WO2013114662A1 - Objective lens for optical pickup device, and optical pickup device - Google Patents

Objective lens for optical pickup device, and optical pickup device Download PDF

Info

Publication number
WO2013114662A1
WO2013114662A1 PCT/JP2012/073785 JP2012073785W WO2013114662A1 WO 2013114662 A1 WO2013114662 A1 WO 2013114662A1 JP 2012073785 W JP2012073785 W JP 2012073785W WO 2013114662 A1 WO2013114662 A1 WO 2013114662A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
light
basic structure
optical
light beam
Prior art date
Application number
PCT/JP2012/073785
Other languages
French (fr)
Japanese (ja)
Inventor
中塚雄三
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013114662A1 publication Critical patent/WO2013114662A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses

Definitions

  • the present invention relates to an optical pickup device capable of recording and / or reproducing (recording / reproducing) information interchangeably for different types of optical discs, and an objective lens used therefor.
  • a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened.
  • a wavelength 390 such as a blue-violet semiconductor laser is used.
  • a laser light source of ⁇ 420 nm has been put into practical use.
  • these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used.
  • NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
  • BD Blu-ray Disc
  • the BD is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
  • the optical system for BD and the optical system for DVD or CD can be shared. It is preferable to reduce the number of optical components constituting the pickup device as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common.
  • an optical path difference providing structure such as a diffraction structure having a wavelength dependency of spherical aberration in the objective lens. is there.
  • Patent Document 1 discloses an objective lens in which a diffractive structure is provided in a common region through which light beams condensed on three optical disks pass and a finite light beam is incident.
  • such conventional technology uses light incident on the objective lens as a finite light beam in order to eliminate the drawbacks of the diffractive structure (to correct spherical aberration).
  • the present invention is intended to solve the above-described problems, and enables compatibility of three types of optical discs of BD / DVD / CD with a common objective lens while achieving both off-axis characteristics.
  • An object of the present invention is to provide an optical pickup device including an objective lens that can be easily adjusted during assembly, and an objective lens suitable for the optical pickup device.
  • an objective lens used in an optical pickup device for recording and / or reproducing information of a third optical disc having a protective substrate at t3) The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region, The central region has a first optical path difference providing structure, The intermediate region has a second optical path difference providing structure, The objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area.
  • Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc.
  • Condensing so that information can be recorded and / or reproduced The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area.
  • Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc.
  • the objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area.
  • the second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc.
  • the first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
  • the first basic structure makes the A-order diffracted light quantity of the first light flux that has passed through the first basic structure larger than any other order diffracted light quantity, and B of the second light flux that has passed through the first basic structure.
  • the first basic structure is a blaze-type structure;
  • the second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and the E of the second light beam that has passed through the second basic structure.
  • the second optical path difference providing structure is a structure in which at least a third basic structure and a fourth basic structure are overlapped,
  • the third basic structure makes the G-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, so that the H of the second light beam that has passed through the third basic structure.
  • the third basic structure is a blazed structure
  • the fourth basic structure the first-order diffracted light amount of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffracted light amount, and the second light beam J that has passed through the fourth basic structure has J Make the next diffracted light quantity larger than any other order diffracted light quantity
  • the fourth basic structure is a blazed structure.
  • the present inventor has found a method for solving the problems of the prior art by a novel approach.
  • the inventor paid attention to the advantage of configuring an optical path difference providing structure by superimposing a plurality of basic structures. More specifically, in order to perform recording / reproduction of information interchangeably with optical discs having different specifications using a common objective lens, the information is caused by the transparent substrate thickness of the optical disc and the wavelength difference of the light beam used. Although the spherical aberration must be canceled, the spherical aberration can be canceled by providing a predetermined optical path difference in the optical path difference providing structure. However, in the case of the optical path difference providing structure having a single structure, there is a problem that the usable optical system magnification is limited.
  • the optical path difference providing structure is formed by superimposing a plurality of basic structures, the degree of freedom of the optical path difference that can be set increases, so that the third-order spherical aberration generated thereby can be controlled. That is, the optical system magnification is not limited, and the magnification can be interchanged while ensuring the degree of design freedom.
  • the present inventor pays attention to such characteristics and uses the optical path difference providing structure in which a plurality of basic structures are superposed to reduce the limitation on the optical system magnification. It has been found that the off-axis characteristics of the can be improved.
  • the first light beam when it is incident, since it has a high NA, the influence on coma aberration and the like is large, and therefore it can be said that it is preferable to enter a parallel light beam, a substantially parallel light beam, or the like on the objective lens.
  • the NA is relatively low when the second light beam is incident, there is no significant problem even if the convergent light beam is incident on the objective lens, and the off-axis characteristics can be improved thereby.
  • the DVD when the DVD is used, the second light beam is incident on the objective lens in the state of convergent light, thereby improving the off-axis characteristics when using the DVD while maintaining the off-axis characteristics when using the BD. This makes it easier to adjust the coma aberration due to the lens tilt especially when the second light beam is incident.
  • the objective lens described in claim 2 is characterized in that, in the invention described in claim 1, the following expression is satisfied. 0 ⁇ m2 ⁇ 0.16 (1) However, m2 represents the magnification of the objective lens when the second light beam is incident on the objective lens.
  • the first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped, and the first basic structure is a primary beam of the first light flux that has passed through the first basic structure.
  • the amount of diffracted light is made larger than the amount of diffracted light of any other order
  • the amount of first order diffracted light of the second light beam that has passed through the first basic structure is made larger than the amount of diffracted light of any other order
  • the first basic structure The first-order diffracted light amount of the third light beam that has passed through the first light beam is larger than any other order diffracted light amount
  • the first basic structure is a blazed structure
  • the second basic structure is the second basic structure
  • the second-order diffracted light amount of the first light beam that has passed is made larger than any other order of diffracted light amount
  • the first-order diffracted light amount of the second light beam that has passed through the second basic structure is greater than any other order of diffracted light amount.
  • the second foundation structure is a blazed structure, so that at least the first foundation structure and the second foundation structure It has been found that in the first optical path difference providing structure in which the two are stacked, the amount of step in the optical axis direction can be reduced, thereby suppressing the decrease in diffraction efficiency when the wavelength varies.
  • the second optical path difference providing structure is a structure in which at least a third basic structure and a fourth basic structure are overlapped, and the third basic structure is one of the first light flux that has passed through the third basic structure.
  • the next diffracted light quantity is made larger than any other order diffracted light quantity
  • the first diffracted light quantity of the second light flux that has passed through the third basic structure is made larger than any other order diffracted light quantity
  • the basic structure is a blazed structure
  • the fourth basic structure makes the second diffracted light quantity of the first light flux that has passed through the fourth basic structure larger than the diffracted light quantity of any other order.
  • the fourth base structure is a blazed structure, so that at least the third base structure and the The above 4th superposed with 4 basic structures In the optical path difference providing structure, it is possible to reduce the step difference amount in the optical axis direction, whereby it was found that a reduction in the diffraction efficiency at the time of wavelength variation can be suppressed.
  • the diffraction direction is not limited, so the actual diffracted light is a concept including both + 1st-order diffracted light and ⁇ 1st-order diffracted light. is there. However, it is assumed that the signs ( ⁇ ) of the diffracted lights generated for the first light flux, the second light flux, and the third light flux in the same portion of the same basic structure match.
  • the working distance when using the second optical disc is equal to or greater than the working distance when using the third optical disc.
  • the working distance may be shortened. However, if at least the working distance when using the second optical disk is greater than or equal to the working distance when using the third optical disk, it can be said that there is no particular problem in actual use.
  • the objective lens according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the working distance when the second optical disk is used is 0.25 mm or more.
  • the objective lens according to claim 6 is generated when the objective lens is shifted by 0.2 mm in the direction perpendicular to the optical axis when the second optical disk is used in the invention according to any one of claims 1 to 5.
  • Aberration is characterized by being below the Marechal limit (0.07 ⁇ rms).
  • the third light beam is incident on the objective lens in a parallel light state when the third optical disk is used. It is characterized by becoming.
  • the objective lens according to claim 8 is the invention according to any one of claims 1 to 6, wherein when the third optical disk is used, the third light beam is incident on the objective lens in a state of convergent light or divergent light. It is designed to do this. As a result, it is possible to improve off-axis characteristics when using the third optical disk and lengthen the working distance when using the third optical disk while maintaining the off-axis characteristics when using the first optical disk.
  • the objective lens according to claim 9 is the third-order coma aberration generated when the second light flux having an angle of view of 0.5 degrees is incident on the objective lens in the invention according to any one of claims 1 to 8.
  • DVD-CM3 is characterized by being 40 m ⁇ rms or less.
  • the DVD-CM3 is 10 m ⁇ rms or less.
  • An objective lens according to a tenth aspect is the third-order coma aberration generated when the first light flux having an angle of view of 0.5 degrees is incident on the objective lens in the invention according to any one of the first to ninth aspects.
  • the sum of the BD-CM3 and the third-order coma aberration DVD-CM3 generated when the second light flux having an angle of view of 0.5 degrees is incident on the objective lens is 40 m ⁇ rms or less.
  • (BD ⁇ CM3 + DVD ⁇ CM3) is 10 m ⁇ rms or less.
  • An optical pickup device includes the objective lens according to any one of the first to tenth aspects.
  • the optical pickup device has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light beam on the information recording surface of the BD, condenses the second light beam on the information recording surface of the DVD, and focuses the third light beam on the information recording surface of the CD.
  • the optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from an information recording surface of a BD, DVD, or CD.
  • the BD has a protective substrate having a thickness t1 and an information recording surface.
  • the DVD has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the CD has a protective substrate having a thickness of t3 (t2 ⁇ t3) and an information recording surface.
  • the BD, DVD, or CD may be a multi-layer optical disc having a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • the recording density the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface. 0.050 mm ⁇ t1 ⁇ 0.125 mm (2) 0.5mm ⁇ t2 ⁇ 0.7mm (3) 1.0mm ⁇ t3 ⁇ 1.3mm (4)
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (5) and (6). 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (5) 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 (6)
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm to 440 nm, more preferably 390 nm to 415 nm
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm to 680 nm, more preferably.
  • the third wavelength ⁇ 3 of the third light source is preferably 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has an objective lens.
  • the condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens of the present invention is a single plastic lens.
  • a convex lens is preferable.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material
  • the resin material has a refractive index within a range of 1.50 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm according to a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the refractive index change rate dN / dT (° C.
  • the coupling lens is also a plastic lens.
  • a first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (1) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ⁇ 20 alkoxy groups or halogen groups.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV).
  • Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
  • R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group.
  • R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group.
  • the following additives may be added.
  • Stabilizer It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
  • phenol-based stabilizer conventionally known ones can be used.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate
  • 2 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like
  • JP-A Nos. 63-179953 and 1-168643 JP-A Nos. 63-179953 and 1-168643.
  • Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-but
  • the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl).
  • Phenyl) phosphite tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
  • each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
  • hydrophilic group of the surfactant examples include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms.
  • the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent.
  • Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like.
  • the aromatic ring include a phenyl group.
  • the surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
  • examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene
  • examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like.
  • amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
  • the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • the addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • Plasticizer The plasticizer is added as necessary to adjust the melt index of the copolymer.
  • Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisode
  • cycloolefin resins are preferably used.
  • ZEONEX manufactured by Nippon Zeon Co., Ltd. APEL manufactured by Mitsui Chemicals, Inc.
  • TOPAS® ADVANCED® POLYMERS manufactured by TOPAS and JSR manufactured by ARTON are preferable. Take as an example.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • At least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region.
  • the central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good.
  • the central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 1, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface.
  • a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area.
  • the peripheral region may be a refracting surface, or a third optical path difference providing structure may be provided in the peripheral region.
  • the central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the central area of the objective lens can be said to be a BD / DVD / CD shared area used for recording / reproduction of BD (an example of the first optical disk), DVD (an example of the second optical disk), and CD (an example of the third optical disk). That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. The light is condensed so that information can be recorded and / or reproduced on the surface, and the third light flux passing through the central region is condensed so that information can be recorded / reproduced on the information recording surface of the CD.
  • the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam. Further, the first optical path difference providing structure is different from the thickness t1 of the BD protective substrate and the thickness t3 of the CD protective substrate with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference in the wavelength of the first light beam and the third light beam.
  • the intermediate area of the objective lens is used for BD / DVD recording / reproduction and can be said to be a BD / DVD shared area not used for CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the intermediate area is recorded as information recording on the DVD. Light is collected so that information can be recorded / reproduced on the surface.
  • the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the CD.
  • the third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the CD. As shown in FIG.
  • the spot center having a high light amount density in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a portion SCN, a spot intermediate portion SMD whose light intensity density is lower than that of the spot central portion, and a spot peripheral portion SOT whose light intensity density is higher than that of the spot intermediate portion and lower than that of the spot central portion.
  • the center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare.
  • the spot peripheral part may be called a flare.
  • the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the CD.
  • the peripheral region of the objective lens is used for BD recording / reproduction, and can be said to be a BD-dedicated region that is not used for DVD / CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the BD.
  • the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD, and the third light flux that passes through the peripheral area does not converge. Do not collect light so that information can be recorded / reproduced on top.
  • the second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surface of DVD and CD. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surface of DVD and CD.
  • the first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region.
  • the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
  • optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure of the present invention is preferably a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the optical path difference providing structure is a single aspherical lens
  • the incident angle of the light flux to the objective lens differs depending on the height from the optical axis.
  • Each will be slightly different.
  • the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the diffractive structure is a single aspherical lens
  • the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be.
  • the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
  • the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center.
  • the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape.
  • the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface.
  • the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 3 (a))
  • the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit).
  • V level means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the optical path difference providing structure illustrated in FIG. 3C is referred to as a five-level staircase structure
  • the optical path difference providing structure illustrated in FIG. 3D is referred to as a two-level staircase structure (also referred to as a binary structure).
  • a two-level staircase structure is described below.
  • a plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis,
  • the light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed.
  • the surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis.
  • a large step amount B1 and a small step amount B2 exist in the case of a three-level or higher staircase structure.
  • the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated.
  • the unit shape is periodically repeated here naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated. As shown in FIG. 3 (a), the same sawtooth shape may be repeated, and as shown in FIG. 3 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center).
  • the optical path difference providing structure has a staircase structure
  • the first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing.
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side. In other words, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
  • the first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped.
  • the first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
  • the first basic structure is a blaze type structure.
  • the first basic structure makes the A-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and B of the second light flux that has passed through the first basic structure.
  • the diffracted light amount is made larger than any other order diffracted light amount
  • the C diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount.
  • the step amount of the first basic structure does not become too large, so that the manufacture is facilitated, and the light quantity loss due to the manufacturing error can be suppressed, and the wavelength It is preferable because the diffraction efficiency fluctuation at the time of fluctuation can be reduced.
  • the first basic structure provided at least in the vicinity of the optical axis in the central region has a step in a direction opposite to the optical axis.
  • the step is directed in the direction opposite to the optical axis means a state as shown in FIG. (The shape as shown in FIG. 4B is also a blazed structure.)
  • the first basic structure provided “at least in the vicinity of the optical axis in the central region” is a step difference in the (A / B / C) structure. Of these, it is the level difference closest to the optical axis.
  • At least a step of the (A / B / C) structure existing between the optical axis and the half of the optical axis orthogonal direction from the optical axis to the boundary between the central region and the intermediate region and the optical axis is the optical axis. Is pointing in the opposite direction.
  • the step may be directed in the direction of the optical axis. That is, as shown in FIG. 5B, the step is directed in the opposite direction to the optical axis when the first foundation structure is near the optical axis, but is switched halfway, and the step of the first foundation structure is near the intermediate region. It is good also as a shape which faces the direction of an optical axis. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
  • the direction of the step of the first basic structure in which the diffraction order of the first light flux is the A order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a sufficient working distance can be secured when the CD is used.
  • the first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have paraxial power with respect to the light beam.
  • “having paraxial power” means that B 2 h 2 is not 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
  • the second basic structure is also a blaze type structure.
  • the second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order diffracted light amount, and the E-order diffraction of the second light beam that has passed through the first basic structure.
  • the light quantity is made larger than any other order of diffracted light quantity
  • the F-order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity.
  • the step amount of the second basic structure does not become too large, which facilitates manufacturing and suppresses light loss caused by manufacturing errors. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
  • the step of the second basic structure provided at least in the vicinity of the optical axis in the central region is directed in the direction of the optical axis.
  • “The level difference faces the direction of the optical axis” means a state as shown in FIG. (The shape as shown in FIG. 4A is also a blazed structure.)
  • the second basic structure provided “at least in the vicinity of the optical axis in the central region” is a level difference of the (D / E / F) structure. Of these, it is the level difference closest to the optical axis.
  • At least a half of the optical axis orthogonal direction from the optical axis to the boundary between the central region and the intermediate region, and a step of the (D / E / F) structure existing between the optical axis and the optical axis direction is suitable.
  • the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 5A, the step is directed in the direction of the optical axis when the second foundation structure is near the optical axis, but is switched halfway, and the step of the second foundation structure is located near the optical axis. It is good also as a shape which faces the reverse direction.
  • the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
  • the first optical path difference providing structure is formed by superposing the first basic structure having the (A / B / C) structure and the second basic structure having the (D / E / F) structure, the height of the step is extremely high. Can be lowered. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
  • the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD. It is also possible to provide a balanced objective lens. For example, it is possible to provide an objective lens having a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 60% or more for the wavelength ⁇ 2, and a diffraction efficiency of 50% or more for the wavelength ⁇ 3.
  • an objective lens having a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • a diffraction efficiency of 80% or more for the wavelength ⁇ 1 a diffraction efficiency of 70% or more for the wavelength ⁇ 2
  • the step amount d12 of the step preferably satisfies the following conditional expressions (7) and (8). More preferably, the following conditional expressions (7) and (8) are satisfied in all the regions of the central region.
  • the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase.
  • the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account.
  • n represents the refractive index of the objective lens at the first wavelength ⁇ 1.
  • the first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis.
  • An optical path difference providing structure having both of the steps facing the direction of.
  • the optical path difference providing structure has a step existing between at least a half position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
  • the pitches of the first foundation structure and the second foundation structure are matched, the positions of all the steps of the second foundation structure, and the steps of the first foundation structure. It is preferable to match the positions of all the steps of the first foundation structure with the positions of the steps of the second foundation structure.
  • d11 and d12 of the first optical path difference providing structure are the following conditional expressions (11) , (12) is preferably satisfied. More preferably, the following conditional expressions (11) and (12) are satisfied in all the regions of the central region. 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (11) 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (12)
  • conditional expressions (15) and (16) are preferably satisfied. More preferably, the following conditional expressions (15) and (16) ′ are satisfied in all the regions of the central region. 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (15) 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (16)
  • the spherical aberration is changed in the undercorrection direction (under), and (D /
  • the second basic structure which is the E / F) structure when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in an undercorrected direction (under).
  • the contribution rate of the first foundation structure is dominant compared to the second foundation structure.
  • the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure.
  • 2 to 3 are preferably included. More preferably, in the entire first optical path difference providing structure, 2 to 5 (particularly preferably 2 to 3) ring zones of the first foundation structure are included in one ring zone of the second foundation structure. That is. That is, the average pitch of the first foundation structure is preferably 1/5 or more and 1/2 or less (particularly preferably 1/3 or more and 1/2 or less) of the average pitch of the second foundation structure.
  • the longitudinal chromatic aberration of the objective lens is 0.3 ⁇ m / nm or more and 0.6 ⁇ m / nm or less.
  • the ring zone of the first foundation structure is 2 to 1 ring zone closest to the optical axis of the second foundation structure. It is preferable to include 5 (particularly preferably 2 to 3). It is preferable to set the axial chromatic aberration in the above-mentioned range because the problem of stray light can be reduced when the optical disc has a plurality of information recording surfaces while ensuring the working distance in the CD.
  • the first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (19).
  • the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range.
  • the first best focus position is the best focus position of the necessary light used for recording / reproduction of the third CD, and the second best focus position of the unnecessary light that is not used for recording / reproduction of the CD is the light flux having the largest amount of light. Best focus position.
  • f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus
  • L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
  • conditional expression (20) is satisfied. 0.10 ⁇ L / f13 ⁇ 0.25 (20)
  • FIGS. 6 (a), 6 (b) and 6 (c) A preferred example of the first optical path difference providing structure described above is shown in FIGS. 6 (a), 6 (b) and 6 (c).
  • the first optical path difference providing structure ODS1 is shown as a flat plate for convenience, but it is provided on a single aspherical convex lens. May be.
  • a first foundation structure BS1 having an (A / B / C) structure is overlaid on a second foundation structure BS2 having a (D / E / F) structure.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS faces the direction opposite to the optical axis OA.
  • the pitches of the first foundation structure BS1 and the second foundation structure BS2 are matched, and it can be seen that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure match.
  • the average pitch of the first foundation structure BS1 is smaller than the average pitch of the second foundation structure BS2, and the number of steps facing the direction opposite to the optical axis of the first foundation structure is the second foundation structure. This is more than the number of steps facing the direction of the optical axis.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS1 also faces the direction of the optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • step difference of 1st foundation structure BS1 has faced the direction opposite to optical axis OA
  • step difference of 2nd foundation structure BS2 has also faced the direction opposite to optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • the second optical path difference providing structure is preferably a structure in which at least two basic structures of a third basic structure and a fourth basic structure are overlapped.
  • both the third basic structure and the fourth basic structure are blazed structures. Further, the G-order diffracted light quantity of the first light beam that has passed through the third basic structure is made larger than any other order diffracted light quantity, and the H-order diffracted light quantity of the second light beam that has passed through the third basic structure is changed to other values.
  • the fourth diffracted light quantity is made larger than the diffracted light quantity of any order (also referred to as a (G / H) structure), and the fourth basic structure converts the I-order diffracted light quantity of the first light flux that has passed through the fourth basic structure into any other order.
  • the orders of the diffracted light having the highest light intensity in the first basic structure and the third basic structure are matched, and the orders of the diffracted light having the highest light intensity in the second basic structure and the fourth basic structure are matched. Therefore, the spherical aberration can be made continuous even when the temperature and the wavelength change for the light flux passing through the central region and the intermediate region, and as a result, the occurrence of higher-order aberrations can be suppressed even when the temperature and the wavelength are changed.
  • the second optical path difference providing structure may be a structure in which the fifth basic structure is overlapped in addition to the third and fourth basic structures. However, in order to simplify the structure and suppress a decrease in light utilization efficiency due to manufacturing errors.
  • the second optical path difference providing structure preferably includes only the third basic structure and the fourth basic structure.
  • the fifth basic structure makes the 0th-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure.
  • the 0th-order diffracted light amount is made larger than any other order diffracted light amount
  • the Kth-order diffracted light amount of the third light beam passing through the fifth basic structure is made larger than any other order diffracted light amount. It is preferable.
  • a phase shift occurs between the central region and the intermediate region without adversely affecting the first light beam and the second light beam passing through the intermediate region of the objective lens. Accordingly, it is possible to easily give only the third light flux an effect of forming a flare at a position far from the light spot on the information recording surface of the CD.
  • K is ⁇ 1.
  • the fifth basic structure is preferably a two-level step structure (also referred to as a binary structure) as shown in FIG.
  • the third-order diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the second-order diffracted light amount of the second light beam that has passed through the third basic structure is changed to other values.
  • the diffraction light quantity of any order is made larger (also referred to as (3/2) structure)
  • the second-order diffraction light quantity of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffraction light quantity
  • the first-order diffracted light amount of the second light beam that has passed through the four basic structures may be made larger than any other order diffracted light amount (also referred to as a (2/1) structure). With such a configuration, the diffraction efficiency in BD can be further increased.
  • the 3rd foundation structure and the 4th foundation structure are the combination of the (1/1) structure and the (2/1) structure, it is the combination of the (3/2) structure and the (2/1) structure.
  • the third basic structure provided at least in the middle region at the position closest to the central region has the step in the direction opposite to the optical axis, and at least in the middle region at the position closest to the central region.
  • step difference has faced the direction of an optical axis. More preferably, the steps of all the third foundation structures in the intermediate region are directed in the direction opposite to the optical axis, and the steps of all the fourth foundation structures in the intermediate region are directed in the direction of the optical axis. is there.
  • the spherical aberration changes in an undercorrected (under) direction
  • the wavelength of the incident light beam becomes longer.
  • the spherical aberration may change in the direction of insufficient correction.
  • the wavelength of the light source also increases due to the increase in the environmental temperature. Is used to correct the deterioration of the spherical aberration due to the change in the refractive index of the objective lens, so that a more appropriate condensing spot can be formed on the information recording surface of each optical disc when the environmental temperature changes.
  • the spherical aberration changes in the undercorrection (under) direction, and the incident light is incident on the other side.
  • the spherical aberration may be changed in the overcorrection (over) direction.
  • the vertical axis represents the height in the direction perpendicular to the optical axis from the optical axis
  • the horizontal axis represents the aberration.
  • the left side of the horizontal axis is negative and the right side is positive.
  • Negative is a direction approaching the objective lens, and positive is a direction away from the objective lens.
  • overcorrection is a state inclined in the positive direction as shown in FIG. 7B
  • undercorrection is a state inclined in the negative direction as shown in A in FIG.
  • the aberration value is positive in B of FIG.
  • paraxial term for example, the term B2 in (Equation 2)
  • the paraxial term is deleted from the optical path difference function of the first basic structure and the second basic structure, or the third basic structure and the fourth basic structure.
  • the position of the spherical aberration (the inclination does not matter) becomes the positive side
  • the position of the spherical aberration becomes longer as the wavelength becomes longer. Is preferably on the negative side.
  • the spherical aberration when the wavelength of the incident light beam is changed so as to become longer, the spherical aberration changes in the undercorrection (under) direction. If the spherical aberration is changed in the overcorrection direction when the wavelength is changed to be longer, when the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the first aberration is changed.
  • the amount of change of the third-order spherical aberration when the wavelength of one light beam changes by +5 nm can be set to ⁇ 30 m ⁇ rms to +50 m ⁇ rms, which is preferable.
  • the amount of change in the third-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -10 m ⁇ rms or more and +10 m ⁇ rms or less. More preferably.
  • the amount of change in the fifth-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -20 m ⁇ rms or more and 20 m ⁇ rms or less. It is preferable that More preferably, it is ⁇ 10 m ⁇ rms or more and +10 m ⁇ rms or less.
  • the two-optical path difference providing structure is composed of only the third and fourth basic structures, flare can be easily produced when using the CD. Accordingly, flare out when using a CD can be performed with a simple second optical path difference providing structure, so that a decrease in light utilization efficiency due to a shadow effect is suppressed, and a decrease in light utilization efficiency due to manufacturing errors is also suppressed. As a result, the light utilization efficiency can be improved.
  • the spherical aberration is changed in an undercorrected (under) direction, and the wavelength of the incident light beam is longer in the third basic structure.
  • the spherical aberration changes in the overcorrected (over) direction because the flare can be easily moved farther when the CD is used.
  • 1 to 3 (particularly preferably 2 to 3) ring zones of the third foundation structure are included in one ring zone closest to the central region of the fourth foundation structure. It is preferable. More preferably, in the entire second optical path difference providing structure, 1 to 3 (particularly preferably 2 to 3) ring zones of the third foundation structure are included in one ring zone of the fourth foundation structure. That is. That is, the average pitch of the third foundation structure is preferably equal to or less than 1/2 (particularly preferably, 1/3 or more, 1/2 or less) of the fourth foundation structure.
  • the third optical path difference providing structure preferably has a sixth basic structure.
  • the P-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than any other order diffracted light amount, and the Q-order diffraction of the second light beam that has passed through the sixth basic structure.
  • the light quantity is made larger than any other order of diffracted light quantity, and the R-order diffracted light quantity of the third light flux that has passed through the sixth basic structure is made larger than any other order of diffracted light quantity.
  • P is preferably 5 or less in order to suppress fluctuations in diffraction efficiency during wavelength fluctuations.
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the boundary between the central region and the intermediate region of the objective lens is 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more, 1.15 ⁇ NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0.95 ⁇ NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion has a range of 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more and 1.15 ⁇ NA 3 or less) when the third light flux is used. It is preferable that it exists in.
  • an objective lens satisfy
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux.
  • the objective lens since the objective lens has a thick on-axis thickness, the working distance at the time of CD recording / reproduction tends to be short, so the upper limit of conditional expression (21) may not be exceeded. preferable.
  • the first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light.
  • all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable.
  • the imaging magnification m1 of the objective lens when the first light flux is incident on the objective lens satisfy the following formula (22). -0.01 ⁇ m1 ⁇ 0.01 (22)
  • the second light beam is incident on the objective lens as a convergent light beam.
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following formula (1). 0 ⁇ m2 ⁇ 0.16 (1) More preferably, the following formula is satisfied. 0 ⁇ m2 ⁇ 0.07 (1) ′ More preferably, the following expression is satisfied. 0.01 ⁇ m2 ⁇ 0.07 (1) ′′
  • the third light beam is preferably incident on the objective lens as a parallel light beam.
  • the imaging magnification m3 of the objective lens when the third light beam enters the objective lens preferably satisfies the following formula (23). -0.01 ⁇ m3 ⁇ 0.01 (23)
  • the third light beam may be incident on the objective lens as a divergent light beam or a convergent light beam.
  • the imaging magnification m3 of the objective lens when the third light beam enters the objective lens as a divergent light beam preferably satisfies the following formula (23) ′, and when the third light beam enters the objective lens as a convergent light beam: It is preferable that the imaging magnification m3 of the objective lens satisfies the following formula (23) ′′. ⁇ 0.025 ⁇ m3 ⁇ ⁇ 0.01 (23) ′ 0.01 ⁇ m3 ⁇ 0.025 (23) ′′
  • the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.25 mm or more and 1.5 mm or less. Preferably, it is 0.2 mm or more and 0.5 mm or less.
  • the WD of the objective optical element when using the second optical disk is preferably 0.25 mm or more and 1.3 mm or less.
  • the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
  • the working distance when using the second optical disk is preferably equal to or greater than the working distance when using the third optical disk.
  • the coupling lens may have an actuator through which at least the first light beam and the second light beam pass and move the coupling lens in the optical axis direction.
  • the BD has a plurality of information recording surfaces such as two layers or three layers or more
  • the difference in the thickness of the transparent substrate is required. Therefore, spherical aberration generated due to the difference in thickness must be corrected. It is conceivable to correct the generated spherical aberration by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens. Further, spherical aberration that occurs when the temperature or wavelength changes can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
  • the position of the coupling lens in the optical axis direction is fixed when using DVD. It is preferable.
  • the reason is that flare does not occur when using BD, but flare occurs when using DVD.
  • the flare aberration changes, and as a result, the flare is recorded / reproduced.
  • the reason is that there is a possibility of adversely affecting the recording medium, the reason why it is desirable to always keep the initial position of the coupling lens to discriminate the type of DVD, or simply moving the coupling lens by the drive. For example, there is a reason for wanting to reduce the cost of firmware for this.
  • the wavelength of the incident light beam in one of the third basic structure and the fourth basic structure constituting the second optical path difference providing structure of the objective lens So that the spherical aberration changes in the direction of insufficient correction, and on the other side, the spherical aberration changes in the direction of overcorrection when the wavelength of the incident light beam changes longer.
  • both the temperature characteristic and the wavelength characteristic when using the DVD can be improved, and as a result, when using the DVD, the position of the coupling lens in the optical axis direction is fixed when the second light beam passes.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • a thick objective lens having a thick on-axis thickness that is used interchangeably with three types of optical disks of BD / DVD / CD
  • temperature characteristics are improved while ensuring a working distance when using a CD. It becomes possible to do.
  • FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region.
  • It is a conceptual diagram of a 1st optical path difference providing structure, (a) thru
  • FIG. 3 is a cross-sectional view of the objective lens of Example 1.
  • 6 is a graph showing off-axis characteristics in the objective lens of Example 1.
  • FIG. 6 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 1.
  • FIG. 6 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 1.
  • 6 is a cross-sectional view of an objective lens according to Example 2.
  • FIG. 6 is a graph showing off-axis characteristics in the objective lens of Example 2.
  • FIG. 6 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 2.
  • FIG. 6 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 2.
  • 6 is a cross-sectional view of an objective lens according to Example 3.
  • FIG. 10 is a graph showing off-axis characteristics in the objective lens of Example 3.
  • FIG. 10 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 3.
  • FIG. 10 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 3.
  • 10 is a cross-sectional view of an objective lens according to Example 4.
  • FIG. 10 is a graph showing off-axis characteristics in the objective lens of Example 4.
  • FIG. 1 It is a figure which shows the 3rd-order coma aberration with respect to the lens tilt at the time of DVD use in Example 4.
  • FIG. 2 It is a figure which shows the 3rd-order coma aberration with respect to the lens tilt at the time of DVD use in Example 4.
  • FIG. 1 It is a figure which shows the 3rd-order coma aberration with respect to the lens tilt at the time of DVD use in Example 4.
  • FIG. 8 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks.
  • Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment.
  • the first optical path difference providing structure already described in detail is formed in the center region CN
  • the second optical path difference providing structure already described in detail is formed in the intermediate region MD.
  • a third optical path difference providing structure is formed in the peripheral region OT.
  • the third optical path difference providing structure is a blazed diffractive structure.
  • the objective lens of the present embodiment is a plastic lens.
  • the first optical path difference providing structure formed in the central region CN of the objective lens OL is a structure in which the first basic structure and the second basic structure are overlaid as shown in FIG.
  • the structure is such that the first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is different.
  • the first order diffracted light amount of the third light beam that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN.
  • the step is directed in the direction opposite to the optical axis, and the second basic structure converts the second-order diffracted light amount of the first light beam that has passed through the second basic structure to any other order.
  • the second light flux that is larger than the diffracted light quantity and passes through the second basic structure.
  • the first order diffracted light amount is made larger than any other order diffracted light amount
  • the first order diffracted light amount of the third light beam that has passed through the second basic structure is made larger than any other order diffracted light amount, and at least the center
  • the second foundation structure provided in the vicinity of the optical axis of the region CN has a step in the direction of the optical axis, and the first and second foundation structures have changed so that the wavelength of the incident light beam becomes longer. In this case, it is preferable that the spherical aberration changes in the direction of insufficient correction.
  • the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and by the collimating lens COL.
  • a converged light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1.
  • the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. Correction can be made by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL by changing the collimating lens COL as means in the optical axis direction.
  • the / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OL in the form of a convergent light beam.
  • the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral portion) is recorded on the DVD through the protective substrate PL2. It becomes a spot formed on the surface RL2, and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a convergent light beam by the collimating lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on DVD can be read using the output signal of light receiving element PD.
  • the light beam collected by the central region of the objective lens OL (the light beam that has passed through the intermediate region and the peripheral region is flared and forms a spot peripheral part) is recorded on the CD through the protective substrate PL3. It becomes a spot formed on the surface RL3.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 passes through the objective lens OL again, is converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and is converged by the collimating lens COL, The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
  • X (h) is an axis in the optical axis direction (with the light traveling direction being positive), ⁇ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
  • h is the height from the optical axis
  • is the wavelength of the incident light beam
  • m is the diffraction order
  • B 2i is the coefficient of the optical path difference function.
  • the objective lens of the comparative example is a plastic single lens.
  • FIG. 9 is a cross-sectional view of a comparative objective lens.
  • the first optical path difference providing structure of the comparative example has a (1/1/1) blaze type in the second basic structure BS2 that is a (2/1/1) blaze type diffraction structure in the entire central region.
  • the optical path difference providing structure is formed by overlapping the first basic structure BS1 which is a diffractive structure.
  • the second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region.
  • the peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure.
  • Table 1 shows lens data of the comparative example.
  • FIG. 10 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of the comparative example.
  • FIG. 11 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD
  • FIG. 12 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD.
  • FIG. 10 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of the comparative example.
  • FIG. 11 is
  • the value of the third-order coma aberration DVD-CM3 generated when the light is incident is given as a reference.
  • the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference.
  • the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens when the lens shift is 0.2 mm in the direction orthogonal to the optical axis is referred to.
  • FIG. 13 is a cross-sectional view of the objective lens of Example 1.
  • the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region.
  • the first basic structure BS1 which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped.
  • the second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region.
  • the peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure.
  • Table 2 shows lens data of Example 1.
  • FIG. 14 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 1.
  • FIG. 15 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD
  • FIG. 16 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD.
  • FIG. 14 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 1.
  • FIG. 15 is a diagram showing the third-order
  • the value of the third-order coma aberration DVD-CM3 generated at the time of being applied is given as a reference.
  • the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference.
  • the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens when the lens shift is 0.2 mm in the direction orthogonal to the optical axis is referred to.
  • FIG. 17 is a cross-sectional view of the objective lens of Example 2.
  • the (1/1/1) blaze is added to the second basic structure BS2 which is a (2/1/1) blazed diffraction structure in the entire central region.
  • the first basic structure BS1 which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped.
  • the second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region.
  • the peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure.
  • Table 3 shows lens data of Example 2.
  • FIG. 18 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 2.
  • FIG. 19 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD
  • FIG. 20 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD.
  • FIG. 18 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 2.
  • FIG. 19 is a diagram showing the third-order
  • the value of the third-order coma aberration DVD-CM3 generated when the light is incident is given as a reference.
  • the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference.
  • the value of the third-order coma aberration DVD-CM3 generated when the second light flux is made incident on the objective lens when the lens shift is 0.2 mm in the optical axis orthogonal direction is given as a reference.
  • FIG. 21 is a sectional view of the objective lens of Example 3.
  • the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region.
  • the first basic structure BS1 which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped.
  • the second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region.
  • the peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure.
  • Table 4 shows lens data of Example 3.
  • FIG. 22 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 3.
  • FIG. 23 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD, and FIG.
  • FIG. 24 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD.
  • the third-order coma aberration BD-CM3 generated when the first light flux with an angle of view of 0.5 degrees is incident on the objective lens, and the second light flux with an angle of view of 0.5 degrees is applied to the objective lens.
  • the value of the third-order coma aberration DVD-CM3 generated when the light is incident is given as a reference.
  • FIG. 23 the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference.
  • the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens when the lens shift is 0.2 mm in the direction orthogonal to the optical axis is referred to.
  • FIG. 25 is a cross-sectional view of the objective lens according to Example 4.
  • the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region.
  • the first basic structure BS1 which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped.
  • the second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region.
  • the peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure.
  • Table 5 shows lens data of Example 4.
  • FIG. 26 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 4.
  • FIG. 27 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD, and FIG.
  • FIG. 28 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD.
  • the third-order coma aberration BD-CM3 generated when the first light flux having an angle of view of 0.5 degrees is incident on the objective lens, and the second light flux having an angle of view of 0.5 degrees is applied to the objective lens.
  • the value of the third-order coma aberration DVD-CM3 generated when the light is incident is given as a reference.
  • FIG. 27 the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference.
  • the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens when the lens shift is 0.2 mm in the direction orthogonal to the optical axis is referred to.
  • the off-axis characteristics when using the DVD of Example 1 are improved compared to the comparative example (in the comparative example, the DVD-CM3 is 50 m ⁇ rms, whereas In Example 1, DVD-CM3 is 39 m ⁇ rms).
  • the lens tilt characteristic when using the DVD of Example 1 is improved compared to the comparative example, so that adjustment during assembly is easy.
  • the comparative example cannot be adjusted no matter how much the objective lens is tilted.
  • the off-axis characteristics when using DVDs in Examples 2 to 4 are particularly preferably compatible with the off-axis characteristics when using BD.

Abstract

Provided is an optical pickup device equipped with an objective lens that can combine off-axis characteristics and is easy to adjust at assembly time while making it possible to exchange three types of optical discs, i.e., BD/DVD/CD, by using a common objective lens. Also provided is an objective lens suitable for the optical pickup device. A first optical path difference imparting structure provided in the center region of the objective lens features at least a first substructure and a second substructure stacked one atop the other, and a second optical path difference imparting structure provided in the center region features at least a third substructure and a fourth substructure stacked one atop the other. When a DVD is being used, a second light beam enters the objective lens as a convergent beam.

Description

光ピックアップ装置用の対物レンズ及び光ピックアップ装置Objective lens for optical pickup device and optical pickup device
 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び/又は再生(記録/再生)を行える光ピックアップ装置及びそれに用いる対物レンズ。 The present invention relates to an optical pickup device capable of recording and / or reproducing (recording / reproducing) information interchangeably for different types of optical discs, and an objective lens used therefor.
 近年、光ピックアップ装置において、光ディスクに記録された情報の再生や、光ディスクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進み、例えば、青紫色半導体レーザ等、波長390~420nmのレーザ光源が実用化されている。これら青紫色レーザ光源を使用すると、DVD(デジタルバーサタイルディスク)と同じ開口数(NA)の対物レンズを使用する場合で、直径12cmの光ディスクに対して、15~20GBの情報の記録が可能となり、対物光学素子のNAを0.85にまで高めた場合には、直径12cmの光ディスクに対して、23~25GBの情報の記録が可能となる。 In recent years, in an optical pickup device, a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened. For example, a wavelength 390 such as a blue-violet semiconductor laser is used. A laser light source of ˜420 nm has been put into practical use. When these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used. When the NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
 上述のようなNA0.85の対物レンズを使用する光ディスクの例として、BD(ブルーレイディスク)が挙げられる。光ディスクの傾き(スキュー)に起因して発生するコマ収差が増大するため、BDでは、DVD における場合よりも保護基板を薄く設計し(DVDの0.6mmに対して、0.1mm)、スキューによるコマ収差量を低減している。 BD (Blu-ray Disc) is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
 ところで、BDに対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDやCD(コンパクトディスク)が販売されている現実をふまえると、BDに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDやCDに対しても同様に適切に情報の記録/再生ができるようにすることが、BD用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、BD用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。 By the way, simply saying that information can be recorded / reproduced appropriately with respect to a BD cannot be said to be sufficient as a product of an optical disc player / recorder (optical information recording / reproducing apparatus). In light of the reality that DVDs and CDs (compact discs) on which a wide variety of information is recorded are currently being sold, it is not possible to record / reproduce information with respect to BDs. For example, DVDs owned by users, Similarly, it is possible to appropriately record / reproduce information on a CD, which leads to an increase in the commercial value of an optical disc player / recorder for BD. From such a background, the optical pickup device mounted on the BD optical disc player / recorder can record / reproduce information appropriately while maintaining compatibility with any of BD, DVD, and CD. It is desirable to have
 BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できるようにする方法として、BD用の光学系とDVDやCD用の光学系とを情報を記録/再生する光ディスクの記録密度に応じて選択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコストが増大する。 As a method for appropriately recording / reproducing information while maintaining compatibility with both BD and DVD, and further with CD, information between BD optical system and DVD or CD optical system is used. Although a method of selectively switching according to the recording density of the optical disc to be recorded / reproduced is conceivable, it requires a plurality of optical systems, which is disadvantageous for miniaturization and increases the cost.
 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性を有する光ピックアップ装置においても、BD用の光学系とDVDやCD用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らすのが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記録/再生波長が互いに異なる複数種類の光ディスクに対して共通な対物レンズを得るためには、球面収差の波長依存性を有する回折構造等の光路差付与構造を対物レンズに形成する必要がある。 Therefore, in order to simplify the configuration of the optical pickup device and reduce the cost, even in an optical pickup device having compatibility, the optical system for BD and the optical system for DVD or CD can be shared. It is preferable to reduce the number of optical components constituting the pickup device as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common. In order to obtain a common objective lens for a plurality of types of optical disks having different recording / reproducing wavelengths, it is necessary to form an optical path difference providing structure such as a diffraction structure having a wavelength dependency of spherical aberration in the objective lens. is there.
 ところで、対物レンズに光路差付与構造を設けて互換を実現しようとする場合、例えばBDの軸外特性を向上させようとすると、DVDの軸外特性が低下する。DVDの軸外特性が低下すると、レンズチルト感度が低下するので、対物レンズを傾けて残留コマ収差をキャンセルするなどの調整が困難になる。これに対し、DVDの軸外特性を向上させようとすると、逆にBDの軸外特性の低下が生じる。このように、BDの軸外特性とDVDの軸外特性とはトレードオフの関係があるので、これらを両立させることは難しい。 By the way, in the case where an objective lens is provided with an optical path difference providing structure to achieve compatibility, for example, if an attempt is made to improve the off-axis characteristics of a BD, the off-axis characteristics of the DVD are lowered. When the off-axis characteristic of the DVD is lowered, the lens tilt sensitivity is lowered, so that adjustment such as tilting the objective lens to cancel the residual coma aberration becomes difficult. On the other hand, if it is attempted to improve the off-axis characteristics of a DVD, the BD off-axis characteristics deteriorate. Thus, since there is a trade-off relationship between the off-axis characteristics of the BD and the off-axis characteristics of the DVD, it is difficult to achieve both.
 ここで、特許文献1には、3つの光ディスクに集光する光束が通過する共通領域に回折構造を設けると共に、有限光束を入射させるようになっている対物レンズが開示されている。しかしながら、かかる従来技術は、特許文献1の段落[0011]にあるように、回折構造の持つ欠点を解消するため(球面収差補正のため)に対物レンズへの入射光を有限光束としているものであり、上述したような軸外特性の問題については全く言及されていない。 Here, Patent Document 1 discloses an objective lens in which a diffractive structure is provided in a common region through which light beams condensed on three optical disks pass and a finite light beam is incident. However, as described in paragraph [0011] of Patent Document 1, such conventional technology uses light incident on the objective lens as a finite light beam in order to eliminate the drawbacks of the diffractive structure (to correct spherical aberration). There is no mention of the problem of off-axis characteristics as described above.
特開2006-252602号公報JP 2006-252602 A
 本発明は、上述の課題を解決することを目的としたものであり、BD/DVD/CDの3種類の光ディスクの互換を共通の対物レンズで行うことを可能としつつ、軸外特性を両立でき組み付け時の調整が容易な対物レンズを備えた光ピックアップ装置並びにそれに好適な対物レンズを提供することを目的とする。 The present invention is intended to solve the above-described problems, and enables compatibility of three types of optical discs of BD / DVD / CD with a common objective lens while achieving both off-axis characteristics. An object of the present invention is to provide an optical pickup device including an objective lens that can be easily adjusted during assembly, and an objective lens suitable for the optical pickup device.
 請求項1に記載の対物レンズは、第1波長λ1の第1光束を射出する第1光源と、第2波長λ2(λ2>λ1)の第2光束を射出する第2光源と、第3波長λ3(λ3>λ2)の第3光束を射出する第3光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有する第1光ディスクの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有する第2光ディスクの情報の記録及び/又は再生を行い、前記第3光束を用いて厚さがt3(t2<t3)の保護基板を有する第3光ディスクの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
 前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
 前記中央領域は第1光路差付与構造を有し、
 前記中間領域は第2光路差付与構造を有し、
 前記対物レンズは、前記中央領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、
 前記対物レンズは、前記中間領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
 前記第1基礎構造は、前記第1基礎構造を通過した第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第1基礎構造はブレーズ型構造であり、
 前記第2基礎構造は、前記第2基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた構造であり、
 前記第3基礎構造は、前記第3基礎構造を通過した第1光束のG次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した第2光束のH次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第3基礎構造はブレーズ型構造であり、
 前記第4基礎構造は、前記第4基礎構造を通過した第1光束のI次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第2光束のJ次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第4基礎構造はブレーズ型構造であり、
 前記第2光ディスク使用時に、前記第2光束は、収束光の状態で前記対物レンズに入射するようになっていることを特徴とする。
The objective lens according to claim 1, wherein a first light source that emits a first light beam having a first wavelength λ1, a second light source that emits a second light beam having a second wavelength λ2 (λ2> λ1), and a third wavelength. a third light source that emits a third light beam having a wavelength of λ3 (λ3> λ2), and recording and / or reproducing information on a first optical disk having a protective substrate with a thickness of t1 using the first light beam. Recording and / or reproducing information on the second optical disc having a protective substrate having a thickness t2 (t1 <t2) using the second light flux, and a thickness t3 (t2 <t) using the third light flux. an objective lens used in an optical pickup device for recording and / or reproducing information of a third optical disc having a protective substrate at t3),
The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
The central region has a first optical path difference providing structure,
The intermediate region has a second optical path difference providing structure,
The objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc. Condensing so that information can be recorded and / or reproduced,
The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc. Without collecting light so that information can be recorded and / or reproduced.
The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area. The second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc. Do not concentrate so that information can be recorded and / or reproduced
The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
The first basic structure makes the A-order diffracted light quantity of the first light flux that has passed through the first basic structure larger than any other order diffracted light quantity, and B of the second light flux that has passed through the first basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, and making the C-order diffracted light quantity of the third light flux that has passed through the first basic structure larger than any other order diffracted light quantity,
The first basic structure is a blaze-type structure;
The second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and the E of the second light beam that has passed through the second basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, and making the F-order diffracted light quantity of the third light flux that has passed through the second basic structure larger than any other order diffracted light quantity,
The second optical path difference providing structure is a structure in which at least a third basic structure and a fourth basic structure are overlapped,
The third basic structure makes the G-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, so that the H of the second light beam that has passed through the third basic structure. Make the next diffracted light quantity larger than any other order diffracted light quantity,
The third basic structure is a blazed structure;
In the fourth basic structure, the first-order diffracted light amount of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffracted light amount, and the second light beam J that has passed through the fourth basic structure has J Make the next diffracted light quantity larger than any other order diffracted light quantity,
The fourth basic structure is a blazed structure.
When the second optical disk is used, the second light beam is incident on the objective lens in a convergent light state.
 本発明者は、新規なアプローチにより従来技術の問題を解消する方策を見出した。まず、発明者は複数の基礎構造を重畳することで光路差付与構造を構成することの利点に着目した。より具体的に説明すると、共通する対物レンズを用いて仕様の異なる光ディスクに対して互換可能に情報の記録/再生を行う為には、光ディスクの透明基板厚さと使用する光束の波長差に起因する球面収差をキャンセルしなくてはならないが、光路差付与構造では所定の光路差を付与することで、かかる球面収差をキャンセルできる。ところが、単一構造の光路差付与構造の場合、使用できる光学系倍率が限定されてしまうという問題がある。これに対し、光路差付与構造を複数の基礎構造を重畳して形成すると、設定できる光路差の自由度が広がるから、それにより発生する3次球面収差をコントロールできる。すなわち、光学系倍率が限定されることなく、倍率についても設計の自由度を確保しつつ互換が可能になる。本発明者は、かかる特性に着目し、複数の基礎構造を重畳した光路差付与構造を用いることで、光学系倍率の制限が緩和されることを利用して、収束光を用いてDVD使用時の軸外特性を向上させることを見出したのである。しかるに、前記第1光束入射時には、高NAであることからコマ収差等に対する影響が大きいので、対物レンズに平行光束又は略平行光束等を入射することが好ましいと言える。これに対し、前記第2光束入射時には、NAが比較的低いので、収束光束を対物レンズに入射させても大きな問題はなく、またそれにより軸外特性を向上できる。つまり、DVD使用時に、前記第2光束は、収束光の状態で前記対物レンズに入射するようにすることで、BD使用時の軸外特性はそのままに、DVD使用時の軸外特性を向上させることができ、これにより特に第2光束入射時のレンズチルトによるコマ収差の調整が容易になるのである。 The present inventor has found a method for solving the problems of the prior art by a novel approach. First, the inventor paid attention to the advantage of configuring an optical path difference providing structure by superimposing a plurality of basic structures. More specifically, in order to perform recording / reproduction of information interchangeably with optical discs having different specifications using a common objective lens, the information is caused by the transparent substrate thickness of the optical disc and the wavelength difference of the light beam used. Although the spherical aberration must be canceled, the spherical aberration can be canceled by providing a predetermined optical path difference in the optical path difference providing structure. However, in the case of the optical path difference providing structure having a single structure, there is a problem that the usable optical system magnification is limited. On the other hand, when the optical path difference providing structure is formed by superimposing a plurality of basic structures, the degree of freedom of the optical path difference that can be set increases, so that the third-order spherical aberration generated thereby can be controlled. That is, the optical system magnification is not limited, and the magnification can be interchanged while ensuring the degree of design freedom. The present inventor pays attention to such characteristics and uses the optical path difference providing structure in which a plurality of basic structures are superposed to reduce the limitation on the optical system magnification. It has been found that the off-axis characteristics of the can be improved. However, when the first light beam is incident, since it has a high NA, the influence on coma aberration and the like is large, and therefore it can be said that it is preferable to enter a parallel light beam, a substantially parallel light beam, or the like on the objective lens. On the other hand, since the NA is relatively low when the second light beam is incident, there is no significant problem even if the convergent light beam is incident on the objective lens, and the off-axis characteristics can be improved thereby. In other words, when the DVD is used, the second light beam is incident on the objective lens in the state of convergent light, thereby improving the off-axis characteristics when using the DVD while maintaining the off-axis characteristics when using the BD. This makes it easier to adjust the coma aberration due to the lens tilt especially when the second light beam is incident.
 請求項2に記載の対物レンズは、請求項1に記載の発明において、以下の式を満たすことを特徴とする。
 0<m2<0.16   (1)
但し、m2は、前記第2光束が前記対物レンズに入射する時の前記対物レンズの倍率を表す。
The objective lens described in claim 2 is characterized in that, in the invention described in claim 1, the following expression is satisfied.
0 <m2 <0.16 (1)
However, m2 represents the magnification of the objective lens when the second light beam is incident on the objective lens.
 式(1)の範囲を満たすことで、より有効にDVD使用時の軸外特性を向上できる。 By satisfying the range of formula (1), off-axis characteristics when using a DVD can be improved more effectively.
 請求項3に記載の対物レンズは、請求項1又は2に記載の発明において、A=G=1,B=H=1,C=1,D=I=2,E=J=1,F=1であることを特徴とする。 According to a third aspect of the present invention, there is provided the objective lens according to the first or second aspect, wherein A = G = 1, B = H = 1, C = 1, D = I = 2, E = J = 1, F. = 1.
 前記第1光路差付与構造が、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、前記第1基礎構造は、前記第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造がブレーズ型構造であり、前記第2基礎構造が、前記第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造がブレーズ型構造であるようにすることで、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた前記第1光路差付与構造において、光軸方向の段差量を低減でき、それにより波長変動時の回折効率の低下を抑制できることを見出したのである。 The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped, and the first basic structure is a primary beam of the first light flux that has passed through the first basic structure. The amount of diffracted light is made larger than the amount of diffracted light of any other order, the amount of first order diffracted light of the second light beam that has passed through the first basic structure is made larger than the amount of diffracted light of any other order, and the first basic structure The first-order diffracted light amount of the third light beam that has passed through the first light beam is larger than any other order diffracted light amount, the first basic structure is a blazed structure, and the second basic structure is the second basic structure The second-order diffracted light amount of the first light beam that has passed is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the second basic structure is greater than any other order of diffracted light amount. And pass through the second foundation structure By making the first order diffracted light quantity of the third light beam larger than any other order diffracted light quantity, the second foundation structure is a blazed structure, so that at least the first foundation structure and the second foundation structure It has been found that in the first optical path difference providing structure in which the two are stacked, the amount of step in the optical axis direction can be reduced, thereby suppressing the decrease in diffraction efficiency when the wavelength varies.
 又、前記第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた構造であり、前記第3基礎構造は、前記第3基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造はブレーズ型構造であり、前記第4基礎構造は、前記第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造はブレーズ型構造であるようにすることで、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた前記第3光路差付与構造において、光軸方向の段差量を低減でき、それにより波長変動時の回折効率の低下を抑制できることを見出したのである。 Further, the second optical path difference providing structure is a structure in which at least a third basic structure and a fourth basic structure are overlapped, and the third basic structure is one of the first light flux that has passed through the third basic structure. The next diffracted light quantity is made larger than any other order diffracted light quantity, and the first diffracted light quantity of the second light flux that has passed through the third basic structure is made larger than any other order diffracted light quantity, The basic structure is a blazed structure, and the fourth basic structure makes the second diffracted light quantity of the first light flux that has passed through the fourth basic structure larger than the diffracted light quantity of any other order. By making the first-order diffracted light quantity of the second light flux that has passed through the structure larger than any other order diffracted light quantity, the fourth base structure is a blazed structure, so that at least the third base structure and the The above 4th superposed with 4 basic structures In the optical path difference providing structure, it is possible to reduce the step difference amount in the optical axis direction, whereby it was found that a reduction in the diffraction efficiency at the time of wavelength variation can be suppressed.
 ここで、請求項における「1次の回折光」というときは、回折方向を限定していないので、実際の回折光は、+1次の回折光と-1次の回折光のいずれも含む概念である。但し、同一の基礎構造の同一部分において第1光束、第2光束、第3光束について発生する回折光の符号(±)は一致するものとする。 Here, when referring to “first-order diffracted light” in the claims, the diffraction direction is not limited, so the actual diffracted light is a concept including both + 1st-order diffracted light and −1st-order diffracted light. is there. However, it is assumed that the signs (±) of the diffracted lights generated for the first light flux, the second light flux, and the third light flux in the same portion of the same basic structure match.
 請求項4に記載の対物レンズは、請求項1~3のいずれかに記載の発明において、前記第2光ディスク使用時のワーキングディスタンスは、前記第3光ディスク使用時のワーキングディスタンス以上であることを特徴とする。 According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the working distance when using the second optical disc is equal to or greater than the working distance when using the third optical disc. And
 前記第2光束を、収束光の状態で前記対物レンズに入射するようにすると、ワーキングディスタンスが短くなる恐れがある。しかしながら、少なくとも第2光ディスク使用時のワーキングディスタンスは、前記第3光ディスク使用時のワーキングディスタンス以上とすれば、実使用上は特に問題がないといえる。 If the second light beam is incident on the objective lens in the state of convergent light, the working distance may be shortened. However, if at least the working distance when using the second optical disk is greater than or equal to the working distance when using the third optical disk, it can be said that there is no particular problem in actual use.
 請求項5に記載の対物レンズは、請求項1~4のいずれかに記載の発明において、前記第2光ディスク使用時のワーキングディスタンスは、0.25mm以上であることを特徴とする。 The objective lens according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the working distance when the second optical disk is used is 0.25 mm or more.
 これにより、実使用上は特に問題がないと言える。 Therefore, it can be said that there is no problem in actual use.
 請求項6に記載の対物レンズは、請求項1~5のいずれかに記載の発明において、前記第2光ディスク使用時において、前記対物レンズが光軸直交方向に0.2mmシフトした際に発生する収差が、マレシャル限界(0.07λrms)以下であることを特徴とする。 The objective lens according to claim 6 is generated when the objective lens is shifted by 0.2 mm in the direction perpendicular to the optical axis when the second optical disk is used in the invention according to any one of claims 1 to 5. Aberration is characterized by being below the Marechal limit (0.07λrms).
 前記第2光束が収束光の状態であるために前記対物レンズが光軸直交方向にシフトした際波面収差が発生してしまうが、0.2mmシフト時の波面収差発生量がマレシャル限界以下であることで実使用上は特に問題がないといえる。 Since the second light flux is in the state of convergent light, wavefront aberration occurs when the objective lens is shifted in the direction perpendicular to the optical axis, but the amount of wavefront aberration generated when shifted by 0.2 mm is below the Marshall limit. Therefore, it can be said that there is no problem in practical use.
 請求項7に記載の対物レンズは、請求項1~6のいずれかに記載の発明において、前記第3光ディスク使用時に、前記第3光束は、平行光の状態で前記対物レンズに入射するようになっていることを特徴とする。 According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the third light beam is incident on the objective lens in a parallel light state when the third optical disk is used. It is characterized by becoming.
 請求項8に記載の対物レンズは、請求項1~6のいずれかに記載の発明において、前記第3光ディスク使用時に、前記第3光束は、収束光又は発散光の状態で前記対物レンズに入射するようになっていることを特徴とする。これにより、第1光ディスク使用時の軸外特性を維持しつつ第3光ディスク使用時の軸外特性の向上や、前記第3光ディスク使用時のワーキングディスタンスを長くすることが可能となる。 The objective lens according to claim 8 is the invention according to any one of claims 1 to 6, wherein when the third optical disk is used, the third light beam is incident on the objective lens in a state of convergent light or divergent light. It is designed to do this. As a result, it is possible to improve off-axis characteristics when using the third optical disk and lengthen the working distance when using the third optical disk while maintaining the off-axis characteristics when using the first optical disk.
 請求項9に記載の対物レンズは、請求項1~8のいずれかに記載の発明において、画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3は、40mλrms以下であることを特徴とする。 The objective lens according to claim 9 is the third-order coma aberration generated when the second light flux having an angle of view of 0.5 degrees is incident on the objective lens in the invention according to any one of claims 1 to 8. DVD-CM3 is characterized by being 40 mλrms or less.
 これにより、DVD使用時の軸外特性を向上できる。好ましくは、DVD-CM3は10mλrms以下である。 This can improve off-axis characteristics when using a DVD. Preferably, the DVD-CM3 is 10 mλrms or less.
 請求項10に記載の対物レンズは、請求項1~9のいずれかに記載の発明において、画角0.5度の前記第1光束を前記対物レンズに入射させた際に生じる3次コマ収差BD-CM3と、画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3との合計が、40mλrms以下であることを特徴とする。 An objective lens according to a tenth aspect is the third-order coma aberration generated when the first light flux having an angle of view of 0.5 degrees is incident on the objective lens in the invention according to any one of the first to ninth aspects. The sum of the BD-CM3 and the third-order coma aberration DVD-CM3 generated when the second light flux having an angle of view of 0.5 degrees is incident on the objective lens is 40 mλrms or less.
 これにより、相互取り合いになるBD使用時の軸外特性とDVD使用時の軸外特性とをバランス良く確保できる。好ましくは、(BD-CM3+DVD-CM3)は10mλrms以下である。 This ensures a good balance between off-axis characteristics when using BD and off-axis characteristics when using DVD. Preferably, (BD−CM3 + DVD−CM3) is 10 mλrms or less.
 請求項11に記載の光ピックアップ装置は、請求項1~10のいずれかに記載の対物レンズを有することを特徴とする。 An optical pickup device according to an eleventh aspect includes the objective lens according to any one of the first to tenth aspects.
 本発明に係る光ピックアップ装置は、第1光源、第2光源、第3光源の少なくとも3つの光源を有する。さらに、本発明の光ピックアップ装置は、第1光束をBDの情報記録面上に集光させ、第2光束をDVDの情報記録面上に集光させ、第3光束をCDの情報記録面上に集光させるための集光光学系を有する。また、本発明の光ピックアップ装置は、BD、DVD又はCDの情報記録面からの反射光束を受光する受光素子を有する。 The optical pickup device according to the present invention has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light beam on the information recording surface of the BD, condenses the second light beam on the information recording surface of the DVD, and focuses the third light beam on the information recording surface of the CD. A condensing optical system for condensing the light. The optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from an information recording surface of a BD, DVD, or CD.
 BDは、厚さがt1の保護基板と情報記録面とを有する。DVDは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。CDは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。なお、BD、DVD又はCDは、複数の情報記録面を有する複数層の光ディスクでもよい。 BD has a protective substrate having a thickness t1 and an information recording surface. The DVD has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The CD has a protective substrate having a thickness of t3 (t2 <t3) and an information recording surface. The BD, DVD, or CD may be a multi-layer optical disc having a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層又はそれ以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(2)、(3)、(4)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
  0.050mm ≦ t1 ≦ 0.125mm   (2)
  0.5mm ≦ t2 ≦ 0.7mm      (3)
  1.0mm ≦ t3 ≦ 1.3mm      (4)
In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (2), (3), and (4), but is not limited thereto. The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
0.050 mm ≤ t1 ≤ 0.125 mm (2)
0.5mm ≤ t2 ≤ 0.7mm (3)
1.0mm ≤ t3 ≤ 1.3mm (4)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。
レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(5)、(6) を満たすことが好ましい。
  1.5・λ1 < λ2 < 1.7・λ1    (5)
  1.8・λ1 < λ3 < 2.0・λ1    (6)
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources.
As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (5) and (6).
1.5 · λ1 <λ2 <1.7 · λ1 (5)
1.8 · λ1 <λ3 <2.0 · λ1 (6)
 第1光源の第1波長λ1は好ましくは、350nm 以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。 The first wavelength λ1 of the first light source is preferably 350 nm to 440 nm, more preferably 390 nm to 415 nm, and the second wavelength λ2 of the second light source is preferably 570 nm to 680 nm, more preferably. Is 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、対物レンズを有する。集光光学系は、対物レンズの他にコリメータ等のカップリングレンズを有していることが好ましい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメータは、カップリングレンズの一種で、コリメータに入射した光を平行光にして出射するレンズである。本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。また、本発明の対物レンズは、単玉のプラスチックレンズである。好ましくは、凸レンズである。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 The condensing optical system has an objective lens. The condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens. The coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam. The collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light. In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens of the present invention is a single plastic lens. A convex lens is preferable. The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 また、対物レンズを構成するプラスチック材料として、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用するのが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.50乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃ -1) が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズがプラスチックレンズである場合、カップリングレンズもプラスチックレンズとすることが好ましい。 Moreover, it is preferable to use an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material as a plastic material constituting the objective lens. The resin material has a refractive index within a range of 1.50 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm according to a temperature change within a temperature range of −5 ° C. to 70 ° C. The refractive index change rate dN / dT (° C. −1 ) is -20 × 10 −5 to −5 × 10 −5 (more preferably −10 × 10 −5 to −8 × 10 −5 ). It is more preferable to use a certain resin material. When the objective lens is a plastic lens, it is preferable that the coupling lens is also a plastic lens.
 脂環式炭化水素系重合体の好ましい例を幾つか、以下に示す。 Some preferred examples of the alicyclic hydrocarbon polymer are shown below.
 第1の好ましい例は、下記式(I)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(1)で表される繰り返し単位〔1〕並びに下記式(II)で表される繰り返し単位〔2〕または/および下記式(III)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなる樹脂組成物である。 A first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (1) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (式中、R1 は水素原子、または炭素数1~20のアルキル基を表し、R2-R12はそれぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基、またはハロゲン基である。) (Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ˜20 alkoxy groups or halogen groups.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、R13は、水素原子、または炭素数1~20のアルキル基を表す。) (In the formula, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
  (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1~20のアルキル基を表す。) (Wherein R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
 次に、第2の好ましい例は、少なくとも炭素原子数2~20のα-オレフィンと下記一般式(IV)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(A)と、炭素原子数2~20のα-オレフィンと下記一般式(V)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(B)とを含む樹脂組成物である。 Next, a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV). Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 〔式中、nは0または1であり、mは0または1以上の整数であり、qは0または1であり、R1~R18、Ra及びRbは、それぞれ独立に水素原子、ハロゲン原子または炭化水素基であり、R15~R18は互いに結合して単環または多環を形成していてもよく、括弧内の単環または多環が二重結合を有していてもよく、またR15とR16と、またはR17とR18とでアルキリデン基を形成していてもよい。〕 [Wherein n is 0 or 1, m is 0 or an integer of 1 or more, q is 0 or 1, and R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group. ]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 〔式中、R19~R26はそれぞれ独立に水素原子、ハロゲン原子または炭化水素基である。〕 [Wherein, R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group. ]
 樹脂材料に更なる性能を付加するために、以下のような添加剤を添加してもよい。 In order to add further performance to the resin material, the following additives may be added.
 (安定剤)
 フェノール系安定剤、ヒンダードアミン系安定剤、リン系安定剤及びイオウ系安定剤から選ばれた少なくとも1種の安定剤を添加することが好ましい。これらの安定剤を適宜選択し添加することで、例えば、405nmといった短波長の光を継続的に照射した場合の白濁や、屈折率の変動等の光学特性変動をより高度に抑制することができる。
(Stabilizer)
It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
 好ましいフェノール系安定剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2′-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニルプロピオネート))メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート))]、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。 As the preferred phenol-based stabilizer, conventionally known ones can be used. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate compounds described in Japanese Patent Publication No. 1; octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) ), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( , 5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenylpropionate)) methane [ie pentaerythris Limethyl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate))], triethylene glycol bis (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propionate) and other alkyl-substituted phenolic compounds; 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 4-bisoctylthio -1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5- Triazine group-containing phenol compounds such as triazine; and the like.
 また、好ましいヒンダードアミン系安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(N-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-ベンジルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクロイル-2,2,6,6-テトラメチル-4-ピペリジル)2,2-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1-[2-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル]-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート等が挙げられる。 Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1,2,2,6,6- Pentamethyl-4-piperidyl) decandioate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -1- [2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl] -2,2,6,6-tetramethylpiperidine, 2-methyl-2- ( 2,2,6,6-tetramethyl-4-piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6,6-tetramethyl -4-pi Lysyl) 1,2,3,4-butane tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate, and the like.
 また、好ましいリン系安定剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。 Further, the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl). Phenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
 また、好ましいイオウ系安定剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3′-チオジプロピピオネート、ジステアリル 3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ)-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。 Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
 これらの各安定剤の配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、脂環式炭化水素系共重合体100質量部に対して通常0.01~2質量部、好ましくは0.01~1質量部であることが好ましい。 The amount of each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
(界面活性剤)
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。界面活性剤は樹脂表面への水分の付着や上記表面からの水分の蒸発の速度を調節することで、樹脂組成物の白濁を防止することが可能となる。
(Surfactant)
A surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule. The surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
 界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基などが挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的に炭素数6以上のアルキル基、炭素数6以上のアルキル基を有するシリル基、炭素数6以上のフルオロアルキル基などが挙げられる。ここで、炭素数6以上のアルキル基は置換基として芳香環を有していてもよい。アルキル基としては、具体的にヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデセニル、ドデシル、トリデシル、テトラデシル、ミリスチル、ステアリル、ラウリル、パルミチル、シクロヘキシルなどが挙げられる。芳香環としてはフェニル基などが挙げられる。この界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。 Specific examples of the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned. Here, the amino group may be primary, secondary, or tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms. Here, the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent. Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like. Examples of the aromatic ring include a phenyl group. The surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
 このような界面活性剤としては、より具体的には、例えば、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、などが挙げられる。これらのうちでも、ヒドロキシアルキル基を有するアミン化合物またはアミド化合物が好ましく用いられる。本発明では、これら化合物を2種以上組合わせて用いてもよい。 More specifically, examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene Examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like. Among these, amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
 界面活性剤は、温度、湿度の変動に伴なう成形物の白濁を効果的に抑え、成形物の光透過率を高く維持するという観点から、脂環式炭化水素系重合体100質量部に対して0.01~10質量部添加されることが好ましい。界面活性剤の添加量は脂環式炭化水素系重合体100質量部に対して0.05~5質量部とすることがより好ましく、0.3~3質量部とすることが更に好ましい。 From the viewpoint of effectively suppressing the white turbidity of the molded product accompanying fluctuations in temperature and humidity and maintaining the light transmittance of the molded product high, the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer. On the other hand, it is preferable to add 0.01 to 10 parts by mass. The addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
(可塑剤)
 可塑剤は共重合体のメルトインデックスを調節するため、必要に応じて添加される。
(Plasticizer)
The plasticizer is added as necessary to adjust the melt index of the copolymer.
 可塑剤としては、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ビス(2-ブトキシエチル)、アゼライン酸ビス(2-エチルヘキシル)、ジプロピレングリコールジベンゾエート、クエン酸トリ-n-ブチル、クエン酸トリ-n-ブチルアセチル、エポキシ化大豆油、2-エチルヘキシルエポキシ化トール油、塩素化パラフィン、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、リン酸-t-ブチルフェニル、リン酸トリ-2-エチルヘキシルジフェニル、フタル酸ジブチル、フタル酸ジイソヘキシル、フタル酸ジヘプチル、フタル酸ジノニル、フタル酸ジウンデシル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジトリデシル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシル、セバシン酸ジ-2-エチルヘキシル、トリメリット酸トリ-2-エチルヘキシル、Santicizer 278、Paraplex G40、Drapex 334F、Plastolein 9720、Mesamoll、DNODP-610、HB-40等の公知のものが適用可能である。可塑剤の選定及び添加量の決定は、共重合体の透過性や環境変化に対する耐性を損なわないことを条件に適宜行なわれる。 Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, dicyclyl phthalate Known materials such as hexyl, di-2-ethylhexyl sebacate, tri-2-ethylhexyl trimellitic acid, Santizer 278, Paraplex G40, Drapex 334F, Plastolein 9720, Mesamol, DNODP-610, HB-40, etc. are applicable. . The selection of the plasticizer and the addition amount are appropriately performed under the condition that the permeability of the copolymer and the resistance to environmental changes are not impaired.
 これらの樹脂としては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As these resins, cycloolefin resins are preferably used. Specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, and JSR manufactured by ARTON are preferable. Take as an example.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 対物レンズについて、以下に記載する。対物レンズの少なくとも一つの光学面が、中央領域と、中央領域の周りの中間領域と、中間領域の周りの周辺領域とを少なくとも有する。中央領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを中心領域(中央領域ともいう)としてもよい。中央領域、中間領域、及び周辺領域は同一の光学面上に設けられていることが好ましい。図1に示されるように、中央領域CN、中間領域MD、周辺領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。また、対物レンズの中央領域には第一光路差付与構造が設けられ、中間領域には第二光路差付与構造が設けられている。周辺領域は屈折面であってもよいし、周辺領域に第三光路差付与構造が設けられていてもよい。中央領域、中間領域、周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。 The objective lens is described below. At least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region. The central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good. The central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 1, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface. In addition, a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area. The peripheral region may be a refracting surface, or a third optical path difference providing structure may be provided in the peripheral region. The central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
 対物レンズの中央領域は、BD(第1光ディスクの一例)、DVD(第2光ディスクの一例)及びCD(第3光ディスクの一例)の記録/再生に用いられるBD/DVD/CD共用領域と言える。即ち、対物レンズは、中央領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中央領域を通過する第2光束を、DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、中央領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光する。また、中央領域に設けられた第1光路差付与構造は、第1光路差付与構造を通過する第1光束及び第2光束に対して、BDの保護基板の厚さt1とDVDの保護基板の厚さt2の違いにより発生する球面収差/第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。さらに、第1光路差付与構造は、第1光路差付与構造を通過した第1光束及び第3光束に対して、BDの保護基板の厚さt1とCDの保護基板の厚さt3との違いにより発生する球面収差/第1光束と第3光束の波長の違いにより発生する球面収差を補正することが好ましい。 The central area of the objective lens can be said to be a BD / DVD / CD shared area used for recording / reproduction of BD (an example of the first optical disk), DVD (an example of the second optical disk), and CD (an example of the third optical disk). That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. The light is condensed so that information can be recorded and / or reproduced on the surface, and the third light flux passing through the central region is condensed so that information can be recorded / reproduced on the information recording surface of the CD. In addition, the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam. Further, the first optical path difference providing structure is different from the thickness t1 of the BD protective substrate and the thickness t3 of the CD protective substrate with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference in the wavelength of the first light beam and the third light beam.
 対物レンズの中間領域は、BD、DVDの記録/再生に用いられ、CDの記録/再生に用いられないBD/DVD共用領域と言える。即ち、対物レンズは、中間領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中間領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、中間領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの中間領域を通過する第3光束は、CDの情報記録面上でフレアを形成することが好ましい。図2に示すように、対物レンズを通過した第3光束がCDの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部SCN、光量密度がスポット中心部より低いスポット中間部SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部SOTを有することが好ましい。スポット中心部が、光ディスクの情報の記録/再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録/再生には用いられない。上記において、このスポット周辺部をフレアと言っている。但し、スポット中心部の周りにスポット中間部が存在せずスポット周辺部があるタイプ、即ち、集光スポットの周りに薄く光が大きなスポットを形成する場合も、そのスポット周辺部をフレアと呼んでもよい。つまり、対物レンズの中間領域を通過した第3光束は、CDの情報記録面上でスポット周辺部を形成することが好ましいとも言える。 The intermediate area of the objective lens is used for BD / DVD recording / reproduction and can be said to be a BD / DVD shared area not used for CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the intermediate area is recorded as information recording on the DVD. Light is collected so that information can be recorded / reproduced on the surface. On the other hand, the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the CD. The third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the CD. As shown in FIG. 2, in the spot formed on the information recording surface of the CD by the third light beam that has passed through the objective lens, the spot center having a high light amount density in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a portion SCN, a spot intermediate portion SMD whose light intensity density is lower than that of the spot central portion, and a spot peripheral portion SOT whose light intensity density is higher than that of the spot intermediate portion and lower than that of the spot central portion. The center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare. However, there is no spot middle part around the center part of the spot and there is a spot peripheral part, that is, even when a light spot is formed thinly around the condensing spot, the spot peripheral part may be called a flare. Good. In other words, it can be said that the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the CD.
 対物レンズの周辺領域は、BDの記録/再生に用いられ、DVD及びCDの記録/再生に用いられないBD専用領域と言える。即ち、対物レンズは、周辺領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、周辺領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光せず、周辺領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの周辺領域を通過する第2光束及び第3光束は、DVD及びCDの情報記録面上でフレアを形成することが好ましい。つまり、対物レンズの周辺領域を通過した第2光束及び第3光束は、DVD及びCDの情報記録面上でスポット周辺部を形成することが好ましい。 The peripheral region of the objective lens is used for BD recording / reproduction, and can be said to be a BD-dedicated region that is not used for DVD / CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the BD. On the other hand, the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD, and the third light flux that passes through the peripheral area does not converge. Do not collect light so that information can be recorded / reproduced on top. The second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surface of DVD and CD. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surface of DVD and CD.
 第1光路差付与構造は、対物レンズの中央領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第1光路差付与構造が、中央領域の全面に設けられていることである。第2光路差付与構造は、対物レンズの中間領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第2光路差付与構造が、中間領域の全面に設けられていることである。周辺領域が第3光路差付与構造を有する場合、第3光路差付与構造は、対物レンズの周辺領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第3光路差付与構造が、周辺領域の全面に設けられていることである。 The first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region. The second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region. When the peripheral region has the third optical path difference providing structure, the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
 なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含まれる。また、位相差付与構造には回折構造が含まれる。本発明の光路差付与構造は回折構造であることが好ましい。光路差付与構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光路差付与構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、光路差付与構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam. The optical path difference providing structure also includes a phase difference providing structure for providing a phase difference. The phase difference providing structure includes a diffractive structure. The optical path difference providing structure of the present invention is preferably a diffractive structure. The optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux. The optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. When the objective lens provided with the optical path difference providing structure is a single aspherical lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis. Each will be slightly different. For example, when the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、回折構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In addition, when the objective lens provided with the diffractive structure is a single aspherical lens, the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be. For example, when the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
 ところで、光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、光路差付与構造は、一般に、様々な断面形状(光軸を含む面での断面形状) をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。 Incidentally, it is preferable that the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center. In addition, the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
 ブレーズ型構造とは、図3(a)、(b)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということである。尚、図3の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に光路差付与構造が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという。(図3(a)、(b)参照)また、ブレーズの光軸に平行方向の段差の長さを段差量Bという。(図3(a)参照) As shown in FIGS. 3A and 3B, the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape. In the example of FIG. 3, it is assumed that the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface. In the blazed structure, the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P. (See FIGS. 3A and 3B.) The length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 3 (a))
 また、階段型構造とは、図3(c)、(d)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。尚、本明細書中、「Vレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、テラス面と称することもある)が、段差によって区分けされV個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有することになる。 In addition, as shown in FIGS. 3 (c) and 3 (d), the staircase structure has a cross-sectional shape including an optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ). In the present specification, “V level” means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones. Particularly, a three-level or higher staircase structure has a small step and a large step.
 例えば、図3(c)に示す光路差付与構造を、5レベルの階段型構造といい、図3(d)に示す光路差付与構造を、2レベルの階段型構造(バイナリ構造ともいう)という。2レベルの階段型構造について、以下に説明する。光軸を中心とした同心円状の複数の輪帯を含み、対物レンズの光軸を含む複数の輪帯の断面の形状は、光軸に平行に延在する複数の段差面Pa、Pbと、隣接する段差面Pa、Pbの光源側端同士を連結する光源側テラス面Pcと、隣接する段差面Pa、Pbの光ディスク側端同士を連結する光ディスク側テラス面Pdとから形成され、光源側テラス面Pcと光ディスク側テラス面Pdとは、光軸に交差する方向に沿って交互に配置される。 For example, the optical path difference providing structure illustrated in FIG. 3C is referred to as a five-level staircase structure, and the optical path difference providing structure illustrated in FIG. 3D is referred to as a two-level staircase structure (also referred to as a binary structure). . A two-level staircase structure is described below. A plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis, The light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed. The surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis.
 また、階段型構造において、1つの階段単位の光軸垂直方向の長さをピッチPという。
(図3(c)、(d)参照)また、階段の光軸に平行方向の段差の長さを段差量B1,B2という。3レベル以上の階段型構造の場合、大段差量B1と小段差量B2とが存在することになる。(図3(c)参照)
In the staircase structure, the length in the direction perpendicular to the optical axis of one step unit is referred to as a pitch P.
(See FIGS. 3C and 3D) The length of the step in the direction parallel to the optical axis of the staircase is referred to as step amounts B1 and B2. In the case of a three-level or higher staircase structure, a large step amount B1 and a small step amount B2 exist. (See Fig. 3 (c))
 尚、光路差付与構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。 ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。 The optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated. 「“ The unit shape is periodically repeated ”here naturally includes shapes in which the same shape is repeated in the same cycle. In addition, the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”. Suppose that
 光路差付与構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図3(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図3(b)に示されるように、光軸から離れる方向に進むに従って、徐々に鋸歯状形状のピッチが長くなっていく形状、又は、ピッチが短くなっていく形状であってもよい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。なお、このようにブレーズ型構造の段差の向きを途中で切り替える構造にする場合、輪帯ピッチを広げることが可能となり、光路差付与構造の製造誤差による透過率低下を抑制できる。 When the optical path difference providing structure has a blazed structure, the sawtooth shape as a unit shape is repeated. As shown in FIG. 3 (a), the same sawtooth shape may be repeated, and as shown in FIG. 3 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used. In addition, in some areas, the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area | region required in order to switch the direction of the level | step difference of a blaze | braze type | mold structure is provided in the meantime. In addition, when it is set as the structure which switches the direction of the level | step difference of a blaze | braze type | mold in this way, it becomes possible to widen an annular zone pitch and it can suppress the transmittance | permeability fall by the manufacturing error of an optical path difference providing structure.
 光路差付与構造が、階段型構造を有する場合、図3(c)で示されるような5レベルの階段単位が、繰り返されるような形状等があり得る。さらに、光軸から離れる方向に進むに従って、徐々に階段単位のピッチが長くなっていく形状や、徐々に階段単位のピッチが短くなっていく形状であってもよい。 When the optical path difference providing structure has a staircase structure, there may be a shape in which a 5-level stair unit as shown in FIG. Furthermore, it may be a shape in which the pitch of the staircase unit gradually increases as it moves away from the optical axis, or a shape in which the pitch of the staircase unit gradually decreases.
 また、第1光路差付与構造及び第2光路差付与構造は、それぞれ対物レンズの異なる光学面に設けてもよいが、同一の光学面に設けることが好ましい。更に、第3光路差付与構造を設ける場合も、第1光路差付与構造及び第2光路差付与構造と同じ光学面に設けることが好ましい。同一の光学面に設けることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。別の言い方では、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの曲率半径の絶対値が小さい方の光学面に設けることが好ましい。 The first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. In addition, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side. In other words, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
 次に、中央領域に設けられる第1光路差付与構造について説明する。第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造を重ね合わせた構造である。第1光路差付与構造は、第1基礎構造と第2基礎構造のみを重ね合わせた構造であることが好ましい。 Next, the first optical path difference providing structure provided in the central region will be described. The first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped. The first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
 第1基礎構造は、ブレーズ型構造である。また、第1基礎構造は、第1基礎構造を通過した第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束のBの回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束のCの回折光量を他のいかなる次数の回折光量よりも大きくする。これを(A/B/C)構造と呼ぶ。Aが奇数であることが好ましく、特に、A=B=C=1であると好ましい。特に、低次である1次回折光が発生するようにすると、第1基礎構造の段差量が大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The first basic structure is a blaze type structure. In addition, the first basic structure makes the A-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and B of the second light flux that has passed through the first basic structure. The diffracted light amount is made larger than any other order diffracted light amount, and the C diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount. This is called an (A / B / C) structure. A is preferably an odd number, and particularly preferably A = B = C = 1. In particular, if the first-order diffracted light that is low order is generated, the step amount of the first basic structure does not become too large, so that the manufacture is facilitated, and the light quantity loss due to the manufacturing error can be suppressed, and the wavelength It is preferable because the diffraction efficiency fluctuation at the time of fluctuation can be reduced.
 また、少なくとも中央領域の光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いていることが好ましい。「段差が光軸とは逆の方向を向いている」とは、図4(b)のような状態を言う。(図4(b)の様な形状もブレーズ型構造である。)また、「少なくとも中央領域の光軸付近」に設けられる第1基礎構造とは、(A/B/C)構造の段差のうち、少なくとも最も光軸に近い段差を言う。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する(A/B/C)構造の段差が、光軸とは逆の方向を向いていることである。 Further, it is preferable that the first basic structure provided at least in the vicinity of the optical axis in the central region has a step in a direction opposite to the optical axis. “The step is directed in the direction opposite to the optical axis” means a state as shown in FIG. (The shape as shown in FIG. 4B is also a blazed structure.) Further, the first basic structure provided “at least in the vicinity of the optical axis in the central region” is a step difference in the (A / B / C) structure. Of these, it is the level difference closest to the optical axis. Preferably, at least a step of the (A / B / C) structure existing between the optical axis and the half of the optical axis orthogonal direction from the optical axis to the boundary between the central region and the intermediate region and the optical axis is the optical axis. Is pointing in the opposite direction.
 例えば、中央領域の中間領域付近に設けられる第1基礎構造は、段差が光軸の方向を向いていてもよい。即ち、図5(b)に示すように、第1基礎構造が光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では第1基礎構造の段差が光軸の方を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第1基礎構造の全ての段差が光軸とは逆の方向を向いていることである。 For example, in the first basic structure provided near the middle region of the central region, the step may be directed in the direction of the optical axis. That is, as shown in FIG. 5B, the step is directed in the opposite direction to the optical axis when the first foundation structure is near the optical axis, but is switched halfway, and the step of the first foundation structure is near the intermediate region. It is good also as a shape which faces the direction of an optical axis. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
 このように、第1光束における回折次数がA次となる第1基礎構造の段差の向きを光軸と逆方向に向けることにより、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保することが可能となるのである。 As described above, the direction of the step of the first basic structure in which the diffraction order of the first light flux is the A order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a sufficient working distance can be secured when the CD is used.
 BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保するという観点からは、第1基礎構造が第1光束に対して近軸パワーを持つことが好ましい。ここで、「近軸パワーを持つ」とは、第1基礎構造の光路差関数を後述する数2式で表した場合、B22が0でないことを意味する。 The first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have paraxial power with respect to the light beam. Here, “having paraxial power” means that B 2 h 2 is not 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
 また、第2基礎構造も、ブレーズ型構造である。第2基礎構造は、第2基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくする。これを(D/E/F)構造と呼ぶ。Dが偶数であることが好ましく、D=2,E=F=1であると好ましい。特に、低次である2次回折光又は1次回折光が発生するようにすると、第2基礎構造の段差量が大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The second basic structure is also a blaze type structure. The second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order diffracted light amount, and the E-order diffraction of the second light beam that has passed through the first basic structure. The light quantity is made larger than any other order of diffracted light quantity, and the F-order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. This is called a (D / E / F) structure. It is preferable that D is an even number, and it is preferable that D = 2 and E = F = 1. In particular, if low-order second-order diffracted light or first-order diffracted light is generated, the step amount of the second basic structure does not become too large, which facilitates manufacturing and suppresses light loss caused by manufacturing errors. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
 また、少なくとも中央領域の光軸付近に設けられる第2基礎構造は、その段差が光軸の方向を向いていることが好ましい。「段差が光軸の方向を向いている」とは、図4(a)のような状態を言う。(図4(a)の様な形状もブレーズ型構造である。)また、「少なくとも中央領域の光軸付近」に設けられる第2基礎構造とは、(D/E/F)構造の段差のうち、少なくとも最も光軸に近い段差を言う。好ましくは、少なくとも光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する(D/E/F)構造の段差が光軸の方向を向いていることである。 Further, it is preferable that the step of the second basic structure provided at least in the vicinity of the optical axis in the central region is directed in the direction of the optical axis. “The level difference faces the direction of the optical axis” means a state as shown in FIG. (The shape as shown in FIG. 4A is also a blazed structure.) Further, the second basic structure provided “at least in the vicinity of the optical axis in the central region” is a level difference of the (D / E / F) structure. Of these, it is the level difference closest to the optical axis. Preferably, at least a half of the optical axis orthogonal direction from the optical axis to the boundary between the central region and the intermediate region, and a step of the (D / E / F) structure existing between the optical axis and the optical axis direction It is suitable.
 例えば、中央領域の中間領域付近に設けられる第2基礎構造は、段差が光軸とは逆の方向を向いていてもよい。即ち、図5(a)に示すように、第2基礎構造が光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では第2基礎構造の段差が光軸とは逆の方向を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第2基礎構造は、全ての段差が光軸の方向を向いていることである。 For example, in the second basic structure provided near the middle region of the central region, the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 5A, the step is directed in the direction of the optical axis when the second foundation structure is near the optical axis, but is switched halfway, and the step of the second foundation structure is located near the optical axis. It is good also as a shape which faces the reverse direction. However, preferably, the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
 (A/B/C)構造である第1基礎構造と、(D/E/F)構造である第2基礎構造とを重ね合わせた第1光路差付与構造にすると、段差の高さを非常に低くできる。従って、より製造誤差を低減させることが可能となり、光量ロスを更に抑えることが可能となると共に、波長変動時の回折効率の変動をより抑えることが可能となる。 When the first optical path difference providing structure is formed by superposing the first basic structure having the (A / B / C) structure and the second basic structure having the (D / E / F) structure, the height of the step is extremely high. Can be lowered. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
 さらに、少なくとも中央領域の光軸付近においては段差が光軸とは逆の方向を向いている第1基礎構造と、少なくとも中央領域の光軸付近においては段差が光軸の方向を向いている第2基礎構造を重ね合わせることにより、第1基礎構造と第2基礎構造の段差の向きが同じになるように重ね合わせた場合に比べて、重ね合わせた後の段差の高さが高くなることをより一層抑制でき、それに伴い、製造誤差などに因る光量ロスをより抑えることが可能となると共に、波長変動時の回折効率の変動もより抑えることが可能となる。 Furthermore, at least near the optical axis of the central region, the first basic structure in which the step is directed in the direction opposite to the optical axis, and at least near the optical axis of the central region, the step is directed in the direction of the optical axis. By superimposing two foundation structures, the height of the step after superposition is higher than when superimposing the steps so that the first and second foundation structures have the same step direction. As a result, it is possible to further suppress the light amount loss due to manufacturing errors and the like, and to further suppress the fluctuation of the diffraction efficiency at the time of wavelength fluctuation.
 また、BD/DVD/CDの3種類の光ディスクの互換を可能とするだけでなく、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することも可能となる。例えば、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を60%以上、波長λ3に対する回折効率を50%以上とする対物レンズを提供することも可能となる。更には、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を70%以上、波長λ3に対する回折効率を60%以上とする対物レンズも提供することができる。加えて、第1基礎構造の段差の向きを光軸と逆方向に向けることにより、波長が長波長側に変動した際に収差をアンダー(補正不足)の方向に変化させることがより容易に行える。 Further, not only can the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD. It is also possible to provide a balanced objective lens. For example, it is possible to provide an objective lens having a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 60% or more for the wavelength λ2, and a diffraction efficiency of 50% or more for the wavelength λ3. Furthermore, it is possible to provide an objective lens having a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 70% or more for the wavelength λ2, and a diffraction efficiency of 60% or more for the wavelength λ3. In addition, by orienting the step of the first basic structure in the direction opposite to the optical axis, it is easier to change the aberration in the direction of under (undercorrection) when the wavelength changes to the long wavelength side. .
 段差が光軸とは逆を向いている第1基礎構造と段差が光軸の方を向いている第2基礎構造とを重ね合わせた後の第1光路差付与構造の形状と段差量という観点から、(A/B/C)構造である第1基礎構造と、(D/E/F)構造である第2基礎構造とを重ね合わせた第1光路差付与構造を以下のように表現することができる。一例として、A=B=C=1、D=2,E=F=1としたときに、少なくとも中央領域の光軸付近に設けられている第1光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを共に有し、光軸とは逆の方向を向いている段差の段差量d11と、光軸の方向を向いている段差の段差量d12とが、以下の条件式(7)、(8)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(7)、(8)を満たすことである。尚、光路差付与構造を設けた対物レンズが単玉非球面の凸レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。下記条件式において上限に1.5を乗じているのは、当該段差量の増加を加味した故である。但し、nは、第1の波長λ1における対物レンズの屈折率を表す。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (7)
0.6・(λ1/(n-1))<d12<1.5・(2λ1/(n-1))   (8)
Viewpoint of the shape and step amount of the first optical path difference providing structure after the first basic structure in which the step is opposite to the optical axis and the second basic structure in which the step is directed toward the optical axis are overlapped Therefore, the first optical path difference providing structure in which the first basic structure having the (A / B / C) structure and the second basic structure having the (D / E / F) structure are overlapped is expressed as follows. be able to. As an example, when A = B = C = 1, D = 2, and E = F = 1, the first optical path difference providing structure provided at least near the optical axis in the central region is opposite to the optical axis. Both the step facing the direction of the optical axis and the step facing the direction of the optical axis, the step amount d11 of the step facing the direction opposite to the optical axis, and the direction of the optical axis The step amount d12 of the step preferably satisfies the following conditional expressions (7) and (8). More preferably, the following conditional expressions (7) and (8) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase. In the following conditional expression, the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account. Here, n represents the refractive index of the objective lens at the first wavelength λ1.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (7)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (2λ1 / (n-1)) (8)
 尚、「少なくとも中央領域の光軸付近」に設けられる第1光路差付与構造とは、少なくとも光軸に最も近い光軸とは逆の方向を向いている段差と、光軸に最も近い光軸の方向を向いている段差とを共に有する光路差付与構造をいう。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する段差を有する光路差付与構造である。 The first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis. An optical path difference providing structure having both of the steps facing the direction of. Preferably, the optical path difference providing structure has a step existing between at least a half position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm         (9)
 0.39μm<d12<2.31μm         (10)
0.39 μm <d11 <1.15 μm (9)
0.39 μm <d12 <2.31 μm (10)
 更に、第1基礎構造と第2基礎構造の重ね合わせ方としては、第1基礎構造と第2基礎構造のピッチを合わせ、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせるか、第1基礎構造の全ての段差の位置と、第2基礎構造の段差の位置を合わせることが好ましい。 Furthermore, as a method of overlapping the first foundation structure and the second foundation structure, the pitches of the first foundation structure and the second foundation structure are matched, the positions of all the steps of the second foundation structure, and the steps of the first foundation structure. It is preferable to match the positions of all the steps of the first foundation structure with the positions of the steps of the second foundation structure.
 上述のように第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせて重ね合わせた場合、第1光路差付与構造のd11、d12は以下の条件式(11)、(12)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(11)、(12)を満たすことである。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (11)
0.6・(λ1/(n-1))<d12<1.5・(λ1/(n-1))   (12)
As described above, when all the steps of the second foundation structure and the steps of the first foundation structure are combined and overlapped, d11 and d12 of the first optical path difference providing structure are the following conditional expressions (11) , (12) is preferably satisfied. More preferably, the following conditional expressions (11) and (12) are satisfied in all the regions of the central region.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (11)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (12)
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm         (13)
 0.39μm<d12<1.15μm         (14)
0.39 μm <d11 <1.15 μm (13)
0.39 μm <d12 <1.15 μm (14)
 更に好ましくは、以下の条件式(15)、(16)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(15)、(16)´を満たすことである。
0.9・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (15)
0.9・(λ1/(n-1))<d12<1.5・(λ1/(n-1))   (16)
More preferably, the following conditional expressions (15) and (16) are preferably satisfied. More preferably, the following conditional expressions (15) and (16) ′ are satisfied in all the regions of the central region.
0.9 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (15)
0.9 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (16)
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.59μm<d11<1.15μm         (17)
 0.59μm<d12<1.15μm         (18)
0.59 μm <d11 <1.15 μm (17)
0.59 μm <d12 <1.15 μm (18)
 また、(A/B/C)構造である第1基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化し、(D/E/F)構造である第2基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化すると好ましい。このような構成により、光ピックアップ装置の温度の上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の変化を補正して、適切な集光スポットを各光ディスクの情報記録面に形成できる。これにより、対物レンズがプラスチック製であっても、温度変化時においても安定した性能を維持できる対物レンズを提供することができる。 Further, in the first basic structure having the (A / B / C) structure, when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (D / In the second basic structure which is the E / F) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in an undercorrected direction (under). With such a configuration, when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature. It is possible to correct a change in spherical aberration due to a change in the rate and form an appropriate focused spot on the information recording surface of each optical disc. Thereby, even if the objective lens is made of plastic, it is possible to provide an objective lens that can maintain stable performance even when the temperature changes.
 第2基礎構造に比べて、第1基礎構造の寄与率が支配的であることが好ましい。第2基礎構造に比べて、第1基礎構造の寄与率を支配的にするという観点からは、第1基礎構造の平均ピッチが、第2基礎構造の平均ピッチに比べて小さいことが好ましい。尚、CDにおけるワーキングディスタンスを確保しながら、軸上色収差を小さくし、光源が高周波重畳を起こしていても、良好な光スポットを形成させ、しかも、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させるためには、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯が2~5個(特に好ましくは2~3個)含まれていることが好ましい。より好ましくは、第1光路差付与構造全体において、第2基礎構造の輪帯1つ分に、第1基礎構造の輪帯が2~5個(特に好ましくは2~3個)含まれていることである。即ち、第1基礎構造の平均ピッチが、第2基礎構造の平均ピッチの1/5以上、1/2以下(特に好ましくは、1/3以上、1/2以下)であることが好ましい。 It is preferable that the contribution rate of the first foundation structure is dominant compared to the second foundation structure. From the viewpoint of making the contribution ratio of the first foundation structure dominant as compared with the second foundation structure, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure. It should be noted that the axial chromatic aberration is reduced while ensuring a working distance in the CD, a good light spot is formed even when the light source causes high frequency superposition, and the optical disc has a plurality of information recording surfaces. In order to reduce the problem of stray light, in the first optical path difference providing structure, there are 2 to 5 ring zones of the first foundation structure (particularly preferable) for one ring zone closest to the optical axis of the second foundation structure. 2 to 3) are preferably included. More preferably, in the entire first optical path difference providing structure, 2 to 5 (particularly preferably 2 to 3) ring zones of the first foundation structure are included in one ring zone of the second foundation structure. That is. That is, the average pitch of the first foundation structure is preferably 1/5 or more and 1/2 or less (particularly preferably 1/3 or more and 1/2 or less) of the average pitch of the second foundation structure.
 また、対物レンズの軸上色収差が0.3μm/nm以上、0.6μm/nm以下とすることが好ましい。このような構成とするためには、上述したように、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯が2~5個(特に好ましくは2~3個)含まれるようにすることが好ましい。軸上色収差を上述の範囲にすることによって、CDにおけるワーキングディスタンスを確保しながら、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させることができるため好ましい。 Further, it is preferable that the longitudinal chromatic aberration of the objective lens is 0.3 μm / nm or more and 0.6 μm / nm or less. In order to obtain such a configuration, as described above, in the first optical path difference providing structure, the ring zone of the first foundation structure is 2 to 1 ring zone closest to the optical axis of the second foundation structure. It is preferable to include 5 (particularly preferably 2 to 3). It is preferable to set the axial chromatic aberration in the above-mentioned range because the problem of stray light can be reduced when the optical disc has a plurality of information recording surfaces while ensuring the working distance in the CD.
 第1光路差付与構造を通過した第3光束によって、第3光束が形成するスポットの光強度が最も強い第1ベストフォーカス位置と、第3光束が形成するスポットの光強度が次に強い第2ベストフォーカス位置とが、以下の条件式(19)を満たすことが好ましい。なお、ここでいうベストフォーカス位置とは、ビームウェストが、或るデフォーカスの範囲でビームウェストが極小となる位置を指すものである。第1ベストフォーカス位置が第3CDの記録/再生に用いられる必要光のベストフォーカス位置であり、第2ベストフォーカス位置がCDの記録/再生に用いられない不要光のうち、最も光量が多い光束のベストフォーカス位置である。
 0.05≦L/f13≦0.35         (19)
 但し、f13[mm]は、第1光路差付与構造を通過し、第1ベストフォーカスを形成する第3光束の焦点距離を指し、L[mm]は、第1ベストフォーカスと第2ベストフォーカスの間の距離を指す。
The first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (19). Here, the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range. The first best focus position is the best focus position of the necessary light used for recording / reproduction of the third CD, and the second best focus position of the unnecessary light that is not used for recording / reproduction of the CD is the light flux having the largest amount of light. Best focus position.
0.05 ≦ L / f13 ≦ 0.35 (19)
However, f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus, and L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
 より好ましくは、以下の条件式(20)を満たすことである。
 0.10≦L/f13≦0.25         (20)
More preferably, the following conditional expression (20) is satisfied.
0.10 ≦ L / f13 ≦ 0.25 (20)
 以上述べた第1光路差付与構造の好ましい一例を図6(a)(b)(c)に示す。尚、図6(a)(b)(c)は、便宜上、第1光路差付与構造ODS1が平板状に設けられたものとして示されているが、単玉非球面の凸レンズ上に設けられていてもよい。(D/E/F)構造である第2基礎構造BS2に、(A/B/C)構造である第1基礎構造BS1が重ねあわされている。また、図6(a)においては、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BSの段差は光軸OAとは逆の方向を向いている。更に、第1基礎構造BS1と第2基礎構造BS2のピッチを合わせ、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置が合っていることがわかる。本例においては、一例として、A=B=C=1、D=2,E=F=1としたときに、d1=λ1/(n-1)であり、d2=λ1/(n-1)である。本例において、λ1=405nm(0.405μm)、n=1.5592とすると、d1=d2=0.72μmとなる。更に、第1基礎構造BS1の平均ピッチが、第2基礎構造BS2の平均ピッチに比べて小さく、第1基礎構造の光軸とは逆の方向を向いている段差の数が、第2基礎構造の光軸の方向を向いている段差の数に比べて多い。また、図6(b)においては、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差も光軸OAの方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。次に、図6(c)においては、第1基礎構造BS1の段差は光軸OAと逆の方向を向いており、第2基礎構造BS2の段差も光軸OAと逆の方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。 A preferred example of the first optical path difference providing structure described above is shown in FIGS. 6 (a), 6 (b) and 6 (c). 6 (a), 6 (b), and 6 (c), the first optical path difference providing structure ODS1 is shown as a flat plate for convenience, but it is provided on a single aspherical convex lens. May be. A first foundation structure BS1 having an (A / B / C) structure is overlaid on a second foundation structure BS2 having a (D / E / F) structure. In FIG. 6A, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS faces the direction opposite to the optical axis OA. Further, the pitches of the first foundation structure BS1 and the second foundation structure BS2 are matched, and it can be seen that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure match. In this example, as an example, when A = B = C = 1, D = 2, and E = F = 1, d1 = λ1 / (n−1) and d2 = λ1 / (n−1) ). In this example, if λ1 = 405 nm (0.405 μm) and n = 1.5592, d1 = d2 = 0.72 μm. Further, the average pitch of the first foundation structure BS1 is smaller than the average pitch of the second foundation structure BS2, and the number of steps facing the direction opposite to the optical axis of the first foundation structure is the second foundation structure. This is more than the number of steps facing the direction of the optical axis. In FIG. 6B, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS1 also faces the direction of the optical axis OA. Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1. Next, in FIG.6 (c), the level | step difference of 1st foundation structure BS1 has faced the direction opposite to optical axis OA, and the level | step difference of 2nd foundation structure BS2 has also faced the direction opposite to optical axis OA. . Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
 次に、中間領域に設けられる第2光路差付与構造について説明する。第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造の2つの基礎構造を重ね合わせた構造であることが好ましい。 Next, the second optical path difference providing structure provided in the intermediate region will be described. The second optical path difference providing structure is preferably a structure in which at least two basic structures of a third basic structure and a fourth basic structure are overlapped.
 第3基礎構造も第4基礎構造も、ブレーズ型構造であることが好ましい。また、第3基礎構造を通過した第1光束のG次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束のH次の回折光量を他のいかなる次数の回折光量よりも大きくし((G/H)構造とも言う)、第4基礎構造は、第4基礎構造を通過した第1光束のI次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束のJ次の回折光量を他のいかなる次数の回折光量よりも大きくする((I/J)構造とも言う)ことが好ましい。A=G、B=I、D=I、E=Jであると好ましく、特に、G=1,H=1,I=2,J=1であると好ましい。これにより、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた第2光路差付与構造において、光軸方向の段差量を低減でき、それにより波長変動時の回折効率の低下を抑制できる。また、第1基礎構造と第3基礎構造における最も光強度が高い回折光の次数が一致し、且つ第2基礎構造と第4基礎構造における最も光強度が高い回折光の次数が一致しているため、中央領域と中間領域を通過する光束について、温度や波長変化時においても、球面収差を連続と出来、その結果、温度や波長変化時においても、高次収差の発生を抑えることができる。 It is preferable that both the third basic structure and the fourth basic structure are blazed structures. Further, the G-order diffracted light quantity of the first light beam that has passed through the third basic structure is made larger than any other order diffracted light quantity, and the H-order diffracted light quantity of the second light beam that has passed through the third basic structure is changed to other values. The fourth diffracted light quantity is made larger than the diffracted light quantity of any order (also referred to as a (G / H) structure), and the fourth basic structure converts the I-order diffracted light quantity of the first light flux that has passed through the fourth basic structure into any other order. It is preferable that the J-order diffracted light amount of the second light flux that has passed through the fourth basic structure be larger than any other order diffracted light amount (also referred to as (I / J) structure). It is preferable that A = G, B = I, D = I, and E = J, and it is particularly preferable that G = 1, H = 1, I = 2, and J = 1. Thereby, in the second optical path difference providing structure in which at least the third basic structure and the fourth basic structure are overlapped, the amount of step in the optical axis direction can be reduced, thereby suppressing the decrease in diffraction efficiency at the time of wavelength variation. Further, the orders of the diffracted light having the highest light intensity in the first basic structure and the third basic structure are matched, and the orders of the diffracted light having the highest light intensity in the second basic structure and the fourth basic structure are matched. Therefore, the spherical aberration can be made continuous even when the temperature and the wavelength change for the light flux passing through the central region and the intermediate region, and as a result, the occurrence of higher-order aberrations can be suppressed even when the temperature and the wavelength are changed.
 第2光路差付与構造は第3、第4基礎構造に加えて、第5基礎構造を重ね合わせた構造としてもよいが、構造を単純にし、製造誤差による光利用効率の低下を抑えるためにも、第2光路差付与構造は、第3基礎構造及び第4基礎構造のみからなることが好ましい。 The second optical path difference providing structure may be a structure in which the fifth basic structure is overlapped in addition to the third and fourth basic structures. However, in order to simplify the structure and suppress a decrease in light utilization efficiency due to manufacturing errors. The second optical path difference providing structure preferably includes only the third basic structure and the fourth basic structure.
 尚、この時、第5基礎構造は、第5基礎構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第2光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第5基礎構造を通過した第3光束のK次の回折光量を他のいかなる次数の回折光量よりも大きくする構造であることが好ましい。この様な第5基礎構造を重ね合わせることにより、対物レンズの中間領域を通過する第1光束、第2光束に悪影響を与えることなく、且つ、中央領域と中間領域との間で位相ずれを生じさせることなく、第3光束のみに、CDの情報記録面上でフレアを光スポットから遠い位置に形成させる作用を容易に与えることが可能となる。 At this time, the fifth basic structure makes the 0th-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity, and the second light flux that has passed through the fifth basic structure. The 0th-order diffracted light amount is made larger than any other order diffracted light amount, and the Kth-order diffracted light amount of the third light beam passing through the fifth basic structure is made larger than any other order diffracted light amount. It is preferable. By superimposing such a fifth basic structure, a phase shift occurs between the central region and the intermediate region without adversely affecting the first light beam and the second light beam passing through the intermediate region of the objective lens. Accordingly, it is possible to easily give only the third light flux an effect of forming a flare at a position far from the light spot on the information recording surface of the CD.
 好ましくは、Kが±1である。Kが±1である場合に、第5基礎構造は、図3(d)に示すような2レベルの階段型構造(バイナリ構造とも言う)であることが好ましい。 Preferably, K is ± 1. When K is ± 1, the fifth basic structure is preferably a two-level step structure (also referred to as a binary structure) as shown in FIG.
 また、第3基礎構造を通過した第1光束の3次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし((3/2)構造とも言う)、第4基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする((2/1)構造とも言う)ようにしてもよい。このような構成であると、BDにおける回折効率をより高めることができる。 Further, the third-order diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the second-order diffracted light amount of the second light beam that has passed through the third basic structure is changed to other values. The diffraction light quantity of any order is made larger (also referred to as (3/2) structure), the second-order diffraction light quantity of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffraction light quantity, The first-order diffracted light amount of the second light beam that has passed through the four basic structures may be made larger than any other order diffracted light amount (also referred to as a (2/1) structure). With such a configuration, the diffraction efficiency in BD can be further increased.
 尚、第3基礎構造と第4基礎構造が、(1/1)構造と(2/1)構造の組み合わせである場合も、(3/2)構造と(2/1)構造の組み合わせである場合も、少なくとも中間領域の、中央領域に最も近い位置に設けられる第3基礎構造は、その段差が光軸とは逆の方向を向いており、少なくとも中間領域の、中央領域に最も近い位置に設けられる第4基礎構造は、その段差が光軸の方向を向いていることが好ましい。より好ましくは、中間領域におけるすべての第3基礎構造の段差が光軸とは逆の方向を向いており、中間領域におけるすべての第4基礎構造の段差が光軸の方向を向いていることである。 In addition, even when the 3rd foundation structure and the 4th foundation structure are the combination of the (1/1) structure and the (2/1) structure, it is the combination of the (3/2) structure and the (2/1) structure. Even in this case, the third basic structure provided at least in the middle region at the position closest to the central region has the step in the direction opposite to the optical axis, and at least in the middle region at the position closest to the central region. As for the 4th foundation structure provided, it is preferred that the level | step difference has faced the direction of an optical axis. More preferably, the steps of all the third foundation structures in the intermediate region are directed in the direction opposite to the optical axis, and the steps of all the fourth foundation structures in the intermediate region are directed in the direction of the optical axis. is there.
 第3基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、第4基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足方向に変化するようにしてもよい。 In the third basic structure, when the wavelength of the incident light beam changes so as to become longer, the spherical aberration changes in an undercorrected (under) direction, and in the fourth basic structure, the wavelength of the incident light beam becomes longer. When it changes, the spherical aberration may change in the direction of insufficient correction.
 このような構成とすると、第2光路差付与構造においても、光ピックアップ装置の温度上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の劣化を補正するため、環境温度の変化時に、より適切な集光スポットを各光ディスクの情報記録面に形成できる。 With such a configuration, even in the second optical path difference providing structure, when the refractive index of the objective lens changes due to the temperature increase of the optical pickup device, the wavelength of the light source also increases due to the increase in the environmental temperature. Is used to correct the deterioration of the spherical aberration due to the change in the refractive index of the objective lens, so that a more appropriate condensing spot can be formed on the information recording surface of each optical disc when the environmental temperature changes.
 一方で、第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化するようにしてもよい。 On the other hand, when one of the third basic structure and the fourth basic structure is changed so that the wavelength of the incident light beam becomes longer, the spherical aberration changes in the undercorrection (under) direction, and the incident light is incident on the other side. When the wavelength of the luminous flux to be changed is changed to be longer, the spherical aberration may be changed in the overcorrection (over) direction.
 補正過剰(オーバー)と補正不足(アンダー)について、図7を用いて説明する。図7は、縦軸が光軸から光軸垂直方向の高さを表し、横軸が収差を示す。横軸の左側が負であり、右側が正である。負は対物レンズに近づく方向であり、正は対物レンズから遠ざかる方向である。このとき、補正過剰とは、図7のBのように正の方向に傾いている状態であり、補正不足とは、図7のAのように負の方向に傾いている状態をいう。尚、図7のBにおいては収差の値が正となっているが、収差の値が負であったとしても、傾きがBのように正の方向に傾いていれば補正過剰とみなす。また、図7のAにおいては収差の値が負となっているが、収差の値が正であったとしても、傾きがAのように負の方向に傾いていれば補正不足とみなす。 The overcorrection (over) and undercorrection (under) will be described with reference to FIG. In FIG. 7, the vertical axis represents the height in the direction perpendicular to the optical axis from the optical axis, and the horizontal axis represents the aberration. The left side of the horizontal axis is negative and the right side is positive. Negative is a direction approaching the objective lens, and positive is a direction away from the objective lens. At this time, overcorrection is a state inclined in the positive direction as shown in FIG. 7B, and undercorrection is a state inclined in the negative direction as shown in A in FIG. Although the aberration value is positive in B of FIG. 7, even if the aberration value is negative, if the inclination is inclined in the positive direction as shown in B, it is regarded as overcorrection. Further, although the aberration value is negative in A of FIG. 7, even if the aberration value is positive, if the inclination is inclined in the negative direction as in A, it is regarded as insufficient correction.
 更に、第1基礎構造と第2基礎構造、又は、第3基礎構造と第4基礎構造の光路差関数において近軸の項(例えば(数2)のB2の項)のみを削除して光路差関数のグラフを作成した際に、当該グラフの位置(傾きは関係ない)が負側にあれば補正不足とみなし、正側にあれば補正過剰とみなすようにしてもよい。 Further, only the paraxial term (for example, the term B2 in (Equation 2)) is deleted from the optical path difference function of the first basic structure and the second basic structure, or the third basic structure and the fourth basic structure. When creating a graph of a function, if the position of the graph (inclination is irrelevant) is on the negative side, it may be regarded as undercorrected, and if it is on the positive side, it may be considered overcorrected.
 また、縦球面収差図において、中間領域の第3基礎構造は、波長が長くなると球面収差の位置(傾きは関係ない)が正側となり、第4基礎構造は、波長が長くなると球面収差の位置が負側になることが好ましい。このように構成することにより、BDの色収差(波長が変化した場合の集光位置のずれ)を小さくすることが可能となる。 In the longitudinal spherical aberration diagram, in the third basic structure in the intermediate region, when the wavelength becomes longer, the position of the spherical aberration (the inclination does not matter) becomes the positive side, and in the fourth basic structure, the position of the spherical aberration becomes longer as the wavelength becomes longer. Is preferably on the negative side. By configuring in this way, it becomes possible to reduce the chromatic aberration of the BD (the shift of the condensing position when the wavelength changes).
 第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化するようにすると、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の3次球面収差の変化量を、-30mλrms以上、+50mλrms以下にすることができるため好ましい。尚、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の3次球面収差の変化量を、-10mλrms以上、+10mλrms以下にすることがより好ましい。尚、対物レンズ全体として、第1光束をBDの情報記録面上に集光する際に、第1光束の波長が+5nm変化した場合の5次球面収差の変化量は、-20mλrms以上、20mλrms以下であることが好ましい。より好ましくは、-10mλrms以上、+10mλrms以下である。 In one of the third basic structure and the fourth basic structure, when the wavelength of the incident light beam is changed so as to become longer, the spherical aberration changes in the undercorrection (under) direction. If the spherical aberration is changed in the overcorrection direction when the wavelength is changed to be longer, when the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the first aberration is changed. The amount of change of the third-order spherical aberration when the wavelength of one light beam changes by +5 nm can be set to −30 mλrms to +50 mλrms, which is preferable. When the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the amount of change in the third-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -10 mλrms or more and +10 mλrms or less. More preferably. When the first light beam is condensed on the information recording surface of the BD as the entire objective lens, the amount of change in the fifth-order spherical aberration when the wavelength of the first light beam changes by +5 nm is -20 mλrms or more and 20 mλrms or less. It is preferable that More preferably, it is −10 mλrms or more and +10 mλrms or less.
 このような構成とすると、第3基礎構造と第4基礎構造のうち何れか一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰方向に変化するので、第2光路差付与構造が、第3基礎構造と第4基礎構造のみからなっていても、CD使用時のフレア出しを容易に行うことが出来る。従って、CD使用時のフレア出しを、単純な形状の第2光路差付与構造で行えるため、影の効果による光利用効率の低下を抑制し、更に、製造誤差による光利用効率の低下も抑制し、結果として光利用効率を向上させることが可能となる。尚、これにより中間領域においてはBD使用時の温度特性補正効果が小さくなるが、中央領域の第1基礎構造と第2基礎構造が共に長波長において補正不足であるため、温度特性が悪くなりすぎることを防止でき、またBD使用時の波長特性補正効果を大きくすることができる。加えて、DVD使用時においては、DVDの温度特性及び波長特性を共に良好にすることができる。 With such a configuration, in either one of the third basic structure and the fourth basic structure, if the wavelength of the incident light beam is changed to be longer, the spherical aberration changes in the overcorrection direction. Even if the two-optical path difference providing structure is composed of only the third and fourth basic structures, flare can be easily produced when using the CD. Accordingly, flare out when using a CD can be performed with a simple second optical path difference providing structure, so that a decrease in light utilization efficiency due to a shadow effect is suppressed, and a decrease in light utilization efficiency due to manufacturing errors is also suppressed. As a result, the light utilization efficiency can be improved. This reduces the effect of correcting the temperature characteristics when using BD in the intermediate area, but the temperature characteristics are too poor because both the first basic structure and the second basic structure in the central area are insufficiently corrected at long wavelengths. This can be prevented, and the wavelength characteristic correction effect when using the BD can be increased. In addition, when the DVD is used, both the temperature characteristic and wavelength characteristic of the DVD can be improved.
 なお、第4基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、第3基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰(オーバー)方向に変化すると、CD使用時にフレアをより遠くに飛ばしやすくできるため、好ましい。 When the wavelength of the incident light beam is changed to be longer in the fourth basic structure, the spherical aberration is changed in an undercorrected (under) direction, and the wavelength of the incident light beam is longer in the third basic structure. In this case, it is preferable that the spherical aberration changes in the overcorrected (over) direction because the flare can be easily moved farther when the CD is used.
 第2光路差付与構造において、第4基礎構造の中央領域に最も近い輪帯1つ分に、第3基礎構造の輪帯が1~3個(特に好ましくは2~3個)含まれていることが好ましい。より好ましくは、第2光路差付与構造全体において、第4基礎構造の輪帯1つ分に、第3基礎構造の輪帯が1~3個(特に好ましくは2~3個)含まれていることである。即ち、第3基礎構造の平均ピッチが、第4基礎構造の平均ピッチと等しいか、1/2以下(特に好ましくは、1/3以上、1/2以下)であることが好ましい。 In the second optical path difference providing structure, 1 to 3 (particularly preferably 2 to 3) ring zones of the third foundation structure are included in one ring zone closest to the central region of the fourth foundation structure. It is preferable. More preferably, in the entire second optical path difference providing structure, 1 to 3 (particularly preferably 2 to 3) ring zones of the third foundation structure are included in one ring zone of the fourth foundation structure. That is. That is, the average pitch of the third foundation structure is preferably equal to or less than 1/2 (particularly preferably, 1/3 or more, 1/2 or less) of the fourth foundation structure.
 周辺構造に第3光路差付与構造を設ける場合、任意の光路差付与構造を設けることが可能である。第3光路差付与構造は、第6基礎構造を有することが好ましい。第6基礎構造は、第6基礎構造を通過した第1光束のP次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第2光束のQ次の回折光量を他のいかなる次数の回折光量よりも大きくし、第6基礎構造を通過した第3光束のR次の回折光量を他のいかなる次数の回折光量よりも大きくする。尚、波長変動時の回折効率の変動を抑えるためにも、Pが5以下であることが好ましい。 When providing the third optical path difference providing structure in the peripheral structure, it is possible to provide an arbitrary optical path difference providing structure. The third optical path difference providing structure preferably has a sixth basic structure. In the sixth basic structure, the P-order diffracted light amount of the first light beam that has passed through the sixth basic structure is made larger than any other order diffracted light amount, and the Q-order diffraction of the second light beam that has passed through the sixth basic structure. The light quantity is made larger than any other order of diffracted light quantity, and the R-order diffracted light quantity of the third light flux that has passed through the sixth basic structure is made larger than any other order of diffracted light quantity. Note that P is preferably 5 or less in order to suppress fluctuations in diffraction efficiency during wavelength fluctuations.
 BDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、DVDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、CDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The NA on the image side of the objective lens necessary for reproducing / recording information on the BD is NA1, and the NA on the image side of the objective lens necessary for reproducing / recording information on the DVD is NA2 (NA1 > NA2), and the image side numerical aperture of the objective lens necessary for reproducing / recording information on the CD is NA3 (NA2> NA3). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 対物レンズの中央領域と中間領域の境界は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中央領域と中間領域の境界が、NA3に相当する部分に形成されていることである。また、対物レンズの中間領域と周辺領域の境界は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.15・NA2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中間領域と周辺領域の境界が、NA2に相当する部分に形成されていることである。 The boundary between the central region and the intermediate region of the objective lens is 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more, 1.15 · NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 · NA 2 or more and 1.2 · NA 2 or less (more preferably 0.95 · NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
 対物レンズを通過した第3光束をCDの情報記録面上に集光する場合に、球面収差が少なくとも1箇所の不連続部を有することが好ましい。その場合、不連続部は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に存在することが好ましい。 When the third light flux that has passed through the objective lens is condensed on the information recording surface of the CD, it is preferable that the spherical aberration has at least one discontinuous portion. In that case, the discontinuous portion has a range of 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more and 1.15 · NA 3 or less) when the third light flux is used. It is preferable that it exists in.
 また、対物レンズは、以下の条件式(21)を満たすことが好ましい。
0.8≦d/f≦1.5              (21)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。
Moreover, it is preferable that an objective lens satisfy | fills the following conditional expression (21).
0.8 ≦ d / f ≦ 1.5 (21)
Here, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux.
 BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じるが、条件式(21)を満たすことにより非点収差や偏心コマ収差の発生を抑制することが可能となる。 When dealing with an optical disk with a short wavelength and a high NA such as BD, there arises a problem that astigmatism is likely to occur in the objective lens, and decentration coma is likely to occur, but the conditional expression (21) is satisfied. As a result, it is possible to suppress the generation of astigmatism and decentration coma.
 また、対物レンズの軸上厚が厚めの厚肉対物レンズになるため、CDの記録/再生時におけるワーキングディスタンスが短くなりがちになるため、条件式(21)の上限の値を超えないことが好ましい。 In addition, since the objective lens has a thick on-axis thickness, the working distance at the time of CD recording / reproduction tends to be short, so the upper limit of conditional expression (21) may not be exceeded. preferable.
 第1光束、第2光束及び第3光束は、平行光として対物レンズに入射してもよいし、発散光若しくは収束光として対物レンズに入射してもよい。トラッキング時においても、コマ収差が発生することを防止するためには、第1光束、第2光束、及び第3光束を全て平行光又は略平行光として対物レンズに入射させることが好ましい。本発明の第1光路差付与構造を用いることによって、第1光束、第2光束及び第3光束の全てを平行光又は略平行光として対物レンズに入射させることが可能となるため、本発明の効果がより顕著となる。第1光束が平行光又は略平行光になる場合、第1光束が対物レンズに入射する時の対物レンズの結像倍率m1が、下記の式(22)を満たすことが好ましい。
-0.01<m1<0.01     (22)
The first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light. By using the first optical path difference providing structure of the present invention, all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable. When the first light flux becomes parallel light or substantially parallel light, it is preferable that the imaging magnification m1 of the objective lens when the first light flux is incident on the objective lens satisfy the following formula (22).
-0.01 <m1 <0.01 (22)
 また、第2光束は収束光束として対物レンズに入射させる。第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(1)を満たすことが好ましい。
0<m2<0.16     (1)
より好ましくは以下の式を満たすことである。
0<m2<0.07     (1)´
さらに好ましくは以下の式を満たすことである。
0.01≦m2<0.07  (1)´´
The second light beam is incident on the objective lens as a convergent light beam. The imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following formula (1).
0 <m2 <0.16 (1)
More preferably, the following formula is satisfied.
0 <m2 <0.07 (1) ′
More preferably, the following expression is satisfied.
0.01 ≦ m2 <0.07 (1) ″
 また、第3光束は平行光束として対物レンズに入射させると好ましい。第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(23)を満たすことが好ましい。
-0.01<m3<0.01     (23)
The third light beam is preferably incident on the objective lens as a parallel light beam. The imaging magnification m3 of the objective lens when the third light beam enters the objective lens preferably satisfies the following formula (23).
-0.01 <m3 <0.01 (23)
 一方で、第3光束を発散光束又は収束光束として対物レンズに入射させても良い。第3光束が発散光束として対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(23)´を満たすことが好ましく、第3光束が収束光束として対物レンズに入射する時、対物レンズの結像倍率m3が、下記の式(23)´´を満たすことが好ましい。
-0.025≦m3≦-0.01     (23)´
0.01≦m3≦0.025       (23)´´
On the other hand, the third light beam may be incident on the objective lens as a divergent light beam or a convergent light beam. The imaging magnification m3 of the objective lens when the third light beam enters the objective lens as a divergent light beam preferably satisfies the following formula (23) ′, and when the third light beam enters the objective lens as a convergent light beam: It is preferable that the imaging magnification m3 of the objective lens satisfies the following formula (23) ″.
−0.025 ≦ m3 ≦ −0.01 (23) ′
0.01 ≦ m3 ≦ 0.025 (23) ″
 また、第3光ディスクを用いる際の対物光学素子のワーキングディスタンス(WD)は、0.25mm以上、1.5mm以下であることが好ましい。好ましくは、0.2mm以上、0.5mm以下である。次に、第2光ディスクを用いる際の対物光学素子のWDは、0.25mm以上、1.3mm以下であることが好ましい。さらに、第1光ディスクを用いる際の対物光学素子のWDは、0.25mm以上、1.0mm以下であることが好ましい。また、第2光ディスク使用時のワーキングディスタンスは、第3光ディスク使用時のワーキングディスタンス以上であることが好ましい。 Also, the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.25 mm or more and 1.5 mm or less. Preferably, it is 0.2 mm or more and 0.5 mm or less. Next, the WD of the objective optical element when using the second optical disk is preferably 0.25 mm or more and 1.3 mm or less. Furthermore, the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less. Further, the working distance when using the second optical disk is preferably equal to or greater than the working distance when using the third optical disk.
 光ピックアップ装置は、カップリングレンズが、少なくとも第1光束と第2光束が通過するものであって、カップリングレンズを光軸方向に移動させるアクチュエータ―を有するようにしてもよい。特に、BDが2層や3層以上など複数の情報記録面を持っている場合には、或る層の記録/再生から他の層の記録/再生を行う際には、透明基板厚に差が生じるため、当該厚みの差に起因して発生する球面収差を補正しなければならない。カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変えることによって、当該発生する球面収差を補正することが考えられる。また、温度変化や波長変化の際に発生する球面収差も、カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変えることによって補正することができる。 In the optical pickup device, the coupling lens may have an actuator through which at least the first light beam and the second light beam pass and move the coupling lens in the optical axis direction. In particular, when the BD has a plurality of information recording surfaces such as two layers or three layers or more, when recording / reproducing one layer to another layer, the difference in the thickness of the transparent substrate is required. Therefore, spherical aberration generated due to the difference in thickness must be corrected. It is conceivable to correct the generated spherical aberration by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens. Further, spherical aberration that occurs when the temperature or wavelength changes can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
 しかしながら、例え、BD使用時にカップリングレンズを光軸方向に移動させて各種球面収差を補正する光ピックアップ装置であっても、DVD使用時においては、カップリングレンズの光軸方向の位置が固定されていることが好ましい。 However, even in the case of an optical pickup device that corrects various spherical aberrations by moving the coupling lens in the optical axis direction when using BD, the position of the coupling lens in the optical axis direction is fixed when using DVD. It is preferable.
 その理由としては、BD使用時には、フレアが発生しないが、DVD使用時には、フレアが発生するため、カップリングレンズを変異させることにより、そのフレアの収差が変化し、結果としてそのフレアが記録/再生に悪影響を与える可能性が生じるという理由や、DVDの種類を判別するために、カップリングレンズの初期位置を常に一定にしておきたいという理由や、単純にドライブの方でカップリングレンズを変位させるためのファームウェアのコストを少しでも削減したいという理由などが挙げられる。 The reason is that flare does not occur when using BD, but flare occurs when using DVD. By changing the coupling lens, the flare aberration changes, and as a result, the flare is recorded / reproduced. The reason is that there is a possibility of adversely affecting the recording medium, the reason why it is desirable to always keep the initial position of the coupling lens to discriminate the type of DVD, or simply moving the coupling lens by the drive. For example, there is a reason for wanting to reduce the cost of firmware for this.
 DVD使用時にカップリングレンズの光軸方向の位置を固定させるためには、対物レンズの第2光路差付与構造を構成する第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰方向に変化させるようにすることで、DVD使用時の温度特性と波長特性を共に良好にすることができ、結果として、DVD使用時に、第2光束が通過するときにカップリングレンズを光軸方向の位置を固定した状態でも、DVDの情報記録面に対して情報の記録/再生を行うことができるようになるため好ましい。 In order to fix the position of the coupling lens in the optical axis direction when using a DVD, the wavelength of the incident light beam in one of the third basic structure and the fourth basic structure constituting the second optical path difference providing structure of the objective lens. So that the spherical aberration changes in the direction of insufficient correction, and on the other side, the spherical aberration changes in the direction of overcorrection when the wavelength of the incident light beam changes longer. As a result, both the temperature characteristic and the wavelength characteristic when using the DVD can be improved, and as a result, when using the DVD, the position of the coupling lens in the optical axis direction is fixed when the second light beam passes. However, it is preferable because information can be recorded / reproduced with respect to the information recording surface of the DVD.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいて、CD使用時にワーキングディスタンスを確保しながらも、温度特性を良好にすることが可能となる。さらに、光路差付与構造の段差の高さが高くなることを抑制でき、それに伴い、製造誤差などに因る光量ロスを抑えることが可能となると共に、波長変動時の回折効率の変動を抑えることが可能となる。また、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することも可能となる。これらの効果によって、BD/DVD/CDの3種類の光ディスクの記録/再生も、共通の対物レンズで良好に行うことが可能となるものである。 According to the present invention, in a thick objective lens having a thick on-axis thickness that is used interchangeably with three types of optical disks of BD / DVD / CD, temperature characteristics are improved while ensuring a working distance when using a CD. It becomes possible to do. Furthermore, it is possible to suppress an increase in the height of the step of the optical path difference providing structure, and accordingly, it is possible to suppress a light amount loss due to a manufacturing error and suppress a fluctuation in diffraction efficiency at the time of a wavelength fluctuation. Is possible. It is also possible to provide an objective lens with balanced light utilization efficiency that can maintain high light utilization efficiency for any of the three types of optical disks of BD / DVD / CD. With these effects, recording / reproduction of three types of optical discs of BD / DVD / CD can be performed well with a common objective lens.
本実施の形態にかかる単玉の対物レンズOLを光軸方向に見た図である。It is the figure which looked at the single objective lens OL concerning this Embodiment in the optical axis direction. 対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットを形成する状態を示す図である。It is a figure which shows the state which forms the spot which the 3rd light beam which passed the objective lens forms on the information recording surface of a 3rd optical disk. 光路差付与構造の例を示す軸線方向断面図であり、(a)、(b)はブレーズ型構造の例を示し、(c)、(d)は階段型構造の例を示す。It is an axial direction sectional view showing an example of an optical path difference grant structure, (a) and (b) show an example of a blaze type structure, and (c) and (d) show an example of a step type structure. (a)は段差が光軸の方向を向いている状態を示し、(b)は段差が光軸とは逆の方向を向いている状態を示す図である。(A) shows a state in which the step is directed in the direction of the optical axis, and (b) is a diagram showing a state in which the step is directed in a direction opposite to the optical axis. (a)は光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸とは逆の方を向くような形状を示し、(b)は光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸の方を向くような形状を示す図である。(A) shows a shape in which the step is in the direction of the optical axis in the vicinity of the optical axis, but changes in the middle, and in the vicinity of the intermediate region, the step is in the direction opposite to the optical axis. FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region. 第1光路差付与構造の概念図であり、(a)乃至(c)は第1光路差付与構造の好ましい例を示し、(d)は第1基礎構造と第2基礎構造とを重畳した例を示す。It is a conceptual diagram of a 1st optical path difference providing structure, (a) thru | or (c) show the preferable example of a 1st optical path difference providing structure, (d) is the example which superimposed the 1st foundation structure and the 2nd foundation structure. Indicates. 収差がアンダー(補正不足)かオーバー(補正過剰)かを示す図である。It is a figure which shows whether an aberration is under (undercorrection) or over (overcorrection). 異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record and / or reproduce | regenerate information appropriately with respect to BD, DVD, and CD which are different optical disks. 比較例の対物レンズの断面図である。It is sectional drawing of the objective lens of a comparative example. 比較例の対物レンズにおける軸外特性を示すグラフである。It is a graph which shows the off-axis characteristic in the objective lens of a comparative example. 比較例におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。It is a figure which shows the 3rd-order coma aberration with respect to the lens tilt at the time of DVD use in a comparative example. 比較例におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。It is a figure which shows the 3rd-order coma aberration with respect to the lens tilt at the time of DVD use in a comparative example. 実施例1の対物レンズの断面図である。FIG. 3 is a cross-sectional view of the objective lens of Example 1. 実施例1の対物レンズにおける軸外特性を示すグラフである。6 is a graph showing off-axis characteristics in the objective lens of Example 1. 実施例1におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。FIG. 6 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 1. 実施例1におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。FIG. 6 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 1. 実施例2の対物レンズの断面図である。6 is a cross-sectional view of an objective lens according to Example 2. FIG. 実施例2の対物レンズにおける軸外特性を示すグラフである。6 is a graph showing off-axis characteristics in the objective lens of Example 2. 実施例2におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。FIG. 6 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 2. 実施例2におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。FIG. 6 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 2. 実施例3の対物レンズの断面図である。6 is a cross-sectional view of an objective lens according to Example 3. FIG. 実施例3の対物レンズにおける軸外特性を示すグラフである。10 is a graph showing off-axis characteristics in the objective lens of Example 3. 実施例3におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。FIG. 10 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 3. 実施例3におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。FIG. 10 is a diagram illustrating third-order coma aberration with respect to lens tilt when using a DVD in Example 3. 実施例4の対物レンズの断面図である。10 is a cross-sectional view of an objective lens according to Example 4. FIG. 実施例4の対物レンズにおける軸外特性を示すグラフである。10 is a graph showing off-axis characteristics in the objective lens of Example 4. 実施例4におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。It is a figure which shows the 3rd-order coma aberration with respect to the lens tilt at the time of DVD use in Example 4. FIG. 実施例4におけるDVD使用時のレンズチルトに対する3次コマ収差を示す図である。It is a figure which shows the 3rd-order coma aberration with respect to the lens tilt at the time of DVD use in Example 4. FIG.
 以下、本発明の実施の形態を、図面を参照して説明する。図8は、異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 8 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU1は、対物レンズOL、λ/4波長板QWP、コリメートレンズCOL、偏光ビームスプリッタBS、ダイクロイックプリズムDP,BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=660nmのレーザ光束(第2光束)を射出する第2半導体レーザLD2(第2光源)及びCDに対して情報の記録/再生を行う場合に発光され波長λ3=785nmのレーザ光束(第3光束)を射出する第3半導体レーザLD3を一体化したレーザユニットLDP、センサレンズSEN、光検出器としての受光素子PD等を有する。 The optical pickup device PU1 emits light when recording / reproducing information with respect to the objective lens OL, the λ / 4 wavelength plate QWP, the collimating lens COL, the polarization beam splitter BS, and the dichroic prisms DP and BD, and has a wavelength of λ1 = 405 nm. A first semiconductor laser LD1 (first light source) that emits a laser beam (first beam) and a laser beam (second beam) that is emitted when recording / reproducing information on a DVD and has a wavelength λ2 = 660 nm. The second semiconductor laser LD2 (second light source) that emits and the third semiconductor laser LD3 that emits a laser beam (third beam) having a wavelength λ3 = 785 nm emitted when information is recorded / reproduced with respect to the CD are integrated. A laser unit LDP, a sensor lens SEN, a light receiving element PD as a photodetector, and the like.
 図1に示されるように、本実施の形態にかかる単玉の対物レンズOLにおいて、光源側の非球面光学面に光軸を含む中央領域CNと、その周囲に配置された中間領域MDと、更にその周囲に配置された周辺領域OTとが、光軸を中心とする同心円状に形成されている。図示していないが、中心領域CNには既に詳述した第1光路差付与構造が形成され、中間領域MDには既に詳述した第2光路差付与構造が形成されている。また、周辺領域OTには、第3光路差付与構造が形成されている。本実施の形態では、第3光路差付与構造はブレーズ型の回折構造である。また、本実施の形態の対物レンズはプラスチックレンズである。対物レンズOLの中心領域CNに形成された第1光路差付与構造は、図6(d)に示すように、第1基礎構造と第2基礎構造とを重ね合わせた構造であり、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、少なくとも中心領域CNの光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いており、第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、少なくとも中心領域CNの光軸付近に設けられる第2基礎構造は、その段差が光軸の方向を向いており、第1基礎構造と第2基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足方向に変化すると好ましい。 As shown in FIG. 1, in the single objective lens OL according to the present embodiment, a central region CN including an optical axis on the aspherical optical surface on the light source side, an intermediate region MD arranged around the central region CN, Further, a peripheral region OT disposed around the periphery is formed concentrically with the optical axis as the center. Although not shown, the first optical path difference providing structure already described in detail is formed in the center region CN, and the second optical path difference providing structure already described in detail is formed in the intermediate region MD. In addition, a third optical path difference providing structure is formed in the peripheral region OT. In the present embodiment, the third optical path difference providing structure is a blazed diffractive structure. The objective lens of the present embodiment is a plastic lens. The first optical path difference providing structure formed in the central region CN of the objective lens OL is a structure in which the first basic structure and the second basic structure are overlaid as shown in FIG. The structure is such that the first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is different. The first order diffracted light amount of the third light beam that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN. In the first basic structure, the step is directed in the direction opposite to the optical axis, and the second basic structure converts the second-order diffracted light amount of the first light beam that has passed through the second basic structure to any other order. The second light flux that is larger than the diffracted light quantity and passes through the second basic structure. The first order diffracted light amount is made larger than any other order diffracted light amount, and the first order diffracted light amount of the third light beam that has passed through the second basic structure is made larger than any other order diffracted light amount, and at least the center The second foundation structure provided in the vicinity of the optical axis of the region CN has a step in the direction of the optical axis, and the first and second foundation structures have changed so that the wavelength of the incident light beam becomes longer. In this case, it is preferable that the spherical aberration changes in the direction of insufficient correction.
 青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、実線で示すように、ダイクロイックプリズムDPを通過し、偏光ビームスプリッタBSを通過した後、コリメートレンズCOLを通過して平行光となり、λ/4波長板QWPにより直線偏光から円偏光に変換され、不図示の絞りによりその光束径が規制され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域と周辺領域により集光された光束は、保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。 The divergent light beam of the first light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP, passes through the polarization beam splitter BS, and then passes through the collimating lens COL as shown by the solid line. It becomes parallel light, is converted from linearly polarized light into circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and enters the objective lens OL. Here, the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1.
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOL、不図示の絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、2軸アクチュエータAC1により対物レンズOLをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。ここで、第1光束に波長変動が生じた場合や、複数の情報記録層を有するBDの記録/再生を行う場合、波長変動や異なる情報記録層に起因して発生する球面収差を、倍率変更手段としてのコリメートレンズCOLを光軸方向に変化させて、対物光学素子OLに入射する光束の発散角又は収束角を変更することで補正できるようになっている。 The reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and by the collimating lens COL. A converged light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. The information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1. Here, when the wavelength fluctuation occurs in the first light flux or when recording / reproducing of a BD having a plurality of information recording layers, the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. Correction can be made by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL by changing the collimating lens COL as means in the optical axis direction.
 レーザユニットLDPの半導体レーザLD2から射出された第2光束(λ2=660nm)の発散光束は、点線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに収束光束の状態で入射する。ここで、対物レンズOLの中央領域と中間領域により集光された(周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、保護基板PL2を介して、DVDの情報記録面RL2に形成されるスポットとなり、スポット中心部を形成する。 The divergent light beam of the second light beam (λ2 = 660 nm) emitted from the semiconductor laser LD2 of the laser unit LDP is reflected by the dichroic prism DP, passes through the polarization beam splitter BS and the collimating lens COL, as indicated by the dotted line, and λ The / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OL in the form of a convergent light beam. Here, the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral portion) is recorded on the DVD through the protective substrate PL2. It becomes a spot formed on the surface RL2, and forms the center of the spot.
 情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてDVDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a convergent light beam by the collimating lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD.
 レーザユニットLDPの半導体レーザLD3から射出された第3光束(λ3=785nm)の発散光束は、一点鎖線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに平行光束、発散光束又は収束光束の状態で入射する。ここで、対物レンズOLの中央領域により集光された(中間領域及び周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、保護基板PL3を介して、CDの情報記録面RL3上に形成されるスポットとなる。 The divergent light beam of the third light beam (λ3 = 785 nm) emitted from the semiconductor laser LD3 of the laser unit LDP is reflected by the dichroic prism DP, as shown by the one-dot chain line, and passes through the polarization beam splitter BS and the collimating lens COL. It is converted from linearly polarized light into circularly polarized light by the λ / 4 wave plate QWP, and enters the objective lens OL in a state of a parallel light beam, a divergent light beam, or a convergent light beam. Here, the light beam collected by the central region of the objective lens OL (the light beam that has passed through the intermediate region and the peripheral region is flared and forms a spot peripheral part) is recorded on the CD through the protective substrate PL3. It becomes a spot formed on the surface RL3.
 情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてCDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL3 passes through the objective lens OL again, is converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and is converged by the collimating lens COL, The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
(実施例)
 以下、上述した実施の形態に用いることができる実施例について説明する。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。また、対物レンズの光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
(Example)
Examples that can be used in the above-described embodiment will be described below. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). The optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (with the light traveling direction being positive), κ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
 また、回折構造を用いた実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。 Further, in the case of the embodiment using the diffractive structure, the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 尚、hは光軸からの高さ、λは入射光束の波長、mは回折次数、B2iは光路差関数の係数である。 Here, h is the height from the optical axis, λ is the wavelength of the incident light beam, m is the diffraction order, and B 2i is the coefficient of the optical path difference function.
 (比較例)
 比較例の対物レンズはプラスチック単玉レンズである。比較例ではDVD使用時に平行光を入射させている(m2=0)。図9は、比較例の対物レンズの断面図である。比較例の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、(1/1/1)のブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、第1基礎構造と同じ第3基礎構造と、第2基礎構造と同じ第4基礎構造とを重ねあわせた構造となっている。周辺領域は第3光路差付与構造として(2/1/1)のブレーズ型の回折構造を有している。表1に比較例のレンズデータを示す。図10は、比較例の対物レンズにおける軸外特性として、光軸に対して傾いた光束が入射した際の、BD使用時の3次コマ収差及びDVD使用時の3次コマ収差を示すグラフであり、図11は、DVD使用時のレンズチルトに対する3次コマ収差を示す図であり、図12は、DVD使用時のレンズシフトに対する3次コマ収差を示す図である。図10において、画角0.5度の前記第1光束を前記対物レンズに入射させた際に生じる3次コマ収差BD-CM3、画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図11において、レンズチルト0.5度で第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図12において、レンズシフトが光軸直交方向0.2mmであるときに第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。
(Comparative example)
The objective lens of the comparative example is a plastic single lens. In the comparative example, parallel light is incident when the DVD is used (m2 = 0). FIG. 9 is a cross-sectional view of a comparative objective lens. The first optical path difference providing structure of the comparative example has a (1/1/1) blaze type in the second basic structure BS2 that is a (2/1/1) blaze type diffraction structure in the entire central region. The optical path difference providing structure is formed by overlapping the first basic structure BS1 which is a diffractive structure. The second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region. The peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure. Table 1 shows lens data of the comparative example. FIG. 10 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of the comparative example. FIG. 11 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD, and FIG. 12 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD. In FIG. 10, the third-order coma aberration BD-CM3 generated when the first light flux having an angle of view of 0.5 degrees is incident on the objective lens, and the second light flux having an angle of view of 0.5 degrees is applied to the objective lens. The value of the third-order coma aberration DVD-CM3 generated when the light is incident is given as a reference. In FIG. 11, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference. In FIG. 12, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens when the lens shift is 0.2 mm in the direction orthogonal to the optical axis is referred to.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (実施例1)
 実施例1の対物レンズはプラスチック単玉レンズである。実施例1ではDVD使用時に収束光を入射させている(m2=0.16)。図13は、実施例1の対物レンズの断面図である。実施例1の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、(1/1/1)のブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、第1基礎構造と同じ第3基礎構造と、第2基礎構造と同じ第4基礎構造とを重ねあわせた構造となっている。周辺領域は第3光路差付与構造として(2/1/1)のブレーズ型の回折構造を有している。表2に実施例1のレンズデータを示す。図14は、実施例1の対物レンズにおける軸外特性として、光軸に対して傾いた光束が入射した際の、BD使用時の3次コマ収差及びDVD使用時の3次コマ収差を示すグラフであり、図15は、DVD使用時のレンズチルトに対する3次コマ収差を示す図であり、図16は、DVD使用時のレンズシフトに対する3次コマ収差を示す図である。図14において画角0.5度の前記第1光束を前記対物レンズに入射させた際に生じる3次コマ収差BD-CM3、画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図15において、レンズチルト0.5度で第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図16において、レンズシフトが光軸直交方向0.2mmであるときに第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。
(Example 1)
The objective lens of Example 1 is a plastic single lens. In Example 1, convergent light is incident when a DVD is used (m2 = 0.16). FIG. 13 is a cross-sectional view of the objective lens of Example 1. FIG. In the first optical path difference providing structure of Example 1, the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region. The first basic structure BS1, which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped. The second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region. The peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure. Table 2 shows lens data of Example 1. FIG. 14 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 1. FIG. 15 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD, and FIG. 16 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD. In FIG. 14, the third-order coma aberration BD-CM3 generated when the first light flux having an angle of view of 0.5 degrees is incident on the objective lens, and the second light flux having an angle of view of 0.5 degrees is incident on the objective lens. The value of the third-order coma aberration DVD-CM3 generated at the time of being applied is given as a reference. In FIG. 15, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference. In FIG. 16, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens when the lens shift is 0.2 mm in the direction orthogonal to the optical axis is referred to.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (実施例2)
 実施例2の対物レンズはプラスチック単玉レンズである。実施例2ではDVD使用時に収束光を入射させている(m2=0.06)。図17は、実施例2の対物レンズの断面図である。実施例2の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、(1/1/1)のブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、第1基礎構造と同じ第3基礎構造と、第2基礎構造と同じ第4基礎構造とを重ねあわせた構造となっている。周辺領域は第3光路差付与構造として(2/1/1)のブレーズ型の回折構造を有している。表3に実施例2のレンズデータを示す。図18は、実施例2の対物レンズにおける軸外特性として、光軸に対して傾いた光束が入射した際の、BD使用時の3次コマ収差及びDVD使用時の3次コマ収差を示すグラフであり、図19は、DVD使用時のレンズチルトに対する3次コマ収差を示す図であり、図20は、DVD使用時のレンズシフトに対する3次コマ収差を示す図である。図18において、画角0.5度の前記第1光束を前記対物レンズに入射させた際に生じる3次コマ収差BD-CM3、画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図19において、レンズチルト0.5度で第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図20において、レンズシフトが光軸直交方向0.2mmであるときに第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。
(Example 2)
The objective lens of Example 2 is a plastic single lens. In Example 2, convergent light is incident when a DVD is used (m2 = 0.06). FIG. 17 is a cross-sectional view of the objective lens of Example 2. In the first optical path difference providing structure of Example 2, the (1/1/1) blaze is added to the second basic structure BS2 which is a (2/1/1) blazed diffraction structure in the entire central region. The first basic structure BS1, which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped. The second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region. The peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure. Table 3 shows lens data of Example 2. FIG. 18 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 2. FIG. 19 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD, and FIG. 20 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD. In FIG. 18, the third-order coma aberration BD-CM3 generated when the first light flux with an angle of view of 0.5 degrees is incident on the objective lens, and the second light flux with an angle of view of 0.5 degrees is applied to the objective lens. The value of the third-order coma aberration DVD-CM3 generated when the light is incident is given as a reference. In FIG. 19, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference. In FIG. 20, the value of the third-order coma aberration DVD-CM3 generated when the second light flux is made incident on the objective lens when the lens shift is 0.2 mm in the optical axis orthogonal direction is given as a reference.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (実施例3)
 実施例3の対物レンズはプラスチック単玉レンズである。実施例3ではDVD使用時に収束光を入射させている(m2=0.05)。又、CD使用時に収束光を入射させている(m3=0.02)。図21は、実施例3の対物レンズの断面図である。実施例3の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、(1/1/1)のブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、第1基礎構造と同じ第3基礎構造と、第2基礎構造と同じ第4基礎構造とを重ねあわせた構造となっている。周辺領域は第3光路差付与構造として(2/1/1)のブレーズ型の回折構造を有している。表4に実施例3のレンズデータを示す。図22は、実施例3の対物レンズにおける軸外特性として、光軸に対して傾いた光束が入射した際の、BD使用時の3次コマ収差及びDVD使用時の3次コマ収差を示すグラフであり、図23は、DVD使用時のレンズチルトに対する3次コマ収差を示す図であり、図24は、DVD使用時のレンズシフトに対する3次コマ収差を示す図である。図22において、画角0.5度の前記第1光束を前記対物レンズに入射させた際に生じる3次コマ収差BD-CM3、画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図23において、レンズチルト0.5度で第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図24において、レンズシフトが光軸直交方向0.2mmであるときに第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。
(Example 3)
The objective lens of Example 3 is a plastic single lens. In Example 3, convergent light is incident when a DVD is used (m2 = 0.05). Further, convergent light is incident when the CD is used (m3 = 0.02). FIG. 21 is a sectional view of the objective lens of Example 3. FIG. In the first optical path difference providing structure of Example 3, the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region. The first basic structure BS1, which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped. The second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region. The peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure. Table 4 shows lens data of Example 3. FIG. 22 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 3. FIG. 23 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD, and FIG. 24 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD. In FIG. 22, the third-order coma aberration BD-CM3 generated when the first light flux with an angle of view of 0.5 degrees is incident on the objective lens, and the second light flux with an angle of view of 0.5 degrees is applied to the objective lens. The value of the third-order coma aberration DVD-CM3 generated when the light is incident is given as a reference. In FIG. 23, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference. In FIG. 24, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens when the lens shift is 0.2 mm in the direction orthogonal to the optical axis is referred to.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 (実施例4)
 実施例4の対物レンズはプラスチック単玉レンズである。実施例4ではDVD使用時に収束光を入射させている(m2=0.05)。又、CD使用時に発散光を入射させている(m3=―0.01)。図25は、実施例4の対物レンズの断面図である。実施例4の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造BS2に、(1/1/1)のブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、第1基礎構造と同じ第3基礎構造と、第2基礎構造と同じ第4基礎構造とを重ねあわせた構造となっている。周辺領域は第3光路差付与構造として(2/1/1)のブレーズ型の回折構造を有している。表5に実施例4のレンズデータを示す。
図26は、実施例4の対物レンズにおける軸外特性として、光軸に対して傾いた光束が入射した際の、BD使用時の3次コマ収差及びDVD使用時の3次コマ収差を示すグラフであり、図27は、DVD使用時のレンズチルトに対する3次コマ収差を示す図であり、図28は、DVD使用時のレンズシフトに対する3次コマ収差を示す図である。図26において、画角0.5度の前記第1光束を前記対物レンズに入射させた際に生じる3次コマ収差BD-CM3、画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図27において、レンズチルト0.5度で第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。図28において、レンズシフトが光軸直交方向0.2mmであるときに第2光束を対物レンズに入射させた際に生じる3次コマ収差DVD-CM3の値を参照的に付している。
(Example 4)
The objective lens of Example 4 is a plastic single lens. In Example 4, convergent light is incident when using a DVD (m2 = 0.05). Further, divergent light is made incident when the CD is used (m3 = −0.01). FIG. 25 is a cross-sectional view of the objective lens according to Example 4. In the first optical path difference providing structure of Example 4, the (1/1/1) blaze is added to the second basic structure BS2 that is a (2/1/1) blaze-type diffraction structure in the entire central region. The first basic structure BS1, which is a diffractive structure of the mold, is an optical path difference providing structure that is overlapped. The second optical path difference providing structure has a structure in which the third basic structure that is the same as the first basic structure and the fourth basic structure that is the same as the second basic structure are overlapped in the entire intermediate region. The peripheral region has a (2/1/1) blazed diffraction structure as a third optical path difference providing structure. Table 5 shows lens data of Example 4.
FIG. 26 is a graph showing the third-order coma aberration when using a BD and the third-order coma aberration when using a DVD when a light beam tilted with respect to the optical axis is incident as off-axis characteristics in the objective lens of Example 4. FIG. 27 is a diagram showing the third-order coma aberration with respect to the lens tilt when using the DVD, and FIG. 28 is a diagram showing the third-order coma aberration with respect to the lens shift when using the DVD. In FIG. 26, the third-order coma aberration BD-CM3 generated when the first light flux having an angle of view of 0.5 degrees is incident on the objective lens, and the second light flux having an angle of view of 0.5 degrees is applied to the objective lens. The value of the third-order coma aberration DVD-CM3 generated when the light is incident is given as a reference. In FIG. 27, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens with a lens tilt of 0.5 degrees is given as a reference. In FIG. 28, the value of the third-order coma aberration DVD-CM3 generated when the second light beam is incident on the objective lens when the lens shift is 0.2 mm in the direction orthogonal to the optical axis is referred to.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図10と図14を比較すると明らかであるが、比較例に対して実施例1のDVD使用時における軸外特性は改善している(比較例ではDVD-CM3が50mλrmsであるのに対して、実施例1ではDVD-CM3は39mλrms)。又、図11と図15を比較すると明らかであるが、比較例に対して実施例1のDVD使用時におけるレンズチルト特性が改善しているので、組み付け時の調整が容易である。それに対して、比較例ではいくら対物レンズを傾けても調整できない。更に、図10と図18,22,26を比較すると明らかであるが、実施例2~4のDVD使用時における軸外特性は、BD使用時における軸外特性とを特に好ましく両立している(BD-CM3+DVD-CM3は2mλrms以下)。又、図11と図19、23,27を比較すると明らかであるが、比較例に対して実施例2~4のDVD使用時におけるレンズチルト特性が改善しているので、組み付け時の調整が容易である。しかも、実施例2~4は、図20、24,28に示すように、レンズシフトが生じても3次コマ収差が発生しないため優れている。 As apparent from a comparison between FIG. 10 and FIG. 14, the off-axis characteristics when using the DVD of Example 1 are improved compared to the comparative example (in the comparative example, the DVD-CM3 is 50 mλrms, whereas In Example 1, DVD-CM3 is 39 mλrms). 11 and 15, it is clear that the lens tilt characteristic when using the DVD of Example 1 is improved compared to the comparative example, so that adjustment during assembly is easy. In contrast, the comparative example cannot be adjusted no matter how much the objective lens is tilted. Further, as is apparent from a comparison between FIG. 10 and FIGS. 18, 22, and 26, the off-axis characteristics when using DVDs in Examples 2 to 4 are particularly preferably compatible with the off-axis characteristics when using BD. (BD-CM3 + DVD-CM3 is 2mλrms or less). 11 and FIGS. 19, 23, and 27, it is clear that the lens tilt characteristics when using DVDs of Examples 2 to 4 are improved compared to the comparative example, so that adjustment during assembly is easy. It is. In addition, Examples 2 to 4 are excellent because third-order coma aberration does not occur even when a lens shift occurs as shown in FIGS.
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
AC1 2軸アクチュエータ
BS 偏光ビームスプリッタ
CN 中央領域
COL コリメートレンズ
DP ダイクロイックプリズム
LD1 第1半導体レーザ又は青紫色半導体レーザ
LD2 第2半導体レーザ
LD3 第3半導体レーザ
LDP レーザユニット
MD 中間領域
OL 対物レンズ
OT 周辺領域
PD 受光素子
PL1 保護基板
PL2 保護基板
PL3 保護基板
PU1 光ピックアップ装置
QWP λ/4波長板
RL1 情報記録面
RL2 情報記録面
RL3 情報記録面
SEN センサレンズ
AC1 Biaxial actuator BS Polarizing beam splitter CN Central region COL Collimating lens DP Dichroic prism LD1 First semiconductor laser or blue-violet semiconductor laser LD2 Second semiconductor laser LD3 Third semiconductor laser LDP Laser unit MD Intermediate region OL Objective lens OT Peripheral region PD Light receiving element PL1 Protective substrate PL2 Protective substrate PL3 Protective substrate PU1 Optical pickup device QWP λ / 4 wavelength plate RL1 Information recording surface RL2 Information recording surface RL3 Information recording surface SEN Sensor lens

Claims (11)

  1.  第1波長λ1の第1光束を射出する第1光源と、第2波長λ2(λ2>λ1)の第2光束を射出する第2光源と、第3波長λ3(λ3>λ2)の第3光束を射出する第3光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有する第1光ディスクの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有する第2光ディスクの情報の記録及び/又は再生を行い、前記第3光束を用いて厚さがt3(t2<t3)の保護基板を有する第3光ディスクの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
     前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
     前記中央領域は第1光路差付与構造を有し、
     前記中間領域は第2光路差付与構造を有し、
     前記対物レンズは、前記中央領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、
     前記対物レンズは、前記中間領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
     前記第1基礎構造は、前記第1基礎構造を通過した第1光束のA次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第2光束のB次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第3光束のC次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第1基礎構造はブレーズ型構造であり、
     前記第2基礎構造は、前記第2基礎構造を通過した第1光束のD次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束のE次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束のF次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた構造であり、
     前記第3基礎構造は、前記第3基礎構造を通過した第1光束のG次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した第2光束のH次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第3基礎構造はブレーズ型構造であり、
     前記第4基礎構造は、前記第4基礎構造を通過した第1光束のI次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した第2光束のJ次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第4基礎構造はブレーズ型構造であり、
     前記第2光ディスク使用時に、前記第2光束は、収束光の状態で前記対物レンズに入射するようになっていることを特徴とする対物レンズ。
    A first light source that emits a first light flux with a first wavelength λ1, a second light source that emits a second light flux with a second wavelength λ2 (λ2> λ1), and a third light flux with a third wavelength λ3 (λ3> λ2) And recording and / or reproducing information on a first optical disc having a protective substrate with a thickness of t1 using the first light flux, and using the second light flux to obtain a thickness. Records and / or reproduces information on the second optical disk having the protective substrate t2 (t1 <t2), and uses the third light flux to have the third optical disk having the protective substrate having the thickness t3 (t2 <t3) An objective lens used in an optical pickup device that records and / or reproduces information of
    The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
    The central region has a first optical path difference providing structure,
    The intermediate region has a second optical path difference providing structure,
    The objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc. Condensing so that information can be recorded and / or reproduced,
    The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc. Without collecting light so that information can be recorded and / or reproduced.
    The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area. The second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc. Do not concentrate so that information can be recorded and / or reproduced
    The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
    The first basic structure makes the A-order diffracted light quantity of the first light flux that has passed through the first basic structure larger than any other order diffracted light quantity, and B of the second light flux that has passed through the first basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, and making the C-order diffracted light quantity of the third light flux that has passed through the first basic structure larger than any other order diffracted light quantity,
    The first basic structure is a blaze-type structure;
    The second basic structure makes the D-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and the E of the second light beam that has passed through the second basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, and making the F-order diffracted light quantity of the third light flux that has passed through the second basic structure larger than any other order diffracted light quantity,
    The second optical path difference providing structure is a structure in which at least a third basic structure and a fourth basic structure are overlapped,
    The third basic structure makes the G-order diffracted light amount of the first light beam that has passed through the third basic structure larger than any other order of diffracted light amount, so that the H of the second light beam that has passed through the third basic structure. Make the next diffracted light quantity larger than any other order diffracted light quantity,
    The third basic structure is a blazed structure;
    In the fourth basic structure, the first-order diffracted light amount of the first light beam that has passed through the fourth basic structure is made larger than any other order of diffracted light amount, and the second light beam J that has passed through the fourth basic structure has J Make the next diffracted light quantity larger than any other order diffracted light quantity,
    The fourth basic structure is a blazed structure.
    2. The objective lens according to claim 1, wherein the second light beam is incident on the objective lens in a convergent light state when the second optical disk is used.
  2.  以下の式を満たすことを特徴とする請求項1に記載の対物レンズ。
     0<m2<0.16   (1)
    但し、m2は、前記第2光束が前記対物レンズに入射する時の前記対物レンズの倍率を表す。
    The objective lens according to claim 1, wherein the following expression is satisfied.
    0 <m2 <0.16 (1)
    However, m2 represents the magnification of the objective lens when the second light beam is incident on the objective lens.
  3.  A=G=1,B=H=1,C=1,D=I=2,E=J=1,F=1であることを特徴とする請求項1又は2に記載の対物レンズ。 3. The objective lens according to claim 1, wherein A = G = 1, B = H = 1, C = 1, D = I = 2, E = J = 1, and F = 1.
  4.  前記第2光ディスク使用時のワーキングディスタンスは、前記第3光ディスク使用時のワーキングディスタンス以上であることを特徴とする請求項1~3のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 3, wherein a working distance when the second optical disk is used is equal to or greater than a working distance when the third optical disk is used.
  5.  前記第2光ディスク使用時のワーキングディスタンスは、0.25mm以上であることを特徴とする請求項1~4のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 4, wherein a working distance when the second optical disc is used is 0.25 mm or more.
  6.  前記第2光ディスク使用時において、前記対物レンズが光軸直交方向に0.2mmシフトした際に発生する収差が、マレシャル限界(0.07λrms)以下であることを特徴とする請求項1~5のいずれか1項に記載の対物レンズ。 6. The aberration generated when the objective lens is shifted by 0.2 mm in the direction perpendicular to the optical axis when using the second optical disc is less than the Marshall limit (0.07 λrms). The objective lens of any one of Claims 1.
  7.  前記第3光ディスク使用時に、前記第3光束は、平行光の状態で前記対物レンズに入射するようになっていることを特徴とする請求項1~6のいずれか1項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 6, wherein, when the third optical disk is used, the third light beam is incident on the objective lens in a parallel light state.
  8.  前記第3光ディスク使用時に、前記第3光束は、収束光又は発散光の状態で前記対物レンズに入射するようになっていることを特徴とする請求項1~6のいずれか1項に記載の対物レンズ。 The third light beam according to any one of claims 1 to 6, wherein when the third optical disk is used, the third light beam is incident on the objective lens in a state of convergent light or divergent light. Objective lens.
  9.  画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3は、40mλrms以下であることを特徴とする請求項1~8のいずれか1項に記載の対物レンズ。 9. The third-order coma aberration DVD-CM3 generated when the second light flux having an angle of view of 0.5 degrees is incident on the objective lens is 40 mλrms or less. Objective lens described in 1.
  10.  画角0.5度の前記第1光束を前記対物レンズに入射させた際に生じる3次コマ収差BD-CM3と、画角0.5度の前記第2光束を前記対物レンズに入射させた際に生じる3次コマ収差DVD-CM3との合計が、40mλrms以下であることを特徴とする請求項1~9のいずれか1項に記載の対物レンズ。 Third-order coma aberration BD-CM3 generated when the first light beam having an angle of view of 0.5 degrees is incident on the objective lens, and the second light beam having an angle of view of 0.5 degrees is incident on the objective lens. The objective lens according to any one of claims 1 to 9, wherein a total of the third-order coma aberration DVD-CM3 generated at the time is 40 mλrms or less.
  11.  請求項1~10のいずれか1項に記載の対物レンズを有することを特徴とする光ピックアップ装置。 An optical pickup device comprising the objective lens according to any one of claims 1 to 10.
PCT/JP2012/073785 2012-02-03 2012-09-18 Objective lens for optical pickup device, and optical pickup device WO2013114662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021968 2012-02-03
JP2012-021968 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013114662A1 true WO2013114662A1 (en) 2013-08-08

Family

ID=48904730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073785 WO2013114662A1 (en) 2012-02-03 2012-09-18 Objective lens for optical pickup device, and optical pickup device

Country Status (1)

Country Link
WO (1) WO2013114662A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123564A (en) * 2006-11-08 2008-05-29 Hitachi Maxell Ltd Objective lens optical system, and optical system for optical pickup
WO2011136096A1 (en) * 2010-04-28 2011-11-03 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information record/play device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123564A (en) * 2006-11-08 2008-05-29 Hitachi Maxell Ltd Objective lens optical system, and optical system for optical pickup
WO2011136096A1 (en) * 2010-04-28 2011-11-03 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information record/play device

Similar Documents

Publication Publication Date Title
JP5062365B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
WO2011136096A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2011132691A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
JP6065347B2 (en) Objective lens and optical pickup device
JP5152439B2 (en) Objective lens for optical pickup device and optical pickup device
JP5713280B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5229657B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5963120B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
WO2013114662A1 (en) Objective lens for optical pickup device, and optical pickup device
JP5585879B2 (en) Optical pickup device and optical information recording / reproducing device
WO2012063850A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012090852A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2012133363A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
WO2013084558A1 (en) Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2013168692A1 (en) Objective lens and optical pickup device
WO2012133364A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
WO2012053578A1 (en) Ojbective lens for optical pickup device and optical pickup device
WO2011132696A1 (en) Objective lens for an optical pickup device, optical pickup device, and optical information recording/reading device
JP2013157049A (en) Objective lens for optical pickup apparatus, optical pickup apparatus and optical information recording and reproducing apparatus
JP2013206514A (en) Objective for optical pickup device, and optical pickup device and optical information recording and reproducing device
JP2014164791A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording reproducer
JP2012212497A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP