WO2013084558A1 - Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device - Google Patents

Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device Download PDF

Info

Publication number
WO2013084558A1
WO2013084558A1 PCT/JP2012/073430 JP2012073430W WO2013084558A1 WO 2013084558 A1 WO2013084558 A1 WO 2013084558A1 JP 2012073430 W JP2012073430 W JP 2012073430W WO 2013084558 A1 WO2013084558 A1 WO 2013084558A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
objective lens
path difference
optical path
difference providing
Prior art date
Application number
PCT/JP2012/073430
Other languages
French (fr)
Japanese (ja)
Inventor
井上寿志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013084558A1 publication Critical patent/WO2013084558A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD

Definitions

  • the present invention relates to an optical pickup device, an objective lens, and an optical information recording / reproducing apparatus capable of recording and / or reproducing (recording / reproducing) information interchangeably with different types of optical discs.
  • a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened.
  • a wavelength 390 such as a blue-violet semiconductor laser is used.
  • a laser light source of ⁇ 420 nm has been put into practical use.
  • these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used.
  • NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
  • BD Blu-ray Disc
  • the BD is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
  • the optical system for BD and the optical system for DVD or CD can be shared. It is preferable to reduce the number of optical components constituting the pickup device as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common. In order to obtain a common objective lens for a plurality of types of optical disks having different recording / reproducing wavelengths, it is necessary to form a diffractive structure having a wavelength dependency of spherical aberration in the objective lens.
  • Patent Document 1 describes an objective lens that has a step-like diffractive structure and can be used in common for three types of optical disks.
  • Patent Document 2 superimposes two basic structures that are diffractive structures. An objective lens that can be used in common with three types of optical discs and an optical pickup device equipped with this objective lens are described.
  • the CD needs to have diverging light incident in order to increase the working distance of the CD.
  • the effective diameter is larger than the infinite light incidence even with the same NA, there is a problem that the diffraction efficiency of the BD is lowered.
  • Example 1 disclosed in Patent Document 2 the optical surface of the objective lens has a central region for condensing a BD / DVD / CD light beam, and a BD / DVD light beam around the central region. And a peripheral region that collects a BD light beam around the intermediate region, and the intermediate region is a second structure in which three diffraction structures (basic structures) are superimposed.
  • An optical path difference providing structure is provided.
  • the shape of the second optical path difference providing structure becomes complicated, and the annular zone width becomes small, which makes it difficult to manufacture.
  • Example 4 disclosed in Patent Document 2 has the same problem as Patent Document 1.
  • the present invention has been made to solve the above-mentioned problems, and enables the compatibility of three types of optical discs of BD / DVD / CD with a common objective lens while limiting the optical system magnification.
  • An objective lens for an optical pickup device having excellent design flexibility, high efficiency, and excellent manufacturability, and an optical pickup device and an optical information recording / reproducing device using the objective lens And
  • an objective lens used in an optical pickup device for recording and / or reproducing information of a third optical disc having a protective substrate at t3) The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region, The central region has a first optical path difference providing structure, The intermediate region has a second optical path difference providing structure, The objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area.
  • Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc.
  • Condensing so that information can be recorded and / or reproduced The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area.
  • Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc.
  • the objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area.
  • the second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc.
  • the first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
  • the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and 1 of the second light flux that has passed through the first basic structure.
  • the second basic structure makes the second-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and 1 of the second light beam that has passed through the second basic structure.
  • the second optical path difference providing structure is a staircase structure having a plurality of small staircase structures having the same number of steps, and the second optical path difference providing structure is a first light flux that has passed through the second optical path difference providing structure.
  • the present inventor has found an example in which the second optical path difference providing structure is compatible with the first optical path difference providing structure even when the second optical path difference providing structure is a simple step structure having the same number of steps in each zone. did. That is, the second optical path difference providing structure makes the 0th-order diffracted light quantity of the first light beam that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity, and passed through the second optical path difference providing structure.
  • the first order diffracted light amount of the second light beam is made larger than any other order diffracted light amount
  • the first order diffracted light amount of the third light beam that has passed through the second optical path difference providing structure is made higher than any other order diffracted light amount.
  • h is the height from the optical axis
  • is the wavelength of the incident light beam
  • m is the diffraction order
  • C 2i is the coefficient of the optical path difference function.
  • the imaging magnification of the objective lens is set to 0 for light beams having three different wavelengths, that is, infinite parallel light can be used, the efficiency when using a BD or DVD can be increased.
  • the second optical path difference providing structure is a simple staircase structure having a plurality of small staircase structures having the same number of steps, the zone width can be widened to increase the light utilization efficiency. This makes it easy to manufacture a mold for forming the objective lens, and suppresses efficiency reduction due to manufacturing errors as much as possible.
  • the objective lens according to claim 2 is characterized in that, in the invention according to claim 1, in the second optical path difference providing structure, the small step type structure has two steps (binary structure).
  • the objective lens according to the second aspect wherein the height of each step of the two-step structure of the two steps is h ( ⁇ m), and the step is directed in the optical axis direction.
  • h ⁇ m
  • the step is directed in the optical axis direction.
  • the objective lens according to the first aspect wherein the second optical path difference providing structure has three steps of the small step type structure.
  • the height per step of the three-step small structure of the three steps is h ( ⁇ m), and the step is directed in the optical axis direction.
  • the following expression is satisfied, when the case is positive and the case where the step is opposite to the optical axis is negative. -1.2 ⁇ h ⁇ -0.7 (C) 2.7 ⁇ h ⁇ 4.4 (D)
  • the height of one step can be reduced, and the efficiency of BD and DVD can be increased.
  • the number of steps may be less than 3 at the boundary of the region.
  • the objective lens according to claim 6 is the objective according to claim 1, wherein the second optical path difference providing structure has four steps in the small step type structure. lens.
  • the objective lens according to the sixth aspect of the invention wherein the height of one step of the four-step structure of the four steps is h ( ⁇ m), and the step is directed in the optical axis direction.
  • the following expression is satisfied, when the case is positive and the case where the step is opposite to the optical axis is negative. -3.4 ⁇ h ⁇ -2.0 (E) 1.4 ⁇ h ⁇ 2.3 (F)
  • the objective lens according to claim 8 is the objective lens according to any one of claims 1 to 7, wherein the peripheral region has a third optical path difference providing structure, and the third optical path difference providing structure is a blaze type.
  • the structure is characterized in that the second-order diffracted light amount of the first light flux that has passed through the third optical path difference providing structure is made larger than any other order diffracted light amount.
  • the temperature characteristic can be satisfied by using the diffraction power of the third optical path difference providing structure, and the optical path difference function of the objective lens is continuous in the intermediate region and the peripheral region.
  • the influence of spherical aberration can be reduced.
  • the second light flux passes through the peripheral area and becomes flare light, it can be separated from the main light that passes through the intermediate area and is condensed on the information recording surface of the second optical disk, thereby suppressing the generation of an error signal. it can.
  • the objective lens according to claim 9 is the objective lens according to any one of claims 1 to 7, wherein the peripheral region has a third optical path difference providing structure, and the third optical path difference providing structure includes a plurality of optical path difference providing structures.
  • a staircase structure having a small staircase structure, wherein the 0th-order diffracted light quantity of the first light beam that has passed through the third optical path difference providing structure is made larger than any other order diffracted light quantity.
  • the temperature characteristic can be satisfied by using the diffraction power of the third optical path difference providing structure, and the optical path difference function of the objective lens is continuous in the intermediate region and the peripheral region.
  • the influence of spherical aberration can be reduced.
  • An objective lens according to a tenth aspect is the invention according to the ninth aspect, wherein the third optical path difference providing structure has a two-step (binary structure) structure of the small staircase structure.
  • An objective lens according to an eleventh aspect is the invention according to the tenth aspect, wherein a height of one step of the two-step structure of the two steps is set to h ( ⁇ m), and the step has an optical axis direction. It is characterized in that the following equation is satisfied when the direction is facing positive and the step is facing the opposite direction to the optical axis. -1.0 ⁇ h ⁇ -0.6 (G) 0.6 ⁇ h ⁇ 1.0 (H)
  • the objective lens according to a twelfth aspect is the invention according to the ninth aspect, wherein the third optical path difference providing structure has three steps of the small staircase structure.
  • the objective lens described in claim 13 is the invention described in claim 12, wherein the height per step of the three-step small structure of the three steps is h ( ⁇ m), and the step is in the optical axis direction. It is characterized in that the following equation is satisfied when the direction is facing positive and the step is facing the opposite direction to the optical axis. -1.2 ⁇ h ⁇ -0.7 (I) 2.7 ⁇ h ⁇ 4.4 (J)
  • the objective lens according to claim 14 is characterized in that, in the invention according to any one of claims 1 to 7, the peripheral region is a refractive surface.
  • An objective lens according to a fifteenth aspect of the present invention is the objective lens according to any one of the first to fourteenth aspects, wherein an effective diameter for recording and / or reproducing information on the first optical disc is ⁇ 1 (mm ), The following expression is satisfied. 1.8 ⁇ ⁇ 1 ⁇ 4.0 (1)
  • the objective lens described in claim 16 satisfies the following expression when the working distance of the third optical disc is CW (mm) in the invention described in any one of claims 1-15.
  • CW ⁇ 0.2
  • the working distance when using the third optical disk can be secured so as to satisfy the expression (2).
  • the objective lens according to claim 17 is the objective lens according to any one of claims 1 to 16, wherein the main light of the third light flux condensed on the information recording surface of the third optical disc and the flare light of the third light flux.
  • the distance is x ( ⁇ m)
  • the following expression is satisfied.
  • flare light which is a light beam outside the effective diameter of the third light beam, can be separated from the main light, so that an error signal can be prevented from being generated.
  • the objective lens described in Item 18 satisfies the following expression when the annular zone width of the second optical path difference providing structure is L ( ⁇ m) in the invention described in any one of Items 1-17. It is characterized by that. 2 ⁇
  • the zone width can be widened so as to satisfy the expression (4), so that the ease of manufacturing the objective lens is increased.
  • the objective lens according to claim 19 satisfies the following expression, where ⁇ (mm) is a positional deviation in the optical axis direction of the wavefront aberration best position when the first light beam undergoes a wavelength change of 1 nm.
  • ⁇ (mm) is a positional deviation in the optical axis direction of the wavefront aberration best position when the first light beam undergoes a wavelength change of 1 nm.
  • the optical axis position ⁇ of the wavefront aberration best when the first light beam causes a wavelength change of 1 nm within a range satisfying the expression (6) the influence of the spherical aberration when the wavelength change occurs can be reduced.
  • a light source with mode hopping and poor monochromaticity it is possible to reduce the deviation of the optical axis position.
  • An optical pickup device has the objective lens according to any one of claims 1 to 19.
  • An optical information recording / reproducing device has the optical pickup device according to claim 20.
  • the optical pickup device has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light flux on the information recording surface of the first optical disc, condenses the second light flux on the information recording surface of the second optical disc, and causes the third light flux to be third. It has a condensing optical system for condensing on the information recording surface of the optical disc.
  • the optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from the information recording surface of the first optical disc, the second optical disc, or the third optical disc.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD
  • the second optical disc is a DVD
  • the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • the recording density the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (10) and (11) (.
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength ⁇ 3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has an objective lens.
  • the condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens may be composed of two or more lenses and / or optical elements, or may be composed of a single lens, but is preferably an objective lens composed of a single convex lens.
  • the objective lens may be a glass lens or a plastic lens, or an optical path difference providing structure is provided on the glass lens with a photo-curing resin, a UV-curing resin, or a thermosetting resin. Although it may be a hybrid lens, it is preferably a plastic lens. When the objective lens has a plurality of lenses, a glass lens and a plastic lens may be mixed and used.
  • the objective lens When the objective lens includes a plurality of lenses, it may be a combination of a flat optical element having an optical path difference providing structure and an aspherical lens (which may or may not have an optical path difference providing structure).
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower more preferably 400 ° C. or lower.
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity.
  • the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
  • one of the important physical properties when molding a glass lens is the linear expansion coefficient a. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still larger than that of a plastic material. When lens molding is performed using a glass material having a large linear expansion coefficient a, cracks are likely to occur when the temperature is lowered.
  • the linear expansion coefficient a of the glass material is preferably 200 (10E-7 / K) or less, and more preferably 120 or less.
  • an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material
  • the resin material has a refractive index within a range of 1.50 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm according to a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the refractive index change rate dN / dT (° C.
  • the coupling lens is also a plastic lens.
  • a first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (1) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ⁇ 20 alkoxy groups or halogen groups.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV).
  • Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
  • R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group.
  • R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group.
  • the following additives may be added.
  • Stabilizer It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
  • phenol-based stabilizer conventionally known ones can be used.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate
  • 2 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like
  • JP-A Nos. 63-179953 and 1-168643 JP-A Nos. 63-179953 and 1-168643.
  • Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-but
  • the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl).
  • Phenyl) phosphite tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
  • each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
  • hydrophilic group of the surfactant examples include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms.
  • the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent.
  • Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like.
  • the aromatic ring include a phenyl group.
  • the surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
  • examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene
  • examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like.
  • amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
  • the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • the addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • Plasticizer The plasticizer is added as necessary to adjust the melt index of the copolymer.
  • Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisode
  • cycloolefin resins are preferably used.
  • ZEONEX manufactured by Nippon Zeon Co., Ltd. APEL manufactured by Mitsui Chemicals, Inc.
  • TOPAS® ADVANCED® POLYMERS manufactured by TOPAS and JSR manufactured by ARTON are preferable. Take as an example.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • At least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region.
  • the central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good.
  • the central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 2, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface.
  • a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area.
  • the peripheral region may be a refracting surface, or a third optical path difference providing structure may be provided in the peripheral region.
  • the central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the central area of the objective lens can be said to be a shared area of the first, second, and third optical disks used for recording / reproduction of the first optical disk, the second optical disk, and the third optical disk. That is, the objective lens condenses the first light flux that passes through the central area so that information can be recorded / reproduced on the information recording surface of the first optical disc, and the second light flux that passes through the central area becomes the second light flux. Information is recorded and / or reproduced on the information recording surface of the optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central area can be recorded / reproduced on the information recording surface of the third optical disc.
  • the first optical path difference providing structure provided in the central region has the thickness t1 of the protective substrate of the first optical disc and the second optical disc with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in the thickness t2 of the protective substrate / spherical aberration generated due to the difference between the wavelengths of the first light flux and the second light flux. Further, the first optical path difference providing structure has a thickness t1 of the protective substrate of the first optical disc and a thickness of the protective substrate of the third optical disc with respect to the first light beam and the third light beam that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration that occurs due to the difference between t3 and the spherical aberration that occurs due to the difference between the wavelengths of the first and third light beams.
  • the intermediate area of the objective lens is used for recording / reproduction of the first optical disk and the second optical disk, and can be said to be the first and second optical disk shared areas not used for recording / reproduction of the third optical disk. That is, the objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded / reproduced on the information recording surface of the first optical disc, and the second light flux that passes through the intermediate area becomes the second light flux. The light is condensed on the information recording surface of the optical disc so that information can be recorded / reproduced. On the other hand, the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the third optical disk.
  • the third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the third optical disc.
  • the light amount density is high in the order from the optical axis side (or the center of the spot) to the outside. It is preferable to have a spot central portion SCN, a spot intermediate portion SMD having a light intensity density lower than that of the spot central portion, and a spot peripheral portion SOT having a light intensity density higher than that of the spot intermediate portion and lower than that of the spot central portion.
  • the center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc.
  • this spot peripheral part is called flare.
  • the spot peripheral part may be called a flare.
  • the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the third optical disc.
  • the peripheral area of the objective lens is used for recording / reproduction of the first optical disk, and can be said to be an area dedicated to the first optical disk that is not used for recording / reproduction of the second optical disk and the third optical disk. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the first optical disc.
  • the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the second optical disc, and the third light flux that passes through the peripheral area does not converge. The light is not condensed so that information can be recorded / reproduced on the information recording surface.
  • the second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surfaces of the second optical disc and the third optical disc. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surfaces of the second optical disc and the third optical disc.
  • the first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region.
  • the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
  • optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure of the present invention is preferably a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the optical path difference providing structure is a single aspherical lens
  • the incident angle of the light flux to the objective lens differs depending on the height from the optical axis.
  • Each will be slightly different.
  • the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the diffractive structure is a single aspherical lens
  • the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be.
  • the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
  • the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center.
  • the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
  • the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape.
  • the upper side is the light source side and the lower side is the optical disk side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface.
  • the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 4 (a))
  • the staircase structure has a plurality of small staircase structures in which the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure has the same number of steps.
  • a staircase unit refers to a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the staircase structure.
  • V step refers to a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the staircase structure.
  • V steps refers to a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the staircase structure.
  • V steps refers to a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of
  • the optical path difference providing structure illustrated in FIG. 4C is referred to as a five-step staircase structure
  • the optical path difference providing structure illustrated in FIG. 4D is referred to as a two-step staircase structure (also referred to as a binary structure).
  • a two-step staircase structure will be described below.
  • a plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis,
  • the light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed.
  • the surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis.
  • the length in the direction perpendicular to the optical axis of one step unit is referred to as a pitch P.
  • the length of the step in the direction parallel to the optical axis of the staircase is referred to as step amounts B1 and B2.
  • step amounts B1 and B2 In the case of a stepped structure having three or more steps, a large step amount B1 and a small step amount B2 exist.
  • the zone width is indicated by L1 to L7 in FIGS. 4 (c) and 4 (d), and the direction perpendicular to the optical axis between the steps. The width of
  • the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated.
  • the unit shape is periodically repeated here naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated. As shown in FIG. 4 (a), the same sawtooth shape may be repeated, and as shown in FIG. 4 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center).
  • the optical path difference providing structure has a staircase structure
  • the first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing.
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side. In other words, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
  • the first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped.
  • the first basic structure is preferably a blazed structure.
  • the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity that has passed through the first basic structure. Is made larger than any other order of the diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity.
  • the step amount of the first basic structure that generates low-order diffracted light does not become excessively large, so that the manufacturing becomes easy, the light quantity loss caused by the manufacturing error can be suppressed, and the diffraction efficiency at the time of wavelength variation It is preferable because fluctuations can be reduced.
  • At least the first basic structure provided in the vicinity of the optical axis in the central region has a step in the direction opposite to the optical axis. “The step is directed in the direction opposite to the optical axis” means a state as shown in FIG.
  • the first basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis. Preferably, at least a half step in the direction perpendicular to the optical axis from the optical axis to the boundary between the central region and the intermediate region and the step existing between the optical axes are directed in the opposite direction to the optical axis. It is.
  • the step may be directed in the direction of the optical axis. That is, as shown in FIG. 6 (b), when the first foundation structure is in the vicinity of the optical axis, the step is directed in the opposite direction to the optical axis. It is good also as a shape which faces the direction of an optical axis. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
  • the direction of the step of the first basic structure in which the diffraction order of the first light flux is an odd order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a sufficient working distance can be secured when the CD is used.
  • the first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have paraxial power with respect to the light beam.
  • “having paraxial power” means that C 2 is not 0 when the optical path difference function of the first basic structure is expressed by the following equation (1).
  • the second basic structure is preferably a blazed structure.
  • the second-order diffracted light amount of the first light beam that has passed through the second basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the first basic structure.
  • the light quantity is made larger than any other order of diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity.
  • the step amount of the second basic structure that generates low-order diffracted light does not become excessively large, which facilitates manufacturing, reduces the light amount loss due to manufacturing errors, and increases the diffraction efficiency when the wavelength varies. It is preferable because fluctuations can be reduced.
  • the level difference faces the direction of the optical axis.
  • the step is directed in the direction of the optical axis means a state as shown in FIG.
  • the second basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis.
  • a step existing between at least half of the optical axis orthogonal direction from the optical axis to the boundary between the central region and the intermediate region faces the direction of the optical axis.
  • the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 5A, the step is directed in the direction of the optical axis when the second foundation structure is near the optical axis, but is switched halfway, and the step of the second foundation structure is located near the optical axis. It is good also as a shape which faces the reverse direction.
  • the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
  • the first basic structure and the second basic structure are generated by superimposing the second basic structures that generate even-order diffracted light with respect to each other and have a step facing the direction of the optical axis at least in the vicinity of the optical axis in the central region.
  • the steps are overlapped so that the direction of the steps is the same, it is possible to suppress the height of the steps after being overlapped from being increased, and accordingly, the light quantity loss due to manufacturing errors can be suppressed.
  • the working distance of the CD can be increased.
  • the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD. It is also possible to provide a balanced objective lens. For example, it is possible to provide an objective lens having a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 60% or more for the wavelength ⁇ 2, and a diffraction efficiency of 50% or more for the wavelength ⁇ 3.
  • an objective lens having a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • the first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis. It is preferable that the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (12) and (13). More preferably, the following conditional expressions (12) and (13) are satisfied in all the regions of the central region.
  • the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase.
  • the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account.
  • n represents the refractive index of the objective lens at the first wavelength ⁇ 1.
  • the first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis.
  • An optical path difference providing structure having both of the steps facing the direction of.
  • the optical path difference providing structure has a step existing between at least a half position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
  • the pitches of the first foundation structure and the second foundation structure are matched, the positions of all the steps of the second foundation structure, and the steps of the first foundation structure. It is preferable to match the positions of all the steps of the first foundation structure with the positions of the steps of the second foundation structure.
  • d11 and d12 of the first optical path difference providing structure are the following conditional expressions (16) , (17) is preferably satisfied. More preferably, the following conditional expressions (16) and (17) are satisfied in all the regions of the central region. 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (16) 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (17)
  • conditional expressions (20) and (21) are preferably satisfied. More preferably, the following conditional expressions (20) and (21) are satisfied in all the regions of the central region. 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (20) 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (21)
  • the first basic structure underperforms aberration (undercorrection) when the wavelength increases (wavelength characteristics).
  • the 2nd basic structure allows the aberration to be over-corrected (overcorrection) when the wavelength becomes long (over-wavelength characteristic is over), so that the wavelength characteristic becomes too large or over. Therefore, it is possible to obtain an under-wavelength characteristic with a just good level.
  • the “under right wavelength characteristic of a good level” preferably has an absolute value of ⁇ rms of 150 or less.
  • the contribution rate of the first foundation structure is dominant in the paraxial power compared to the second foundation structure.
  • the average pitch of a 1st foundation structure is small compared with the average pitch of a 2nd foundation structure.
  • the pitch between the steps facing the direction opposite to the optical axis is smaller than the pitch between the steps facing the direction of the optical axis.
  • the number of steps facing in the direction opposite to the optical axis is larger than the number of steps facing in the direction of the optical axis.
  • the average pitch of a 1st foundation structure is 1/4 or less of the average pitch of a 2nd foundation structure. More preferably, it is 1/6 or less. It is preferable that the average pitch of the first foundation structure is 1/4 or less (preferably 1/6 or less) of the average pitch of the second foundation structure.
  • the number of steps facing the direction opposite to the optical axis is four times or more than the number of steps facing the direction of the optical axis. Can be said to be preferable. More preferably, it is 6 times or more.
  • the minimum pitch of the first optical path difference providing structure is 15 ⁇ m or less.
  • the ratio p / f1 between the minimum pitch p of the first optical path difference providing structure and the focal length f1 at the first wavelength ⁇ 1 is preferably 0.004 or less. More preferably, it is 10 ⁇ m or less.
  • the average pitch of the first optical path difference providing structure is 30 ⁇ m or less. More preferably, it is 20 ⁇ m or less.
  • the focus position can be separated from the generation position of unnecessary light by the first optical path difference providing structure, and erroneous detection can be reduced.
  • the average pitch is a value obtained by adding all pitches of the first optical path difference providing structure in the central region and dividing the sum by the number of steps of the first optical path difference providing structure in the central region.
  • the objective lens preferably has an axial chromatic aberration of 0.9 ⁇ m / nm or less. More preferably, the longitudinal chromatic aberration is 0.8 ⁇ m / nm or less. If the pitch of the first basic structure is too small, the longitudinal chromatic aberration may be deteriorated. Therefore, the design is made so that the pitch is not such that the longitudinal chromatic aberration is larger than 0.9 ⁇ m / nm. It is desirable. From this viewpoint, it is preferable that the ratio p / f1 between the minimum pitch p of the first optical path difference providing structure and the focal length f1 at the first wavelength ⁇ 1 is 0.002 or more. On the other hand, in order to ensure a sufficient working distance in CD, it is preferable that the longitudinal chromatic aberration is 0.4 ⁇ m / nm or more.
  • the first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (24).
  • the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range.
  • the first best focus position is the best focus position of the necessary light used for recording / reproduction of the third optical disc
  • the second best focus position is the largest amount of unnecessary light that is not used for recording / reproduction of the third optical disc. This is the best focus position for many luminous fluxes.
  • f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus
  • L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
  • conditional expression (24) ′ is satisfied. 0.50 ⁇ L / f13 ⁇ 0.75 (24) ′
  • FIG. 7 shows the first optical path difference providing structure ODS1 as a flat plate for convenience, it may be provided on a single aspherical convex lens.
  • the first foundation structure BS1 is overlaid on the second foundation structure BS2.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS faces the direction opposite to the optical axis OA.
  • the pitches of the first foundation structure BS1 and the second foundation structure BS2 are matched, and it can be seen that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure match.
  • the average pitch of the first foundation structure BS1 is smaller than the average pitch of the second foundation structure BS2, and the number of steps facing the direction opposite to the optical axis of the first foundation structure is the second foundation structure. This is more than the number of steps facing the direction of the optical axis.
  • the second optical path difference providing structure is a staircase structure having a plurality of small staircase structures having the same number of steps, and the second optical path difference providing structure is the 0th order of the first light flux that has passed through the second optical path difference providing structure.
  • the diffracted light quantity is made larger than any other order diffracted light quantity
  • the first-order diffracted light quantity of the second light flux that has passed through the second optical path difference providing structure is made larger than any other order diffracted light quantity
  • the second optical path difference The first-order diffracted light quantity of the third light flux that has passed through the providing structure is made larger than any other order diffracted light quantity.
  • the small staircase structure is preferably 2 steps (binary structure), 3 steps or 4 steps. Particularly preferred is a three-step process.
  • the height in the optical axis direction per step is h ( ⁇ m), and the step is facing the optical axis direction (as shown in FIG. 5A). It is preferable that the following expression is satisfied when the positive and step differences are opposite to the optical axis (as in FIG. 5B).
  • the height per step is set to h ( ⁇ m), the case where the step is facing the optical axis, and the step is facing the direction opposite to the optical axis.
  • h ⁇ m
  • the step is facing the direction opposite to the optical axis.
  • ⁇ 1.2 ⁇ h ⁇ ⁇ 0.7 is a preferable range of the small step value of each step of the small step structure
  • 2.7 ⁇ h ⁇ 4.4 is a preferable range of the large step value of the small step structure. is there.
  • a large step of the small staircase structure is a step facing the optical axis direction
  • a small step of each step of the small staircase structure is a step facing the direction opposite to the optical axis.
  • the small step h in the three-step small staircase structure is 0.9 ⁇ 1.09 ⁇ ⁇ 1 / (n-1) or more and 1.5 ⁇ 1.09 ⁇ ⁇ 1 / (n-1) or less. It is preferable that Note that ⁇ 1 is the wavelength of the first light source, and n is the refractive index of the material constituting the objective lens at the wavelength ⁇ 1.
  • the height per step is set to h ( ⁇ m), the case where the step is facing the optical axis direction, and the step is facing the direction opposite to the optical axis.
  • h ⁇ m
  • the step is facing the direction opposite to the optical axis.
  • the annular zone width of the second optical path difference providing structure is L ( ⁇ m)
  • the minimum annular zone width of the second optical path difference providing structure satisfies the following expression (4). More preferably, all the zone widths of the second optical path difference providing structure satisfy the following expression. 2 ⁇
  • the peripheral region may be a refractive surface or a third optical path difference providing structure.
  • the third optical path difference providing structure is provided in the peripheral region, an arbitrary optical path difference providing structure can be provided.
  • the third optical path difference providing structure may be a blazed structure or a staircase structure.
  • the third optical path difference providing structure is a blazed structure
  • the first-order diffracted light amount of the second light beam that has passed through the third optical path difference providing structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the third light beam that has passed through the third optical path difference-providing structure. It is preferable to make the amount of diffracted light larger than the amount of diffracted light of any other order.
  • the 0th-order diffracted light amount of the first light beam that has passed through the third optical path difference providing structure is diffracted in any other order. It is preferable to make it larger than the amount of light.
  • the first-order diffracted light amount of the second light beam that has passed through the third optical path difference providing structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the third light beam that has passed through the third optical path difference-providing structure. It is preferable to make the amount of diffracted light larger than the amount of diffracted light of any other order.
  • This type of optical path difference providing structure may be referred to as a 0/1/1 structure.
  • the third optical path difference providing structure is a 0/1/1 structure
  • the step It is preferable that the following expression is satisfied, when the case where is oriented in the direction opposite to the optical axis is negative. -1.0 ⁇ h ⁇ -0.6 (G) 0.6 ⁇ h ⁇ 1.0 (H)
  • the height per step of the small staircase structure is set to h ( ⁇ m), and the case where the step is facing the optical axis direction is correct. It is preferable that the following expression is satisfied when the step is in a direction opposite to the optical axis and negative. -1.2 ⁇ h ⁇ -0.7 (I) 2.7 ⁇ h ⁇ 4.4 (J)
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
  • NA2 NA1> NA2
  • NA3 NA2> NA3
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the boundary between the central region and the intermediate region of the objective lens is 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more, 1.15 ⁇ NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0.95 ⁇ NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion has a range of 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more and 1.15 ⁇ NA 3 or less) when the third light flux is used. It is preferable that it exists in.
  • the objective lens preferably satisfies the following conditional expression (5).
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux. More preferably, 1.0 ⁇ d / f ⁇ 1.2.
  • conditional expression (5) results in a thick objective lens with a thick on-axis objective lens, so that the working distance during CD recording / playback tends to be short.
  • the first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light.
  • all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable.
  • the imaging magnification m1 of the objective lens when the first light beam is incident on the objective lens satisfy the following formula (26). -0.01 ⁇ m1 ⁇ 0.01 (26)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following expression (27). Is preferred. -0.01 ⁇ m2 ⁇ 0.01 (27)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following expression (27) ′. . ⁇ 0.025 ⁇ m2 ⁇ ⁇ 0.01 (27) ′
  • the imaging magnification m3 of the objective lens when the third light beam is incident on the objective lens satisfies the following expression (28). Is preferred. -0.01 ⁇ m3 ⁇ 0.01 (28)
  • the imaging magnification m3 of the objective lens when the third light beam is incident on the objective lens preferably satisfies the following expression (28) ′. . ⁇ 0.025 ⁇ m3 ⁇ ⁇ 0.01 (28) ′
  • the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.2 mm or more and 1.5 mm or less. Preferably, it is 0.3 mm or more and 0.9 mm or less.
  • the WD of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 1.3 mm or less.
  • the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
  • x ( ⁇ m) indicates the distance in the optical axis direction between the portion farthest from the optical axis of the main light and the portion closest to the optical axis of the flare light.
  • the wavefront aberration best position here refers to the position in the optical axis direction where the total wavefront aberration such as longitudinal chromatic aberration and chromatic spherical aberration is minimized when the wavelength of the first light beam changes by 1 nm.
  • the optical pickup device preferably includes a coupling lens through which at least the first light beam and the second light beam pass, and an actuator that moves the coupling lens in the optical axis direction. Further, when the first light beam passes, the coupling lens can be displaced in the optical axis direction by an actuator, and when the second light beam passes, the coupling lens is fixed in the position in the optical axis direction. It is preferable.
  • the coupling lens is displaced in the optical axis direction so as to correspond to recording / reproduction on each information recording layer.
  • the function of already displacing the coupling lens in the optical axis direction is indispensable, but when using the second optical disc, the coupling lens is desired to be fixed without being displaced in the optical axis direction.
  • the reason for this is that flare does not occur when the first optical disc is used, but flare occurs when the second optical disc is used. Therefore, by changing the coupling lens, the flare aberration changes, and as a result, the flare is changed. May cause adverse effects on recording / playback, the reason for always keeping the initial position of the coupling lens to determine the type of the second optical disk, or simply the drive For example, the cost of firmware for displacing the coupling lens may be reduced as much as possible.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • a thick objective lens having a thick on-axis thickness that is used interchangeably with three types of optical discs of BD / DVD / CD
  • deterioration of chromatic aberration is suppressed while ensuring a working distance when using a CD. It becomes possible. Furthermore, it is possible to suppress an increase in the height of the step of the optical path difference providing structure, and accordingly, it is possible to suppress a light amount loss due to a manufacturing error and suppress a fluctuation in diffraction efficiency at the time of a wavelength fluctuation. Is possible. It is also possible to provide an objective lens with balanced light utilization efficiency that can maintain high light utilization efficiency for any of the three types of optical disks of BD / DVD / CD.
  • FIG. 1 It is a figure which shows the optical path difference function as an example. It is the figure which looked at the single objective lens OL concerning this Embodiment in the optical axis direction. It is a figure which shows the state which forms the spot which the 3rd light beam which passed the objective lens forms on the information recording surface of a 3rd optical disk. It is an axial direction sectional view showing an example of an optical path difference grant structure, (a) and (b) show an example of a blaze type structure, and (c) and (d) show an example of a step type structure. (A) shows a state in which the step is directed in the direction of the optical axis, and (b) is a diagram showing a state in which the step is directed in a direction opposite to the optical axis.
  • FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region. It is a conceptual diagram of the 1st optical path difference providing structure.
  • FIG. 1 shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record and / or reproduce
  • FIG. 6 is a graph showing an optical path difference function when using the BD of Example 1.
  • Example 1 it is a vertical spherical aberration figure at the time of BD use in a reference wavelength (405 nm).
  • Example 1 it is a longitudinal spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength.
  • FIG. 4 is a longitudinal spherical aberration diagram when the CD is used in Example 1. It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 2, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure in a flat plate element. 6 is a graph showing an optical path difference function when using a BD of Example 2.
  • Example 2 it is a longitudinal spherical aberration figure at the time of BD use in a reference wavelength (405 nm).
  • Example 2 it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength.
  • FIG. 6 is a longitudinal spherical aberration diagram when the CD is used in Example 2. It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 3, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure in a flat plate element. 10 is a graph showing an optical path difference function when using a BD of Example 3. In Example 3, it is a longitudinal spherical aberration figure at the time of BD use in a reference wavelength (405 nm).
  • Example 3 it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength.
  • FIG. 6 is a longitudinal spherical aberration diagram when the CD is used in Example 3. It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 4 and the 2nd optical path difference providing structure in a flat plate element. It is a graph which shows the optical path difference function at the time of BD use of Example 4. In Example 4, it is a vertical spherical aberration figure at the time of BD use in a reference
  • Example 4 it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength.
  • FIG. 6 is a longitudinal spherical aberration diagram when the CD is used in Example 4. It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 5, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure in a flat plate element. 10 is a graph showing an optical path difference function when using a BD of Example 5.
  • Example 5 it is a vertical spherical aberration figure at the time of BD use in a reference wavelength (405 nm).
  • Example 5 it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength.
  • FIG. 10 is a longitudinal spherical aberration diagram when the CD is used in Example 5. It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 6, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure in a flat plate element. 10 is a graph showing an optical path difference function when using a BD of Example 6. In Example 6, it is a vertical spherical aberration figure at the time of BD use in a reference wavelength (405 nm).
  • Example 6 it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength.
  • FIG. 10 is a longitudinal spherical aberration diagram when the CD is used in Example 6. It is an example of a longitudinal spherical aberration diagram when using a CD, and is a diagram for explaining a distance between main light and flare light. It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 1. FIG. It is a shape figure after superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 1. FIG.
  • FIG. 2nd foundation structure It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 2.
  • FIG. 2nd foundation structure It is a shape figure after superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 2.
  • FIG. 2nd foundation structure It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 3.
  • FIG. 8 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks.
  • the optical pickup device PU1 is a slim type and can be mounted on a thin optical information recording / reproducing device.
  • the first optical disc is a BD
  • the second optical disc is a DVD
  • the third optical disc is a CD.
  • the present invention is not limited to the present embodiment.
  • the first optical path difference providing structure already described in detail is formed in the center region CN
  • the second optical path difference providing structure already described in detail is formed in the intermediate region MD.
  • a third optical path difference providing structure or a refracting surface is formed in the peripheral region OT.
  • the objective lens of the present embodiment is a plastic lens.
  • the first optical path difference providing structure formed in the central region CN of the objective lens OL is a structure in which the first basic structure and the second basic structure are overlapped as shown in FIG.
  • the first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is set to any other order.
  • the -1st order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN.
  • the step is directed in the direction opposite to the optical axis (that is, has negative power), and the second basic structure is the second-order diffracted light amount of the first light flux that has passed through the second basic structure. Is larger than any other order of diffracted light, and the second substructure is The first-order diffracted light amount of the second light beam that has passed is made larger than any other order diffracted light amount, and the first-order diffracted light amount of the third light beam that has passed through the second basic structure is made larger than any other order diffracted light amount. Enlarge.
  • the 0th-order diffracted light quantity of the first light flux that has passed through the second optical path difference providing structure is made larger than any other order diffracted light quantity
  • the second optical path difference providing structure passes through the second optical path difference providing structure.
  • the first order diffracted light amount of the light beam is made larger than any other order diffracted light amount
  • the first order diffracted light amount of the third light beam that has passed through the optical path difference providing structure is made larger than any other order diffracted light amount.
  • the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1 having a thickness of 0.1 mm. .
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and by the collimating lens COL.
  • a converged light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1.
  • the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. Correction can be made by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL by changing the collimating lens COL as means in the optical axis direction.
  • the / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OL.
  • the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral part) is passed through the protective substrate PL2 having a thickness of 0.6 mm.
  • the spot is formed on the information recording surface RL2 of the DVD and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a convergent light beam by the collimating lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on DVD can be read using the output signal of light receiving element PD.
  • the linearly polarized light is converted into circularly polarized light by the ⁇ / 4 wavelength plate QWP, and is incident on the objective lens OL.
  • the light beam condensed by the central region of the objective lens OL (the light beam that has passed through the intermediate region and the peripheral region is flared to form a spot peripheral portion) is passed through the protective substrate PL3 having a thickness of 1.2 mm.
  • the spot is formed on the information recording surface RL3 of the CD.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 passes through the objective lens OL again, is converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and is converged by the collimating lens COL, The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula obtained by substituting the coefficients shown in Table 2 into Formula 2.
  • X (h) is an axis in the optical axis direction (with the light traveling direction being positive), ⁇ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation obtained by substituting the coefficient shown in the table into the optical path difference function of the above equation (1). Is done.
  • the first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1).
  • the third optical path difference structure is a (2, 1, 1) blazed diffraction structure.
  • Table 1 shows the lens data of Example 1.
  • WD in the table means working distance.
  • the actual shape of the objective lens was designed based on the lens data of Example 1.
  • the actual shape data are shown in Tables 2A to 2C.
  • Tables 2A to 2C By substituting the data shown in Table 2A, Table 2B, and Table 2C (continuous) into the mathematical formula shown in Equation 3, the actual shape data of each annular zone is obtained.
  • FIG. 9 shows a conceptual cross-sectional view when the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 1 are provided in a flat plate element.
  • the central region where the first optical path difference providing structure is provided is CN
  • the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD
  • the periphery where the third optical path difference providing structure is provided is provided The region is a region indicated by OT.
  • FIG. 10 is a graph showing the optical path difference function when the BD is used, with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis, and the optical path difference function is continuous between regions.
  • FIG. 11 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm)
  • FIG. 12 is a longitudinal spherical aberration diagram when using BD when the wavelength is changed to the +5 nm long wavelength side with respect to the reference wavelength.
  • the vertical axis of the graph is 1 when the effective diameter ⁇ 1 of the BD is 2.0 mm.
  • the minimum value of the band width L ( ⁇ m) is 3.42 ⁇ m.
  • d / f 1.0 where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux.
  • the first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1).
  • the third optical path difference structure is a (2, 1, 1) blazed diffraction structure.
  • Table 3 shows the lens data of Example 2.
  • the actual shape of the objective lens was designed based on the lens data of Example 2.
  • the actual shape data are shown in Tables 4A to 4B.
  • the actual shape data of each annular zone is obtained.
  • FIG. 14 shows a conceptual cross-sectional view in the case where the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 2 are provided in a flat plate element.
  • the central region where the first optical path difference providing structure is provided is CN
  • the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD
  • the periphery where the third optical path difference providing structure is provided is provided The region is a region indicated by OT.
  • FIG. 15 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis.
  • the optical path difference function is continuous between regions.
  • FIG. 16 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm)
  • FIG. 17 is a longitudinal spherical aberration diagram when using BD when the wavelength changes to the +5 nm long wavelength side with respect to the reference wavelength.
  • Example 2 the working distance CW at the time of using the CD is 0.2 mm, the distance x between the main light and the flare light condensed on the information recording surface of the CD is 10 ⁇ m, and the second optical path difference providing ring
  • the minimum value of the band width L ( ⁇ m) is 6.84 ⁇ m.
  • d / f 1.0 where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux.
  • ⁇ / f 2.2 ⁇ 10 ⁇ 4 mm, where ⁇ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
  • the first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1).
  • the third optical path difference structure is a two-step staircase type diffraction structure of (0, 1, 1).
  • Table 5 shows the lens data of Example 3.
  • the actual shape of the objective lens was designed based on the lens data of Example 3.
  • the actual shape data are shown in Tables 6A to 6B.
  • the actual shape data of each annular zone can be obtained.
  • FIG. 19 shows a conceptual cross-sectional view in the case where the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 3 are provided in the flat plate element.
  • the central region where the first optical path difference providing structure is provided is CN
  • the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD
  • the periphery where the third optical path difference providing structure is provided is provided The region is a region indicated by OT.
  • FIG. 20 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis.
  • the optical path difference function is continuous between regions.
  • FIG. 21 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm)
  • FIG. 22 is a longitudinal spherical aberration diagram when using BD when the wavelength changes to the +5 nm long wavelength side with respect to the reference wavelength.
  • FIG. 23 is a longitudinal spherical aberration diagram when using a CD, and shows main light and flare light generated within ⁇ 0.1 mm.
  • the minimum value of the band width L ( ⁇ m) is 6.96 ⁇ m.
  • d / f 1.0 where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux.
  • ⁇ / f 2.2 ⁇ 10 ⁇ 4 mm, where ⁇ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
  • the first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1).
  • the peripheral region is a refractive surface.
  • Table 7 shows the lens data of Example 4.
  • FIG. 24 shows a conceptual cross-sectional view when the first optical path difference providing structure and the second optical path difference providing structure of Example 4 are provided in the flat plate element.
  • the central region provided with the first optical path difference providing structure is CN
  • the intermediate region provided with the second optical path difference providing structure is the region indicated by MD
  • the peripheral region without the optical path difference providing structure is OT. This is the indicated area.
  • FIG. 25 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis, and the optical path difference function is continuous between regions.
  • FIG. 26 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm)
  • FIG. 27 is a longitudinal spherical aberration diagram when using BD when the wavelength is changed to +5 nm long wavelength side with respect to the reference wavelength.
  • the minimum value of the band width L ( ⁇ m) is 6.88 ⁇ m.
  • d / f 1.0 where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux.
  • ⁇ / f 2.2 ⁇ 10 ⁇ 4 mm, where ⁇ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
  • the first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1).
  • the third optical path difference structure is a (0, 1, 1) blazed diffraction structure.
  • Table 9 shows the lens data of Example 5.
  • the actual shape of the objective lens was designed based on the lens data of Example 5.
  • the actual shape data are shown in Tables 10A to 10B.
  • Table 10A and Table 10B continuously
  • Formula 3 the actual shape data of each annular zone is obtained.
  • FIG. 29 shows a conceptual cross-sectional view when the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 5 are provided in the flat plate element.
  • the central region where the first optical path difference providing structure is provided is CN
  • the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD
  • the periphery where the third optical path difference providing structure is provided is provided The region is a region indicated by OT.
  • FIG. 30 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis, and the optical path difference function is continuous between regions.
  • FIG. 31 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm)
  • FIG. 32 is a longitudinal spherical aberration diagram when using BD when the wavelength changes to the +5 nm long wavelength side with respect to the reference wavelength.
  • Example 5 the working distance CW when using the CD is 0.2 mm, the distance x between the main light and the flare light condensed on the information recording surface of the CD is 11 ⁇ m, and the second optical path difference providing ring
  • the minimum value of the band width L ( ⁇ m) is 8.44 ⁇ m.
  • d / f 1.2, where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux.
  • ⁇ / f 1.9 ⁇ 10 ⁇ 4 mm, where ⁇ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
  • the first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1).
  • the third optical path difference structure is a (0, 1, 1) blazed diffraction structure.
  • Table 11 shows lens data of Example 6.
  • the actual shape of the objective lens was designed based on the lens data of Example 6.
  • the actual shape data is shown in Tables 12A to 12B.
  • Tables 12A to 12B By substituting the data shown in Table 12A and Table 12B (continuous) into the mathematical formula shown in Formula 3, the actual shape data of each annular zone can be obtained.
  • FIG. 34 shows a conceptual cross-sectional view in the case where the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 6 are provided in the flat plate element.
  • the central region where the first optical path difference providing structure is provided is CN
  • the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD
  • the periphery where the third optical path difference providing structure is provided is provided The region is a region indicated by OT.
  • FIG. 35 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis, and the optical path difference function is continuous between regions.
  • FIG. 36 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm)
  • FIG. 37 is a longitudinal spherical aberration diagram when using BD when the wavelength changes to the +5 nm long wavelength side with respect to the reference wavelength.
  • the minimum value of the band width L ( ⁇ m) is 9.14 ⁇ m.
  • d / f 1.2, where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux.
  • ⁇ / f 2.0 ⁇ 10 ⁇ 4 mm where ⁇ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.

Abstract

Provided are an objective lens for an optical pickup device, an optical pickup device using the same, and an optical information recording and reproducing device which allow three types of optical disks including BD, DVD and CD to be replaceable by means of a common objective lens with no restriction on optical magnification while allowing for greater design freedom, high efficiency, and excellent manufacturability. A second optical path difference giving structure provided on the intermediate region of an objective lens is a step-like structure wherein the number of steps for each annular zone is identical. The second optical path difference giving structure sets the amount of zero-order diffracted light of a first luminous flux that passed through said second optical path difference giving structure to be greater than the amount of any order diffracted light and sets the amount of first-order diffracted light of a second luminous flux that passed through said second optical path difference giving structure to be greater than the amount of any order diffracted light. Further, said second optical path difference giving structure sets the amount of first-order diffracted light of a third luminous flux that passed through said second optical path difference giving structure to be greater than the amount of any order diffracted light.

Description

光ピックアップ装置用の対物レンズ、光ピックアップ装置及び光情報記録再生装置Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び/又は再生(記録/再生)を行える光ピックアップ装置、対物レンズ及び光情報記録再生装置に関する。 The present invention relates to an optical pickup device, an objective lens, and an optical information recording / reproducing apparatus capable of recording and / or reproducing (recording / reproducing) information interchangeably with different types of optical discs.
 近年、光ピックアップ装置において、光ディスクに記録された情報の再生や、光ディスクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進み、例えば、青紫色半導体レーザ等、波長390~420nmのレーザ光源が実用化されている。これら青紫色レーザ光源を使用すると、DVD(デジタルバーサタイルディスク)と同じ開口数(NA)の対物レンズを使用する場合で、直径12cmの光ディスクに対して、15~20GBの情報の記録が可能となり、対物光学素子のNAを0.85にまで高めた場合には、直径12cmの光ディスクに対して、23~25GBの情報の記録が可能となる。 In recent years, in an optical pickup device, a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened. For example, a wavelength 390 such as a blue-violet semiconductor laser is used. A laser light source of ˜420 nm has been put into practical use. When these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used. When the NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
 上述のようなNA0.85の対物レンズを使用する光ディスクの例として、BD(ブルーレイディスク)が挙げられる。光ディスクの傾き(スキュー)に起因して発生するコマ収差が増大するため、BDでは、DVD における場合よりも保護基板を薄く設計し(DVDの0.6mmに対して、0.1mm)、スキューによるコマ収差量を低減している。 BD (Blu-ray Disc) is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
 ところで、BDに対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDやCD(コンパクトディスク)が販売されている現実をふまえると、BDに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDやCDに対しても同様に適切に情報の記録/再生ができるようにすることが、BD用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、BD用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。 By the way, simply saying that information can be recorded / reproduced appropriately with respect to a BD cannot be said to be sufficient as a product of an optical disc player / recorder (optical information recording / reproducing apparatus). In light of the reality that DVDs and CDs (compact discs) on which a wide variety of information is recorded are currently being sold, it is not possible to record / reproduce information with respect to BDs. For example, DVDs owned by users, Similarly, it is possible to appropriately record / reproduce information on a CD, which leads to an increase in the commercial value of an optical disc player / recorder for BD. From such a background, the optical pickup device mounted on the BD optical disc player / recorder can record / reproduce information appropriately while maintaining compatibility with any of BD, DVD, and CD. It is desirable to have
 BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できるようにする方法として、BD用の光学系とDVDやCD用の光学系とを情報を記録/再生する光ディスクの記録密度に応じて選択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコストが増大する。 As a method for appropriately recording / reproducing information while maintaining compatibility with both BD and DVD, and further with CD, information between BD optical system and DVD or CD optical system is used. Although a method of selectively switching according to the recording density of the optical disc to be recorded / reproduced is conceivable, it requires a plurality of optical systems, which is disadvantageous for miniaturization and increases the cost.
 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性を有する光ピックアップ装置においても、BD用の光学系とDVDやCD用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らすのが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記録/再生波長が互いに異なる複数種類の光ディスクに対して共通な対物レンズを得るためには、球面収差の波長依存性を有する回折構造を対物レンズに形成する必要がある。 Therefore, in order to simplify the configuration of the optical pickup device and reduce the cost, even in an optical pickup device having compatibility, the optical system for BD and the optical system for DVD or CD can be shared. It is preferable to reduce the number of optical components constituting the pickup device as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common. In order to obtain a common objective lens for a plurality of types of optical disks having different recording / reproducing wavelengths, it is necessary to form a diffractive structure having a wavelength dependency of spherical aberration in the objective lens.
 特許文献1には階段状の回折構造を有し、3種類の光ディスクに対して共通に使用可能な対物レンズが記載されており、特許文献2には、回折構造である2つの基礎構造を重畳してなる構造を有し、3種類の光ディスクに対して共通に使用可能な対物レンズ、及びこの対物レンズを搭載した光ピックアップ装置が記載されている。 Patent Document 1 describes an objective lens that has a step-like diffractive structure and can be used in common for three types of optical disks. Patent Document 2 superimposes two basic structures that are diffractive structures. An objective lens that can be used in common with three types of optical discs and an optical pickup device equipped with this objective lens are described.
 ところで、3つの異なるディスク厚に対して球面収差を補正し互換を行うため、且つ、環境温度が変化した場合における屈折率変化に起因して発生する球面収差を補正する温度特性を波長毎に満足させるために、最低3つの自由度が必要といえる。ところが、特許文献1の回折次数の組み合わせの場合、「屈折面+回折面+有限光」で互換を実現しているため,BD/DVD/CDの互換を無限光で実現することは不可能となる。更にスリムタイプ(例えば、BD用の有効径Φが2.7mm以下)ではBD/DVD/CDの互換用レンズの場合、CDのワーキングディスタンスを長くするため、CDでは発散光が入射する必要があるが、その場合、同じNAでも無限光入射に比べて有効径が大きくなるので,BDの回折効率が低下してしまうという問題がある。 By the way, to compensate for spherical aberration for three different disc thicknesses, and to satisfy each temperature, temperature characteristics to correct spherical aberration caused by refractive index change when environmental temperature changes are satisfied. It can be said that a minimum of three degrees of freedom are necessary to achieve this. However, in the case of the combination of the diffraction orders of Patent Document 1, since compatibility is realized with “refractive surface + diffractive surface + finite light”, it is impossible to realize BD / DVD / CD compatibility with infinite light. Become. Furthermore, in the case of a slim type (for example, an effective diameter Φ for BD of 2.7 mm or less), in the case of a BD / DVD / CD compatible lens, the CD needs to have diverging light incident in order to increase the working distance of the CD. In that case, since the effective diameter is larger than the infinite light incidence even with the same NA, there is a problem that the diffraction efficiency of the BD is lowered.
 一方、特許文献2に開示された実施例1においては、対物レンズの光学面が、BD/DVD/CD用の光束を集光する中央領域と、前記中央領域の周りのBD/DVD用の光束を集光する中間領域と、前記中間領域の周りのBD用の光束を集光する周辺領域とを有する構成であって、中間領域には3つの回折構造(基礎構造)を重畳させた第2光路差付与構造が設けられている。しかるに、このように3つの回折構造を重畳させると、第2光路差付与構造の形状が複雑となり、また輪帯幅も小さくなるので、製造が困難となるという問題がある。一方、特許文献2に開示された実施例4においては、特許文献1と同様な課題を有している。 On the other hand, in Example 1 disclosed in Patent Document 2, the optical surface of the objective lens has a central region for condensing a BD / DVD / CD light beam, and a BD / DVD light beam around the central region. And a peripheral region that collects a BD light beam around the intermediate region, and the intermediate region is a second structure in which three diffraction structures (basic structures) are superimposed. An optical path difference providing structure is provided. However, when the three diffractive structures are superposed in this manner, the shape of the second optical path difference providing structure becomes complicated, and the annular zone width becomes small, which makes it difficult to manufacture. On the other hand, Example 4 disclosed in Patent Document 2 has the same problem as Patent Document 1.
特開2009-245575号公報JP 2009-245575 A 特開2011-96350号公報JP 2011-96350 A
 本発明は、上述の課題を解決することを目的としたものであり、BD/DVD/CDの3種類の光ディスクの互換を共通の対物レンズで行うことを可能としつつ、光学系倍率の制限がなく、設計の自由度に優れると共に、高い効率を有し、しかも製造容易性に優れた光ピックアップ装置用の対物レンズ並びにそれを用いた光ピックアップ装置及び光情報記録再生装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and enables the compatibility of three types of optical discs of BD / DVD / CD with a common objective lens while limiting the optical system magnification. An objective lens for an optical pickup device having excellent design flexibility, high efficiency, and excellent manufacturability, and an optical pickup device and an optical information recording / reproducing device using the objective lens And
 請求項1に記載の対物レンズは、第1波長λ1の第1光束を射出する第1光源と、第2波長λ2(λ2>λ1)の第2光束を射出する第2光源と、第3波長λ3(λ3>λ2)の第3光束を射出する第3光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有する第1光ディスクの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有する第2光ディスクの情報の記録及び/又は再生を行い、前記第3光束を用いて厚さがt3(t2<t3)の保護基板を有する第3光ディスクの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
 前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
 前記中央領域は第1光路差付与構造を有し、
 前記中間領域は第2光路差付与構造を有し、
 前記対物レンズは、前記中央領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、
 前記対物レンズは、前記中間領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
 前記第1基礎構造は、前記第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第2基礎構造は、前記第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第2光路差付与構造は、ステップ数が等しい複数の小階段型構造を有する階段型構造であり、前記第2光路差付与構造は、前記第2光路差付与構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2光路差付与構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする。
The objective lens according to claim 1, wherein a first light source that emits a first light beam having a first wavelength λ1, a second light source that emits a second light beam having a second wavelength λ2 (λ2> λ1), and a third wavelength. a third light source that emits a third light beam having a wavelength of λ3 (λ3> λ2), and recording and / or reproducing information on a first optical disk having a protective substrate with a thickness of t1 using the first light beam. Recording and / or reproducing information on the second optical disc having a protective substrate having a thickness t2 (t1 <t2) using the second light flux, and a thickness t3 (t2 <t) using the third light flux. an objective lens used in an optical pickup device for recording and / or reproducing information of a third optical disc having a protective substrate at t3),
The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
The central region has a first optical path difference providing structure,
The intermediate region has a second optical path difference providing structure,
The objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc. Condensing so that information can be recorded and / or reproduced,
The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc. Without collecting light so that information can be recorded and / or reproduced.
The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area. The second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc. Do not concentrate so that information can be recorded and / or reproduced
The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
The first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and 1 of the second light flux that has passed through the first basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, making the first order diffracted light quantity of the third light flux that has passed through the first basic structure larger than any other order diffracted light quantity,
The second basic structure makes the second-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and 1 of the second light beam that has passed through the second basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, making the first order diffracted light quantity of the third light flux that has passed through the second basic structure larger than any other order diffracted light quantity,
The second optical path difference providing structure is a staircase structure having a plurality of small staircase structures having the same number of steps, and the second optical path difference providing structure is a first light flux that has passed through the second optical path difference providing structure. Making the 0th-order diffracted light quantity larger than any other order diffracted light quantity, and making the first-order diffracted light quantity of the second light flux that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity; The first-order diffracted light amount of the third light beam that has passed through the second optical path difference providing structure is made larger than any other order diffracted light amount.
 本発明者は、鋭意研究の結果、第2光路差付与構造を、各輪帯のステップ数が等しい単純な階段型構造とした場合でも、第1光路差付与構造との相性がよくなる例を発見した。
つまり、第2光路差付与構造が、第2光路差付与構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光路差付与構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする(これを(0/1/1)構造という、以下同様)ものである場合、図1に示すように、対物レンズの第1光束と第2光束の[数1]に示す光路差関数が、中央領域と中間領域で連続となることを見出した。その結果、波長変化が生じた場合に球面収差の影響が小さくなるようにできるのである。
As a result of diligent research, the present inventor has found an example in which the second optical path difference providing structure is compatible with the first optical path difference providing structure even when the second optical path difference providing structure is a simple step structure having the same number of steps in each zone. did.
That is, the second optical path difference providing structure makes the 0th-order diffracted light quantity of the first light beam that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity, and passed through the second optical path difference providing structure. The first order diffracted light amount of the second light beam is made larger than any other order diffracted light amount, and the first order diffracted light amount of the third light beam that has passed through the second optical path difference providing structure is made higher than any other order diffracted light amount. When it is increased (this is referred to as a (0/1/1) structure), as shown in FIG. 1, the optical path difference function shown in [Equation 1] of the first and second light fluxes of the objective lens is shown. However, it has been found that the central region and the middle region are continuous. As a result, the influence of spherical aberration can be reduced when a wavelength change occurs.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 尚、hは光軸からの高さ、λは入射光束の波長、mは回折次数、C2iは光路差関数の係数である。 Here, h is the height from the optical axis, λ is the wavelength of the incident light beam, m is the diffraction order, and C 2i is the coefficient of the optical path difference function.
 又、異なる3つの波長の光束において対物レンズの結像倍率を0とし、即ち無限平行光を用いることができるから、BDやDVD使用時の効率を高めることができるのである。加えて、第2光路差付与構造が、ステップ数が等しい複数の小階段型構造を有する単純な階段型構造であるため、輪帯幅が広くなって光の利用効率を高めることができ、また対物レンズを成形する金型の製造が容易になり、製造誤差による効率低下を極力抑えることができるのである。さらに、本発明によって、第1光束が1nmの波長変化を生じたときの波面収差ベスト位置の光軸方向の位置ずれを小さくすることができる。即ち、第1光ディスク使用時の色収差を小さくすることができる。 Also, since the imaging magnification of the objective lens is set to 0 for light beams having three different wavelengths, that is, infinite parallel light can be used, the efficiency when using a BD or DVD can be increased. In addition, since the second optical path difference providing structure is a simple staircase structure having a plurality of small staircase structures having the same number of steps, the zone width can be widened to increase the light utilization efficiency. This makes it easy to manufacture a mold for forming the objective lens, and suppresses efficiency reduction due to manufacturing errors as much as possible. Furthermore, according to the present invention, it is possible to reduce the positional deviation in the optical axis direction of the wavefront aberration best position when the first light beam undergoes a wavelength change of 1 nm. That is, chromatic aberration when using the first optical disk can be reduced.
 請求項2に記載の対物レンズは、請求項1に記載の発明において、前記第2光路差付与構造は、前記小階段型構造が2ステップ(バイナリ構造)であることを特徴とする。 The objective lens according to claim 2 is characterized in that, in the invention according to claim 1, in the second optical path difference providing structure, the small step type structure has two steps (binary structure).
 請求項3に記載の対物レンズは、請求項2に記載の発明において、前記2ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする。
 -1.0≦h≦-0.6   (A)
 0.6≦h≦1.0    (B)
According to a third aspect of the present invention, there is provided the objective lens according to the second aspect, wherein the height of each step of the two-step structure of the two steps is h (μm), and the step is directed in the optical axis direction. The following expression is satisfied, when the case is positive and the case where the step is opposite to the optical axis is negative.
-1.0 ≦ h ≦ -0.6 (A)
0.6 ≦ h ≦ 1.0 (B)
 請求項4に記載の対物レンズは、請求項1に記載の発明において、前記第2光路差付与構造は、前記小階段型構造が3ステップであることを特徴とする。 According to a fourth aspect of the present invention, there is provided the objective lens according to the first aspect, wherein the second optical path difference providing structure has three steps of the small step type structure.
 請求項5に記載の対物レンズは、請求項4に記載の発明において、前記3ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする。
 -1.2≦h≦-0.7   (C)
 2.7≦h≦4.4    (D)
According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the height per step of the three-step small structure of the three steps is h (μm), and the step is directed in the optical axis direction. The following expression is satisfied, when the case is positive and the case where the step is opposite to the optical axis is negative.
-1.2 ≦ h ≦ -0.7 (C)
2.7 ≦ h ≦ 4.4 (D)
 請求項4や請求項5に係る構成により、1ステップの高さを低くでき、またBDとDVDの効率を高めることができる。但し、領域の境界ではステップ数が3未満の場合もある。 With the configuration according to claim 4 or claim 5, the height of one step can be reduced, and the efficiency of BD and DVD can be increased. However, the number of steps may be less than 3 at the boundary of the region.
 請求項6に記載の対物レンズは、請求項1に記載の発明において、前記第2光路差付与構造は、前記小階段型構造が4ステップであることを特徴とする請求項1に記載の対物レンズ。 The objective lens according to claim 6 is the objective according to claim 1, wherein the second optical path difference providing structure has four steps in the small step type structure. lens.
 請求項7に記載の対物レンズは、請求項6に記載の発明において、前記4ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする。
 -3.4≦h≦-2.0   (E)
 1.4≦h≦2.3    (F)
According to a seventh aspect of the invention, there is provided the objective lens according to the sixth aspect of the invention, wherein the height of one step of the four-step structure of the four steps is h (μm), and the step is directed in the optical axis direction. The following expression is satisfied, when the case is positive and the case where the step is opposite to the optical axis is negative.
-3.4 ≦ h ≦ -2.0 (E)
1.4 ≦ h ≦ 2.3 (F)
 請求項8に記載の対物レンズは、請求項1~7のいずれかに記載の発明において、前記周辺領域は、第3光路差付与構造を有し、前記第3光路差付与構造は、ブレーズ型構造であって、前記第3光路差付与構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする。 The objective lens according to claim 8 is the objective lens according to any one of claims 1 to 7, wherein the peripheral region has a third optical path difference providing structure, and the third optical path difference providing structure is a blaze type. The structure is characterized in that the second-order diffracted light amount of the first light flux that has passed through the third optical path difference providing structure is made larger than any other order diffracted light amount.
 これにより、第3光路差付与構造の回折パワーを利用して温度特性を満足させることができ、更に対物レンズの光路差関数が、中間領域と周辺領域とで連続することとなるから、波長変化が生じた場合に球面収差の影響が小さくなるようにできる。又、第2光束が周辺領域を通過した後にフレア光になる際に、中間領域を通過して第2光ディスクの情報記録面に集光するメイン光から離すことができ、エラー信号の発生を抑制できる。 Thereby, the temperature characteristic can be satisfied by using the diffraction power of the third optical path difference providing structure, and the optical path difference function of the objective lens is continuous in the intermediate region and the peripheral region. When this occurs, the influence of spherical aberration can be reduced. Moreover, when the second light flux passes through the peripheral area and becomes flare light, it can be separated from the main light that passes through the intermediate area and is condensed on the information recording surface of the second optical disk, thereby suppressing the generation of an error signal. it can.
 請求項9に記載の対物レンズは、請求項1~7のいずれかに記載の発明において、前記周辺領域は、第3光路差付与構造を有し、前記第3光路差付与構造は、複数の小階段型構造を有する階段型構造であって、前記第3光路差付与構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする。 The objective lens according to claim 9 is the objective lens according to any one of claims 1 to 7, wherein the peripheral region has a third optical path difference providing structure, and the third optical path difference providing structure includes a plurality of optical path difference providing structures. A staircase structure having a small staircase structure, wherein the 0th-order diffracted light quantity of the first light beam that has passed through the third optical path difference providing structure is made larger than any other order diffracted light quantity.
 これにより、第3光路差付与構造の回折パワーを利用して温度特性を満足させることができ、更に対物レンズの光路差関数が、中間領域と周辺領域とで連続することとなるから、波長変化が生じた場合に球面収差の影響が小さくなるようにできる。 Thereby, the temperature characteristic can be satisfied by using the diffraction power of the third optical path difference providing structure, and the optical path difference function of the objective lens is continuous in the intermediate region and the peripheral region. When this occurs, the influence of spherical aberration can be reduced.
 請求項10に記載の対物レンズは、請求項9に記載の発明であって、前記第3光路差付与構造は、前記小階段型構造が2ステップ(バイナリ構造)であることを特徴とする。 An objective lens according to a tenth aspect is the invention according to the ninth aspect, wherein the third optical path difference providing structure has a two-step (binary structure) structure of the small staircase structure.
 請求項11に記載の対物レンズは、請求項10に記載の発明であって、前記2ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする。
 -1.0≦h≦-0.6   (G)
 0.6≦h≦1.0    (H)
An objective lens according to an eleventh aspect is the invention according to the tenth aspect, wherein a height of one step of the two-step structure of the two steps is set to h (μm), and the step has an optical axis direction. It is characterized in that the following equation is satisfied when the direction is facing positive and the step is facing the opposite direction to the optical axis.
-1.0 ≦ h ≦ -0.6 (G)
0.6 ≦ h ≦ 1.0 (H)
 請求項12に記載の対物レンズは、請求項9に記載の発明であって、前記第3光路差付与構造は、前記小階段型構造が3ステップであることを特徴とする。 The objective lens according to a twelfth aspect is the invention according to the ninth aspect, wherein the third optical path difference providing structure has three steps of the small staircase structure.
 請求項13に記載の対物レンズは、請求項12に記載の発明であって、前記3ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする。
 -1.2≦h≦-0.7   (I)
 2.7≦h≦4.4    (J)
The objective lens described in claim 13 is the invention described in claim 12, wherein the height per step of the three-step small structure of the three steps is h (μm), and the step is in the optical axis direction. It is characterized in that the following equation is satisfied when the direction is facing positive and the step is facing the opposite direction to the optical axis.
-1.2 ≦ h ≦ -0.7 (I)
2.7 ≦ h ≦ 4.4 (J)
 請求項14に記載の対物レンズは、請求項1~7のいずれかに記載の発明において、前記周辺領域は屈折面であることを特徴とする。 The objective lens according to claim 14 is characterized in that, in the invention according to any one of claims 1 to 7, the peripheral region is a refractive surface.
 これにより、光の利用効率を高めることができる。 This can increase the light utilization efficiency.
 請求項15に記載に記載の対物レンズは、請求項1~14のいずれかに記載の発明において、前記第1光ディスクに対して情報の記録及び/又は再生を行う際の有効径をφ1(mm)としたときに、以下の式を満たすことを特徴とする。
 1.8≦φ1≦4.0   (1)
An objective lens according to a fifteenth aspect of the present invention is the objective lens according to any one of the first to fourteenth aspects, wherein an effective diameter for recording and / or reproducing information on the first optical disc is φ1 (mm ), The following expression is satisfied.
1.8 ≦ φ1 ≦ 4.0 (1)
 これにより、いわゆるスリムタイプと呼ばれる薄型の光ピックアップ装置から、ハーフハイトタイプと呼ばれる光ピックアップ装置まで幅広く適用できる。更に、以下の式を満たすと、より好ましい。
 2.0≦φ1≦4.0   (1’)
Thereby, it can be widely applied from a thin optical pickup device called a so-called slim type to an optical pickup device called a half-height type. Furthermore, it is more preferable when the following formula is satisfied.
2.0 ≦ φ1 ≦ 4.0 (1 ')
 請求項16に記載に記載の対物レンズは、請求項1~15のいずれかに記載の発明において、前記第3光ディスクのワーキングディスタンスをCW(mm)としたときに、以下の式を満たすことを特徴とする。
 CW≧0.2   (2)
The objective lens described in claim 16 satisfies the following expression when the working distance of the third optical disc is CW (mm) in the invention described in any one of claims 1-15. Features.
CW ≧ 0.2 (2)
 本発明によれば、(2)式を満たすように、第3光ディスク使用時のワーキングディスタンスを確保できる。 According to the present invention, the working distance when using the third optical disk can be secured so as to satisfy the expression (2).
 請求項17に記載の対物レンズは、請求項1~16のいずれかに記載の発明において、前記第3光ディスクの情報記録面に集光する第3光束のメイン光と第3光束のフレア光の距離をx(μm)としたときに、以下の式を満たすことを特徴とする。
 |x|≧5   (3)
The objective lens according to claim 17 is the objective lens according to any one of claims 1 to 16, wherein the main light of the third light flux condensed on the information recording surface of the third optical disc and the flare light of the third light flux. When the distance is x (μm), the following expression is satisfied.
| X | ≧ 5 (3)
 本発明によれば、(3)式を満たすようにできるので、第3光束の有効径外の光束であるフレア光をメイン光から離すことができるため、エラー信号の発生を防止できる。 According to the present invention, since the expression (3) can be satisfied, flare light, which is a light beam outside the effective diameter of the third light beam, can be separated from the main light, so that an error signal can be prevented from being generated.
 請求項18に記載の対物レンズは、請求項1~17のいずれかに記載の発明において、前記第2光路差付与構造の輪帯幅をL(μm)としたときに、以下の式を満たすことを特徴とする。
 2≦|L|≦12   (4)
The objective lens described in Item 18 satisfies the following expression when the annular zone width of the second optical path difference providing structure is L (μm) in the invention described in any one of Items 1-17. It is characterized by that.
2 ≦ | L | ≦ 12 (4)
 本発明によれば、(4)式を満たすように輪帯幅を広げることができるので、対物レンズの製造容易性が高まる。 According to the present invention, the zone width can be widened so as to satisfy the expression (4), so that the ease of manufacturing the objective lens is increased.
 請求項19に記載の対物レンズは、請求項前記第1光束が1nmの波長変化を生じたときの波面収差ベスト位置の光軸方向の位置ずれをΔ(mm)とすると、以下の式を満たすことを特徴とする請求項1~18のいずれかに記載の対物レンズ。
 1.9×10-4≦Δ/f≦2.5×10-4   (6)
The objective lens according to claim 19 satisfies the following expression, where Δ (mm) is a positional deviation in the optical axis direction of the wavefront aberration best position when the first light beam undergoes a wavelength change of 1 nm. The objective lens according to any one of claims 1 to 18, wherein:
1.9 × 10 −4 ≦ Δ / f ≦ 2.5 × 10 −4 (6)
 (6)式を満たす範囲に、前記第1光束が1nmの波長変化を生じたときの波面収差ベストの光軸位置Δを定めることで、波長変化が生じた場合における球面収差の影響を小さくできる。例えば、モードホッピングの発生、単色性が悪い光源を使用した場合、光軸位置のずれを小さくすることが可能である。 By determining the optical axis position Δ of the wavefront aberration best when the first light beam causes a wavelength change of 1 nm within a range satisfying the expression (6), the influence of the spherical aberration when the wavelength change occurs can be reduced. . For example, when a light source with mode hopping and poor monochromaticity is used, it is possible to reduce the deviation of the optical axis position.
 請求項20に記載の光ピックアップ装置は、請求項1乃至19のいずれかに記載の対物レンズを有することを特徴とする。 An optical pickup device according to claim 20 has the objective lens according to any one of claims 1 to 19.
 請求項21に記載の光情報記録再生装置は、請求項20に記載の光ピックアップ装置を有することを特徴とする。 An optical information recording / reproducing device according to claim 21 has the optical pickup device according to claim 20.
 本発明に係る光ピックアップ装置は、第1光源、第2光源、第3光源の少なくとも3つの光源を有する。さらに、本発明の光ピックアップ装置は、第1光束を第1光ディスクの情報記録面上に集光させ、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光させるための集光光学系を有する。また、本発明の光ピックアップ装置は、第1光ディスク、第2光ディスク又は第3光ディスクの情報記録面からの反射光束を受光する受光素子を有する。 The optical pickup device according to the present invention has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light flux on the information recording surface of the first optical disc, condenses the second light flux on the information recording surface of the second optical disc, and causes the third light flux to be third. It has a condensing optical system for condensing on the information recording surface of the optical disc. The optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from the information recording surface of the first optical disc, the second optical disc, or the third optical disc.
 第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。なお、第1光ディスク、第2光ディスク又は第3光ディスクは、複数の情報記録面を有する複数層の光ディスクでもよい。 The first optical disc has a protective substrate having a thickness t1 and an information recording surface. The second optical disc has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The third optical disc has a protective substrate having a thickness t3 (t2 <t3) and an information recording surface. The first optical disc is preferably a BD, the second optical disc is a DVD, and the third optical disc is preferably a CD, but is not limited thereto. The first optical disc, the second optical disc, or the third optical disc may be a multi-layer optical disc having a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層又はそれ以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording layer, a BD having two or more information recording layers, and the like. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(7)、(8)、(9)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。 In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (7), (8), and (9), but is not limited thereto. The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  0.050mm ≦ t1 ≦ 0.125mm   (7)
  0.5mm ≦ t2 ≦ 0.7mm      (8)
  1.0mm ≦ t3 ≦ 1.3mm      (9)
0.050 mm ≤ t1 ≤ 0.125 mm (7)
0.5mm ≤ t2 ≤ 0.7mm (8)
1.0mm ≤ t3 ≤ 1.3mm (9)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(10)、(11) を満たすことが好ましい。 In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (10) and (11) (.
  1.5・λ1 < λ2 < 1.7・λ1    (10)
  1.8・λ1 < λ3 < 2.0・λ1    (11)
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm 以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。
1.5 · λ1 <λ2 <1.7 · λ1 (10)
1.8 · λ1 <λ3 <2.0 · λ1 (11)
When BD, DVD, and CD are used as the first optical disc, the second optical disc, and the third optical disc, respectively, the first wavelength λ1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm. The second wavelength λ2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、対物レンズを有する。集光光学系は、対物レンズの他にコリメータ等のカップリングレンズを有していることが好ましい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメータは、カップリングレンズの一種で、コリメータに入射した光を平行光にして出射するレンズである。本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、二つ以上の複数のレンズ及び/又は光学素子から構成されていてもよいし、単玉のレンズのみからなっていてもよいが、好ましくは単玉の凸レンズからなる対物レンズである。また、対物レンズは、ガラスレンズであってもプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性樹脂、UV硬化性樹脂、又は熱硬化性樹脂などで光路差付与構造を設けたハイブリッドレンズであってもよいが、プラスチックレンズであることが好ましい。対物レンズが複数のレンズを有する場合は、ガラスレンズとプラスチックレンズを混合して用いてもよい。対物レンズが複数のレンズを有する場合、光路差付与構造を有する平板光学素子と非球面レンズ(光路差付与構造を有していてもいなくてもよい)の組み合わせであってもよい。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 The condensing optical system has an objective lens. The condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens. The coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam. The collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light. In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens may be composed of two or more lenses and / or optical elements, or may be composed of a single lens, but is preferably an objective lens composed of a single convex lens. . The objective lens may be a glass lens or a plastic lens, or an optical path difference providing structure is provided on the glass lens with a photo-curing resin, a UV-curing resin, or a thermosetting resin. Although it may be a hybrid lens, it is preferably a plastic lens. When the objective lens has a plurality of lenses, a glass lens and a plastic lens may be mixed and used. When the objective lens includes a plurality of lenses, it may be a combination of a flat optical element having an optical path difference providing structure and an aspherical lens (which may or may not have an optical path difference providing structure). The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下、更に好ましくは400℃以下であるガラス材料を使用することが好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。このようなガラス転移点Tgが低いガラス材料としては、例えば(株)住田光学ガラス製のK-PG325や、K-PG375(共に製品名) がある。 When the objective lens is a glass lens, it is preferable to use a glass material having a glass transition point Tg of 500 ° C. or lower, more preferably 400 ° C. or lower. By using a glass material having a glass transition point Tg of 500 ° C. or lower, molding at a relatively low temperature is possible, so that the life of the mold can be extended. Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
 ところで、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、重量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が4.0以下であるのが好ましく、更に好ましくは比重が3.0以下であるものである。 By the way, since the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
 加えて、ガラスレンズを成形して製作する際に重要となる物性値の一つが線膨脹係数aである。仮にTgが400℃以下の材料を選んだとしても、プラスチック材料と比較して室温との温度差は依然大きい。線膨脹係数aが大きい硝材を用いてレンズ成形を行った場合、降温時に割れが発生しやすくなる。硝材の線膨脹係数aは、200(10E-7/K)以下にあることが好ましく、さらに好ましくは120以下であることである。 In addition, one of the important physical properties when molding a glass lens is the linear expansion coefficient a. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still larger than that of a plastic material. When lens molding is performed using a glass material having a large linear expansion coefficient a, cracks are likely to occur when the temperature is lowered. The linear expansion coefficient a of the glass material is preferably 200 (10E-7 / K) or less, and more preferably 120 or less.
 また、対物レンズを構成するプラスチック材料として、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用するのが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.50乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃-1)が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズがプラスチックレンズである場合、カップリングレンズもプラスチックレンズとすることが好ましい。 Moreover, it is preferable to use an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material as a plastic material constituting the objective lens. The resin material has a refractive index within a range of 1.50 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm according to a temperature change within a temperature range of −5 ° C. to 70 ° C. The refractive index change rate dN / dT (° C. −1 ) with respect to the range of −20 × 10 −5 to −5 × 10 −5 (more preferably −10 × 10 −5 to −8 × 10 −5 ). It is more preferable to use a certain resin material. When the objective lens is a plastic lens, it is preferable that the coupling lens is also a plastic lens.
 脂環式炭化水素系重合体の好ましい例を幾つか、以下に示す。 Some preferred examples of the alicyclic hydrocarbon polymer are shown below.
 第1の好ましい例は、下記式(I)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(1)で表される繰り返し単位〔1〕並びに下記式(II)で表される繰り返し単位〔2〕または/および下記式(III)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなる樹脂組成物である。 A first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (1) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、R1は水素原子、または炭素数1~20のアルキル基を表し、R2-R12はそれぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基、またはハロゲン基である。) (Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ˜20 alkoxy groups or halogen groups.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式中、R13は、水素原子、または炭素数1~20のアルキル基を表す。) (In the formula, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
  (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1~20のアルキル基を表す。) (Wherein R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
 次に、第2の好ましい例は、少なくとも炭素原子数2~20のα-オレフィンと下記一般式(IV)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(A)と、炭素原子数2~20のα-オレフィンと下記一般式(V)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(B)とを含む樹脂組成物である。 Next, a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV). Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 〔式中、nは0または1であり、mは0または1以上の整数であり、qは0または1であり、R1~R18、Ra及びRbは、それぞれ独立に水素原子、ハロゲン原子または炭化水素基であり、R15~R18は互いに結合して単環または多環を形成していてもよく、括弧内の単環または多環が二重結合を有していてもよく、またR15とR16と、またはR17とR18とでアルキリデン基を形成していてもよい。〕 [Wherein n is 0 or 1, m is 0 or an integer of 1 or more, q is 0 or 1, and R 1 to R 18 , R a and R b are each independently a hydrogen atom, A halogen atom or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond Alternatively, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group. ]
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 〔式中、R19~R26はそれぞれ独立に水素原子、ハロゲン原子または炭化水素基である。〕 [Wherein, R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group. ]
 樹脂材料に更なる性能を付加するために、以下のような添加剤を添加してもよい。 In order to add further performance to the resin material, the following additives may be added.
 (安定剤)
 フェノール系安定剤、ヒンダードアミン系安定剤、リン系安定剤及びイオウ系安定剤から選ばれた少なくとも1種の安定剤を添加することが好ましい。これらの安定剤を適宜選択し添加することで、例えば、405nmといった短波長の光を継続的に照射した場合の白濁や、屈折率の変動等の光学特性変動をより高度に抑制することができる。
(Stabilizer)
It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
 好ましいフェノール系安定剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2′-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニルプロピオネート))メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート))]、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。 As the preferred phenol-based stabilizer, conventionally known ones can be used. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate compounds described in Japanese Patent Publication No. 1; octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) ), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( , 5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenylpropionate)) methane [ie pentaerythris Limethyl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate))], triethylene glycol bis (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propionate) and other alkyl-substituted phenolic compounds; 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 4-bisoctylthio -1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5- Triazine group-containing phenol compounds such as triazine; and the like.
 また、好ましいヒンダードアミン系安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(N-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-ベンジルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクロイル-2,2,6,6-テトラメチル-4-ピペリジル)2,2-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1-[2-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル]-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート等が挙げられる。 Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1,2,2,6,6- Pentamethyl-4-piperidyl) decandioate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -1- [2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl] -2,2,6,6-tetramethylpiperidine, 2-methyl-2- ( 2,2,6,6-tetramethyl-4-piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6,6-tetramethyl -4-pi Lysyl) 1,2,3,4-butane tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate, and the like.
 また、好ましいリン系安定剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。 Further, the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl). Phenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
 また、好ましいイオウ系安定剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3′-チオジプロピピオネート、ジステアリル 3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ)-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。 Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
 これらの各安定剤の配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、脂環式炭化水素系共重合体100質量部に対して通常0.01~2質量部、好ましくは0.01~1質量部であることが好ましい。 The amount of each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
(界面活性剤)
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。界面活性剤は樹脂表面への水分の付着や上記表面からの水分の蒸発の速度を調節することで、樹脂組成物の白濁を防止することが可能となる。
(Surfactant)
A surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule. The surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
 界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基などが挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的に炭素数6以上のアルキル基、炭素数6以上のアルキル基を有するシリル基、炭素数6以上のフルオロアルキル基などが挙げられる。ここで、炭素数6以上のアルキル基は置換基として芳香環を有していてもよい。アルキル基としては、具体的にヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデセニル、ドデシル、トリデシル、テトラデシル、ミリスチル、ステアリル、ラウリル、パルミチル、シクロヘキシルなどが挙げられる。芳香環としてはフェニル基などが挙げられる。この界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。 Specific examples of the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned. Here, the amino group may be primary, secondary, or tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms. Here, the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent. Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like. Examples of the aromatic ring include a phenyl group. The surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
 このような界面活性剤としては、より具体的には、例えば、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、などが挙げられる。これらのうちでも、ヒドロキシアルキル基を有するアミン化合物またはアミド化合物が好ましく用いられる。本発明では、これら化合物を2種以上組合わせて用いてもよい。 More specifically, examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene Examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like. Among these, amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
 界面活性剤は、温度、湿度の変動に伴なう成形物の白濁を効果的に抑え、成形物の光透過率を高く維持するという観点から、脂環式炭化水素系重合体100質量部に対して0.01~10質量部添加されることが好ましい。界面活性剤の添加量は脂環式炭化水素系重合体100質量部に対して0.05~5質量部とすることがより好ましく、0.3~3質量部とすることが更に好ましい。 From the viewpoint of effectively suppressing the white turbidity of the molded product accompanying fluctuations in temperature and humidity and maintaining the light transmittance of the molded product high, the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer. On the other hand, it is preferable to add 0.01 to 10 parts by mass. The addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
(可塑剤)
 可塑剤は共重合体のメルトインデックスを調節するため、必要に応じて添加される。
(Plasticizer)
The plasticizer is added as necessary to adjust the melt index of the copolymer.
 可塑剤としては、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ビス(2-ブトキシエチル)、アゼライン酸ビス(2-エチルヘキシル)、ジプロピレングリコールジベンゾエート、クエン酸トリ-n-ブチル、クエン酸トリ-n-ブチルアセチル、エポキシ化大豆油、2-エチルヘキシルエポキシ化トール油、塩素化パラフィン、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、リン酸-t-ブチルフェニル、リン酸トリ-2-エチルヘキシルジフェニル、フタル酸ジブチル、フタル酸ジイソヘキシル、フタル酸ジヘプチル、フタル酸ジノニル、フタル酸ジウンデシル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジトリデシル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシル、セバシン酸ジ-2-エチルヘキシル、トリメリット酸トリ-2-エチルヘキシル、Santicizer 278、Paraplex G40、Drapex 334F、Plastolein 9720、Mesamoll、DNODP-610、HB-40等の公知のものが適用可能である。可塑剤の選定及び添加量の決定は、共重合体の透過性や環境変化に対する耐性を損なわないことを条件に適宜行なわれる。 Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, dicyclyl phthalate Known materials such as hexyl, di-2-ethylhexyl sebacate, tri-2-ethylhexyl trimellitic acid, Santizer 278, Paraplex G40, Drapex 334F, Plastolein 9720, Mesamol, DNODP-610, HB-40, etc. are applicable. . The selection of the plasticizer and the addition amount are appropriately performed under the condition that the permeability of the copolymer and the resistance to environmental changes are not impaired.
 これらの樹脂としては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As these resins, cycloolefin resins are preferably used. Specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, and JSR manufactured by ARTON are preferable. Take as an example.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 対物レンズについて、以下に記載する。対物レンズの少なくとも一つの光学面が、中央領域と、中央領域の周りの中間領域と、中間領域の周りの周辺領域とを少なくとも有する。中央領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを中心領域(中央領域ともいう)としてもよい。中央領域、中間領域、及び周辺領域は同一の光学面上に設けられていることが好ましい。図2に示されるように、中央領域CN、中間領域MD、周辺領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。また、対物レンズの中央領域には第一光路差付与構造が設けられ、中間領域には第二光路差付与構造が設けられている。周辺領域は屈折面であってもよいし、周辺領域に第三光路差付与構造が設けられていてもよい。中央領域、中間領域、周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。 The objective lens is described below. At least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region. The central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good. The central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 2, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface. In addition, a first optical path difference providing structure is provided in the central area of the objective lens, and a second optical path difference providing structure is provided in the intermediate area. The peripheral region may be a refracting surface, or a third optical path difference providing structure may be provided in the peripheral region. The central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
 対物レンズの中央領域は、第1光ディスク、第2光ディスク及び第3光ディスクの記録/再生に用いられる第1、第2、第3光ディスク共用領域と言える。即ち、対物レンズは、中央領域を通過する第1光束を、第1光ディスクの情報記録面上に情報の記録/再生ができるように集光し、中央領域を通過する第2光束を、第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、中央領域を通過する第3光束を、前記第3光ディスクの情報記録面上に情報の記録/再生ができるように集光する。また、中央領域に設けられた第1光路差付与構造は、第1光路差付与構造を通過する第1光束及び第2光束に対して、第1光ディスクの保護基板の厚さt1と第2光ディスクの保護基板の厚さt2の違いにより発生する球面収差/第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。さらに、第1光路差付与構造は、第1光路差付与構造を通過した第1光束及び第3光束に対して、第1光ディスクの保護基板の厚さt1と第3光ディスクの保護基板の厚さt3との違いにより発生する球面収差/第1光束と第3光束の波長の違いにより発生する球面収差を補正することが好ましい。 The central area of the objective lens can be said to be a shared area of the first, second, and third optical disks used for recording / reproduction of the first optical disk, the second optical disk, and the third optical disk. That is, the objective lens condenses the first light flux that passes through the central area so that information can be recorded / reproduced on the information recording surface of the first optical disc, and the second light flux that passes through the central area becomes the second light flux. Information is recorded and / or reproduced on the information recording surface of the optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central area can be recorded / reproduced on the information recording surface of the third optical disc. Condensed to In addition, the first optical path difference providing structure provided in the central region has the thickness t1 of the protective substrate of the first optical disc and the second optical disc with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in the thickness t2 of the protective substrate / spherical aberration generated due to the difference between the wavelengths of the first light flux and the second light flux. Further, the first optical path difference providing structure has a thickness t1 of the protective substrate of the first optical disc and a thickness of the protective substrate of the third optical disc with respect to the first light beam and the third light beam that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration that occurs due to the difference between t3 and the spherical aberration that occurs due to the difference between the wavelengths of the first and third light beams.
 対物レンズの中間領域は、第1光ディスク、第2光ディスクの記録/再生に用いられ、第3光ディスクの記録/再生に用いられない第1、第2光ディスク共用領域と言える。即ち、対物レンズは、中間領域を通過する第1光束を、第1光ディスクの情報記録面上に情報の記録/再生ができるように集光し、中間領域を通過する第2光束を、第2光ディスクの情報記録面上に情報の記録/再生ができるように集光する。その一方で、中間領域を通過する第3光束を、第3光ディスクの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの中間領域を通過する第3光束は、第3光ディスクの情報記録面上でフレアを形成することが好ましい。図3に示すように、対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部SCN、光量密度がスポット中心部より低いスポット中間部SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部SOTを有することが好ましい。スポット中心部が、光ディスクの情報の記録/再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録/再生には用いられない。上記において、このスポット周辺部をフレアと言っている。但し、スポット中心部の周りにスポット中間部が存在せずスポット周辺部があるタイプ、即ち、集光スポットの周りに薄く光が大きなスポットを形成する場合も、そのスポット周辺部をフレアと呼んでもよい。つまり、対物レンズの中間領域を通過した第3光束は、第3光ディスクの情報記録面上でスポット周辺部を形成することが好ましいとも言える。 The intermediate area of the objective lens is used for recording / reproduction of the first optical disk and the second optical disk, and can be said to be the first and second optical disk shared areas not used for recording / reproduction of the third optical disk. That is, the objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded / reproduced on the information recording surface of the first optical disc, and the second light flux that passes through the intermediate area becomes the second light flux. The light is condensed on the information recording surface of the optical disc so that information can be recorded / reproduced. On the other hand, the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the third optical disk. The third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the third optical disc. As shown in FIG. 3, in the spot formed on the information recording surface of the third optical disc by the third light beam that has passed through the objective lens, the light amount density is high in the order from the optical axis side (or the center of the spot) to the outside. It is preferable to have a spot central portion SCN, a spot intermediate portion SMD having a light intensity density lower than that of the spot central portion, and a spot peripheral portion SOT having a light intensity density higher than that of the spot intermediate portion and lower than that of the spot central portion. The center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare. However, there is no spot middle part around the center part of the spot and there is a spot peripheral part, that is, even when a light spot is formed thinly around the condensing spot, the spot peripheral part may be called a flare. Good. That is, it can be said that the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the third optical disc.
 対物レンズの周辺領域は、第1光ディスクの記録/再生に用いられ、第2光ディスク及び第3光ディスクの記録/再生に用いられない第1光ディスク専用領域と言える。即ち、対物レンズは、周辺領域を通過する第1光束を、第1光ディスクの情報記録面上に情報の記録/再生ができるように集光する。その一方で、周辺領域を通過する第2光束を、第2光ディスクの情報記録面上に情報の記録/再生ができるように集光せず、周辺領域を通過する第3光束を、第3光ディスクの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの周辺領域を通過する第2光束及び第3光束は、第2光ディスク及び第3光ディスクの情報記録面上でフレアを形成することが好ましい。つまり、対物レンズの周辺領域を通過した第2光束及び第3光束は、第2光ディスク及び第3光ディスクの情報記録面上でスポット周辺部を形成することが好ましい。 The peripheral area of the objective lens is used for recording / reproduction of the first optical disk, and can be said to be an area dedicated to the first optical disk that is not used for recording / reproduction of the second optical disk and the third optical disk. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the first optical disc. On the other hand, the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the second optical disc, and the third light flux that passes through the peripheral area does not converge. The light is not condensed so that information can be recorded / reproduced on the information recording surface. The second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surfaces of the second optical disc and the third optical disc. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surfaces of the second optical disc and the third optical disc.
 第1光路差付与構造は、対物レンズの中央領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第1光路差付与構造が、中央領域の全面に設けられていることである。第2光路差付与構造は、対物レンズの中間領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第2光路差付与構造が、中間領域の全面に設けられていることである。周辺領域が第3光路差付与構造を有する場合、第3光路差付与構造は、対物レンズの周辺領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第3光路差付与構造が、周辺領域の全面に設けられていることである。 The first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region. The second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region. When the peripheral region has the third optical path difference providing structure, the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
 なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含まれる。また、位相差付与構造には回折構造が含まれる。本発明の光路差付与構造は回折構造であることが好ましい。光路差付与構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光路差付与構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、光路差付与構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam. The optical path difference providing structure also includes a phase difference providing structure for providing a phase difference. The phase difference providing structure includes a diffractive structure. The optical path difference providing structure of the present invention is preferably a diffractive structure. The optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux. The optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. When the objective lens provided with the optical path difference providing structure is a single aspherical lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis. Each will be slightly different. For example, when the objective lens is a single-lens aspherical convex lens, even if it is an optical path difference providing structure that provides the same optical path difference, generally the distance from the optical axis tends to increase.
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、回折構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In addition, when the objective lens provided with the diffractive structure is a single aspherical lens, the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be. For example, when the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
 ところで、光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、光路差付与構造は、一般に、様々な断面形状(光軸を含む面での断面形状) をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。 Incidentally, it is preferable that the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center. In addition, the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shapes including the optical axis are roughly classified into a blazed structure and a staircase structure.
 ブレーズ型構造とは、図4(a)、(b)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということである。尚、図4の例においては、上方が光源側、下方が光ディスク側であって、母非球面としての平面に光路差付与構造が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという。(図4(a)、(b)参照)また、ブレーズの光軸に平行方向の段差の長さを段差量Bという。(図4(a)参照) As shown in FIGS. 4A and 4B, the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape. In the example of FIG. 4, it is assumed that the upper side is the light source side and the lower side is the optical disk side, and the optical path difference providing structure is formed on a plane as a mother aspherical surface. In the blazed structure, the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P. (See FIGS. 4A and 4B.) The length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 4 (a))
 また、階段型構造とは、図4(c)、(d)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、ステップ数が等しい複数の小階段型構造(階段単位と称することもある)を有するということである。尚、本明細書中、「Vステップ」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、テラス面と称することもある)が、段差によって区分けされV個の輪帯面毎に分割されていることをいい、特に3ステップ以上の階段型構造は、小さい段差と大きい段差を有することになる。 Further, as shown in FIGS. 4C and 4D, the staircase structure has a plurality of small staircase structures in which the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure has the same number of steps. (Sometimes referred to as a staircase unit). In the present specification, “V step” refers to a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the vertical direction of the optical axis in one step unit of the staircase structure. In other words, it is divided by V steps and divided into V ring zones. Particularly, a stepped structure having three or more steps has a small step and a large step.
 例えば、図4(c)に示す光路差付与構造を、5ステップの階段型構造といい、図4(d)に示す光路差付与構造を、2ステップの階段型構造(バイナリ構造ともいう)という。2ステップの階段型構造について、以下に説明する。光軸を中心とした同心円状の複数の輪帯を含み、対物レンズの光軸を含む複数の輪帯の断面の形状は、光軸に平行に延在する複数の段差面Pa、Pbと、隣接する段差面Pa、Pbの光源側端同士を連結する光源側テラス面Pcと、隣接する段差面Pa、Pbの光ディスク側端同士を連結する光ディスク側テラス面Pdとから形成され、光源側テラス面Pcと光ディスク側テラス面Pdとは、光軸に交差する方向に沿って交互に配置される。 For example, the optical path difference providing structure illustrated in FIG. 4C is referred to as a five-step staircase structure, and the optical path difference providing structure illustrated in FIG. 4D is referred to as a two-step staircase structure (also referred to as a binary structure). . A two-step staircase structure will be described below. A plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis, The light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed. The surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis.
 また、階段型構造において、1つの階段単位の光軸垂直方向の長さをピッチPという。
(図4(c)、(d)参照)また、階段の光軸に平行方向の段差の長さを段差量B1,B2という。3ステップ以上の階段型構造の場合、大段差量B1と小段差量B2とが存在することになる。(図4(c)参照)尚、階段型構造において輪帯幅とは、図4(c)、(d)においてL1~L7で示されるものであり、段差と段差の間の光軸直交方向の幅をいう。
In the staircase structure, the length in the direction perpendicular to the optical axis of one step unit is referred to as a pitch P.
(See FIGS. 4C and 4D) The length of the step in the direction parallel to the optical axis of the staircase is referred to as step amounts B1 and B2. In the case of a stepped structure having three or more steps, a large step amount B1 and a small step amount B2 exist. (Refer to FIG. 4 (c)) In the stepped structure, the zone width is indicated by L1 to L7 in FIGS. 4 (c) and 4 (d), and the direction perpendicular to the optical axis between the steps. The width of
 尚、光路差付与構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。 ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。 The optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated. 「“ The unit shape is periodically repeated ”here naturally includes shapes in which the same shape is repeated in the same cycle. In addition, the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”. Suppose that
 光路差付与構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図4(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図4(b)に示されるように、光軸から離れる方向に進むに従って、徐々に鋸歯状形状のピッチが長くなっていく形状、又は、ピッチが短くなっていく形状であってもよい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。なお、このようにブレーズ型構造の段差の向きを途中で切り替える構造にする場合、輪帯ピッチを広げることが可能となり、光路差付与構造の製造誤差による透過率低下を抑制できる。 When the optical path difference providing structure has a blazed structure, the sawtooth shape as a unit shape is repeated. As shown in FIG. 4 (a), the same sawtooth shape may be repeated, and as shown in FIG. 4 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used. In addition, in some areas, the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area | region required in order to switch the direction of the level | step difference of a blaze | braze type | mold structure is provided in the meantime. In addition, when it is set as the structure which switches the direction of the level | step difference of a blaze | braze type | mold in this way, it becomes possible to widen an annular zone pitch and it can suppress the transmittance | permeability fall by the manufacturing error of an optical path difference providing structure.
 光路差付与構造が、階段型構造を有する場合、図4(c)で示されるような5ステップの階段単位が、繰り返されるような形状等があり得る。さらに、光軸から離れる方向に進むに従って、徐々に階段単位のピッチが長くなっていく形状や、徐々に階段単位のピッチが短くなっていく形状であってもよい。 When the optical path difference providing structure has a staircase structure, there may be a shape in which a 5-step stair unit as shown in FIG. 4C is repeated. Furthermore, it may be a shape in which the pitch of the staircase unit gradually increases as it moves away from the optical axis, or a shape in which the pitch of the staircase unit gradually decreases.
 また、第1光路差付与構造及び第2光路差付与構造は、それぞれ対物レンズの異なる光学面に設けてもよいが、同一の光学面に設けることが好ましい。更に、第3光路差付与構造を設ける場合も、第1光路差付与構造及び第2光路差付与構造と同じ光学面に設けることが好ましい。同一の光学面に設けることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。また、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。別の言い方では、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの曲率半径の絶対値が小さい方の光学面に設けることが好ましい。 The first optical path difference providing structure and the second optical path difference providing structure may be provided on different optical surfaces of the objective lens, respectively, but are preferably provided on the same optical surface. Furthermore, also when providing a 3rd optical path difference providing structure, it is preferable to provide in the same optical surface as a 1st optical path difference providing structure and a 2nd optical path difference providing structure. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. In addition, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the surface of the objective lens on the optical disk side. In other words, the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
 次に、中央領域に設けられる第1光路差付与構造について説明する。第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造を重ね合わせた構造である。 Next, the first optical path difference providing structure provided in the central region will be described. The first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped.
 第1基礎構造は、ブレーズ型構造であると好ましい。また、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。このとき、低次の回折光を発生する第1基礎構造の段差量は大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The first basic structure is preferably a blazed structure. In addition, the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity that has passed through the first basic structure. Is made larger than any other order of the diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. At this time, the step amount of the first basic structure that generates low-order diffracted light does not become excessively large, so that the manufacturing becomes easy, the light quantity loss caused by the manufacturing error can be suppressed, and the diffraction efficiency at the time of wavelength variation It is preferable because fluctuations can be reduced.
 また、少なくとも中央領域の光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いている。「段差が光軸とは逆の方向を向いている」とは、図5(b)のような状態を言う。また、「少なくとも中央領域の光軸付近」に設けられる第1基礎構造とは、少なくとも最も光軸に近い段差を言う。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する段差が、光軸とは逆の方向を向いていることである。 Further, at least the first basic structure provided in the vicinity of the optical axis in the central region has a step in the direction opposite to the optical axis. “The step is directed in the direction opposite to the optical axis” means a state as shown in FIG. The first basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis. Preferably, at least a half step in the direction perpendicular to the optical axis from the optical axis to the boundary between the central region and the intermediate region and the step existing between the optical axes are directed in the opposite direction to the optical axis. It is.
 例えば、中央領域の中間領域付近に設けられる第1基礎構造は、段差が光軸の方向を向いていてもよい。即ち、図6(b)に示すように、第1基礎構造が光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では第1基礎構造の段差が光軸の方を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第1基礎構造の全ての段差が光軸とは逆の方向を向いていることである。 For example, in the first basic structure provided near the middle region of the central region, the step may be directed in the direction of the optical axis. That is, as shown in FIG. 6 (b), when the first foundation structure is in the vicinity of the optical axis, the step is directed in the opposite direction to the optical axis. It is good also as a shape which faces the direction of an optical axis. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
 このように、第1光束における回折次数が奇数次数となる第1基礎構造の段差の向きを光軸と逆方向に向けることにより、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保することが可能となるのである。 In this way, the direction of the step of the first basic structure in which the diffraction order of the first light flux is an odd order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a sufficient working distance can be secured when the CD is used.
 BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保するという観点からは、第1基礎構造が第1光束に対して近軸パワーを持つことが好ましい。ここで、「近軸パワーを持つ」とは、第1基礎構造の光路差関数を後述する数1式で表した場合、C2が0でないことを意味する。 The first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have paraxial power with respect to the light beam. Here, “having paraxial power” means that C 2 is not 0 when the optical path difference function of the first basic structure is expressed by the following equation (1).
 また、第2基礎構造も、ブレーズ型構造であると好ましい。第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。このとき、低次の回折光を発生する第2基礎構造の段差量は大きくなり過ぎないため、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 Also, the second basic structure is preferably a blazed structure. In the second basic structure, the second-order diffracted light amount of the first light beam that has passed through the second basic structure is made larger than the diffracted light amount of any other order, and the first-order diffraction of the second light beam that has passed through the first basic structure. The light quantity is made larger than any other order of diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. At this time, the step amount of the second basic structure that generates low-order diffracted light does not become excessively large, which facilitates manufacturing, reduces the light amount loss due to manufacturing errors, and increases the diffraction efficiency when the wavelength varies. It is preferable because fluctuations can be reduced.
 また、少なくとも中央領域の光軸付近に設けられる第2基礎構造は、その段差が光軸の方向を向いている。「段差が光軸の方向を向いている」とは、図5(a)のような状態を言う。また、「少なくとも中央領域の光軸付近」に設けられる第2基礎構造とは、少なくとも最も光軸に近い段差を言う。好ましくは、少なくとも光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置の間に存在する段差が光軸の方向を向いていることである。 In the second basic structure provided at least near the optical axis in the central region, the level difference faces the direction of the optical axis. “The step is directed in the direction of the optical axis” means a state as shown in FIG. In addition, the second basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis. Preferably, a step existing between at least half of the optical axis orthogonal direction from the optical axis to the boundary between the central region and the intermediate region faces the direction of the optical axis.
 例えば、中央領域の中間領域付近に設けられる第2基礎構造は、段差が光軸とは逆の方向を向いていてもよい。即ち、図5(a)に示すように、第2基礎構造が光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では第2基礎構造の段差が光軸とは逆の方向を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第2基礎構造は、全ての段差が光軸の方向を向いていることである。 For example, in the second basic structure provided near the middle region of the central region, the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 5A, the step is directed in the direction of the optical axis when the second foundation structure is near the optical axis, but is switched halfway, and the step of the second foundation structure is located near the optical axis. It is good also as a shape which faces the reverse direction. However, preferably, the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
 このように、第1光束に対して奇数次数の回折光を発生し、少なくとも中央領域の光軸付近においては段差が光軸とは逆の方向を向いている第1基礎構造と、第1光束に対して偶数次数の回折光を発生し、少なくとも中央領域の光軸付近においては段差が光軸の方向を向いている第2基礎構造を重ね合わせることにより、第1基礎構造と第2基礎構造の段差の向きが同じになるように重ね合わせた場合に比べて、重ね合わせた後の段差の高さが高くなることを抑制でき、それに伴い、製造誤差などに因る光量ロスを抑えることが可能となると共に、波長変動時の回折効率の変動を抑えることが可能となるものである。又、第1基礎構造と第2基礎構造を重畳させることにより回折パワーを調節することができるので、CDのワーキングディスタンスを長くすることができる。 In this way, the first basic structure in which odd-order diffracted light is generated with respect to the first light flux and the step is directed in the direction opposite to the optical axis at least in the vicinity of the optical axis of the central region, and the first light flux The first basic structure and the second basic structure are generated by superimposing the second basic structures that generate even-order diffracted light with respect to each other and have a step facing the direction of the optical axis at least in the vicinity of the optical axis in the central region. Compared to the case where the steps are overlapped so that the direction of the steps is the same, it is possible to suppress the height of the steps after being overlapped from being increased, and accordingly, the light quantity loss due to manufacturing errors can be suppressed. In addition to this, it is possible to suppress fluctuations in diffraction efficiency during wavelength fluctuations. In addition, since the diffraction power can be adjusted by superimposing the first basic structure and the second basic structure, the working distance of the CD can be increased.
 また、BD/DVD/CDの3種類の光ディスクの互換を可能とするだけでなく、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することも可能となる。例えば、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を60%以上、波長λ3に対する回折効率を50%以上とする対物レンズを提供することも可能となる。更には、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を70%以上、波長λ3に対する回折効率を60%以上とする対物レンズも提供することができる。 Further, not only can the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD. It is also possible to provide a balanced objective lens. For example, it is possible to provide an objective lens having a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 60% or more for the wavelength λ2, and a diffraction efficiency of 50% or more for the wavelength λ3. Furthermore, it is possible to provide an objective lens having a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 70% or more for the wavelength λ2, and a diffraction efficiency of 60% or more for the wavelength λ3.
 少なくとも中央領域の光軸付近に設けられている第1光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを共に有し、光軸とは逆の方向を向いている段差の段差量d11と、光軸の方向を向いている段差の段差量d12とが、以下の条件式(12)、(13)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(12)、(13)を満たすことである。尚、光路差付与構造を設けた対物レンズが単玉非球面の凸レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。下記条件式において上限に1.5を乗じているのは、当該段差量の増加を加味した故である。但し、nは、第1の波長λ1における対物レンズの屈折率を表す。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (12)
0.6・(λ1/(n-1))<d12<1.5・(2λ1/(n-1))   (13)
The first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis. It is preferable that the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (12) and (13). More preferably, the following conditional expressions (12) and (13) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase. In the following conditional expression, the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account. Here, n represents the refractive index of the objective lens at the first wavelength λ1.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (12)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (2λ1 / (n-1)) (13)
 尚、「少なくとも中央領域の光軸付近」に設けられる第1光路差付与構造とは、少なくとも光軸に最も近い光軸とは逆の方向を向いている段差と、光軸に最も近い光軸の方向を向いている段差とを共に有する光路差付与構造をいう。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する段差を有する光路差付与構造である。 The first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis. An optical path difference providing structure having both of the steps facing the direction of. Preferably, the optical path difference providing structure has a step existing between at least a half position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm         (14)
 0.39μm<d12<2.31μm         (15)
0.39 μm <d11 <1.15 μm (14)
0.39 μm <d12 <2.31 μm (15)
 更に、第1基礎構造と第2基礎構造の重ね合わせ方としては、第1基礎構造と第2基礎構造のピッチを合わせ、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせるか、第1基礎構造の全ての段差の位置と、第2基礎構造の段差の位置を合わせることが好ましい。 Furthermore, as a method of overlapping the first foundation structure and the second foundation structure, the pitches of the first foundation structure and the second foundation structure are matched, the positions of all the steps of the second foundation structure, and the steps of the first foundation structure. It is preferable to match the positions of all the steps of the first foundation structure with the positions of the steps of the second foundation structure.
 上述のように第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせて重ね合わせた場合、第1光路差付与構造のd11、d12は以下の条件式(16)、(17)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(16)、(17)を満たすことである。
0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (16)
0.6・(λ1/(n-1))<d12<1.5・(λ1/(n-1))   (17)
As described above, when all the steps of the second foundation structure and the steps of the first foundation structure are aligned and overlapped, d11 and d12 of the first optical path difference providing structure are the following conditional expressions (16) , (17) is preferably satisfied. More preferably, the following conditional expressions (16) and (17) are satisfied in all the regions of the central region.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (16)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (17)
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm   (18)
 0.39μm<d12<1.15μm   (19)
0.39 μm <d11 <1.15 μm (18)
0.39 μm <d12 <1.15 μm (19)
 更に好ましくは、以下の条件式(20)、(21)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(20)、(21)を満たすことである。
0.9・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (20)
0.9・(λ1/(n-1))<d12<1.5・(λ1/(n-1))   (21)
More preferably, the following conditional expressions (20) and (21) are preferably satisfied. More preferably, the following conditional expressions (20) and (21) are satisfied in all the regions of the central region.
0.9 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (20)
0.9 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (21)
 また、例えば、λ1が390~415nm(0.390~0.415μm)であって、nが1.54~1.60である場合、上記条件式は以下のように表すことが可能となる。 For example, when λ1 is 390 to 415 nm (0.390 to 0.415 μm) and n is 1.54 to 1.60, the above conditional expression can be expressed as follows.
 0.59μm<d11<1.15μm         (22)
 0.59μm<d12<1.15μm         (23)
0.59 μm <d11 <1.15 μm (22)
0.59 μm <d12 <1.15 μm (23)
 また、第1基礎構造と第2基礎構造とを重ね合わせた第1光路差付与構造にすることにより、第1基礎構造は波長が長くなった際に収差をアンダー(補正不足)とし(波長特性をアンダーとする)、第2基礎構造は逆に波長が長くなった際に収差をオーバー(補正過剰)とできる(波長特性をオーバーとする)ため、波長特性がアンダーに大きくなりすぎたり、オーバーに大きくなりすぎるということがなく、丁度よいレベルのアンダーの波長特性を得ることが可能となる。「丁度よいレベルのアンダーの波長特性」とは、λrmsの絶対値が150以下であることが好ましい。これによって、対物レンズがプラスチック製である場合であっても、温度変化時の収差変化を小さく抑えることが可能となるという観点からも好ましい。 In addition, by adopting a first optical path difference providing structure in which the first basic structure and the second basic structure are overlapped, the first basic structure underperforms aberration (undercorrection) when the wavelength increases (wavelength characteristics). On the other hand, the 2nd basic structure allows the aberration to be over-corrected (overcorrection) when the wavelength becomes long (over-wavelength characteristic is over), so that the wavelength characteristic becomes too large or over. Therefore, it is possible to obtain an under-wavelength characteristic with a just good level. The “under right wavelength characteristic of a good level” preferably has an absolute value of λrms of 150 or less. Thereby, even if the objective lens is made of plastic, it is preferable from the viewpoint that it becomes possible to suppress the aberration change at the time of the temperature change.
 一方、CDのWD確保という観点から、近軸パワーにおいては第2基礎構造に比べて、第1基礎構造の寄与率が支配的であることが好ましい。これにより、第1基礎構造の平均ピッチが、第2基礎構造の平均ピッチに比べて小さいことが好ましい。別の表現では、光軸とは逆の方向を向いている段差間のピッチが、光軸の方向を向いている段差間のピッチに比べて小さいとも言えるし、第1光路差付与構造において、光軸とは逆の方向を向いている段差の数が、光軸の方向を向いている段差の数に比べて多いとも言える。尚、第1基礎構造の平均ピッチが、第2基礎構造の平均ピッチの1/4以下であることが好ましい。更に好ましくは、1/6以下とすることである。第1基礎構造の平均ピッチを、第2基礎構造の平均ピッチの1/4以下(好ましくは1/6以下)とするのが好ましい。別の表現では、中央領域の第1光路差付与構造において、光軸とは逆の方向を向いている段差の数が、光軸の方向を向いている段差の数の4倍以上であることが好ましいともいえる。より好ましくは6倍以上である。 On the other hand, from the viewpoint of securing the WD of the CD, it is preferable that the contribution rate of the first foundation structure is dominant in the paraxial power compared to the second foundation structure. Thereby, it is preferable that the average pitch of a 1st foundation structure is small compared with the average pitch of a 2nd foundation structure. In another expression, it can be said that the pitch between the steps facing the direction opposite to the optical axis is smaller than the pitch between the steps facing the direction of the optical axis. In the first optical path difference providing structure, It can be said that the number of steps facing in the direction opposite to the optical axis is larger than the number of steps facing in the direction of the optical axis. In addition, it is preferable that the average pitch of a 1st foundation structure is 1/4 or less of the average pitch of a 2nd foundation structure. More preferably, it is 1/6 or less. It is preferable that the average pitch of the first foundation structure is 1/4 or less (preferably 1/6 or less) of the average pitch of the second foundation structure. In another expression, in the first optical path difference providing structure in the central region, the number of steps facing the direction opposite to the optical axis is four times or more than the number of steps facing the direction of the optical axis. Can be said to be preferable. More preferably, it is 6 times or more.
 また、第1光路差付与構造の最小ピッチが15μm以下であることが好ましい。当該観点からは、第1光路差付与構造の最小ピッチpと第1波長λ1における焦点距離f1の比p/f1が0.004以下であることが好ましい。より好ましくは10μm以下である。また、第1光路差付与構造の平均ピッチが30μm以下となることが好ましい。より好ましくは20μm以下とすることである。この様な構成にすることにより、CDのWDが確保できると共に、第1光路差付与構造を通過した第1~3の全ての光束において発生する、情報の記録/再生に用いられる必要光のベストフォーカス位置と、第1光路差付与構造による不要光の発生位置を離すことができ、誤検出を低減することも可能となる。尚、平均ピッチとは、中央領域の第1光路差付与構造の全てのピッチを合計し、中央領域の第1光路差付与構造の段差数で割った値である。 Further, it is preferable that the minimum pitch of the first optical path difference providing structure is 15 μm or less. From this point of view, the ratio p / f1 between the minimum pitch p of the first optical path difference providing structure and the focal length f1 at the first wavelength λ1 is preferably 0.004 or less. More preferably, it is 10 μm or less. Moreover, it is preferable that the average pitch of the first optical path difference providing structure is 30 μm or less. More preferably, it is 20 μm or less. With such a configuration, the WD of the CD can be secured, and the best necessary light used for recording / reproducing information that is generated in all the first to third light fluxes that have passed through the first optical path difference providing structure. The focus position can be separated from the generation position of unnecessary light by the first optical path difference providing structure, and erroneous detection can be reduced. The average pitch is a value obtained by adding all pitches of the first optical path difference providing structure in the central region and dividing the sum by the number of steps of the first optical path difference providing structure in the central region.
 また、対物レンズは、軸上色収差が0.9μm/nm以下であることが好ましい。より好ましくは、軸上色収差を0.8μm/nm以下とすることである。第1基礎構造のピッチを小さくしすぎると、軸上色収差が悪化してしまう可能性があるため、軸上色収差が0.9μm/nmより大きくなるようなピッチにならないように留意して設計することが望ましい。当該観点からは、第1光路差付与構造の最小ピッチpと第1波長λ1における焦点距離f1の比p/f1が0.002以上であることが好ましい。一方で、CDにおけるワーキングディスタンスを十分に確保するためには、軸上色収差が0.4μm/nm以上であることが好ましい。 The objective lens preferably has an axial chromatic aberration of 0.9 μm / nm or less. More preferably, the longitudinal chromatic aberration is 0.8 μm / nm or less. If the pitch of the first basic structure is too small, the longitudinal chromatic aberration may be deteriorated. Therefore, the design is made so that the pitch is not such that the longitudinal chromatic aberration is larger than 0.9 μm / nm. It is desirable. From this viewpoint, it is preferable that the ratio p / f1 between the minimum pitch p of the first optical path difference providing structure and the focal length f1 at the first wavelength λ1 is 0.002 or more. On the other hand, in order to ensure a sufficient working distance in CD, it is preferable that the longitudinal chromatic aberration is 0.4 μm / nm or more.
 第1光路差付与構造を通過した第3光束によって、第3光束が形成するスポットの光強度が最も強い第1ベストフォーカス位置と、第3光束が形成するスポットの光強度が次に強い第2ベストフォーカス位置とが、以下の条件式(24)を満たすことが好ましい。なお、ここでいうベストフォーカス位置とは、ビームウェストが、或るデフォーカスの範囲でビームウェストが極小となる位置を指すものである。第1ベストフォーカス位置が第3光ディスクの記録/再生に用いられる必要光のベストフォーカス位置であり、第2ベストフォーカス位置が第3光ディスクの記録/再生に用いられない不要光のうち、最も光量が多い光束のベストフォーカス位置である。
 0.05≦L/f13≦0.8         (24)
 但し、f13[mm]は、第1光路差付与構造を通過し、第1ベストフォーカスを形成する第3光束の焦点距離を指し、L[mm]は、第1ベストフォーカスと第2ベストフォーカスの間の距離を指す。
The first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (24). Here, the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range. The first best focus position is the best focus position of the necessary light used for recording / reproduction of the third optical disc, and the second best focus position is the largest amount of unnecessary light that is not used for recording / reproduction of the third optical disc. This is the best focus position for many luminous fluxes.
0.05 ≦ L / f13 ≦ 0.8 (24)
However, f13 [mm] indicates the focal length of the third light flux that passes through the first optical path difference providing structure and forms the first best focus, and L [mm] indicates the first best focus and the second best focus. Refers to the distance between.
 より好ましくは、以下の条件式(24)´を満たすことである。
 0.50≦L/f13≦0.75         (24)´
More preferably, the following conditional expression (24) ′ is satisfied.
0.50 ≦ L / f13 ≦ 0.75 (24) ′
 以上述べた第1光路差付与構造の好ましい一例を図7に示す。尚、図7は、便宜上、第1光路差付与構造ODS1が平板状に設けられたものとして示されているが、単玉非球面の凸レンズ上に設けられていてもよい。第2基礎構造BS2に、第1基礎構造BS1が重ねあわされている。また、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BSの段差は光軸OAとは逆の方向を向いている。更に、第1基礎構造BS1と第2基礎構造BS2のピッチを合わせ、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置が合っていることがわかる。本例においては、d1=λ1/(n-1)であり、d2=λ1/(n-1)である。本例において、λ1=405nm(0.405μm)、n=1.5592とすると、d1=d2=0.72μmとなる。更に、第1基礎構造BS1の平均ピッチが、第2基礎構造BS2の平均ピッチに比べて小さく、第1基礎構造の光軸とは逆の方向を向いている段差の数が、第2基礎構造の光軸の方向を向いている段差の数に比べて多い。 A preferred example of the first optical path difference providing structure described above is shown in FIG. Although FIG. 7 shows the first optical path difference providing structure ODS1 as a flat plate for convenience, it may be provided on a single aspherical convex lens. The first foundation structure BS1 is overlaid on the second foundation structure BS2. Further, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS faces the direction opposite to the optical axis OA. Further, the pitches of the first foundation structure BS1 and the second foundation structure BS2 are matched, and it can be seen that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure match. In this example, d1 = λ1 / (n−1) and d2 = λ1 / (n−1). In this example, if λ1 = 405 nm (0.405 μm) and n = 1.5592, d1 = d2 = 0.72 μm. Further, the average pitch of the first foundation structure BS1 is smaller than the average pitch of the second foundation structure BS2, and the number of steps facing the direction opposite to the optical axis of the first foundation structure is the second foundation structure. This is more than the number of steps facing the direction of the optical axis.
 次に、中間領域に設けられる第2光路差付与構造について説明する。第2光路差付与構造は、ステップ数が等しい複数の小階段型構造を有する階段型構造であり、第2光路差付与構造は、第2光路差付与構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光路差付与構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。 Next, the second optical path difference providing structure provided in the intermediate region will be described. The second optical path difference providing structure is a staircase structure having a plurality of small staircase structures having the same number of steps, and the second optical path difference providing structure is the 0th order of the first light flux that has passed through the second optical path difference providing structure. The diffracted light quantity is made larger than any other order diffracted light quantity, the first-order diffracted light quantity of the second light flux that has passed through the second optical path difference providing structure is made larger than any other order diffracted light quantity, and the second optical path difference The first-order diffracted light quantity of the third light flux that has passed through the providing structure is made larger than any other order diffracted light quantity.
 第2光路差付与構造において、小階段型構造が2ステップ(バイナリ構造)、3ステップ又は4ステップであるであることが好ましい。特に好ましくは、3ステップである。 In the second optical path difference providing structure, the small staircase structure is preferably 2 steps (binary structure), 3 steps or 4 steps. Particularly preferred is a three-step process.
 2ステップの小階段型構造である場合、1段あたりの光軸方向の高さをh(μm)とし、段差が光軸方向を向いている場合(図5(a)の様な場合)を正、段差が光軸と逆方向を向いている場合(図5(b)の様な場合)を負としたときに、以下の式を満たすことが好ましい。
 -1.0≦h≦-0.6   (A)
 0.6≦h≦1.0    (B)
In the case of a two-step small staircase structure, the height in the optical axis direction per step is h (μm), and the step is facing the optical axis direction (as shown in FIG. 5A). It is preferable that the following expression is satisfied when the positive and step differences are opposite to the optical axis (as in FIG. 5B).
-1.0 ≦ h ≦ -0.6 (A)
0.6 ≦ h ≦ 1.0 (B)
 3ステップの小階段型構造である場合、1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことが好ましい。このとき、-1.2≦h≦-0.7は、小階段型構造の各段の小段差の値の好ましい範囲であり、2.7≦h≦4.4は、小階段型構造の大きな段差の値の好ましい範囲である。小階段型構造の大きな段差が光軸方向を向いた段差であり、小階段型構造の各段の小さな段差が光軸とは逆方向を向いた段差であることが好ましい。
 -1.2≦h≦-0.7   (C)
 2.7≦h≦4.4    (D)
In the case of a three-step small staircase structure, the height per step is set to h (μm), the case where the step is facing the optical axis, and the step is facing the direction opposite to the optical axis. When negative, it is preferable to satisfy the following formula. At this time, −1.2 ≦ h ≦ −0.7 is a preferable range of the small step value of each step of the small step structure, and 2.7 ≦ h ≦ 4.4 is a preferable range of the large step value of the small step structure. is there. It is preferable that a large step of the small staircase structure is a step facing the optical axis direction, and a small step of each step of the small staircase structure is a step facing the direction opposite to the optical axis.
-1.2 ≦ h ≦ -0.7 (C)
2.7 ≦ h ≦ 4.4 (D)
 尚、3ステップの小階段型構造における小さい段差hは、0.9・1.09・λ1/(n-1)以上であり、1.5・1.09・λ1/(n-1)以下であることが好ましい。尚、λ1は第1光源の波長であり、nは波長λ1における対物レンズを構成する材料の屈折率である。 The small step h in the three-step small staircase structure is 0.9 · 1.09 · λ1 / (n-1) or more and 1.5 · 1.09 · λ1 / (n-1) or less. It is preferable that Note that λ1 is the wavelength of the first light source, and n is the refractive index of the material constituting the objective lens at the wavelength λ1.
 4ステップの小階段型構造である場合、1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことが好ましい。
 -3.4≦h≦-2.0   (E)
 1.4≦h≦2.3    (F)
In the case of a four-step small staircase structure, the height per step is set to h (μm), the case where the step is facing the optical axis direction, and the step is facing the direction opposite to the optical axis. When negative, it is preferable to satisfy the following formula.
-3.4 ≦ h ≦ -2.0 (E)
1.4 ≦ h ≦ 2.3 (F)
 第2光路差付与構造の輪帯幅をL(μm)としたときに、第2光路差付与構造の最小の輪帯幅が、以下の式(4)を満たすことが好ましい。より好ましくは、第2光路差付与構造の全ての輪帯幅が以下の式を満たすことである。
 2≦|L|≦12   (4)
When the annular zone width of the second optical path difference providing structure is L (μm), it is preferable that the minimum annular zone width of the second optical path difference providing structure satisfies the following expression (4). More preferably, all the zone widths of the second optical path difference providing structure satisfy the following expression.
2 ≦ | L | ≦ 12 (4)
 周辺領域は屈折面であってもよいし、第3光路差付与構造を設けてもよい。周辺領域に第3光路差付与構造を設ける場合、任意の光路差付与構造を設けることが可能である。例えば、第3光路差付与構造はブレーズ型構造であってもよいし、階段型構造であってもよい。 The peripheral region may be a refractive surface or a third optical path difference providing structure. When the third optical path difference providing structure is provided in the peripheral region, an arbitrary optical path difference providing structure can be provided. For example, the third optical path difference providing structure may be a blazed structure or a staircase structure.
 第3光路差付与構造が、ブレーズ型構造である場合、第3光路差付与構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくすることが好ましい。この時、第3光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3光路差付与構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすることが好ましい。 When the third optical path difference providing structure is a blazed structure, it is preferable to make the second-order diffracted light quantity of the first light beam that has passed through the third optical path difference-providing structure larger than any other order of diffracted light quantity. At this time, the first-order diffracted light amount of the second light beam that has passed through the third optical path difference providing structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the third light beam that has passed through the third optical path difference-providing structure. It is preferable to make the amount of diffracted light larger than the amount of diffracted light of any other order.
 また、第3光路差付与構造が、複数の小階段型構造を有する階段型構造である場合、第3光路差付与構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくすることが好ましい。この時、第3光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3光路差付与構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすることが好ましい。(このようなタイプの光路差付与構造を、0/1/1構造と称してもよい。) When the third optical path difference providing structure is a stepped structure having a plurality of small staircase structures, the 0th-order diffracted light amount of the first light beam that has passed through the third optical path difference providing structure is diffracted in any other order. It is preferable to make it larger than the amount of light. At this time, the first-order diffracted light amount of the second light beam that has passed through the third optical path difference providing structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the third light beam that has passed through the third optical path difference-providing structure. It is preferable to make the amount of diffracted light larger than the amount of diffracted light of any other order. (This type of optical path difference providing structure may be referred to as a 0/1/1 structure.)
 第3光路差付与構造が0/1/1構造である場合、第3光路差付与構造は、小階段型構造が2ステップ(バイナリ構造)、3ステップのいずれかであることが好ましい。 When the third optical path difference providing structure is a 0/1/1 structure, it is preferable that the third optical path difference providing structure has a two-step structure (binary structure) or one of three steps.
 第3光路差付与構造の小階段型構造が2ステップである場合、小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことが好ましい。
 -1.0≦h≦-0.6   (G)
 0.6≦h≦1.0    (H)
If the small staircase structure of the third optical path difference providing structure is 2 steps, the height per step of the small staircase structure is h (μm), and the step is positive, the step It is preferable that the following expression is satisfied, when the case where is oriented in the direction opposite to the optical axis is negative.
-1.0 ≦ h ≦ -0.6 (G)
0.6 ≦ h ≦ 1.0 (H)
 また、第3光路差付与構造の小階段型構造が3ステップである場合、小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことが好ましい。
 -1.2≦h≦-0.7   (I)
 2.7≦h≦4.4    (J)
In addition, when the small staircase structure of the third optical path difference providing structure is 3 steps, the height per step of the small staircase structure is set to h (μm), and the case where the step is facing the optical axis direction is correct. It is preferable that the following expression is satisfied when the step is in a direction opposite to the optical axis and negative.
-1.2 ≦ h ≦ -0.7 (I)
2.7 ≦ h ≦ 4.4 (J)
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc. Is NA2 (NA1> NA2), and the image-side numerical aperture of the objective lens necessary for reproducing / recording information on the third optical disk is NA3 (NA2> NA3). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 対物レンズの中央領域と中間領域の境界は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中央領域と中間領域の境界が、NA3に相当する部分に形成されていることである。また、対物レンズの中間領域と周辺領域の境界は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.15・NA2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中間領域と周辺領域の境界が、NA2に相当する部分に形成されていることである。 The boundary between the central region and the intermediate region of the objective lens is 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more, 1.15 · NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 · NA 2 or more and 1.2 · NA 2 or less (more preferably 0.95 · NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
 対物レンズを通過した第3光束を第3光ディスクの情報記録面上に集光する場合に、球面収差が少なくとも1箇所の不連続部を有することが好ましい。その場合、不連続部は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に存在することが好ましい。 When the third light flux that has passed through the objective lens is condensed on the information recording surface of the third optical disc, it is preferable that the spherical aberration has at least one discontinuous portion. In that case, the discontinuous portion has a range of 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more and 1.15 · NA 3 or less) when the third light flux is used. It is preferable that it exists in.
 尚、対物レンズの第1光束に対する有効径をφ1(mm)としたときに、以下の式を満たすと好ましい。
 1.8≦φ1≦4.0   (1)
 より好ましくは、以下の式を満たすことである。
 2.0≦φ≦3.0   (1´)
In addition, when the effective diameter with respect to the 1st light beam of an objective lens is set to (phi) 1 (mm), it is preferable to satisfy | fill the following formula | equation.
1.8 ≦ φ1 ≦ 4.0 (1)
More preferably, the following expression is satisfied.
2.0 ≦ φ ≦ 3.0 (1 ′)
 また、対物レンズは、以下の条件式(5)を満たすことが好ましい。
1.0≦d/f≦1.5   (5)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。より好ましくは、1.0≦d/f≦1.2である。
The objective lens preferably satisfies the following conditional expression (5).
1.0 ≦ d / f ≦ 1.5 (5)
Here, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux. More preferably, 1.0 ≦ d / f ≦ 1.2.
 BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じるが、条件式(5)を満たすことにより非点収差や偏心コマ収差の発生を抑制することが可能となる。 When an optical disk with a short wavelength and high NA such as BD is used, there is a problem that astigmatism is likely to occur in the objective lens, and decentration coma is likely to occur, but the conditional expression (5) is satisfied. As a result, it is possible to suppress the generation of astigmatism and decentration coma.
 また、条件式(5)を満たすことにより、対物レンズの軸上厚が厚めの厚肉対物レンズになるため、CDの記録/再生時におけるワーキングディスタンスが短くなりがちになるにも拘わらず、本発明の第1光路差付与構造を対物レンズに設けることにより、CDの記録/再生におけるワーキングディスタンスも十分に確保できるため、本発明の効果がより顕著なものとなる。 In addition, satisfying conditional expression (5) results in a thick objective lens with a thick on-axis objective lens, so that the working distance during CD recording / playback tends to be short. By providing the objective lens with the first optical path difference providing structure of the invention, a working distance in CD recording / reproduction can be sufficiently ensured, so that the effect of the present invention becomes more remarkable.
 第1光束、第2光束及び第3光束は、平行光として対物レンズに入射してもよいし、発散光若しくは収束光として対物レンズに入射してもよい。トラッキング時においても、コマ収差が発生することを防止するためには、第1光束、第2光束、及び第3光束を全て平行光又は略平行光として対物レンズに入射させることが好ましい。本発明の第1光路差付与構造を用いることによって、第1光束、第2光束及び第3光束の全てを平行光又は略平行光として対物レンズに入射させることが可能となるため、本発明の効果がより顕著となる。第1光束が平行光又は略平行光になる場合、第1光束が対物レンズに入射する時の対物レンズの結像倍率m1が、下記の式(26)を満たすことが好ましい。
-0.01<m1<0.01     (26)
The first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light. By using the first optical path difference providing structure of the present invention, all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable. When the first light beam becomes parallel light or substantially parallel light, it is preferable that the imaging magnification m1 of the objective lens when the first light beam is incident on the objective lens satisfy the following formula (26).
-0.01 <m1 <0.01 (26)
 また、第2光束を平行光又は略平行光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(27)を満たすことが好ましい。
-0.01<m2<0.01     (27)
In addition, when the second light beam is incident on the objective lens as parallel light or substantially parallel light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following expression (27). Is preferred.
-0.01 <m2 <0.01 (27)
 一方で、第2光束を発散光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(27)´を満たすことが好ましい。
-0.025<m2≦-0.01     (27)´
On the other hand, when the second light beam is incident on the objective lens as diverging light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following expression (27) ′. .
−0.025 <m2 ≦ −0.01 (27) ′
 また、第3光束を平行光束又は略平行光束として対物レンズに入射させる場合、第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(28)を満たすことが好ましい。
-0.01<m3<0.01     (28)
When the third light beam is incident on the objective lens as a parallel light beam or a substantially parallel light beam, the imaging magnification m3 of the objective lens when the third light beam is incident on the objective lens satisfies the following expression (28). Is preferred.
-0.01 <m3 <0.01 (28)
 一方で、第3光束を発散光として対物レンズに入射させる場合、第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(28)´を満たすことが好ましい。
-0.025<m3≦-0.01     (28)´
On the other hand, when the third light beam is incident on the objective lens as diverging light, the imaging magnification m3 of the objective lens when the third light beam is incident on the objective lens preferably satisfies the following expression (28) ′. .
−0.025 <m3 ≦ −0.01 (28) ′
 また、第3光ディスクを用いる際の対物光学素子のワーキングディスタンス(WD)は、0.2mm以上、1.5mm以下であることが好ましい。好ましくは、0.3mm以上、0.9mm以下である。次に、第2光ディスクを用いる際の対物光学素子のWDは、0.2mm以上、1.3mm以下であることが好ましい。さらに、第1光ディスクを用いる際の対物光学素子のWDは、0.25mm以上、1.0mm以下であることが好ましい。 Also, the working distance (WD) of the objective optical element when using the third optical disk is preferably 0.2 mm or more and 1.5 mm or less. Preferably, it is 0.3 mm or more and 0.9 mm or less. Next, the WD of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 1.3 mm or less. Furthermore, the WD of the objective optical element when using the first optical disk is preferably 0.25 mm or more and 1.0 mm or less.
 第3光ディスクの情報記録面に集光する第3光束のメイン光と第3光束の有効径外の光束(フレア光)の距離をx(μm)としたときに、以下の式を満たすと好ましい。この時、x(μm)は図39に示すように、メイン光の光軸から最も離れた部分と、フレア光の光軸に最も近い部分の光軸方向の距離を示す。
 |x|≧5   (3)
When the distance between the main light of the third light beam condensed on the information recording surface of the third optical disk and the light beam (flare light) outside the effective diameter of the third light beam is x (μm), it is preferable that the following expression is satisfied. . At this time, as shown in FIG. 39, x (μm) indicates the distance in the optical axis direction between the portion farthest from the optical axis of the main light and the portion closest to the optical axis of the flare light.
| X | ≧ 5 (3)
 また、第1光束が1nmの波長変化を生じたときの波面収差ベスト位置の光軸方向の位置ずれをΔ(mm)とすると、以下の式(6)を満たすことが好ましい。ここでいう波面収差ベスト位置とは、第1光束が1nmの波長変化を生じたときに、軸上色収差、色球面収差等のトータルでの波面収差が最も小さくなる光軸方向の位置を言う。
 1.9×10-4≦Δ/f≦2.5×10-4   (6)
尚、の式を満たすと、より好ましい。
 1.95×10-4≦Δ/f≦2.05×10-4   (6’)
Further, if the positional deviation in the optical axis direction of the wavefront aberration best position when the wavelength of the first light beam changes by 1 nm is Δ (mm), it is preferable to satisfy the following formula (6). The wavefront aberration best position here refers to the position in the optical axis direction where the total wavefront aberration such as longitudinal chromatic aberration and chromatic spherical aberration is minimized when the wavelength of the first light beam changes by 1 nm.
1.9 × 10 −4 ≦ Δ / f ≦ 2.5 × 10 −4 (6)
In addition, it is more preferable to satisfy the formula.
1.95 × 10 −4 ≦ Δ / f ≦ 2.05 × 10 −4 (6 ′)
 また、光ピックアップ装置は、少なくとも第1光束と第2光束が通過するカップリングレンズと、カップリングレンズを光軸方向に移動させるアクチュエータ―を有することが好ましい。更に、第1光束が通過するときは、アクチュエータ―によってカップリングレンズが光軸方向に変位可能とされており、第2光束が通過するときには、カップリングレンズは、光軸方向の位置を固定されていることが好ましい。 The optical pickup device preferably includes a coupling lens through which at least the first light beam and the second light beam pass, and an actuator that moves the coupling lens in the optical axis direction. Further, when the first light beam passes, the coupling lens can be displaced in the optical axis direction by an actuator, and when the second light beam passes, the coupling lens is fixed in the position in the optical axis direction. It is preferable.
 例えば、複数の情報記録層を有する第1光ディスクに対応するために、第1光ディスクの使用時には、カップリングレンズを光軸方向に変位して、各情報記録層への記録/再生に対応させることが考えられる。そのような場合、既にカップリングレンズを光軸方向に変位させる機能は必須であるが、第2光ディスク使用時においては、カップリングレンズを光軸方向に変位させず、固定させておきたい、という場合がある。その理由としては、第1光ディスク使用時には、フレアが発生しないが、第2光ディスク使用時には、フレアが発生するため、カップリングレンズを変異させることにより、そのフレアの収差が変化し、結果としてそのフレアが記録/再生に悪影響を与える可能性が生じるという理由や、第2光ディスクの種類を判別するために、カップリングレンズの初期位置を常に一定にしておきたいという理由や、単純にドライブの方でカップリングレンズを変位させるためのファームウェアのコストを少しでも削減したいという理由などが挙げられる。 For example, in order to deal with a first optical disc having a plurality of information recording layers, when the first optical disc is used, the coupling lens is displaced in the optical axis direction so as to correspond to recording / reproduction on each information recording layer. Can be considered. In such a case, the function of already displacing the coupling lens in the optical axis direction is indispensable, but when using the second optical disc, the coupling lens is desired to be fixed without being displaced in the optical axis direction. There is a case. The reason for this is that flare does not occur when the first optical disc is used, but flare occurs when the second optical disc is used. Therefore, by changing the coupling lens, the flare aberration changes, and as a result, the flare is changed. May cause adverse effects on recording / playback, the reason for always keeping the initial position of the coupling lens to determine the type of the second optical disk, or simply the drive For example, the cost of firmware for displacing the coupling lens may be reduced as much as possible.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいて、CD使用時にワーキングディスタンスを確保しながらも、色収差劣化を抑制することが可能となる。さらに、光路差付与構造の段差の高さが高くなることを抑制でき、それに伴い、製造誤差などに因る光量ロスを抑えることが可能となると共に、波長変動時の回折効率の変動を抑えることが可能となる。また、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することも可能となる。加えて、光ピックアップ装置の温度が上昇した際に発生する収差を抑えることが可能となり、対物レンズがプラスチック製である場合に、温度変化時においても安定した性能を維持できる対物レンズを提供することが可能となる。これらの効果によって、BD/DVD/CDの3種類の光ディスクの記録/再生も、共通の対物レンズで良好に行うことが可能となるものである。さらに、有効径を小径とすることで、焦点距離を短くし、スリムタイプの光ピックアップ装置に好適な対物レンズを提供できる。 According to the present invention, in a thick objective lens having a thick on-axis thickness that is used interchangeably with three types of optical discs of BD / DVD / CD, deterioration of chromatic aberration is suppressed while ensuring a working distance when using a CD. It becomes possible. Furthermore, it is possible to suppress an increase in the height of the step of the optical path difference providing structure, and accordingly, it is possible to suppress a light amount loss due to a manufacturing error and suppress a fluctuation in diffraction efficiency at the time of a wavelength fluctuation. Is possible. It is also possible to provide an objective lens with balanced light utilization efficiency that can maintain high light utilization efficiency for any of the three types of optical disks of BD / DVD / CD. In addition, it is possible to suppress the aberration that occurs when the temperature of the optical pickup device rises, and when the objective lens is made of plastic, an objective lens that can maintain stable performance even when the temperature changes is provided. Is possible. With these effects, recording / reproduction of three types of optical discs of BD / DVD / CD can be performed well with a common objective lens. Furthermore, by making the effective diameter small, the focal length is shortened, and an objective lens suitable for a slim type optical pickup device can be provided.
一例としての光路差関数を示す図である。It is a figure which shows the optical path difference function as an example. 本実施の形態にかかる単玉の対物レンズOLを光軸方向に見た図である。It is the figure which looked at the single objective lens OL concerning this Embodiment in the optical axis direction. 対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットを形成する状態を示す図である。It is a figure which shows the state which forms the spot which the 3rd light beam which passed the objective lens forms on the information recording surface of a 3rd optical disk. 光路差付与構造の例を示す軸線方向断面図であり、(a)、(b)はブレーズ型構造の例を示し、(c)、(d)は階段型構造の例を示す。It is an axial direction sectional view showing an example of an optical path difference grant structure, (a) and (b) show an example of a blaze type structure, and (c) and (d) show an example of a step type structure. (a)は段差が光軸の方向を向いている状態を示し、(b)は段差が光軸とは逆の方向を向いている状態を示す図である。(A) shows a state in which the step is directed in the direction of the optical axis, and (b) is a diagram showing a state in which the step is directed in a direction opposite to the optical axis. (a)は光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸とは逆の方を向くような形状を示し、(b)は光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸の方を向くような形状を示す図である。(A) shows a shape in which the step is in the direction of the optical axis in the vicinity of the optical axis, but changes in the middle, and in the vicinity of the intermediate region, the step is in the direction opposite to the optical axis. FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region. 第1光路差付与構造の概念図である。It is a conceptual diagram of the 1st optical path difference providing structure. 異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record and / or reproduce | regenerate information appropriately with respect to BD, DVD, and CD which are different optical disks. 実施例1の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図である。It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure of Example 1 in a flat plate element. 実施例1のBD使用時における光路差関数を示すグラフである。6 is a graph showing an optical path difference function when using the BD of Example 1. 実施例1において、基準波長(405nm)におけるBD使用時の縦球面収差図である。In Example 1, it is a vertical spherical aberration figure at the time of BD use in a reference wavelength (405 nm). 実施例1において、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図である。In Example 1, it is a longitudinal spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength. 実施例1におけるCD使用時の縦球面収差図である。FIG. 4 is a longitudinal spherical aberration diagram when the CD is used in Example 1. 実施例2の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図である。It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 2, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure in a flat plate element. 実施例2のBD使用時における光路差関数を示すグラフである。6 is a graph showing an optical path difference function when using a BD of Example 2. 実施例2において、基準波長(405nm)におけるBD使用時の縦球面収差図である。In Example 2, it is a longitudinal spherical aberration figure at the time of BD use in a reference wavelength (405 nm). 実施例2において、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図である。In Example 2, it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength. 実施例2におけるCD使用時の縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the CD is used in Example 2. 実施例3の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図である。It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 3, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure in a flat plate element. 実施例3のBD使用時における光路差関数を示すグラフである。10 is a graph showing an optical path difference function when using a BD of Example 3. 実施例3において、基準波長(405nm)におけるBD使用時の縦球面収差図である。In Example 3, it is a longitudinal spherical aberration figure at the time of BD use in a reference wavelength (405 nm). 実施例3において、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図である。In Example 3, it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength. 実施例3におけるCD使用時の縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the CD is used in Example 3. 実施例4の第1光路差付与構造、第2光路差付与構造を、平板素子に設けた場合の概念断面図である。It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 4 and the 2nd optical path difference providing structure in a flat plate element. 実施例4のBD使用時における光路差関数を示すグラフである。It is a graph which shows the optical path difference function at the time of BD use of Example 4. 実施例4において、基準波長(405nm)におけるBD使用時の縦球面収差図である。In Example 4, it is a vertical spherical aberration figure at the time of BD use in a reference | standard wavelength (405 nm). 実施例4において、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図である。In Example 4, it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength. 実施例4におけるCD使用時の縦球面収差図である。FIG. 6 is a longitudinal spherical aberration diagram when the CD is used in Example 4. 実施例5の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図である。It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 5, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure in a flat plate element. 実施例5のBD使用時における光路差関数を示すグラフである。10 is a graph showing an optical path difference function when using a BD of Example 5. 実施例5において、基準波長(405nm)におけるBD使用時の縦球面収差図である。In Example 5, it is a vertical spherical aberration figure at the time of BD use in a reference wavelength (405 nm). 実施例5において、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図である。In Example 5, it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength. 実施例5におけるCD使用時の縦球面収差図である。FIG. 10 is a longitudinal spherical aberration diagram when the CD is used in Example 5. 実施例6の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図である。It is a conceptual sectional view at the time of providing the 1st optical path difference providing structure of Example 6, the 2nd optical path difference providing structure, and the 3rd optical path difference providing structure in a flat plate element. 実施例6のBD使用時における光路差関数を示すグラフである。10 is a graph showing an optical path difference function when using a BD of Example 6. 実施例6において、基準波長(405nm)におけるBD使用時の縦球面収差図である。In Example 6, it is a vertical spherical aberration figure at the time of BD use in a reference wavelength (405 nm). 実施例6において、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図である。In Example 6, it is a vertical spherical aberration figure at the time of BD use in the case of changing to +5 nm long wavelength side with respect to a reference wavelength. 実施例6におけるCD使用時の縦球面収差図である。FIG. 10 is a longitudinal spherical aberration diagram when the CD is used in Example 6. CD使用時の縦球面収差図の一例であり、メイン光とフレア光との距離を説明するための図である。It is an example of a longitudinal spherical aberration diagram when using a CD, and is a diagram for explaining a distance between main light and flare light. 実施例1における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳する前の形状図である。It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 1. FIG. 実施例1における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳した後の形状図である。It is a shape figure after superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 1. FIG. 実施例2における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳する前の形状図である。It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 2. FIG. 実施例2における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳した後の形状図である。It is a shape figure after superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 2. FIG. 実施例3における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳する前の形状図である。It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 3. 実施例3における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳した後の形状図である。It is a shape figure after superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 3. 実施例4における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳する前の形状図である。It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 4. 実施例4における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳した後の形状図である。It is a shape figure after superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 4. 実施例5における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳する前の形状図である。It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 5. FIG. 実施例5における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳した後の形状図である。It is a shape figure after superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 5. FIG. 実施例6における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳する前の形状図である。It is a shape figure before superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 6. 実施例6における中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳した後の形状図である。It is a shape figure after superimposing the 1st foundation structure and the 2nd foundation structure about the 1st optical path difference providing structure of the central field in Example 6.
 以下、本発明の実施の形態を、図面を参照して説明する。図8は、異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、スリムタイプであり、薄形の光情報記録再生装置に搭載できる。ここでは、第1光ディスクをBDとし、第2光ディスクをDVDとし、第3光ディスクをCDとする。なお、本発明は、本実施の形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 8 is a diagram schematically showing a configuration of the optical pickup device PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks. The optical pickup device PU1 is a slim type and can be mounted on a thin optical information recording / reproducing device. Here, the first optical disc is a BD, the second optical disc is a DVD, and the third optical disc is a CD. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU1は、対物レンズOL、λ/4波長板QWP、コリメートレンズCOL、偏光ビームスプリッタBS、ダイクロイックプリズムDP,BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=660nmのレーザ光束(第2光束)を射出する第2半導体レーザLD2(第2光源)及びCDに対して情報の記録/再生を行う場合に発光され波長λ3=785nmのレーザ光束(第3光束)を射出する第3半導体レーザLD3を一体化したレーザユニットLDP、センサレンズSEN、光検出器としての受光素子PD等を有する。 The optical pickup device PU1 emits light when recording / reproducing information with respect to the objective lens OL, the λ / 4 wavelength plate QWP, the collimating lens COL, the polarization beam splitter BS, and the dichroic prisms DP and BD, and has a wavelength of λ1 = 405 nm. A first semiconductor laser LD1 (first light source) that emits a laser beam (first beam) and a laser beam (second beam) that is emitted when recording / reproducing information on a DVD and has a wavelength λ2 = 660 nm. The second semiconductor laser LD2 (second light source) that emits and the third semiconductor laser LD3 that emits a laser beam (third beam) having a wavelength λ3 = 785 nm emitted when information is recorded / reproduced with respect to the CD are integrated. A laser unit LDP, a sensor lens SEN, a light receiving element PD as a photodetector, and the like.
 図2に示されるように、本実施の形態にかかる単玉の対物レンズOLにおいて、光源側の非球面光学面に光軸を含む中央領域CNと、その周囲に配置された中間領域MDと、更にその周囲に配置された周辺領域OTとが、光軸を中心とする同心円状に形成されている。図示していないが、中心領域CNには既に詳述した第1光路差付与構造が形成され、中間領域MDには既に詳述した第2光路差付与構造が形成されている。また、周辺領域OTには、第3光路差付与構造又は屈折面が形成されている。また、本実施の形態の対物レンズはプラスチックレンズである。対物レンズOLの中心領域CNに形成された第1光路差付与構造は、図6に示すように、第1基礎構造と第2基礎構造とを重ね合わせた構造であり、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の-1次の回折光量を他のいかなる次数の回折光量よりも大きくし、少なくとも中心領域CNの光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いており(即ち負のパワーを持ち)、第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。 As shown in FIG. 2, in the single objective lens OL according to the present embodiment, a central region CN including the optical axis on the aspherical optical surface on the light source side, an intermediate region MD arranged around the central region CN, Further, a peripheral region OT disposed around the periphery is formed concentrically with the optical axis as the center. Although not shown, the first optical path difference providing structure already described in detail is formed in the center region CN, and the second optical path difference providing structure already described in detail is formed in the intermediate region MD. Further, a third optical path difference providing structure or a refracting surface is formed in the peripheral region OT. The objective lens of the present embodiment is a plastic lens. The first optical path difference providing structure formed in the central region CN of the objective lens OL is a structure in which the first basic structure and the second basic structure are overlapped as shown in FIG. The first-order diffracted light amount of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the first basic structure is set to any other order. The -1st order diffracted light amount of the third light flux that has passed through the first basic structure is made larger than any other order diffracted light amount, and is provided at least near the optical axis of the central region CN. In the first basic structure, the step is directed in the direction opposite to the optical axis (that is, has negative power), and the second basic structure is the second-order diffracted light amount of the first light flux that has passed through the second basic structure. Is larger than any other order of diffracted light, and the second substructure is The first-order diffracted light amount of the second light beam that has passed is made larger than any other order diffracted light amount, and the first-order diffracted light amount of the third light beam that has passed through the second basic structure is made larger than any other order diffracted light amount. Enlarge.
 第2光路差付与構造は、第2光路差付与構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、光路差付与構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。 In the second optical path difference providing structure, the 0th-order diffracted light quantity of the first light flux that has passed through the second optical path difference providing structure is made larger than any other order diffracted light quantity, and the second optical path difference providing structure passes through the second optical path difference providing structure. The first order diffracted light amount of the light beam is made larger than any other order diffracted light amount, and the first order diffracted light amount of the third light beam that has passed through the optical path difference providing structure is made larger than any other order diffracted light amount.
 青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、実線で示すように、ダイクロイックプリズムDPを通過し、偏光ビームスプリッタBSを通過した後、コリメートレンズCOLを通過して平行光となり、λ/4波長板QWPにより直線偏光から円偏光に変換され、不図示の絞りによりその光束径が規制され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域と周辺領域により集光された光束は、厚さ0.1mmの保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。 The divergent light beam of the first light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP, passes through the polarization beam splitter BS, and then passes through the collimating lens COL as shown by the solid line. It becomes parallel light, is converted from linearly polarized light into circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and enters the objective lens OL. Here, the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1 having a thickness of 0.1 mm. .
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOL、不図示の絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、2軸アクチュエータAC1により対物レンズOLをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。ここで、第1光束に波長変動が生じた場合や、複数の情報記録層を有するBDの記録/再生を行う場合、波長変動や異なる情報記録層に起因して発生する球面収差を、倍率変更手段としてのコリメートレンズCOLを光軸方向に変化させて、対物光学素子OLに入射する光束の発散角又は収束角を変更することで補正できるようになっている。 The reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and by the collimating lens COL. A converged light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. The information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1. Here, when the wavelength fluctuation occurs in the first light flux or when recording / reproducing of a BD having a plurality of information recording layers, the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. Correction can be made by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL by changing the collimating lens COL as means in the optical axis direction.
 レーザユニットLDPの半導体レーザLD2から射出された第2光束(λ2=660nm)の発散光束は、点線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域により集光された(周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、厚さ0.6mmの保護基板PL2を介して、DVDの情報記録面RL2に形成されるスポットとなり、スポット中心部を形成する。 The divergent light beam of the second light beam (λ2 = 660 nm) emitted from the semiconductor laser LD2 of the laser unit LDP is reflected by the dichroic prism DP, passes through the polarization beam splitter BS and the collimating lens COL, as indicated by the dotted line, and λ The / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OL. Here, the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral part) is passed through the protective substrate PL2 having a thickness of 0.6 mm. Thus, the spot is formed on the information recording surface RL2 of the DVD and forms the center of the spot.
 情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてDVDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a convergent light beam by the collimating lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD.
 レーザユニットLDPの半導体レーザLD3から射出された第3光束(λ3=785nm)の発散光束は、一点鎖線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域により集光された(中間領域及び周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、厚さ1.2mmの保護基板PL3を介して、CDの情報記録面RL3上に形成されるスポットとなる。 The divergent light beam of the third light beam (λ3 = 785 nm) emitted from the semiconductor laser LD3 of the laser unit LDP is reflected by the dichroic prism DP as shown by a one-dot chain line, passes through the polarization beam splitter BS, and the collimating lens COL. The linearly polarized light is converted into circularly polarized light by the λ / 4 wavelength plate QWP, and is incident on the objective lens OL. Here, the light beam condensed by the central region of the objective lens OL (the light beam that has passed through the intermediate region and the peripheral region is flared to form a spot peripheral portion) is passed through the protective substrate PL3 having a thickness of 1.2 mm. Thus, the spot is formed on the information recording surface RL3 of the CD.
 情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてCDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL3 passes through the objective lens OL again, is converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and is converged by the collimating lens COL, The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
(実施例)
 以下、上述した実施の形態に用いることができる実施例について説明する。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。また、対物レンズの光学面は、それぞれ数2式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
(Example)
Examples that can be used in the above-described embodiment will be described below. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). Further, the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula obtained by substituting the coefficients shown in Table 2 into Formula 2.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (with the light traveling direction being positive), κ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
 また、回折構造を用いた実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、前述した数1式の光路差関数に、表に示す係数を代入した数式で規定される。 Further, in the case of the embodiment using the diffractive structure, the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation obtained by substituting the coefficient shown in the table into the optical path difference function of the above equation (1). Is done.
(実施例1)
 実施例1の対物レンズはプラスチック単玉レンズであって、有効径φ1=2mmである。実施例1の第1光路差付与構造は、中央領域の全領域において、(2、1、1)のブレーズ型の回折構造である第2基礎構造BS2に、(1、1、1)であるブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、(0、1、1)である3ステップの階段型の回折構造である。第3光路差構造は、(2、1、1)のブレーズ型の回折構造である。
Example 1
The objective lens of Example 1 is a plastic single lens, and has an effective diameter φ1 = 2 mm. The first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1). The third optical path difference structure is a (2, 1, 1) blazed diffraction structure.
 表1に実施例1のレンズデータを示す。表中のWDとは、ワーキングディスタンスの意味である。 Table 1 shows the lens data of Example 1. WD in the table means working distance.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 更に、実施例1のレンズデータに基づいて、実際の対物レンズの形状を設計した。当該実形状のデータを表2A~表2Cに示す。表2A、表2B、表2C(連続する)に示されるデータを、数3式で示される数式に代入することにより、各輪帯の実形状データが得られる。 Furthermore, the actual shape of the objective lens was designed based on the lens data of Example 1. The actual shape data are shown in Tables 2A to 2C. By substituting the data shown in Table 2A, Table 2B, and Table 2C (continuous) into the mathematical formula shown in Equation 3, the actual shape data of each annular zone is obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 hは、光軸直交方向の光軸からの高さを表す。さらに、実施例1の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図を、図9として示す。第1光路差付与構造が設けられた中央領域がCNであり、第2光路差付与構造が設けられた中間領域がMDで示された領域であり、第3光路差付与構造が設けられた周辺領域がOTで示された領域である。 H represents the height from the optical axis in the direction perpendicular to the optical axis. Furthermore, FIG. 9 shows a conceptual cross-sectional view when the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 1 are provided in a flat plate element. The central region where the first optical path difference providing structure is provided is CN, the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD, and the periphery where the third optical path difference providing structure is provided The region is a region indicated by OT.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図10は、縦軸に位相差をとり、横軸に光軸からの高さをとって、BD使用時の光路差関数を示すグラフであり、光路差関数が領域間で連続していることが分かる。図11は、基準波長(405nm)におけるBD使用時の縦球面収差図であり、図12は、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図であって、グラフの縦軸はBDの有効径φ1=2.0mmを1としている。図13は、CD使用時の縦球面収差図であり、メイン光と、±0.1mm以内で発生するフレア光とを示しており、グラフの縦軸はBDの有効径φ1=2.0mmを1としている。専用領域に発生するフレアは-0.01mm~0.01mmの範囲外に発生している。 FIG. 10 is a graph showing the optical path difference function when the BD is used, with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis, and the optical path difference function is continuous between regions. I understand. FIG. 11 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm), and FIG. 12 is a longitudinal spherical aberration diagram when using BD when the wavelength is changed to the +5 nm long wavelength side with respect to the reference wavelength. The vertical axis of the graph is 1 when the effective diameter φ1 of the BD is 2.0 mm. FIG. 13 is a vertical spherical aberration diagram when using a CD, showing main light and flare light generated within ± 0.1 mm, and the vertical axis of the graph shows the effective diameter of BD φ1 = 2.0 mm. 1 is assumed. Flares that occur in the dedicated area occur outside the range of -0.01mm to 0.01mm.
 実施例1において、CD使用時のワーキングディスタンスCW=0.2mmであり、CDの情報記録面に集光するメイン光とフレア光との距離x=5μmであり、第2光路差付与構造の輪帯幅L(μm)の最小値は、3.42μmである。又、対物レンズの光軸上の厚さをd(mm)、第1光束における対物レンズの焦点距離をf(mm)とすると、d/f=1.0である。又、第1光束が1nmの波長変化を生じたときの波面収差ベストの光軸位置変化をΔ(mm)とすると、Δ/f=2.5×10-4mmである。 In Example 1, the working distance CW when using a CD is 0.2 mm, the distance between the main light and the flare light condensed on the information recording surface of the CD is x = 5 μm, and the second optical path difference providing ring The minimum value of the band width L (μm) is 3.42 μm. Further, d / f = 1.0 where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux. When the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm is Δ (mm), Δ / f = 2.5 × 10 −4 mm.
(実施例2)
 実施例2の対物レンズはプラスチック単玉レンズであって、有効径φ1=2.4mmである。実施例1の第1光路差付与構造は、中央領域の全領域において、(2、1、1)のブレーズ型の回折構造である第2基礎構造BS2に、(1、1、1)であるブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、(0、1、1)である3ステップの階段型の回折構造である。第3光路差構造は、(2、1、1)のブレーズ型の回折構造である。
(Example 2)
The objective lens of Example 2 is a plastic single lens, and has an effective diameter φ1 = 2.4 mm. The first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1). The third optical path difference structure is a (2, 1, 1) blazed diffraction structure.
 表3に実施例2のレンズデータを示す。 Table 3 shows the lens data of Example 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 更に、実施例2のレンズデータに基づいて、実際の対物レンズの形状を設計した。当該実形状のデータを表4A~表4Bに示す。表4A、表4B(連続する)に示されるデータを、数3式で示される数式に代入することにより、各輪帯の実形状データが得られる。 Furthermore, the actual shape of the objective lens was designed based on the lens data of Example 2. The actual shape data are shown in Tables 4A to 4B. By substituting the data shown in Table 4A and Table 4B (continuous) into the mathematical formula shown in Formula 3, the actual shape data of each annular zone is obtained.
 hは、光軸直交方向の光軸からの高さを表す。さらに、実施例2の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図を、図14として示す。第1光路差付与構造が設けられた中央領域がCNであり、第2光路差付与構造が設けられた中間領域がMDで示された領域であり、第3光路差付与構造が設けられた周辺領域がOTで示された領域である。 H represents the height from the optical axis in the direction perpendicular to the optical axis. Furthermore, FIG. 14 shows a conceptual cross-sectional view in the case where the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 2 are provided in a flat plate element. The central region where the first optical path difference providing structure is provided is CN, the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD, and the periphery where the third optical path difference providing structure is provided The region is a region indicated by OT.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 図15は、縦軸に位相差をとり、横軸に光軸からの高さをとって、BD使用時の光路差関数を示すグラフであり、光路差関数が領域間で連続していることが分かる。図16は、基準波長(405nm)におけるBD使用時の縦球面収差図であり、図17は、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図であって、グラフの縦軸はBDの有効径φ1=2.4mmを1としている。図18は、CD使用時の縦球面収差図であり、メイン光と、±0.1mm以内で発生するフレア光とを示しており、グラフの縦軸はBDの有効径φ1=2.4mmを1としている。 FIG. 15 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis. The optical path difference function is continuous between regions. I understand. FIG. 16 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm), and FIG. 17 is a longitudinal spherical aberration diagram when using BD when the wavelength changes to the +5 nm long wavelength side with respect to the reference wavelength. The vertical axis of the graph is 1 when the effective diameter of the BD φ1 = 2.4 mm. FIG. 18 is a longitudinal spherical aberration diagram when using a CD, showing main light and flare light generated within ± 0.1 mm, and the vertical axis of the graph shows the effective diameter φ1 = 2.4 mm of BD. 1 is assumed.
 実施例2において、CD使用時のワーキングディスタンスCW=0.2mmであり、CDの情報記録面に集光するメイン光とフレア光との距離x=10μmであり、第2光路差付与構造の輪帯幅L(μm)の最小値は、6.84μmである。又、対物レンズの光軸上の厚さをd(mm)、第1光束における対物レンズの焦点距離をf(mm)とすると、d/f=1.0である。又、第1光束が1nmの波長変化を生じたときの波面収差ベストの光軸位置変化をΔ(mm)とすると、Δ/f=2.2×10-4mmである。 In Example 2, the working distance CW at the time of using the CD is 0.2 mm, the distance x between the main light and the flare light condensed on the information recording surface of the CD is 10 μm, and the second optical path difference providing ring The minimum value of the band width L (μm) is 6.84 μm. Further, d / f = 1.0 where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux. Further, Δ / f = 2.2 × 10 −4 mm, where Δ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
(実施例3)
 実施例3の対物レンズはプラスチック単玉レンズであって、有効径φ1=2.4mmである。実施例1の第1光路差付与構造は、中央領域の全領域において、(2、1、1)のブレーズ型の回折構造である第2基礎構造BS2に、(1、1、1)であるブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、(0、1、1)である3ステップの階段型の回折構造である。第3光路差構造は、(0、1、1)の2ステップの階段型の回折構造である。
(Example 3)
The objective lens of Example 3 is a plastic single lens, and has an effective diameter φ1 = 2.4 mm. The first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1). The third optical path difference structure is a two-step staircase type diffraction structure of (0, 1, 1).
 表5に実施例3のレンズデータを示す。 Table 5 shows the lens data of Example 3.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 更に、実施例3のレンズデータに基づいて、実際の対物レンズの形状を設計した。当該実形状のデータを表6A~表6Bに示す。表6A、表6B(連続する)に示されるデータを、数3式で示される数式に代入することにより、各輪帯の実形状データが得られる。 Furthermore, the actual shape of the objective lens was designed based on the lens data of Example 3. The actual shape data are shown in Tables 6A to 6B. By substituting the data shown in Table 6A and Table 6B (continuous) into the mathematical formula shown in Formula 3, the actual shape data of each annular zone can be obtained.
 hは、光軸直交方向の光軸からの高さを表す。さらに、実施例3の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図を、図19として示す。第1光路差付与構造が設けられた中央領域がCNであり、第2光路差付与構造が設けられた中間領域がMDで示された領域であり、第3光路差付与構造が設けられた周辺領域がOTで示された領域である。 H represents the height from the optical axis in the direction perpendicular to the optical axis. Further, FIG. 19 shows a conceptual cross-sectional view in the case where the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 3 are provided in the flat plate element. The central region where the first optical path difference providing structure is provided is CN, the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD, and the periphery where the third optical path difference providing structure is provided The region is a region indicated by OT.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 図20は、縦軸に位相差をとり、横軸に光軸からの高さをとって、BD使用時の光路差関数を示すグラフであり、光路差関数が領域間で連続していることが分かる。図21は、基準波長(405nm)におけるBD使用時の縦球面収差図であり、図22は、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図であって、グラフの縦軸はBDの有効径φ1=2.4mmを1としている。図23は、CD使用時の縦球面収差図であり、メイン光と、±0.1mm以内で発生するフレア光とを示しており、グラフの縦軸はBDの有効径φ1=2.4mmを1としている。 FIG. 20 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis. The optical path difference function is continuous between regions. I understand. FIG. 21 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm), and FIG. 22 is a longitudinal spherical aberration diagram when using BD when the wavelength changes to the +5 nm long wavelength side with respect to the reference wavelength. The vertical axis of the graph is 1 when the effective diameter of the BD φ1 = 2.4 mm. FIG. 23 is a longitudinal spherical aberration diagram when using a CD, and shows main light and flare light generated within ± 0.1 mm. The vertical axis of the graph shows the effective diameter of BD φ1 = 2.4 mm. 1 is assumed.
 実施例3において、CD使用時のワーキングディスタンスCW=0.2mmであり、CDの情報記録面に集光するメイン光とフレア光との距離x=10μmであり、第2光路差付与構造の輪帯幅L(μm)の最小値は、6.96μmである。又、対物レンズの光軸上の厚さをd(mm)、第1光束における対物レンズの焦点距離をf(mm)とすると、d/f=1.0である。又、第1光束が1nmの波長変化を生じたときの波面収差ベストの光軸位置変化をΔ(mm)とすると、Δ/f=2.2×10-4mmである。 In Example 3, the working distance when using a CD is CW = 0.2 mm, the distance between the main light and the flare light condensed on the information recording surface of the CD is x = 10 μm, and the second optical path difference providing ring The minimum value of the band width L (μm) is 6.96 μm. Further, d / f = 1.0 where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux. Further, Δ / f = 2.2 × 10 −4 mm, where Δ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
(実施例4)
 実施例4の対物レンズはプラスチック単玉レンズであって、有効径φ1=2.4mmである。実施例1の第1光路差付与構造は、中央領域の全領域において、(2、1、1)のブレーズ型の回折構造である第2基礎構造BS2に、(1、1、1)であるブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、(0、1、1)である3ステップの階段型の回折構造である。周辺領域は屈折面である。
(Example 4)
The objective lens of Example 4 is a plastic single lens, and has an effective diameter φ1 = 2.4 mm. The first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1). The peripheral region is a refractive surface.
 表7に実施例4のレンズデータを示す。 Table 7 shows the lens data of Example 4.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 更に、実施例4のレンズデータに基づいて、実際の対物レンズの形状を設計した。当該実形状のデータを表8に示す。表8に示されるデータを、数3式で示される数式に代入することにより、各輪帯の実形状データが得られる。 Furthermore, the actual shape of the objective lens was designed based on the lens data of Example 4. The actual shape data is shown in Table 8. By substituting the data shown in Table 8 into the equation shown in Equation 3, actual shape data of each annular zone can be obtained.
 hは、光軸直交方向の光軸からの高さを表す。さらに、実施例4の第1光路差付与構造、第2光路差付与構造を、平板素子に設けた場合の概念断面図を、図24として示す。第1光路差付与構造が設けられた中央領域がCNであり、第2光路差付与構造が設けられた中間領域がMDで示された領域であり、光路差付与構造がない周辺領域がOTで示された領域である。 H represents the height from the optical axis in the direction perpendicular to the optical axis. Furthermore, FIG. 24 shows a conceptual cross-sectional view when the first optical path difference providing structure and the second optical path difference providing structure of Example 4 are provided in the flat plate element. The central region provided with the first optical path difference providing structure is CN, the intermediate region provided with the second optical path difference providing structure is the region indicated by MD, and the peripheral region without the optical path difference providing structure is OT. This is the indicated area.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 図25は、縦軸に位相差をとり、横軸に光軸からの高さをとって、BD使用時の光路差関数を示すグラフであり、光路差関数が領域間で連続していることが分かる。図26は、基準波長(405nm)におけるBD使用時の縦球面収差図であり、図27は、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図であって、グラフの縦軸はBDの有効径φ1=2.4mmを1としている。図28は、CD使用時の縦球面収差図であり、メイン光と、±0.1mm以内で発生するフレア光とを示しており、グラフの縦軸はBDの有効径φ1=2.4mmを1としている。 FIG. 25 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis, and the optical path difference function is continuous between regions. I understand. FIG. 26 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm), and FIG. 27 is a longitudinal spherical aberration diagram when using BD when the wavelength is changed to +5 nm long wavelength side with respect to the reference wavelength. The vertical axis of the graph is 1 when the effective diameter of the BD φ1 = 2.4 mm. FIG. 28 is a longitudinal spherical aberration diagram when using a CD, showing main light and flare light generated within ± 0.1 mm, and the vertical axis of the graph shows the effective diameter of BD φ1 = 2.4 mm. 1 is assumed.
 実施例4において、CD使用時のワーキングディスタンスCW=0.2mmであり、CDの情報記録面に集光するメイン光とフレア光との距離x=10μmであり、第2光路差付与構造の輪帯幅L(μm)の最小値は、6.88μmである。又、対物レンズの光軸上の厚さをd(mm)、第1光束における対物レンズの焦点距離をf(mm)とすると、d/f=1.0である。又、第1光束が1nmの波長変化を生じたときの波面収差ベストの光軸位置変化をΔ(mm)とすると、Δ/f=2.2×10-4mmである。 In Example 4, the working distance when using a CD is CW = 0.2 mm, the distance between the main light and the flare light condensed on the information recording surface of the CD is 10 μm, and the second optical path difference providing ring The minimum value of the band width L (μm) is 6.88 μm. Further, d / f = 1.0 where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux. Further, Δ / f = 2.2 × 10 −4 mm, where Δ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
(実施例5)
 実施例5の対物レンズはプラスチック単玉レンズであって、有効径φ1=3.0mmである。実施例1の第1光路差付与構造は、中央領域の全領域において、(2、1、1)のブレーズ型の回折構造である第2基礎構造BS2に、(1、1、1)であるブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、(0、1、1)である3ステップの階段型の回折構造である。第3光路差構造は、(0、1、1)のブレーズ型の回折構造である。
(Example 5)
The objective lens of Example 5 is a plastic single lens, and has an effective diameter φ1 = 3.0 mm. The first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1). The third optical path difference structure is a (0, 1, 1) blazed diffraction structure.
 表9に実施例5のレンズデータを示す。 Table 9 shows the lens data of Example 5.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 更に、実施例5のレンズデータに基づいて、実際の対物レンズの形状を設計した。当該実形状のデータを表10A~表10Bに示す。表10A、表10B(連続する)に示されるデータを、数3式で示される数式に代入することにより、各輪帯の実形状データが得られる。 Furthermore, the actual shape of the objective lens was designed based on the lens data of Example 5. The actual shape data are shown in Tables 10A to 10B. By substituting the data shown in Table 10A and Table 10B (continuous) into the mathematical formula shown in Formula 3, the actual shape data of each annular zone is obtained.
 hは、光軸直交方向の光軸からの高さを表す。さらに、実施例5の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図を、図29として示す。第1光路差付与構造が設けられた中央領域がCNであり、第2光路差付与構造が設けられた中間領域がMDで示された領域であり、第3光路差付与構造が設けられた周辺領域がOTで示された領域である。 H represents the height from the optical axis in the direction perpendicular to the optical axis. Furthermore, FIG. 29 shows a conceptual cross-sectional view when the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 5 are provided in the flat plate element. The central region where the first optical path difference providing structure is provided is CN, the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD, and the periphery where the third optical path difference providing structure is provided The region is a region indicated by OT.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 図30は、縦軸に位相差をとり、横軸に光軸からの高さをとって、BD使用時の光路差関数を示すグラフであり、光路差関数が領域間で連続していることが分かる。図31は、基準波長(405nm)におけるBD使用時の縦球面収差図であり、図32は、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図であって、グラフの縦軸はBDの有効径φ1=3.0mmを1としている。図33は、CD使用時の縦球面収差図であり、メイン光と、±0.1mm以内で発生するフレア光とを示しており、グラフの縦軸はBDの有効径φ1=3.0mmを1としている。 FIG. 30 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis, and the optical path difference function is continuous between regions. I understand. FIG. 31 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm), and FIG. 32 is a longitudinal spherical aberration diagram when using BD when the wavelength changes to the +5 nm long wavelength side with respect to the reference wavelength. The vertical axis of the graph assumes that the effective diameter of the BD φ1 = 3.0 mm is 1. FIG. 33 is a longitudinal spherical aberration diagram when using a CD, showing main light and flare light generated within ± 0.1 mm, and the vertical axis of the graph shows the effective diameter of BD φ1 = 3.0 mm. 1 is assumed.
 実施例5において、CD使用時のワーキングディスタンスCW=0.2mmであり、CDの情報記録面に集光するメイン光とフレア光との距離x=11μmであり、第2光路差付与構造の輪帯幅L(μm)の最小値は、8.44μmである。又、対物レンズの光軸上の厚さをd(mm)、第1光束における対物レンズの焦点距離をf(mm)とすると、d/f=1.2である。又、第1光束が1nmの波長変化を生じたときの波面収差ベストの光軸位置変化をΔ(mm)とすると、Δ/f=1.9×10-4mmである。 In Example 5, the working distance CW when using the CD is 0.2 mm, the distance x between the main light and the flare light condensed on the information recording surface of the CD is 11 μm, and the second optical path difference providing ring The minimum value of the band width L (μm) is 8.44 μm. Further, d / f = 1.2, where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux. Further, Δ / f = 1.9 × 10 −4 mm, where Δ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
(実施例6)
 実施例6の対物レンズはプラスチック単玉レンズであって、有効径φ1=3.74mmである。実施例1の第1光路差付与構造は、中央領域の全領域において、(2、1、1)のブレーズ型の回折構造である第2基礎構造BS2に、(1、1、1)であるブレーズ型の回折構造である第1基礎構造BS1が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、(0、1、1)である3ステップの階段型の回折構造である。第3光路差構造は、(0、1、1)のブレーズ型の回折構造である。
(Example 6)
The objective lens of Example 6 is a plastic single lens, and has an effective diameter φ1 = 3.74 mm. The first optical path difference providing structure of Example 1 is (1, 1, 1) in the second basic structure BS2 that is a blazed diffraction structure (2, 1, 1) in the entire central region. This is an optical path difference providing structure in which the first basic structure BS1 which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is a three-step staircase type diffraction structure of (0, 1, 1). The third optical path difference structure is a (0, 1, 1) blazed diffraction structure.
 表11に実施例6のレンズデータを示す。 Table 11 shows lens data of Example 6.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 更に、実施例6のレンズデータに基づいて、実際の対物レンズの形状を設計した。当該実形状のデータを表12A~表12Bに示す。表12A、表12B(連続する)に示されるデータを、数3式で示される数式に代入することにより、各輪帯の実形状データが得られる。 Furthermore, the actual shape of the objective lens was designed based on the lens data of Example 6. The actual shape data is shown in Tables 12A to 12B. By substituting the data shown in Table 12A and Table 12B (continuous) into the mathematical formula shown in Formula 3, the actual shape data of each annular zone can be obtained.
 hは、光軸直交方向の光軸からの高さを表す。さらに、実施例6の第1光路差付与構造、第2光路差付与構造、第3光路差付与構造を、平板素子に設けた場合の概念断面図を、図34として示す。第1光路差付与構造が設けられた中央領域がCNであり、第2光路差付与構造が設けられた中間領域がMDで示された領域であり、第3光路差付与構造が設けられた周辺領域がOTで示された領域である。 H represents the height from the optical axis in the direction perpendicular to the optical axis. Furthermore, FIG. 34 shows a conceptual cross-sectional view in the case where the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure of Example 6 are provided in the flat plate element. The central region where the first optical path difference providing structure is provided is CN, the intermediate region where the second optical path difference providing structure is provided is the region indicated by MD, and the periphery where the third optical path difference providing structure is provided The region is a region indicated by OT.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 図35は、縦軸に位相差をとり、横軸に光軸からの高さをとって、BD使用時の光路差関数を示すグラフであり、光路差関数が領域間で連続していることが分かる。図36は、基準波長(405nm)におけるBD使用時の縦球面収差図であり、図37は、基準波長に対して+5nm長波長側に変化した場合におけるBD使用時の縦球面収差図であって、グラフの縦軸はBDの有効径φ1=3.74mmを1としている。図38は、CD使用時の縦球面収差図であり、メイン光と、±0.1mm以内で発生するフレア光とを示しており、グラフの縦軸はBDの有効径φ1=3.74mmを1としている。 FIG. 35 is a graph showing the optical path difference function when the BD is used with the phase difference on the vertical axis and the height from the optical axis on the horizontal axis, and the optical path difference function is continuous between regions. I understand. FIG. 36 is a longitudinal spherical aberration diagram when using BD at the reference wavelength (405 nm), and FIG. 37 is a longitudinal spherical aberration diagram when using BD when the wavelength changes to the +5 nm long wavelength side with respect to the reference wavelength. The vertical axis of the graph assumes that the effective diameter of the BD φ1 = 3.74 mm. FIG. 38 is a longitudinal spherical aberration diagram when using a CD, showing main light and flare light generated within ± 0.1 mm, and the vertical axis of the graph shows the effective diameter of BD φ1 = 3.74 mm. 1 is assumed.
 実施例6において、CD使用時のワーキングディスタンスCW=0.36mmであり、CDの情報記録面に集光するメイン光とフレア光との距離x=13μmであり、第2光路差付与構造の輪帯幅L(μm)の最小値は、9.14μmである。又、対物レンズの光軸上の厚さをd(mm)、第1光束における対物レンズの焦点距離をf(mm)とすると、d/f=1.2である。又、第1光束が1nmの波長変化を生じたときの波面収差ベストの光軸位置変化をΔ(mm)とすると、Δ/f=2.0×10-4mmである。 In Example 6, the working distance CW when using the CD = 0.36 mm, the distance x = 13 μm between the main light and the flare light focused on the information recording surface of the CD, and the second optical path difference providing ring The minimum value of the band width L (μm) is 9.14 μm. Further, d / f = 1.2, where d (mm) is the thickness of the objective lens on the optical axis, and f (mm) is the focal length of the objective lens in the first light flux. Further, Δ / f = 2.0 × 10 −4 mm where Δ (mm) is the change in the optical axis position of the wavefront aberration best when the first light beam undergoes a wavelength change of 1 nm.
 また、実施例1~6の各実施例の中央領域の第1光路差付与構造について、第1基礎構造と第2基礎構造を重畳する前と後の形状図を、図40~図51として記載する。 In addition, regarding the first optical path difference providing structure in the central region of each of Examples 1 to 6, the shape diagrams before and after the first basic structure and the second basic structure are superimposed are described as FIGS. 40 to 51. To do.
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や技術思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and includes other embodiments and modifications for those skilled in the art from the embodiments and technical ideas described in the present specification. it is obvious. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
AC1 2軸アクチュエータ
BS 偏光ビームスプリッタ
CN 中央領域
COL コリメートレンズ
DP ダイクロイックプリズム
LD1 第1半導体レーザ又は青紫色半導体レーザ
LD2 第2半導体レーザ
LD3 第3半導体レーザ
LDP レーザユニット
MD 中間領域
OL 対物レンズ
OT 周辺領域
PD 受光素子
PL1 保護基板
PL2 保護基板
PL3 保護基板
PU1 光ピックアップ装置
QWP λ/4波長板
RL1 情報記録面
RL2 情報記録面
RL3 情報記録面
SEN センサレンズ
AC1 Biaxial actuator BS Polarizing beam splitter CN Central region COL Collimating lens DP Dichroic prism LD1 First semiconductor laser or blue-violet semiconductor laser LD2 Second semiconductor laser LD3 Third semiconductor laser LDP Laser unit MD Intermediate region OL Objective lens OT Peripheral region PD Light receiving element PL1 Protective substrate PL2 Protective substrate PL3 Protective substrate PU1 Optical pickup device QWP λ / 4 wavelength plate RL1 Information recording surface RL2 Information recording surface RL3 Information recording surface SEN Sensor lens

Claims (21)

  1.  第1波長λ1の第1光束を射出する第1光源と、第2波長λ2(λ2>λ1)の第2光束を射出する第2光源と、第3波長λ3(λ3>λ2)の第3光束を射出する第3光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有する第1光ディスクの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有する第2光ディスクの情報の記録及び/又は再生を行い、前記第3光束を用いて厚さがt3(t2<t3)の保護基板を有する第3光ディスクの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
     前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
     前記中央領域は第1光路差付与構造を有し、
     前記中間領域は第2光路差付与構造を有し、
     前記対物レンズは、前記中央領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、
     前記対物レンズは、前記中間領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記第1光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記第2光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記第3光ディスクの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
     前記第1基礎構造は、前記第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第2基礎構造は、前記第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第2光路差付与構造は、ステップ数が等しい複数の小階段型構造を有する階段型構造であり、前記第2光路差付与構造は、前記第2光路差付与構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2光路差付与構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2光路差付与構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする対物レンズ。
    A first light source that emits a first light flux with a first wavelength λ1, a second light source that emits a second light flux with a second wavelength λ2 (λ2> λ1), and a third light flux with a third wavelength λ3 (λ3> λ2) And recording and / or reproducing information on a first optical disc having a protective substrate with a thickness of t1 using the first light flux, and using the second light flux to obtain a thickness. Records and / or reproduces information on the second optical disk having the protective substrate t2 (t1 <t2), and uses the third light flux to have the third optical disk having the protective substrate having the thickness t3 (t2 <t3) An objective lens used in an optical pickup device that records and / or reproduces information of
    The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
    The central region has a first optical path difference providing structure,
    The intermediate region has a second optical path difference providing structure,
    The objective lens condenses the first light flux that passes through the central area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the central area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the central region is condensed on the information recording surface of the third optical disc. Condensing so that information can be recorded and / or reproduced,
    The objective lens condenses the first light flux that passes through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the intermediate area. Two light beams are condensed on the information recording surface of the second optical disc so that information can be recorded and / or reproduced, and the third light beam passing through the intermediate region is condensed on the information recording surface of the third optical disc. Without collecting light so that information can be recorded and / or reproduced.
    The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the first optical disc, and the objective lens passes through the peripheral area. The second light flux is not condensed so that information can be recorded and / or reproduced on the information recording surface of the second optical disc, and the third light flux passing through the peripheral region is used as the information recording surface of the third optical disc. Do not concentrate so that information can be recorded and / or reproduced
    The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
    The first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and 1 of the second light flux that has passed through the first basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, making the first order diffracted light quantity of the third light flux that has passed through the first basic structure larger than any other order diffracted light quantity,
    The second basic structure makes the second-order diffracted light amount of the first light beam that has passed through the second basic structure larger than any other order of diffracted light amount, and 1 of the second light beam that has passed through the second basic structure. Making the next diffracted light quantity larger than any other order diffracted light quantity, making the first order diffracted light quantity of the third light flux that has passed through the second basic structure larger than any other order diffracted light quantity,
    The second optical path difference providing structure is a staircase structure having a plurality of small staircase structures having the same number of steps, and the second optical path difference providing structure is a first light flux that has passed through the second optical path difference providing structure. Making the 0th-order diffracted light quantity larger than any other order diffracted light quantity, and making the first-order diffracted light quantity of the second light flux that has passed through the second optical path difference providing structure larger than any other order diffracted light quantity; An objective lens, wherein the first-order diffracted light amount of the third light flux that has passed through the second optical path difference providing structure is made larger than any other order diffracted light amount.
  2.  前記第2光路差付与構造は、前記小階段型構造が2ステップ(バイナリ構造)であることを特徴とする請求項1に記載の対物レンズ。 2. The objective lens according to claim 1, wherein the second optical path difference providing structure is such that the small staircase structure has two steps (binary structure).
  3.  前記2ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする請求項2に記載の対物レンズ。
     -1.0≦h≦-0.6   (A)
     0.6≦h≦1.0   (B)
    The height per step of the two-step structure of the two steps is h (μm), and the case where the step is facing the optical axis direction is positive, and the case where the step is facing the direction opposite to the optical axis is negative. The objective lens according to claim 2, wherein:
    -1.0 ≦ h ≦ -0.6 (A)
    0.6 ≦ h ≦ 1.0 (B)
  4.  前記第2光路差付与構造は、前記小階段型構造が3ステップであることを特徴とする請求項1に記載の対物レンズ。 2. The objective lens according to claim 1, wherein the second optical path difference providing structure has three steps of the small staircase structure.
  5.  前記3ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする請求項4に記載の対物レンズ。
     -1.2≦h≦-0.7   (C)
     2.7≦h≦4.4   (D)
    The height per step of the three-step structure of the three steps is h (μm), and the case where the step is facing the optical axis direction is positive, and the case where the step is facing the direction opposite to the optical axis is negative. The objective lens according to claim 4, wherein:
    -1.2 ≦ h ≦ -0.7 (C)
    2.7 ≦ h ≦ 4.4 (D)
  6.  前記第2光路差付与構造は、前記小階段型構造が4ステップであることを特徴とする請求項1に記載の対物レンズ。 2. The objective lens according to claim 1, wherein the second optical path difference providing structure includes the small staircase structure having four steps.
  7.  前記4ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする請求項6に記載の対物レンズ。
     -3.4≦h≦-2.0   (E)
     1.4≦h≦2.3   (F)
    The height per step of the four-step small structure of the four steps is h (μm), and the case where the step is facing the optical axis direction is positive, and the case where the step is facing the opposite direction to the optical axis is negative. The objective lens according to claim 6, wherein:
    -3.4 ≦ h ≦ -2.0 (E)
    1.4 ≦ h ≦ 2.3 (F)
  8.  前記周辺領域は、第3光路差付与構造を有し、前記第3光路差付与構造は、ブレーズ型構造であって、前記第3光路差付与構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする請求項1~7のいずれかに記載の対物レンズ。 The peripheral region has a third optical path difference providing structure, and the third optical path difference providing structure is a blazed structure, and a second-order diffracted light quantity of the first light beam that has passed through the third optical path difference providing structure. The objective lens according to any one of claims 1 to 7, wherein the objective lens is made larger than any other order of diffracted light quantity.
  9.  前記周辺領域は、第3光路差付与構造を有し、前記第3光路差付与構造は、複数の小階段型構造を有する階段型構造であって、前記第3光路差付与構造を通過した第1光束の0次の回折光量を他のいかなる次数の回折光量よりも大きくすることを特徴とする請求項1~7のいずれかに記載の対物レンズ。 The peripheral region has a third optical path difference providing structure, and the third optical path difference providing structure is a stepped structure having a plurality of small staircase structures, and passes through the third optical path difference providing structure. The objective lens according to any one of claims 1 to 7, wherein the 0th-order diffracted light amount of one light beam is made larger than any other order diffracted light amount.
  10.  前記第3光路差付与構造は、前記小階段型構造が2ステップ(バイナリ構造)であることを特徴とする請求項9に記載の対物レンズ。 10. The objective lens according to claim 9, wherein the third optical path difference providing structure is such that the small staircase structure has two steps (binary structure).
  11.  前記2ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする請求項10に記載の対物レンズ。
     -1.0≦h≦-0.6   (G)
     0.6≦h≦1.0   (H)
    The height per step of the two-step structure of the two steps is h (μm), and the case where the step is facing the optical axis direction is positive, and the case where the step is facing the direction opposite to the optical axis is negative. The objective lens according to claim 10, wherein:
    -1.0 ≦ h ≦ -0.6 (G)
    0.6 ≦ h ≦ 1.0 (H)
  12.  前記第3光路差付与構造は、前記小階段型構造が3ステップであることを特徴とする請求項9に記載の対物レンズ。 The objective lens according to claim 9, wherein the third optical path difference providing structure is such that the small staircase structure has three steps.
  13.  前記3ステップの前記小階段型構造の1段あたりの高さをh(μm)とし、段差が光軸方向を向いている場合を正、段差が光軸と逆方向を向いている場合を負としたときに、以下の式を満たすことを特徴とする請求項12に記載の対物レンズ。
     -1.2≦h≦-0.7   (I)
     2.7≦h≦4.4   (J)
    The height per step of the three-step structure of the three steps is h (μm), and the case where the step is facing the optical axis direction is positive, and the case where the step is facing the direction opposite to the optical axis is negative. The objective lens according to claim 12, wherein:
    -1.2 ≦ h ≦ -0.7 (I)
    2.7 ≦ h ≦ 4.4 (J)
  14.  前記周辺領域は屈折面であることを特徴とする請求項1~7のいずれかに記載の対物レンズ。 The objective lens according to any one of claims 1 to 7, wherein the peripheral region is a refractive surface.
  15.  前記第1光ディスクに対して情報の記録及び/又は再生を行う際の有効径をφ1(mm)としたときに、以下の式を満たすことを特徴とする請求項1~14のいずれかに記載の対物レンズ。
     1.8≦φ1≦4.0   (1)
    15. The following expression is satisfied when an effective diameter when recording and / or reproducing information on the first optical disc is φ1 (mm): Objective lens.
    1.8 ≦ φ1 ≦ 4.0 (1)
  16.  前記第3光ディスクのワーキングディスタンスをCW(mm)としたときに、以下の式を満たすことを特徴とする請求項1~15のいずれかに記載の対物レンズ。
     CW≧0.2   (2)
    The objective lens according to claim 1, wherein when the working distance of the third optical disk is CW (mm), the following expression is satisfied.
    CW ≧ 0.2 (2)
  17.  前記第3光ディスクの情報記録面に集光する第3光束のメイン光と第3光束のフレア光の距離をx(μm)としたときに、以下の式を満たすことを特徴とする請求項1~16のいずれかに記載の対物レンズ。
     |x|≧5   (3)
    2. The following equation is satisfied, where x (μm) is a distance between the main light of the third light beam condensed on the information recording surface of the third optical disk and the flare light of the third light beam. The objective lens according to any one of 1 to 16.
    | X | ≧ 5 (3)
  18.  前記第2光路差付与構造の輪帯幅をL(μm)としたときに、前記第2光路差付与構造の最小の輪帯幅が、以下の式を満たすことを特徴とする請求項1~17のいずれかに記載の対物レンズ。
     2≦|L|≦12   (4)
    The minimum ring width of the second optical path difference providing structure satisfies the following expression, where L (μm) is the ring width of the second optical path difference providing structure: The objective lens according to any one of 17.
    2 ≦ | L | ≦ 12 (4)
  19.  前記第1光束が1nmの波長変化を生じたときの波面収差ベスト位置の光軸方向の位置ずれをΔ(mm)とすると、以下の式を満たすことを特徴とする請求項1~18のいずれかに記載の対物レンズ。
     1.9×10-4≦Δ/f≦2.5×10-4   (6)
    The following equation is satisfied, where Δ (mm) is a positional deviation in the optical axis direction of the wavefront aberration best position when the first light beam has a wavelength change of 1 nm. Objective lens according to the above.
    1.9 × 10 −4 ≦ Δ / f ≦ 2.5 × 10 −4 (6)
  20.  請求項1~19のいずれかに記載の対物レンズを有することを特徴とする光ピックアップ装置。 An optical pickup device comprising the objective lens according to any one of claims 1 to 19.
  21.  請求項20に記載の光ピックアップ装置を有することを特徴とする光情報記録再生装置。 An optical information recording / reproducing apparatus comprising the optical pickup apparatus according to claim 20.
PCT/JP2012/073430 2011-12-09 2012-09-13 Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device WO2013084558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270082 2011-12-09
JP2011270082 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013084558A1 true WO2013084558A1 (en) 2013-06-13

Family

ID=48573942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073430 WO2013084558A1 (en) 2011-12-09 2012-09-13 Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device

Country Status (1)

Country Link
WO (1) WO2013084558A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013616A1 (en) * 2008-07-30 2010-02-04 コニカミノルタオプト株式会社 Objective lens and optical pickup device
WO2010128654A1 (en) * 2009-05-07 2010-11-11 コニカミノルタオプト株式会社 Objective, optical pick-up device, and optical information recording/reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013616A1 (en) * 2008-07-30 2010-02-04 コニカミノルタオプト株式会社 Objective lens and optical pickup device
WO2010128654A1 (en) * 2009-05-07 2010-11-11 コニカミノルタオプト株式会社 Objective, optical pick-up device, and optical information recording/reproducing device

Similar Documents

Publication Publication Date Title
JP5062365B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
WO2011132691A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2011136096A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
JP5152439B2 (en) Objective lens for optical pickup device and optical pickup device
WO2013146267A1 (en) Objective lens and optical pickup device
JP5713280B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5093634B2 (en) Objective lens for optical pickup device and optical pickup device
JP5585879B2 (en) Optical pickup device and optical information recording / reproducing device
WO2013084558A1 (en) Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
JP5229657B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5963120B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
WO2013114662A1 (en) Objective lens for optical pickup device, and optical pickup device
WO2012090852A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2012133363A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
WO2012063850A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2013168692A1 (en) Objective lens and optical pickup device
WO2011132696A1 (en) Objective lens for an optical pickup device, optical pickup device, and optical information recording/reading device
JP2013206514A (en) Objective for optical pickup device, and optical pickup device and optical information recording and reproducing device
JP2013157049A (en) Objective lens for optical pickup apparatus, optical pickup apparatus and optical information recording and reproducing apparatus
JP2014164791A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording reproducer
JP2012212497A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP