embodiment.
 図8の対物レンズは、中央領域CN、中間領域MD、周辺領域OTを有している。中央領域には第1光路差付与構造ODS1が設けられており、中間領域には第2光路差付与構造ODS2が設けられており、周辺領域には第3光路差付与構造が設けられている。 8 has a central region CN, an intermediate region MD, and a peripheral region OT. A first optical path difference providing structure ODS1 is provided in the central area, a second optical path difference providing structure ODS2 is provided in the middle area, and a third optical path difference providing structure is provided in the peripheral area.
 図8の第1光路差付与構造ODS1は、(2/1/1)のブレーズ構造であって段差が光軸の方を向いている第2基礎構造BS2と、(1/1/1)のブレーズ構造であって段差が光軸と逆の方を向いている第1基礎構造BS1とが重畳した構造となっている。図8においては、第2基礎構造BS2は3輪帯であり、第2基礎構造BS2における光軸に最も近い輪帯(円状)上に、第1基礎構造BS1の輪帯が4個含まれている。また、第2基礎構造BS2における中間領域に最も近い1つの輪帯に、第1基礎構造BS1の輪帯が2個含まれている。 The first optical path difference providing structure ODS1 in FIG. 8 is a (2/1/1) blazed structure in which the step is directed toward the optical axis and a (1/1/1) second basic structure BS2. The blazed structure has a structure in which a first basic structure BS1 with a step facing away from the optical axis is superimposed. In FIG. 8, the second foundation structure BS2 has three annular zones, and four annular zones of the first foundation structure BS1 are included on the annular zone (circular shape) closest to the optical axis in the second foundation structure BS2. ing. In addition, two annular zones of the first foundation structure BS1 are included in one annular zone closest to the intermediate region in the second foundation structure BS2.
 図8の第2光路差付与構造ODS2は、(2/1/1)のブレーズ構造であって段差が光軸の方を向いている第4基礎構造BS4と、(1/1/1)のブレーズ構造であって段差が光軸と逆の方を向いている第3基礎構造BS3とが重畳した構造となっている。図8においては、第4基礎構造BS4は3輪帯であり、第4基礎構造BS4における中央領域に最も近い輪帯上に、第3基礎構造BS3の輪帯が3個含まれている。また、第4基礎構造BS4における周辺領域に最も近い1つの輪帯に、第3基礎構造BS3の輪帯が1個含まれている。 The second optical path difference providing structure ODS2 in FIG. 8 is a (2/1/1) blazed structure in which a step is directed toward the optical axis, and a (1/1/1) fourth basic structure BS4. The blazed structure has a structure in which a third basic structure BS3 having a level difference opposite to the optical axis is superimposed. In FIG. 8, the fourth foundation structure BS4 is a three-ring zone, and three ring zones of the third foundation structure BS3 are included on the zone closest to the central region in the fourth foundation structure BS4. Further, one ring zone of the third foundation structure BS3 is included in one ring zone closest to the peripheral region in the fourth foundation structure BS4.
 図8の第3光路差付与構造ODS3は、(2/1/1)のブレーズ構造であって段差が光軸の方を向いている第6基礎構造BS6のみからなっている。 The third optical path difference providing structure ODS3 in FIG. 8 is a (2/1/1) blazed structure, and is composed only of the sixth basic structure BS6 in which the step is directed toward the optical axis.
 BDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、DVDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、CDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The NA on the image side of the objective lens necessary for reproducing / recording information on the BD is NA1, and the NA on the image side of the objective lens necessary for reproducing / recording information on the DVD is NA2 (NA1 > NA2), and the image side numerical aperture of the objective lens necessary for reproducing / recording information on the CD is NA3 (NA2> NA3). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 対物レンズの中央領域と中間領域の境界は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中央領域と中間領域の境界が、NA3に相当する部分に形成されていることである。また、対物レンズの中間領域と周辺領域の境界は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.15・NA2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中間領域と周辺領域の境界が、NA2に相当する部分に形成されていることである。 The boundary between the central region and the intermediate region of the objective lens is 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more, 1.15 · NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 · NA 2 or more and 1.2 · NA 2 or less (more preferably 0.95 · NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
 対物レンズを通過した第3光束をCDの情報記録面上に集光する場合に、球面収差が少なくとも1箇所の不連続部を有することが好ましい。その場合、不連続部は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に存在することが好ましい。 When the third light flux that has passed through the objective lens is condensed on the information recording surface of the CD, it is preferable that the spherical aberration has at least one discontinuous portion. In that case, the discontinuous portion has a range of 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more and 1.15 · NA 3 or less) when the third light flux is used. It is preferable that it exists in.
 また、対物レンズは、以下の条件式(28)を満たすことが好ましい。
0.8≦d/f≦1.5              (28)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。
The objective lens preferably satisfies the following conditional expression (28).
0.8 ≦ d / f ≦ 1.5 (28)
Here, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux.
 BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じるが、条件式(28)を満たすことにより非点収差や偏心コマ収差の発生を抑制することが可能となる。 When an optical disk with a short wavelength and high NA such as BD is used, the objective lens is likely to generate astigmatism and decent coma, but the conditional expression (28) is satisfied. As a result, it is possible to suppress the generation of astigmatism and decentration coma.
 また、対物レンズの軸上厚が厚めの厚肉対物レンズになるため、CDの記録/再生時におけるワーキングディスタンスが短くなりがちになるため、条件式(28)の上限の値を超えないことが好ましい。 In addition, since the objective lens becomes a thick objective lens with a thick on-axis thickness, the working distance at the time of CD recording / reproduction tends to be shortened, so the upper limit value of conditional expression (28) may not be exceeded. preferable.
 本発明の対物レンズにおいて、常温(25±3℃)、かつ、(1)式を満たすカバーガラス厚T(mm)において、第1光束を入射した対物レンズにおいて3次球面収差が最小となるときの倍率Mが(2)式を満たすとともに、倍率Mでの正弦条件違反量が瞳半径H1で第1極大値を、瞳半径H2で第2極大値をそれぞれとり、瞳半径H3を0.9以上としたときに(3)式を満たし(但し、瞳半径H1、H2、H3は前記対物レンズの有効半径を1としたときの相対値とする)、更に正弦条件違反量の導関数Φ(h)が(4)~(6)式を満たす。
 TMAX×0.78≦T≦TMAX×1.1   (1)
 -0.003≦M≦0.003   (2)
 H1<H2<H3   (3)
 φ(h)<0.0(h<H1)   (4)
 φ(h)>0.0(H1<h<H2)   (5)
 φ(h)<0.0(H2<h<H3)   (6)
更に、以下の式を満たす。
 -0.01≦m1≦0.01   (7)
 -0.01≦m3≦0.01   (8)
 -0.05≦(fB3-fB1)/d≦0.10   (9)
但し、
fB1=WD1+t1×(1-1/n1)
fB3=WD3+t3×(1-1/n3)
ν:対物レンズの素材のアッベ数
m1:第1波長λ1の光束が対物レンズに入射する時の結像倍率
m3:第3波長λ3の光束が対物レンズに入射する時の結像倍率
d:対物レンズの軸上厚(mm)
WD1:BD使用時のワーキングディスタンス(mm)
WD3:CD使用時のワーキングディスタンス(mm)
n1:第1波長λ1の光束に対するBDの保護基板の屈折率
n3:第3波長λ3の光束に対するCDの保護基板の屈折率
In the objective lens according to the present invention, when the third-order spherical aberration is minimized in the objective lens incident with the first light beam at room temperature (25 ± 3 ° C.) and the cover glass thickness T (mm) satisfying the expression (1). The sine condition violation amount at the magnification M takes the first maximum value at the pupil radius H1, the second maximum value at the pupil radius H2, and the pupil radius H3 to 0.9. When the above is satisfied, the expression (3) is satisfied (however, the pupil radii H1, H2, and H3 are relative values when the effective radius of the objective lens is 1), and the derivative Φ ( h) satisfies the expressions (4) to (6).
TMAX × 0.78 ≦ T ≦ TMAX × 1.1 (1)
-0.003 ≦ M ≦ 0.003 (2)
H1 <H2 <H3 (3)
φ (h) <0.0 (h <H1) (4)
φ (h)> 0.0 (H1 <h <H2) (5)
φ (h) <0.0 (H2 <h <H3) (6)
Furthermore, the following expression is satisfied.
-0.01 ≦ m1 ≦ 0.01 (7)
-0.01 ≦ m3 ≦ 0.01 (8)
−0.05 ≦ (fB3−fB1) /d≦0.10 (9)
However,
fB1 = WD1 + t1 × (1-1 / n1)
fB3 = WD3 + t3 × (1-1 / n3)
ν: Abbe number of the material of the objective lens m1: Imaging magnification when the light beam having the first wavelength λ1 is incident on the objective lens m3: Imaging magnification when the light beam having the third wavelength λ3 is incident on the objective lens d: Objective Lens axial thickness (mm)
WD1: Working distance when using BD (mm)
WD3: Working distance when using CD (mm)
n1: Refractive index of the BD protective substrate for the light beam having the first wavelength λ1 n3: Refractive index of the CD protective substrate for the light beam having the third wavelength λ3
 倍率Mにおいて、有効半径の7割から9割の間で、正弦条件違反量が正の極大値を持ち、更に、正弦条件違反量が負の極小値を持つと好ましい。又、負の極小値は、有効半径の2割から6割の間であると好ましい。更に、有効半径の10割における正弦条件違反量の値が、ほぼ0であることが好ましい。尚、ほぼ0とは、-0.001~0.001mmをいう。 In the magnification M, it is preferable that the sine condition violation amount has a positive maximum value and the sine condition violation amount has a negative minimum value between 70% and 90% of the effective radius. The negative minimum value is preferably between 20% and 60% of the effective radius. Furthermore, it is preferable that the value of the sine condition violation amount at 100% of the effective radius is substantially zero. Incidentally, almost 0 means −0.001 to 0.001 mm.
 更に以下の式を満たすと好ましい。
 0.7≦H2≦0.9   (10)
Furthermore, it is preferable to satisfy the following formula.
0.7 ≦ H2 ≦ 0.9 (10)
 BDの透明基板厚t1の情報記録面に倍率m1で入射した光束を集光する場合において、対物レンズだけが所定角チルトした場合に発生する3次コマ収差LTCM3と、対物レンズと同じ方向に前記BDだけが前記所定角チルトした場合に発生する3次コマ収差DTCM3とが、以下の式を満たす。
 |LTCM3|>|DTCM3|   (11)
In condensing a light beam incident at a magnification m1 on an information recording surface of a BD transparent substrate thickness t1, the third-order coma aberration LTCM3 generated when only the objective lens is tilted by a predetermined angle, and the same direction as the objective lens The third-order coma aberration DTCM3 generated when only the BD is tilted at the predetermined angle satisfies the following expression.
| LTCM3 | >> | DTCM3 | (11)
 以下の式を満たす。
 -0.05≦(fB3-fB1)/d≦0.05   (6’)
The following formula is satisfied.
−0.05 ≦ (fB3−fB1) /d≦0.05 (6 ′)
 BD使用時の正弦条件が、負から正に転じる光軸からの高さhは、以下の式を満たす。
 0.8hCDNA≦h≦hDVDNA   (12)
但し、
CDNA:CD使用時の像側開口数に相当する光軸方向高さ
DVDNA:DVD使用時の像側開口数に相当する光軸方向高さ
The height h from the optical axis at which the sine condition when using BD turns from negative to positive satisfies the following expression.
0.8h CDNA ≤ h ≤ h DVDNA (12)
However,
h CDNA : height in the optical axis direction corresponding to the image-side numerical aperture when using a CD h DVDNA : height in the optical axis direction corresponding to the image-side numerical aperture when using a DVD
 第1光束、第2光束及び第3光束は、平行光又は略平行光として対物レンズに入射する。第2光束は、平行光として対物レンズに入射してもよいし、発散光若しくは収束光として対物レンズに入射してもよい。トラッキング時においても、コマ収差が発生することを防止するためには、第1光束、第2光束、及び第3光束を全て平行光又は略平行光として対物レンズに入射させることが好ましい。本発明の第1光路差付与構造を用いることによって、第1光束、第2光束及び第3光束の全てを平行光又は略平行光として対物レンズに入射させることが可能となるため、本発明の効果がより顕著となる。第1光束が平行光又は略平行光として対物レンズに入射する第1光束における対物レンズの結像倍率m1が、下記の式(7)を満たす。
 -0.01≦m1≦0.01   (7)
The first light beam, the second light beam, and the third light beam are incident on the objective lens as parallel light or substantially parallel light. The second light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light. By using the first optical path difference providing structure of the present invention, all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable. The imaging magnification m1 of the objective lens in the first light flux incident on the objective lens as parallel light or substantially parallel light satisfies the following formula (7).
-0.01 ≦ m1 ≦ 0.01 (7)
 また、第2光束を平行光又は略平行光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(29)を満たすことが好ましい。
-0.01<m2<0.01     (29)
In addition, when the second light beam is incident on the objective lens as parallel light or substantially parallel light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following expression (29). Is preferred.
-0.01 <m2 <0.01 (29)
 又、第2光束を発散光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(29)’を満たすことが好ましい。
 m2<0   (29)’
但し、m2:第2波長λ2の光束が対物レンズに入射する時の結像倍率
 より好ましくは、以下の(29)”を満たすことである。
-0.025<m2≦-0.01     (29)”
Further, when the second light flux is incident on the objective lens as diverging light, it is preferable that the imaging magnification m2 of the objective lens when the second light flux is incident on the objective lens satisfies the following formula (29) ′.
m2 <0 (29) '
However, m2: The imaging magnification when the light beam having the second wavelength λ2 is incident on the objective lens preferably satisfies the following (29) ″.
−0.025 <m2 ≦ −0.01 (29) ”
 また、第3光束を平行光束又は略平行光束として対物レンズに入射する第3光束における対物レンズの結像倍率m3が、下記の式(8)を満たす。
 -0.01≦m3≦0.01   (8)
Further, the imaging magnification m3 of the objective lens in the third light beam incident on the objective lens as the parallel light beam or the substantially parallel light beam satisfies the following formula (8).
-0.01 ≦ m3 ≦ 0.01 (8)
 また、第3光ディスクを用いる際の対物光学素子のワーキングディスタンス(WD)は、0.15mm以上、1.5mm以下であることが好ましい。好ましくは、0.2mm以上、0.5mm以下である。次に、第2光ディスクを用いる際の対物光学素子のWDは、0.2mm以上、1.3mm以下であることが好ましい。さらに、第1光ディスクを用いる際の対物光学素子のWDは、0.25mm以上、1.0mm以下であることが好ましい。 Also, the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.15 mm or more and 1.5 mm or less. Preferably, it is 0.2 mm or more and 0.5 mm or less. Next, the WD of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 1.3 mm or less. Furthermore, the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
 光ピックアップ装置は、カップリングレンズが、少なくとも第1光束と第2光束が通過するものであって、カップリングレンズを光軸方向に移動させるアクチュエータ―を有するようにしてもよい。特に、BDが2層や3層以上など複数の情報記録面を持っている場合には、或る層の記録/再生から他の層の記録/再生を行う際には、透明基板厚に差が生じるため、当該厚みの差に起因して発生する球面収差を補正しなければならない。カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変えることによって、当該発生する球面収差を補正することが考えられる。また、温度変化や波長変化の際に発生する球面収差も、カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変えることによって補正することができる。 In the optical pickup device, the coupling lens may have an actuator through which at least the first light beam and the second light beam pass and move the coupling lens in the optical axis direction. In particular, when the BD has a plurality of information recording surfaces such as two layers or three layers or more, when recording / reproducing one layer to another layer, the difference in the thickness of the transparent substrate is required. Therefore, spherical aberration generated due to the difference in thickness must be corrected. It is conceivable to correct the generated spherical aberration by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens. Further, spherical aberration that occurs when the temperature or wavelength changes can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
 しかしながら、例え、BD使用時にカップリングレンズを光軸方向に移動させて各種球面収差を補正する光ピックアップ装置であっても、DVD使用時においては、カップリングレンズの光軸方向の位置が固定されていることが好ましい。 However, even in the case of an optical pickup device that corrects various spherical aberrations by moving the coupling lens in the optical axis direction when using BD, the position of the coupling lens in the optical axis direction is fixed when using DVD. It is preferable.
 その理由としては、BD使用時には、フレアが発生しないが、DVD使用時には、フレアが発生するため、カップリングレンズを変異させることにより、そのフレアの収差が変化し、結果としてそのフレアが記録/再生に悪影響を与える可能性が生じるという理由や、ドライブでのカップリングレンズの変位の制御を単純化したいという理由などが挙げられる。 The reason is that flare does not occur when using BD, but flare occurs when using DVD. By changing the coupling lens, the flare aberration changes, and as a result, the flare is recorded / reproduced. The reason is that there is a possibility of adversely affecting the driving force, and the reason why it is desired to simplify the control of the displacement of the coupling lens in the drive.
 DVD使用時にカップリングレンズの光軸方向の位置を固定させるためには、対物レンズの第2光路差付与構造を構成する第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰方向に変化させるようにすることで、DVD使用時の温度特性と波長特性を共に良好にすることができ、結果として、DVD使用時に、第2光束が通過するときにカップリングレンズを光軸方向の位置を固定した状態でも、DVDの情報記録面に対して情報の記録/再生を行うことができるようになるため好ましい。 In order to fix the position of the coupling lens in the optical axis direction when using a DVD, the wavelength of the incident light beam in one of the third basic structure and the fourth basic structure constituting the second optical path difference providing structure of the objective lens. So that the spherical aberration changes in the direction of insufficient correction, and on the other side, the spherical aberration changes in the direction of overcorrection when the wavelength of the incident light beam changes longer. As a result, both the temperature characteristic and the wavelength characteristic when using the DVD can be improved, and as a result, when using the DVD, the position of the coupling lens in the optical axis direction is fixed when the second light beam passes. However, it is preferable because information can be recorded / reproduced with respect to the information recording surface of the DVD.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、ワーキングディスタンスを確保し、エラー信号を招く不要な回折光を遠ざけ、更には軸外特性を良好としながら、BD/DVD/CDの3種類の光ディスクの互換を共通の対物レンズで行うことを可能とする対物レンズを備えた光ピックアップ装置並びに光情報記録再生装置及びそれに好適な対物レンズを提供することができる。 According to the present invention, it is possible to ensure compatibility between three types of BD / DVD / CD optical disks while ensuring a working distance, keeping unnecessary diffracted light causing an error signal away, and further improving off-axis characteristics. And an optical information recording / reproducing apparatus including an objective lens that can be performed in the above-described manner, and an objective lens suitable for the optical pickup apparatus.
縦軸に光軸からの高さ(有効半径)をとり、横軸に正弦条件違反量(OSC)をとって示すグラフの例である。It is an example of a graph in which the vertical axis represents the height (effective radius) from the optical axis, and the horizontal axis represents the sine condition violation amount (OSC). 本実施の形態にかかる単玉の対物レンズOBJを光軸方向に見た図である。It is the figure which looked at the single objective lens OBJ concerning this Embodiment in the optical axis direction. 対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットを形成する状態を示す図である。It is a figure which shows the state which forms the spot which the 3rd light beam which passed the objective lens forms on the information recording surface of a 3rd optical disk. 光路差付与構造の例を示す軸線方向断面図であり、(a)、(b)はブレーズ型構造の例を示し、(c)、(d)は階段型構造の例を示す。It is an axial direction sectional view showing an example of an optical path difference grant structure, (a) and (b) show an example of a blaze type structure, and (c) and (d) show an example of a step type structure. (a)は段差が光軸の方向を向いている状態を示し、(b)は段差が光軸とは逆の方向を向いている状態を示す図である。(A) shows a state where the step is directed in the direction of the optical axis, and (b) is a diagram showing a state where the step is directed in the direction opposite to the optical axis. (a)は光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸とは逆の方を向くような形状を示し、(b)は光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸の方を向くような形状を示す図である。(A) shows a shape in which the step is in the direction of the optical axis in the vicinity of the optical axis, but changes in the middle, and in the vicinity of the intermediate region, the step is in the direction opposite to the optical axis. FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region. 第1光路差付与構造の概念図であり、(a)乃至(c)は第1光路差付与構造の好ましい例を示し、(d)は第1基礎構造と第2基礎構造とを重畳した例を示す。It is a conceptual diagram of a 1st optical path difference providing structure, (a) thru | or (c) show the preferable example of a 1st optical path difference providing structure, (d) is the example which superimposed the 1st foundation structure and the 2nd foundation structure. Indicates. 好ましい対物レンズの模式図である。It is a schematic diagram of a preferable objective lens. 異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record and / or reproduce | regenerate information appropriately with respect to BD, DVD, and CD which are different optical disks. 実施例1の(a)BD、(b)CDの縦球面収差量(SA)及び正弦条件不満足量(SC)を示す図である。It is a figure which shows the longitudinal spherical aberration amount (SA) and sine condition unsatisfied amount (SC) of (a) BD of Example 1, (b) CD. 実施例2の(a)BD、(b)CDの縦球面収差量(SA)及び正弦条件不満足量(SC)を示す図である。It is a figure which shows the amount of longitudinal spherical aberration (SA) and sine condition dissatisfaction amount (SC) of (a) BD of Example 2, (b) CD. 実施例3の(a)BD、(b)CDの縦球面収差量(SA)及び正弦条件不満足量(SC)を示す図である。It is a figure which shows the amount of longitudinal spherical aberration (SA) and sine condition dissatisfaction amount (SC) of (a) BD of Example 3, (b) CD. 実施例4の(a)BD、(b)CDの縦球面収差量(SA)及び正弦条件不満足量(SC)を示す図である。It is a figure which shows the amount of longitudinal spherical aberration (SA) and sine condition unsatisfied amount (SC) of (a) BD of Example 4, (b) CD. 近軸回折パワーを用いない場合における、BDとCDの各正弦条件違反量を示す図である。It is a figure which shows each sine condition violation amount of BD and CD when not using paraxial diffraction power. 近軸回折パワーを用いた場合における、BDとCDの各正弦条件違反量を示す図である。It is a figure which shows each sine condition violation amount of BD and CD in the case of using paraxial diffraction power.
 以下、本発明の実施の形態を、図面を参照して説明する。図9は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDと、DVDと、CDとに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 9 shows BD, DVD, and CD, which are optical discs having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in ascending order of distance from the light incident surface of the optical disc) in the thickness direction. It is a figure which shows roughly the structure of optical pick-up apparatus PU1 of this Embodiment which can record / reproduce information appropriately with respect to this. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU1は、対物レンズOBJ、λ/4波長板QWP、コリメートレンズCOL、偏光ビームスプリッタBS、ダイクロイックプリズムDP,BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=660nmのレーザ光束(第2光束)を射出する第2半導体レーザLD2(第2光源)及びCDに対して情報の記録/再生を行う場合に発光され波長λ3=785nmのレーザ光束(第3光束)を射出する第3半導体レーザLD3を一体化したレーザユニットLDP、センサレンズSEN、光検出器としての受光素子PD等を有する。 The optical pickup device PU1 emits light when recording / reproducing information with respect to the objective lens OBJ, the λ / 4 wavelength plate QWP, the collimating lens COL, the polarization beam splitter BS, and the dichroic prisms DP and BD, and has a wavelength of λ1 = 405 nm. A first semiconductor laser LD1 (first light source) that emits a laser beam (first beam) and a laser beam (second beam) that is emitted when recording / reproducing information on a DVD and has a wavelength λ2 = 660 nm. The second semiconductor laser LD2 (second light source) that emits and the third semiconductor laser LD3 that emits a laser beam (third beam) having a wavelength λ3 = 785 nm emitted when information is recorded / reproduced with respect to the CD are integrated. A laser unit LDP, a sensor lens SEN, a light receiving element PD as a photodetector, and the like.
 図2に示されるように、本実施の形態にかかる単玉の対物レンズOBJにおいて、光源側の非球面光学面に光軸を含む中央領域CNと、その周囲に配置された中間領域MDと、更にその周囲に配置された周辺領域OTとが、光軸を中心とする同心円状に形成されている。図示していないが、中心領域CNには既に詳述した第1光路差付与構造が形成され、中間領域MDには既に詳述した第2光路差付与構造が形成されている。また、周辺領域OTには、第3光路差付与構造が形成されている。本実施の形態では、第3光路差付与構造はブレーズ型の回折構造である。また、本実施の形態の対物レンズはプラスチックレンズである。対物レンズOBJの中心領域CNに形成された第1光路差付与構造は、図7に示すように、第1基礎構造と第2基礎構造とを重ね合わせた構造であり、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、少なくとも中心領域CNの光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いており、第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、常温(25±3℃)、かつ、(1)式を満たすカバーガラス厚T(mm)において、第1光束を入射した対物レンズにおいて3次球面収差が最小となるときの倍率Mが(2)式を満たすとともに、倍率Mでの正弦条件違反量が瞳半径H1で第1極大値を、瞳半径H2で第2極大値をそれぞれとり、瞳半径H3を0.9以上としたときに(3)式を満たし(但し、瞳半径H1、H2、H3は対物レンズの有効半径を1としたときの相対値とする)、更に正弦条件違反量の導関数Φ(h)が(4)~(6)式を満たす。
 TMAX×0.78≦T≦TMAX×1.1   (1)
 -0.003≦M≦0.003   (2)
 H1<H2<H3   (3)
 φ(h)<0.0(h<H1)   (4)
 φ(h)>0.0(H1<h<H2)   (5)
 φ(h)<0.0(H2<h<H3)   (6)
更に、以下の式を満たす。
 -0.01≦m1≦0.01   (7)
 -0.01≦m3≦0.01   (8)
 -0.05≦(fB3-fB1)/d≦0.10   (9)
但し、
fB1=WD1+t1×(1-1/n1)
fB3=WD3+t3×(1-1/n3)
ν:対物レンズの素材のアッベ数
m1:第1波長λ1の光束が対物レンズに入射する時の結像倍率
m3:第3波長λ3の光束が対物レンズに入射する時の結像倍率
d:対物レンズの軸上厚(mm)
WD1:BD使用時のワーキングディスタンス(mm)
WD3:CD使用時のワーキングディスタンス(mm)
n1:第1波長λ1の光束に対するBDの保護基板の屈折率
n3:第3波長λ3の光束に対するCDの保護基板の屈折率
As shown in FIG. 2, in the single objective lens OBJ according to the present embodiment, a central region CN including the optical axis on the aspherical optical surface on the light source side, an intermediate region MD disposed around the central region CN, Further, a peripheral region OT disposed around the periphery is formed concentrically with the optical axis as the center. Although not shown, the first optical path difference providing structure already described in detail is formed in the center region CN, and the second optical path difference providing structure already described in detail is formed in the intermediate region MD. In addition, a third optical path difference providing structure is formed in the peripheral region OT. In the present embodiment, the third optical path difference providing structure is a blazed diffractive structure. The objective lens of the present embodiment is a plastic lens. As shown in FIG. 7, the first optical path difference providing structure formed in the center region CN of the objective lens OBJ is a structure in which the first basic structure and the second basic structure are overlapped. The first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is set to any other order. The first order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN. In the basic structure, the step is directed in the direction opposite to the optical axis, and in the second basic structure, the second-order diffracted light quantity of the first light beam that has passed through the second basic structure is greater than the diffracted light quantity of any other order. 1 of the second light flux that has passed through the second basic structure. Diffracted light quantity of any other order is made larger, the first order diffracted light quantity of the third light flux that has passed through the second basic structure is made larger than any other order diffracted light quantity, and the room temperature (25 ± 3 [deg.] C. and a cover glass thickness T (mm) satisfying the expression (1), the magnification M at which the third-order spherical aberration is minimized in the objective lens on which the first light beam is incident satisfies the expression (2) When the sine condition violation amount at the magnification M is the first maximum value at the pupil radius H1 and the second maximum value at the pupil radius H2, the equation (3) is satisfied when the pupil radius H3 is 0.9 or more. (However, the pupil radii H1, H2, and H3 are relative values when the effective radius of the objective lens is set to 1.) Further, the derivative Φ (h) of the sine condition violation amount satisfies the equations (4) to (6). Fulfill.
TMAX × 0.78 ≦ T ≦ TMAX × 1.1 (1)
-0.003 ≦ M ≦ 0.003 (2)
H1 <H2 <H3 (3)
φ (h) <0.0 (h <H1) (4)
φ (h)> 0.0 (H1 <h <H2) (5)
φ (h) <0.0 (H2 <h <H3) (6)
Furthermore, the following expression is satisfied.
-0.01 ≦ m1 ≦ 0.01 (7)
-0.01 ≦ m3 ≦ 0.01 (8)
−0.05 ≦ (fB3−fB1) /d≦0.10 (9)
However,
fB1 = WD1 + t1 × (1-1 / n1)
fB3 = WD3 + t3 × (1-1 / n3)
ν: Abbe number of the material of the objective lens m1: Imaging magnification when the light beam having the first wavelength λ1 is incident on the objective lens m3: Imaging magnification when the light beam having the third wavelength λ3 is incident on the objective lens d: Objective Lens axial thickness (mm)
WD1: Working distance when using BD (mm)
WD3: Working distance when using CD (mm)
n1: Refractive index of the BD protective substrate for the light beam having the first wavelength λ1 n3: Refractive index of the CD protective substrate for the light beam having the third wavelength λ3
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCOLは、不図示の1軸アクチュエータにより第1の所定位置に移動させられる。ここで、青紫色半導体レーザLD1から射出された光束(λ1=405nm)の発散光束は、ダイクロイックプリズムDP、偏光プリズムBSを透過し、カップリングレンズCOLを通過して弱い収束光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの透明基板PL1を介して、第1の情報記録面RL1上に形成されるスポットとなる。 First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. In such a case, the coupling lens COL is moved to the first predetermined position by a single-axis actuator (not shown). Here, the divergent light beam of the light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP and the polarization prism BS, passes through the coupling lens COL, and becomes a weakly convergent light beam. The first information recording surface is converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the objective lens OBJ passes through the transparent substrate PL1 having the first thickness. It becomes a spot formed on RL1.
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCOLを通過して収束光束とされ、偏光プリズムBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。 The reflected light flux modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and coupled to the coupling lens COL. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCOLは、不図示の1軸アクチュエータにより第2の所定位置に移動させられる。ここで、青紫色半導体レーザLD1から射出された光束(λ1=405nm)の発散光束は、ダイクロイックプリズムDP、偏光プリズムBSを透過し、カップリングレンズCOLを通過して平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さの透明基板PL2を介して、第2の情報記録面RL2上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the second information recording surface RL2 of the BD will be described. In such a case, the coupling lens COL is moved to the second predetermined position by a uniaxial actuator (not shown). Here, the divergent light beam of the light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP and the polarization prism BS, passes through the coupling lens COL, and is converted into a parallel light beam. / 4 wavelength plate QWP converts linearly polarized light into circularly polarized light, the diameter of the light beam is regulated by a diaphragm (not shown), and the second information recording surface RL2 is passed through the transparent substrate PL2 having the second thickness by the objective lens OBJ. It becomes a spot formed on the top.
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCOLを通過して収束光束とされ、偏光プリズムBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。 The reflected light flux modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and coupled to the coupling lens COL. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCOLは、不図示の1軸アクチュエータにより第3の所定位置に移動させられる。ここで、青紫色半導体レーザLD1から射出された光束(λ1=405nm)の発散光束は、ダイクロイックプリズムDP、偏光プリズムBSを透過し、カップリングレンズCOLを通過して弱い発散光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さの透明基板PL3を介して、第3の情報記録面RL3上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the third information recording surface RL3 of the BD will be described. In such a case, the coupling lens COL is moved to a third predetermined position by a uniaxial actuator (not shown). Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP and the polarization prism BS, passes through the coupling lens COL, and becomes a weak divergent beam. The linearly polarized light is converted into circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the third information recording surface is passed through the transparent substrate PL3 having the third thickness by the objective lens OBJ. It becomes a spot formed on RL3.
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCOLを通過して収束光束とされ、偏光プリズムBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. Is reflected by the polarizing prism BS, and then converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 更に、DVDに対して情報の記録及び/又は再生を行う場合について述べる。レーザユニットLDPの半導体レーザLD2から射出された第2光束(λ2=660nm)の発散光束は、点線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOBJに入射する。ここで、対物レンズOBJの中央領域と中間領域により集光された(周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、保護基板PL4を介して、DVDの情報記録面RL4に形成されるスポットとなり、スポット中心部を形成する。 Furthermore, the case where information is recorded and / or reproduced on a DVD will be described. The divergent light beam of the second light beam (λ2 = 660 nm) emitted from the semiconductor laser LD2 of the laser unit LDP is reflected by the dichroic prism DP, passes through the polarization beam splitter BS and the collimating lens COL, as indicated by the dotted line, and λ The / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OBJ. Here, the light beam collected by the central region and the intermediate region of the objective lens OBJ (the light beam that has passed through the peripheral region is flared to form a spot peripheral portion) is recorded on the DVD through the protection substrate PL4 It becomes a spot formed on the surface RL4 and forms the center of the spot.
 情報記録面RL4上で情報ピットにより変調された反射光束は、再び対物レンズOBJを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより平行光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてDVDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL4 is transmitted again through the objective lens OBJ, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a parallel light beam by the collimator lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD.
 更に、CDに対して情報の記録及び/又は再生を行う場合について述べる。レーザユニットLDPの半導体レーザLD3から射出された第3光束(λ3=785nm)の発散光束は、一点鎖線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOBJに入射する。ここで、対物レンズOBJの中央領域により集光された(中間領域及び周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、保護基板PL5を介して、CDの情報記録面RL5上に形成されるスポットとなる。 Furthermore, the case of recording and / or reproducing information on a CD will be described. The divergent light beam of the third light beam (λ3 = 785 nm) emitted from the semiconductor laser LD3 of the laser unit LDP is reflected by the dichroic prism DP, as shown by the one-dot chain line, and passes through the polarization beam splitter BS and the collimating lens COL. The linearly polarized light is converted into circularly polarized light by the λ / 4 wavelength plate QWP, and is incident on the objective lens OBJ. Here, the light beam collected by the central region of the objective lens OBJ (the light beam that has passed through the intermediate region and the peripheral region is flared to form a spot peripheral portion) is recorded on the CD through the protective substrate PL5 This is a spot formed on the surface RL5.
 情報記録面RL5上で情報ピットにより変調された反射光束は、再び対物レンズOBJを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより平行光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてCDに記録された情報を読み取ることができる。 The reflected light flux modulated by the information pits on the information recording surface RL5 is again transmitted through the objective lens OBJ, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a parallel light flux by the collimator lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
(実施例) 
 以下、上述した実施の形態に用いることができる実施例について説明する。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。また、対物レンズの光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
(Example)
Examples that can be used in the above-described embodiment will be described below. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). The optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (with the light traveling direction being positive), κ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
 また、回折構造を用いた実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。 Further, in the case of the embodiment using the diffractive structure, the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
(数2)
Φ(h)=Σ(Ci2i×λ×m/λB)
ここで、λ:使用波長、m:回折次数、λB:製造波長、h:光軸から光軸垂直方向の距離である。
また、ピッチP(h)=λB/(Σ(2i×Ci×h2i-1))とする。
(Equation 2)
Φ (h) = Σ (C i h 2i × λ × m / λB)
Here, λ: wavelength used, m: diffraction order, λB: manufacturing wavelength, h: distance in the direction perpendicular to the optical axis from the optical axis.
Further, the pitch P (h) = λB / (Σ (2i × C i × h 2i-1 )).
 (実施例1)
 実施例1の対物レンズはプラスチック単玉レンズである。表1にレンズデータを示す。実施例1の第1光路差付与構造の概念図を図6(a)に示す(図6(a)は実施例1の実際の形状とは異なり、あくまでも概念図である)。実施例1の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、(1/1/1)のブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。また、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差は光軸OAとは逆の方向を向いている。本実施例では、対物レンズの倍率m1=m2=m3=0であり、軸上厚d=1.50mmであり、(fB3-fB1)/d=0.098(mm)、(fB2-fB1)=0.10mmであり、│LTCM3│=0.060(λrms)、│DTCM3│=0.046(λrms)である。
Example 1
The objective lens of Example 1 is a plastic single lens. Table 1 shows lens data. A conceptual diagram of the first optical path difference providing structure of the first embodiment is shown in FIG. 6A (FIG. 6A is a conceptual diagram different from the actual shape of the first embodiment). In the first optical path difference providing structure of Example 1, the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region. The first basic structure BS1, which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped. Further, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA. In this embodiment, the magnification of the objective lens is m1 = m2 = m3 = 0, the on-axis thickness d = 1.50 mm, (fB3-fB1) /d=0.008 (mm), (fB2-fB1) = 0.10 mm, | LTCM3 | = 0.060 (λrms), | DTCM3 | = 0.046 (λrms).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図10(a)は、実施例1の対物レンズにおけるBD使用時の縦球面収差SAと正弦条件不満足量SCとを示す図であり、図10(b)は実施例1の対物レンズにおけるCD使用時の縦球面収差SAと正弦条件不満足量SCとを示す図であるが、縦軸においてBD/CDそれぞれの各有効径に対応する光軸からの高さを1として示している。図10から明らかであるが、常温(25±3℃)、かつ、(1)式を満たすカバーガラス厚T(mm)において、第1光束を入射した対物レンズにおいて3次球面収差が最小となるときの倍率Mが(2)式を満たすとともに、倍率Mでの正弦条件違反量が瞳半径H1=0.4で負の第1極小値を、瞳半径H2=0.9で正の第2極大値をそれぞれとるので、瞳半径H3を0.9以上としたときに(3)式を満たし、更に正弦条件違反量の導関数Φ(h)が(4)~(6)式を満たす。h=0.61であり、0.8hCDNA≦h≦hDVDNAを満たす。 FIG. 10A is a diagram showing longitudinal spherical aberration SA and sine condition dissatisfaction amount SC when BD is used in the objective lens of Example 1, and FIG. 10B is the use of CD in the objective lens of Example 1. FIG. 6 is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfactory amount SC, with the vertical axis indicating 1 as the height from the optical axis corresponding to each effective diameter of BD / CD. As is apparent from FIG. 10, the third-order spherical aberration is minimized in the objective lens on which the first light beam is incident at room temperature (25 ± 3 ° C.) and the cover glass thickness T (mm) satisfying the expression (1). The magnification M at the time satisfies the formula (2), and the sine condition violation amount at the magnification M is a negative first minimum value at the pupil radius H1 = 0.4, and the positive second value at the pupil radius H2 = 0.9. Since the maximum values are respectively taken, the expression (3) is satisfied when the pupil radius H3 is 0.9 or more, and the derivative Φ (h) of the sine condition violation amount satisfies the expressions (4) to (6). h = 0.61 and 0.8h CDNA ≦ h ≦ h DVDNA is satisfied.
 (実施例2)
 実施例2の対物レンズはプラスチック単玉レンズである。表2にレンズデータを示す。実施例2の第1光路差付与構造の概念図を図6(a)に示す(図6(a)は実施例2の実際の形状とは異なり、あくまでも概念図である)。実施例2の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、(1/0/0)のブレーズ型の回折構造であるもう一つの基礎構造が重ねあわされた光路差付与構造となっている(尚、ブレーズ型の(1/0/0)構造の代わりに、4レベルの階段型構造である(1/0/0)構造としてもよい)。本実施例では、対物レンズの倍率m1=m2=m3=0であり、軸上厚d=2.18mmであり、(fB3-fB1)/d=0.000(mm)、(fB2-fB1)=0.04mmであり、│LTCM3│=0.057(λrms)、│DTCM3│=0.043(λrms)である。
(Example 2)
The objective lens of Example 2 is a plastic single lens. Table 2 shows lens data. A conceptual diagram of the first optical path difference providing structure of Example 2 is shown in FIG. 6A (FIG. 6A is a conceptual diagram different from the actual shape of Example 2). In the first optical path difference providing structure of Example 2, the (1/0/0) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze type diffraction structure in the entire central region. Is an optical path difference providing structure in which another basic structure that is a diffractive structure of a mold is overlapped (in addition to a blazed (1/0/0) structure, a four-level stepped structure) (It may be a (1/0/0) structure). In this embodiment, the magnification of the objective lens is m1 = m2 = m3 = 0, the on-axis thickness is d = 2.18 mm, (fB3-fB1) /d=0.000 (mm), (fB2-fB1) = LTC3 | = 0.057 (λrms) and | DTCM3 | = 0.043 (λrms).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図11(a)は、実施例2の対物レンズにおけるBD使用時の縦球面収差SAと正弦条件不満足量SCとを示す図であり、図11(b)は実施例2の対物レンズにおけるCD使用時の縦球面収差SAと正弦条件不満足量SCとを示す図であるが、縦軸においてBD/CDそれぞれの各有効径に対応する光軸からの高さを1として示している。図11から明らかであるが、常温(25±3℃)、かつ、(1)式を満たすカバーガラス厚T(mm)において、第1光束を入射した対物レンズにおいて3次球面収差が最小となるときの倍率Mが(2)式を満たすとともに、倍率Mでの正弦条件違反量が瞳半径H1=0.3で負の第1極大値を、瞳半径H2=0.9で正の第2極大値をそれぞれとるので、瞳半径H3を0.9以上としたときに(3)式を満たし、更に正弦条件違反量の導関数Φ(h)が(4)~(6)式を満たす。h=0.48であり、0.8hCDNA≦h≦hDVDNAを満たす。 FIG. 11A is a diagram showing longitudinal spherical aberration SA and sine condition dissatisfaction amount SC when BD is used in the objective lens of Example 2, and FIG. 11B is a diagram showing CD use in the objective lens of Example 2. FIG. 6 is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfactory amount SC, with the vertical axis indicating 1 as the height from the optical axis corresponding to each effective diameter of BD / CD. As is apparent from FIG. 11, the third-order spherical aberration is minimized in the objective lens on which the first light flux is incident at room temperature (25 ± 3 ° C.) and the cover glass thickness T (mm) satisfying the expression (1). The magnification M at the time satisfies the formula (2), and the sine condition violation amount at the magnification M is a negative first maximum value at the pupil radius H1 = 0.3, and the positive second value at the pupil radius H2 = 0.9. Since the maximum values are respectively taken, the expression (3) is satisfied when the pupil radius H3 is 0.9 or more, and the derivative Φ (h) of the sine condition violation amount satisfies the expressions (4) to (6). h = 0.48, 0.8h CDNA ≦ h ≦ h DVDNA is satisfied.
 (実施例3)
 実施例3の対物レンズはプラスチック単玉レンズである。表3にレンズデータを示す。実施例3の第1光路差付与構造の概念図を図6(a)に示す(図6(a)は実施例3の実際の形状とは異なり、あくまでも概念図である)。実施例3の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、2レベルの階段型構造である(0/0/1)構造という別の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。本実施例では、対物レンズの倍率m1=m2=0,m3=0.0085であり、軸上厚d=1.63mmであり、(fB3-fB1)/d=0.091(mm)、(fB2-fB1)=-0.06mmであり、│LTCM3│=0.066(λrms)、│DTCM3│=0.047(λrms)である。
(Example 3)
The objective lens of Example 3 is a plastic single lens. Table 3 shows lens data. A conceptual diagram of the first optical path difference providing structure of the third embodiment is shown in FIG. 6A (FIG. 6A is a conceptual diagram different from the actual shape of the third embodiment). The first optical path difference providing structure of Example 3 is a two-level step-type structure in the second basic structure BS2 that is a (2/1/1) blazed diffraction structure in the entire central region ( This is an optical path difference providing structure in which the first basic structure BS1 which is another diffraction structure of 0/0/1) structure is overlapped. In this example, the magnification of the objective lens is m1 = m2 = 0, m3 = 0.0085, the on-axis thickness d = 1.63 mm, (fB3-fB1) /d=0.091 (mm), ( fB2−fB1) = − 0.06 mm, | LTCM3 | = 0.066 (λrms), and | DTCM3 | = 0.047 (λrms).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図12(a)は、実施例3の対物レンズにおけるBD使用時の縦球面収差SAと正弦条件不満足量SCとを示す図であり、図12(b)は実施例3の対物レンズにおけるCD使用時の縦球面収差SAと正弦条件不満足量SCとを示す図であるが、縦軸においてBD/CDそれぞれの各有効径に対応する光軸からの高さを1として示している。図10から明らかであるが、常温(25±3℃)、かつ、(1)式を満たすカバーガラス厚T(mm)において、第1光束を入射した対物レンズにおいて3次球面収差が最小となるときの倍率Mが(2)式を満たすとともに、倍率Mでの正弦条件違反量が瞳半径H1=0.35で負の第1極大値を、瞳半径H2=0.9で正の第2極大値をそれぞれとるので、瞳半径H3を0.9以上としたときに(3)式を満たし、更に正弦条件違反量の導関数Φ(h)が(4)~(6)式を満たす。h=0.46であり、0.8hCDNA≦h≦hDVDNAを満たす。 FIG. 12A is a diagram showing longitudinal spherical aberration SA and sine condition dissatisfaction amount SC when BD is used in the objective lens of Example 3, and FIG. 12B is CD use in the objective lens of Example 3. FIG. 6 is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfactory amount SC, with the vertical axis indicating 1 as the height from the optical axis corresponding to each effective diameter of BD / CD. As is apparent from FIG. 10, the third-order spherical aberration is minimized in the objective lens on which the first light beam is incident at room temperature (25 ± 3 ° C.) and the cover glass thickness T (mm) satisfying the expression (1). The magnification M at the time satisfies the expression (2), the sine condition violation amount at the magnification M is a negative first maximum value at the pupil radius H1 = 0.35, and the positive second value at the pupil radius H2 = 0.9. Since the maximum values are respectively taken, the expression (3) is satisfied when the pupil radius H3 is 0.9 or more, and the derivative Φ (h) of the sine condition violation amount satisfies the expressions (4) to (6). h = 0.46, 0.8h CDNA ≦ h ≦ h DVDNA is satisfied.
 (実施例4)
 実施例4の対物レンズはプラスチック単玉レンズである。表4にレンズデータを示す。実施例4の第1光路差付与構造の概念図を図6(a)に示す(図6(a)は実施例4の実際の形状とは異なり、あくまでも概念図である)。実施例4の第1光路差付与構造は、中央領域の全領域において、(1/3/4)の7レベル階段型の回折構造である。本実施例では、対物レンズの倍率m1=m3=0,m2=-0.0031であり、軸上厚d=2.64mmであり、(fB3-fB1)/d=-0.026(mm)、(fB2-fB1)=0.00mmであり、│LTCM3│=0.056(λrms)、│DTCM3│=0.042(λrms)である。
Example 4
The objective lens of Example 4 is a plastic single lens. Table 4 shows the lens data. A conceptual diagram of the first optical path difference providing structure of the fourth embodiment is shown in FIG. 6A (FIG. 6A is a conceptual diagram different from the actual shape of the fourth embodiment). The first optical path difference providing structure of Example 4 is a (1/3/4) seven-level step-type diffractive structure in the entire central region. In this example, the magnification of the objective lens is m1 = m3 = 0, m2 = −0.0031, the on-axis thickness d = 2.64 mm, and (fB3-fB1) /d=−0.026 (mm). , (FB2-fB1) = 0.00 mm, | LTCM3 | = 0.056 (λrms), and | DTCM3 | = 0.042 (λrms).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図13(a)は、実施例4の対物レンズにおけるBD使用時の縦球面収差SAと正弦条件不満足量SCとを示す図であり、図13(b)は実施例1の対物レンズにおけるCD使用時の縦球面収差SAと正弦条件不満足量SCとを示す図であるが、縦軸においてBD/CDそれぞれの各有効径に対応する光軸からの高さを1として示している。図13から明らかであるが、常温(25±3℃)、かつ、(1)式を満たすカバーガラス厚T(mm)において、第1光束を入射した対物レンズにおいて3次球面収差が最小となるときの倍率Mが(2)式を満たすとともに、倍率Mでの正弦条件違反量が瞳半径H1=0.5で負の第1極大値を、瞳半径H2=0.9で正の第2極大値をそれぞれとるので、瞳半径H3を0.9以上としたときに(3)式を満たし、更に正弦条件違反量の導関数Φ(h)が(4)~(6)式を満たす。h=0.66であり、0.8hCDNA≦h≦hDVDNAを満たす。 FIG. 13A is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfied amount SC when BD is used in the objective lens of Example 4, and FIG. 13B is CD use in the objective lens of Example 1. FIG. 6 is a diagram showing longitudinal spherical aberration SA and sine condition unsatisfactory amount SC, with the vertical axis indicating 1 as the height from the optical axis corresponding to each effective diameter of BD / CD. As is apparent from FIG. 13, the third-order spherical aberration is minimized in the objective lens that is incident with the first light flux at room temperature (25 ± 3 ° C.) and at the cover glass thickness T (mm) satisfying the expression (1). The magnification M at the time satisfies the expression (2), the sine condition violation amount at the magnification M is a negative first maximum value at the pupil radius H1 = 0.5, and the positive second value at the pupil radius H2 = 0.9. Since the maximum values are respectively taken, the expression (3) is satisfied when the pupil radius H3 is 0.9 or more, and the derivative Φ (h) of the sine condition violation amount satisfies the expressions (4) to (6). h = 0.66, 0.8h CDNA ≦ h ≦ h DVDNA is satisfied.
 各実施例に対応する請求項に規定する式の数値等を、表5にまとめて示す。 Table 5 summarizes the numerical values of the formulas defined in the claims corresponding to each example.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
AC1 2軸アクチュエータ
BS 偏光ビームスプリッタ
CN 中央領域
COL コリメートレンズ
DP ダイクロイックプリズム
LD1 第1半導体レーザ又は青紫色半導体レーザ
LD2 第2半導体レーザ
LD3 第3半導体レーザ
LDP レーザユニット
MD 中間領域
OL 対物レンズ
OT 周辺領域
PD 受光素子
PL1~RL5 保護基板
PU1 光ピックアップ装置
QWP λ/4波長板
RL1~RL5 情報記録面
SEN センサレンズ
AC1 Biaxial actuator BS Polarizing beam splitter CN Central region COL Collimating lens DP Dichroic prism LD1 First semiconductor laser or blue-violet semiconductor laser LD2 Second semiconductor laser LD3 Third semiconductor laser LDP Laser unit MD Intermediate region OL Objective lens OT Peripheral region PD Light receiving elements PL1 to RL5 Protective substrate PU1 Optical pickup device QWP λ / 4 wave plate RL1 to RL5 Information recording surface SEN Sensor lens

Claims (18)

  1.  波長λ1(390nm<λ1<415nm)の第1光束を出射する第1光源と、第3波長λ3(760nm≦λ3≦820nm)の第3光束を出射する第3光源と、対物レンズとを有し、光束入射面からの距離(透明基板厚とするが、最も厚い透明基板厚をTMAX(mm)とする)が互いに異なる情報記録面を厚さ方向に3つ以上有するBDにおけるいずれかの情報記録面を選択して、前記第1光束を前記対物レンズにより前記選択された情報記録面に集光することによって、情報の記録及び/または再生を行うと共に、前記第3光束を前記対物レンズにより透明基板厚がt3(mm)(t1<t3)の保護基板を有するCDの情報記録面に集光することによって情報の記録及び/又は再生を行う光ピックアップ装置に使用される対物レンズであって、
     前記第1光束と前記第3光束とが共通して入射する領域に第1光路差付与構造を有し、
     常温(25±3℃)、かつ、(1)式を満たすカバーガラス厚T(mm)において、前記第1光束を入射した前記対物レンズにおいて3次球面収差が最小となるときの倍率Mが(2)式を満たすとともに、倍率Mでの正弦条件違反量が瞳半径H1で第1極小値を、瞳半径H2で第2極大値をそれぞれとり、瞳半径H3を0.9以上としたときに(3)式を満たし(但し、前記瞳半径H1、H2、H3は前記対物レンズの有効半径を1としたときの相対値とする)、更に前記正弦条件違反量の導関数Φ(h)が(4)~(6)式を満たし、
     TMAX×0.78≦T≦TMAX×1.1   (1)
     -0.003≦M≦0.003   (2)
     H1<H2<H3   (3)
     φ(h)<0.0(h<H1)   (4)
     φ(h)>0.0(H1<h<H2)   (5)
     φ(h)<0.0(H2<h<H3)   (6)
    更に、以下の式を満たすことを特徴とする対物レンズ。
     -0.01≦m1≦0.01   (7)
     -0.01≦m3≦0.01   (8)
     -0.05≦(fB3-fB1)/d≦0.10   (9)
    但し、
    fB1=WD1+t1×(1-1/n1)
    fB3=WD3+t3×(1-1/n3)
    ν:前記対物レンズの素材のアッベ数
    m1:前記第1波長λ1の光束が前記対物レンズに入射する時の結像倍率
    m3:前記第3波長λ3の光束が前記対物レンズに入射する時の結像倍率
    d:前記対物レンズの軸上厚(mm)
    WD1:前記BD使用時のワーキングディスタンス(mm)
    WD3:前記CD使用時のワーキングディスタンス(mm)
    n1:前記第1波長λ1の光束に対する前記BDの保護基板の屈折率
    n3:前記第3波長λ3の光束に対する前記CDの保護基板の屈折率
    A first light source that emits a first light beam having a wavelength λ1 (390 nm <λ1 <415 nm); a third light source that emits a third light beam having a third wavelength λ3 (760 nm ≦ λ3 ≦ 820 nm); and an objective lens. Any information recording in a BD having three or more information recording surfaces in the thickness direction that have different distances from the light incident surface (thickness of the transparent substrate, but the thickest transparent substrate thickness is TMAX (mm)) By selecting a surface and condensing the first light beam on the selected information recording surface by the objective lens, information is recorded and / or reproduced, and the third light beam is transparent by the objective lens. An objective lens used in an optical pickup device that records and / or reproduces information by focusing on an information recording surface of a CD having a protective substrate with a substrate thickness of t3 (mm) (t1 <t3). What
    A first optical path difference providing structure in a region where the first light flux and the third light flux are commonly incident;
    At normal temperature (25 ± 3 ° C.) and a cover glass thickness T (mm) satisfying the expression (1), the magnification M at which the third-order spherical aberration is minimized in the objective lens on which the first light flux is incident is ( 2) When the expression is satisfied, the sine condition violation amount at the magnification M is the first minimum value at the pupil radius H1, the second maximum value at the pupil radius H2, and the pupil radius H3 is 0.9 or more. Equation (3) is satisfied (however, the pupil radii H1, H2, and H3 are relative values when the effective radius of the objective lens is 1), and the derivative Φ (h) of the sine condition violation amount is Satisfy equations (4) to (6)
    TMAX × 0.78 ≦ T ≦ TMAX × 1.1 (1)
    -0.003 ≦ M ≦ 0.003 (2)
    H1 <H2 <H3 (3)
    φ (h) <0.0 (h <H1) (4)
    φ (h)> 0.0 (H1 <h <H2) (5)
    φ (h) <0.0 (H2 <h <H3) (6)
    Furthermore, the objective lens characterized by satisfy | filling the following formula | equation.
    -0.01 ≦ m1 ≦ 0.01 (7)
    -0.01 ≦ m3 ≦ 0.01 (8)
    −0.05 ≦ (fB3−fB1) /d≦0.10 (9)
    However,
    fB1 = WD1 + t1 × (1-1 / n1)
    fB3 = WD3 + t3 × (1-1 / n3)
    ν: Abbe number m1 of the material of the objective lens m1: Imaging magnification when the light beam having the first wavelength λ1 is incident on the objective lens m3: Result when the light beam having the third wavelength λ3 is incident on the objective lens Image magnification d: On-axis thickness of the objective lens (mm)
    WD1: Working distance when using the BD (mm)
    WD3: Working distance when using the CD (mm)
    n1: Refractive index of the protective substrate of the BD with respect to the light beam with the first wavelength λ1 n3: Refractive index of the protective substrate of the CD with respect to the light beam with the third wavelength λ3
  2.  以下の式を満たすことを特徴とする請求項1に記載の対物レンズ。
     0.7≦H2≦0.9   (10)
    The objective lens according to claim 1, wherein the following expression is satisfied.
    0.7 ≦ H2 ≦ 0.9 (10)
  3.  常温(25±3℃)、(2)式を満たす倍率Mにおいて、前記第1光束を前記対物レンズにより(1)式を満たすカバーガラス厚T(mm)に集光する場合において、前記対物レンズだけが所定角チルトした場合に発生する3次コマ収差LTCM3(λrms)と、前記対物レンズと同じ方向に前記BDだけが前記所定角チルトした場合に発生する3次コマ収差DTCM3(λrms)とが、以下の式を満たすことを特徴とする請求項1又は2に記載の対物レンズ。
     |LTCM3|>|DTCM3|   (11)
    In the case where the first light beam is condensed to a cover glass thickness T (mm) satisfying the expression (1) by the objective lens at a normal temperature (25 ± 3 ° C.) and a magnification M satisfying the expression (2), the objective lens And third-order coma aberration LTCM3 (λrms) that occurs when only the BD tilts at the predetermined angle in the same direction as the objective lens. The objective lens according to claim 1, wherein the following expression is satisfied.
    | LTCM3 | >> | DTCM3 | (11)
  4.  以下の式を満たすことを特徴とする請求項1~3のいずれか1項に記載の対物レンズ。
     -0.05≦(fB3-fB1)/d≦0.05   (6’)
    The objective lens according to any one of claims 1 to 3, wherein the following expression is satisfied.
    −0.05 ≦ (fB3−fB1) /d≦0.05 (6 ′)
  5.  前記光ピックアップ装置は、第2波長λ2(630nm≦λ2≦670nm)の第2光束を出射する第2光源を有し、前記対物レンズは、結像倍率m2で、前記第2光束を透明基板厚がt2(mm)(t1<t2<t3)の保護基板を有するDVDの情報記録面に集光することによって情報の記録及び/又は再生を行うようになっている請求項1~4のいずれか1項に記載の対物レンズ。 The optical pickup device includes a second light source that emits a second light beam having a second wavelength λ2 (630 nm ≦ λ2 ≦ 670 nm), and the objective lens has an imaging magnification m2 and the second light beam is a transparent substrate thickness. 5. The information is recorded and / or reproduced by focusing on the information recording surface of the DVD having a protective substrate of t2 (mm) (t1 <t2 <t3). The objective lens according to Item 1.
  6.  常温(25±3℃)、(2)式を満たす倍率Mにおいて、前記第1光束を前記対物レンズにより(1)式を満たすカバーガラス厚T(mm)に集光する場合における正弦条件違反量が、負から正に転じる光軸からの高さhは、以下の式を満たすことを特徴とする請求項5又は6に記載の対物レンズ。
     0.8hCDNA≦h≦hDVDNA   (12)
    但し、
    CDNA:前記CD使用時の開口数に相当する光軸方向高さを、前記対物レンズのBD有効半径を1として表した相対値
    DVDNA:前記DVD使用時の開口数に相当する光軸方向高さを、前記対物レンズのBD有効半径を1として表した相対値
    Sine condition violation amount when the first light beam is condensed to the cover glass thickness T (mm) satisfying the expression (1) by the objective lens at the normal temperature (25 ± 3 ° C.) and the magnification M satisfying the expression (2). However, the height h from the optical axis which turns from negative to positive satisfies the following expression.
    0.8h CDNA ≤ h ≤ h DVDNA (12)
    However,
    h CDNA : Relative value representing the height in the optical axis direction corresponding to the numerical aperture when the CD is used as the BD effective radius of the objective lens is 1 h DVDNA : Optical axis direction corresponding to the numerical aperture when the DVD is used Relative value expressing height as BD effective radius of the objective lens is 1
  7.  前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
     前記中央領域は前記第1光路差付与構造を有し、
     前記対物レンズは、前記中央領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光し、
     前記対物レンズは、前記中間領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
     前記第1基礎構造は、前記第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第2基礎構造は、前記第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする請求項5又は6に記載の対物レンズ。
    The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
    The central region has the first optical path difference providing structure,
    The objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region. Are recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the central region is recorded and / or recorded on the information recording surface of the CD. Or collect it so that it can be regenerated,
    The objective lens condenses the first light flux passing through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the intermediate area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the intermediate region is recorded and / or recorded on the information recording surface of the CD. Or do not concentrate so that it can be regenerated,
    The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the peripheral area is recorded on the information recording surface of the CD. And / or do not collect light for playback
    The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
    The first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and 1 of the second light flux that has passed through the first basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, making the first order diffracted light quantity of the third light flux that has passed through the first basic structure larger than any other order diffracted light quantity,
    The second basic structure makes the second-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and 1 of the second light beam that has passed through the second basic structure. The next diffracted light amount is made larger than any other order diffracted light amount, and the first diffracted light amount of the third light beam that has passed through the second basic structure is made larger than any other order diffracted light amount. The objective lens according to claim 5 or 6.
  8.  前記第1基礎構造及び前記第2基礎構造はブレーズ形状であり、前記第2基礎構造における前記光軸に最も近い1つの輪帯上に、前記第1基礎構造の輪帯が2~6個含まれることを特徴とする請求項7に記載の対物レンズ。 The first foundation structure and the second foundation structure are blazed, and 2 to 6 ring zones of the first foundation structure are included on one ring zone closest to the optical axis in the second foundation structure. The objective lens according to claim 7, wherein:
  9.  少なくとも前記中央領域の光軸付近に設けられる前記第1基礎構造は、その段差が光軸とは逆の方向を向いており、
     少なくとも前記中央領域の光軸付近に設けられる前記第2基礎構造は、その段差が光軸の方向を向いていることを特徴とする請求項8に記載の対物レンズ。
    The first basic structure provided at least near the optical axis of the central region has a step in a direction opposite to the optical axis,
    The objective lens according to claim 8, wherein the step of the second basic structure provided at least in the vicinity of the optical axis of the central region is directed in the direction of the optical axis.
  10.  前記中間領域は、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた第2光路差付与構造を有し、
     前記第3基礎構造は、前記第3基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第4基礎構造は、前記第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする請求項7~9のいずれか1項に記載の対物レンズ。
    The intermediate region has a second optical path difference providing structure in which at least a third basic structure and a fourth basic structure are overlapped,
    The third basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the third basic structure larger than any other order of diffracted light quantity, so that 1 of the second light flux that has passed through the third basic structure. Make the next diffracted light quantity larger than any other order diffracted light quantity,
    In the fourth basic structure, the second-order diffracted light amount of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffracted light amount, and 1st of the second light beam that has passed through the fourth basic structure. 10. The objective lens according to claim 7, wherein the next diffracted light quantity is made larger than any other order diffracted light quantity.
  11.  前記第3基礎構造及び前記第4基礎構造はブレーズ形状であり、前記第4基礎構造における前記中央領域に最も近い1つの輪帯上に、前記第3基礎構造の輪帯が1~3個含まれていることを特徴とする請求項10に記載の対物レンズ。 The third foundation structure and the fourth foundation structure are blazed, and include one to three ring zones of the third foundation structure on one ring zone closest to the central region of the fourth foundation structure. The objective lens according to claim 10, wherein the objective lens is provided.
  12.  中央領域との境界付近に設けられる前記第3基礎構造は、その段差が光軸とは逆の方向を向いており、
     中央領域との境界付近に設けられる前記第4基礎構造は、その段差が光軸の方向を向いていることを特徴とする請求項10又は11に記載の対物レンズ。
    In the third basic structure provided near the boundary with the central region, the step is directed in the direction opposite to the optical axis,
    The objective lens according to claim 10 or 11, wherein the step of the fourth foundation structure provided in the vicinity of the boundary with the central region faces the direction of the optical axis.
  13.  前記第4基礎構造における前記周辺領域に最も近い1つの輪帯に、前記第3基礎構造の輪帯が1~5個含まれていることを特徴とする請求項10~12のいずれかに記載の対物レンズ。 The ring zone closest to the peripheral region in the fourth foundation structure includes 1 to 5 zones of the third foundation structure, according to any one of claims 10 to 12. Objective lens.
  14.  前記中間領域は、前記第3基礎構造と前記第4基礎構造のみが設けられており、他の基礎構造が設けられていないことを特徴とする請求項10~13のいずれか1項に記載の対物レンズ。 The intermediate region according to any one of claims 10 to 13, wherein only the third foundation structure and the fourth foundation structure are provided in the intermediate region, and no other foundation structure is provided. Objective lens.
  15.  前記第2基礎構造における前記中間領域に最も近い1つの輪帯に、前記第1基礎構造の輪帯が1~5個含まれていることを特徴とする請求項7~14のいずれか1項に記載の対物レンズ。 The ring zone of the first foundation structure includes one to five zones of the first foundation structure in one zone of the second foundation structure closest to the intermediate region. Objective lens described in 1.
  16.  以下の式を満たすことを特徴とする請求項1~15のいずれか1項に記載の対物レンズ。
     160(mm)≦N・f≦210(mm)   (13)
    ここで、前記中央領域の総輪帯数をN、前記対物レンズの前記第1光束における焦点距離をf(mm)とする。
    The objective lens according to any one of claims 1 to 15, wherein the following expression is satisfied.
    160 (mm) ≤ N · f ≤ 210 (mm) (13)
    Here, the total number of annular zones in the central region is N, and the focal length of the objective lens in the first light flux is f (mm).
  17.  請求項1~16のいずれか1項に記載の対物レンズを有することを特徴とする光ピックアップ装置。 An optical pickup device comprising the objective lens according to any one of claims 1 to 16.
  18.  請求項17に記載の光ピックアップ装置を有することを特徴とする光情報記録再生装置。 An optical information recording / reproducing apparatus comprising the optical pickup apparatus according to claim 17.
PCT/JP2012/057854 2011-03-30 2012-03-27 Objective lens for optical pickup device, optical pickup device, and optical information recorder / player WO2012133364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507581A JPWO2012133364A1 (en) 2011-03-30 2012-03-27 Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-074511 2011-03-30
JP2011074511 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133364A1 true WO2012133364A1 (en) 2012-10-04

Family

ID=46931081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057854 WO2012133364A1 (en) 2011-03-30 2012-03-27 Objective lens for optical pickup device, optical pickup device, and optical information recorder / player

Country Status (2)

Country Link
JP (1) JPWO2012133364A1 (en)
WO (1) WO2012133364A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128654A1 (en) * 2009-05-07 2010-11-11 コニカミノルタオプト株式会社 Objective, optical pick-up device, and optical information recording/reproducing device
WO2011033786A1 (en) * 2009-09-17 2011-03-24 パナソニック株式会社 Light pickup optical system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128654A1 (en) * 2009-05-07 2010-11-11 コニカミノルタオプト株式会社 Objective, optical pick-up device, and optical information recording/reproducing device
WO2011033786A1 (en) * 2009-09-17 2011-03-24 パナソニック株式会社 Light pickup optical system

Also Published As

Publication number Publication date
JPWO2012133364A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5062365B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
WO2011136096A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2011132691A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2013047202A1 (en) Objective lens and optical pickup device
JP6065347B2 (en) Objective lens and optical pickup device
JP5152439B2 (en) Objective lens for optical pickup device and optical pickup device
JP2011233183A (en) Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2013005672A1 (en) Optical pickup device
WO2012133364A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
JP5963120B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
JP5229657B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5713280B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5585879B2 (en) Optical pickup device and optical information recording / reproducing device
WO2012133363A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
WO2013114662A1 (en) Objective lens for optical pickup device, and optical pickup device
WO2012063850A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012090852A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2013084558A1 (en) Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2013168692A1 (en) Objective lens and optical pickup device
WO2011132696A1 (en) Objective lens for an optical pickup device, optical pickup device, and optical information recording/reading device
WO2013121615A1 (en) Objective lens for optical pickup device and optical pickup device
JP2012212497A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing device
JP2013157049A (en) Objective lens for optical pickup apparatus, optical pickup apparatus and optical information recording and reproducing apparatus
JP2013206514A (en) Objective for optical pickup device, and optical pickup device and optical information recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507581

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763145

Country of ref document: EP

Kind code of ref document: A1