WO2011052469A1 - Light pickup device - Google Patents

Light pickup device Download PDF

Info

Publication number
WO2011052469A1
WO2011052469A1 PCT/JP2010/068570 JP2010068570W WO2011052469A1 WO 2011052469 A1 WO2011052469 A1 WO 2011052469A1 JP 2010068570 W JP2010068570 W JP 2010068570W WO 2011052469 A1 WO2011052469 A1 WO 2011052469A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
objective lens
information recording
information
optical
Prior art date
Application number
PCT/JP2010/068570
Other languages
French (fr)
Japanese (ja)
Inventor
徹 木村
雄樹 小野
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011538378A priority Critical patent/JPWO2011052469A1/en
Publication of WO2011052469A1 publication Critical patent/WO2011052469A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to an optical pickup device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm.
  • Patent Document 1 discloses a luminous flux in which a magnification is changed by moving a coupling lens arranged between a light source and an objective lens in the optical axis direction, and aberration is suppressed with respect to a selected information recording surface.
  • An optical pickup device capable of condensing light is disclosed.
  • the present invention has been made in consideration of the above-mentioned problems, and provides an optical pickup device capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
  • the purpose is to provide.
  • the optical pickup device is an optical pickup device that selects and records information and / or reproduces information by selecting any information recording surface in an optical disk having three or more information recording surfaces in the thickness direction.
  • a light source that emits a light beam having a wavelength of ⁇ 1 (390 nm ⁇ 1 ⁇ 415 nm)
  • an objective lens that focuses the light beam on an information recording surface of an optical disc
  • a positive light source disposed between the light source and the objective lens.
  • the image side numerical aperture (NA) of the objective lens is 0.8 or more,
  • the objective lens is a single ball, formed from a glass material, Information is recorded and / or reproduced by causing the light beam emitted from the light source to enter the objective lens via the coupling lens and condensing it on the selected information recording surface of the optical disc by the objective lens. Is supposed to do When changing an information recording surface on which information is to be recorded and / or reproduced on the optical disc from one information recording surface to another information recording surface, at least one lens of the positive lens group is moved in the optical axis direction.
  • the objective lens is formed of a glass material that has a smaller refractive index change with respect to a temperature change than, for example, plastic, an increase in spherical aberration can be effectively suppressed even when the environmental temperature changes. Thus, it is not necessary to correct spherical aberration that increases with changes in temperature, whereby the amount of movement of the coupling lens can be kept small.
  • focus jump when performing an operation of changing an information recording surface on which information is to be recorded and / or reproduced from one information recording surface to another information recording surface (hereinafter referred to as “focus jump” in this specification).
  • the power of the lens group moved in the optical axis direction among the lens groups constituting the coupling lens is increased (that is, moved in the optical axis direction). It is conceivable to shorten the focal length of the lens group. This is because the amount of movement of the lens group moved in the optical axis direction decreases as the power of the lens group increases (that is, as the focal length of the lens group decreases).
  • the coupling lens has a group configuration
  • the focal length of the lens group moved in the optical axis direction that is, equal to the focal length of the coupling lens
  • the spot condensed by the objective lens becomes an ellipse.
  • the recording and / or reproduction of information on the BD may be hindered. The reason for this will be described below.
  • the coupling lens has a two-group configuration including a positive lens group and a negative lens group, and at least one lens of the positive lens group moves in the optical axis direction. It was made to make it composition.
  • the system magnification M In order to improve the symmetry of the distribution of the amount of light captured by the coupling lens and make the shape of the spot collected by the objective lens circular, it is optical with respect to the ellipticity of the light beam emitted from the semiconductor laser used as the light source. It is necessary to set the system magnification M to an optimum value. In the BD optical pickup device, the optimum value of the magnification of the condensing optical system is about -0.1.
  • the optimum value of the magnification is maintained at ⁇ 0.1, the coupling lenses are configured in two groups, and at least one lens is moved in the optical axis direction, thereby reducing the amount of movement of the coupling lens required at the time of focus jump. Can be small.
  • the coupling lens is a two-group thin lens system composed of a positive lens and a negative lens, and the positive lens is moved along the optical axis direction during focus jump.
  • the power of the positive lens is P P
  • the focal length of the positive lens is f P
  • the power of the negative lens is P N
  • the focal length of the negative lens is f N
  • the distance between the positive lens and the negative lens is L
  • the coupling lens The system power P C and the focal length f C of the entire coupling lens system are expressed by the following equation (1).
  • the focal length f C of the entire coupling lens system cannot be extremely shortened. Furthermore, when recording and / or reproducing information on the BD, the distance between the objective lens and the BD (also referred to as a working distance) is not too short, and in order to reduce the thickness of the optical pickup device, optimal range of the focal length f O of the lens naturally determined. From the above, based on the condition that the optimum value as described above exists in the value determined by the expression (2), the entire focal length range of the coupling lens for the optical pickup device for BD is a predetermined value. The focal length f C of the entire coupling lens system cannot be reduced excessively considering only the amount of movement of the coupling lens required at the time of focus jump.
  • the focal length f C of the coupling lens system is too short no way to increase the absolute value of the power P N of the negative lens ((see 1)).
  • the optical pickup device As described above, in the optical pickup device according to the present invention, it is possible to reduce both the amount of movement of the positive lens group required at the time of focus jump and the symmetry of the light amount distribution taken in by the coupling lens.
  • the optical pickup device can be downsized.
  • the NA of the entire coupling lens system can be reduced in a state where the focal length of the entire coupling lens system is smaller than the focal length of the coupling lens of only the positive lens group, so that the asymmetry of the light quantity distribution captured by the coupling lens Can be relaxed.
  • the optical path length from the light source to the objective lens is suppressed, and the optical pickup device can be reduced in size and size. Cost can be reduced.
  • a lens that is movable in the optical axis direction may be referred to as a “movable lens”.
  • “movement amount of the coupling lens” is used in the same meaning as “movement amount of the movable lens”.
  • An optical pickup device is the optical pickup device according to the first aspect of the present invention, in a state where a parallel light beam is incident on the objective lens, between 60% and 90% of the effective radius of the objective lens,
  • the coma aberration correction state is set such that the sine condition violation amount of the objective lens has a positive maximum value, and the sine condition violation amount monotonously decreases in the peripheral portion.
  • the sine condition violation amount of the objective lens has a positive maximum value between 60% and 90% of the effective radius of the objective lens, and in the peripheral part
  • the state in which a parallel light beam is incident on the objective lens means that the position of the movable lens of the coupling lens is optimized so that the light beam emitted from the coupling lens and directed to the objective lens becomes a parallel light beam. It is synonymous with that.
  • the third order spherical aberration generated by the objective lens due to the change in the divergence / convergence of the incident light and the third order spherical aberration caused by the change in the higher order spherical aberration are generated. It is preferable to set the positive maximum value of the sine condition so as to be approximately similar to the aberration and the change in higher-order spherical aberration.
  • the amount of coma aberration generated when the optical surfaces of the objective lens are decentered parallel to the direction perpendicular to the optical axis (this In the specification, the amount of coma generated (sometimes referred to as “surface shift sensitivity”) can be reduced, and the spherical aberration generated when the lens thickness on the optical axis deviates from the design value. Since the generation amount (in this specification, the generation amount of such spherical aberration may be referred to as “axial thickness error sensitivity”) can be reduced, an objective lens that is easy to manufacture can be obtained.
  • the sine condition violation amount has a negative maximum value between 10% to 50% of the effective radius of the objective lens, and the sine condition violation amount from negative to positive in the periphery.
  • the off-axis coma aberration correction state so that the sine condition violation amount has a positive maximum value between 60% and 90% of the effective radius, and the sine condition violation amount decreases monotonously at the periphery. Is preferably set.
  • the objective lens used in the optical pickup device of the present invention may be set in the shape of the sine condition violation amount, giving priority to reducing the amount of movement of the coupling lens, and the residual aberration at the time of focus jump.
  • the shape of the sine condition violation amount may be set with priority on keeping it small, or the shape of the sine condition violation amount is set with priority on reducing the surface shift sensitivity and on-axis thickness error sensitivity. It may be.
  • the shape of the sine condition violation amount may be set so as to balance the three points.
  • the optical pickup device in a state where a parallel light beam is incident on the objective lens, between 40% and 80% of the effective radius of the objective lens.
  • the coma aberration correction state is set so that the sine condition violation amount of the objective lens has a negative maximum value, and the sine condition violation amount monotonously decreases in the periphery.
  • the surface shift sensitivity of the objective lens can be kept small, and the on-axis thickness error sensitivity can be reduced, so that an objective lens that is easy to manufacture can be obtained. it can. Accordingly, the occurrence of aberration based on the manufacturing error of the objective lens can be prevented, so that it is possible to suppress the movement distance of the coupling lens from being extended based on the manufacturing error.
  • the optical pickup device wherein the objective lens can be tilted along a radial direction and / or a tangential direction of the optical disc.
  • the absolute value of the ratio of the third-order coma aberration CM (DT) that occurs when the same is tilted by the same amount is 0.4 or more.
  • the “state of recording and / or reproducing information on the information recording surface having the longest distance from the light incident surface of the optical disk” means that the information recording surface having the longest distance from the light incident surface is This is synonymous with optimizing the position of the movable lens of the coupling lens so that the third-order spherical aberration generated when the spot focused by the objective lens is focused is corrected.
  • the amount of lens tilt required to correct the coma generated by the disc tilt will increase.
  • the objective lens collides with the optical disk when the lens is tilted.
  • the coma generated by the lens tilt changes depending on the sine condition violation amount of the objective lens, and the sine condition violation amount of the objective lens in a state where information is recorded and / or reproduced on the optical disc. It varies depending on the magnification. Specifically, in an objective lens in which the sine condition violation amount is corrected when a parallel light beam is incident on the objective lens, the sine condition violation amount is changed to the negative side when a divergent light beam is incident on the objective lens. Therefore, the amount of coma generated by the lens tilt is reduced. The amount of coma aberration decreases as the divergence of the light beam incident on the objective lens increases.
  • the divergence of the light beam incident on the objective lens is maximized when information is recorded and / or reproduced on the information recording surface having the longest distance from the light beam incident surface.
  • the third-order coma aberration generated when the objective lens is tilted in a state where information is recorded and / or reproduced with respect to the information recording surface having the longest distance from the light incident surface Information with the longest distance from the light incident surface so that the absolute value of the ratio of the third-order coma aberration CM (DT) generated when the optical disk is tilted by the same amount with respect to CM (LT) is 0.4 or more.
  • CM third-order coma aberration
  • the absolute value of the ratio of DT to LT is 0.5 or more.
  • One is to set the amount of violation of the sine condition of the objective lens so that the amount of violation of the sine condition of the objective lens is on the plus side when a parallel light beam is incident on the objective lens.
  • Another one occurs when the spot focused by the objective lens is focused on the information recording surface with the shortest distance from the light beam incident surface in a state where a parallel light beam is incident on the objective lens.
  • the absolute value of the spherical aberration generated when the spot focused by the objective lens is focused on the information recording surface having the longest distance from the light incident surface is smaller than the absolute value of the spherical aberration.
  • the correction state of the spherical aberration of the objective lens is set.
  • the position of the movable lens in a state where a parallel light beam is incident on the objective lens is T0, and the position of the movable lens in a state where information is recorded and / or reproduced on the information recording surface having the longest distance from the light beam incident surface.
  • Is T1, and T2 is the position of the movable lens in a state where information is recorded and / or reproduced with respect to the information recording surface with the shortest distance from the light incident surface. It is.
  • the optical pickup device has at least one light source (first light source).
  • first light source a plurality of types of light sources may be provided so as to support a plurality of types of optical disks.
  • the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc.
  • the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense.
  • the optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc.
  • the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD
  • the second optical disc is a DVD
  • the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disc has three or more information recording surfaces stacked in the thickness direction. Of course, you may have four or more information recording surfaces.
  • the second optical disc and the third optical disc may also have a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • the optical pickup device of the present invention has at least three layers. It is preferable to be able to cope with a BD having the above information recording surface.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (7) and (8).
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength ⁇ 3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has a coupling lens and an objective lens.
  • the coupling lens is a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the coupling lens has a positive lens group and a negative lens group.
  • the positive lens group has at least one positive lens.
  • the positive lens group may include only one positive lens or may include a plurality of lenses.
  • the negative lens group has at least one negative lens.
  • the negative lens group may include only one negative lens or may include a plurality of lenses.
  • An example of a preferable coupling lens is a combination of one positive lens and one negative lens.
  • the arrangement of the positive lens group and the negative lens group may be arranged in the order of the negative lens group and the positive lens group from the light source side, or may be arranged in the order of the positive lens group and the negative lens group from the light source side. good.
  • the light from the light source is incident on the positive lens with the divergence angle enlarged by the negative lens
  • the light from the light source is incident on the negative lens after being condensed by the positive lens.
  • the former increases from the negative lens to the positive lens, and the latter increases when the positive lens is incident and decreases toward the negative lens. Therefore, from the viewpoint of reducing the light diameter in order to reduce the size of the coupling lens, the preferred arrangement is the former.
  • the optimum example of the coupling lens in the optical pickup device of the present invention is a combination of one positive lens and one negative lens, and is arranged in order of the negative lens and the positive lens from the light source side. .
  • At least one lens (preferably positive lens) of the positive lens group is movable in the optical axis direction.
  • the positive lens group of the coupling lens group Spherical aberration that occurs at the time of focus jump to a different information recording surface of the first optical disk by moving at least one lens in the optical axis direction, changing the divergence of the light beam, and changing the magnification of the objective lens Correct.
  • FIG. 1 is a diagram showing the results of studies conducted by the present inventors.
  • an optical disc having a surface
  • the maximum spherical aberration difference A that occurs when an optimum focused spot is formed on each information recording surface that is the maximum distance, and the maximum that occurs when the environmental temperature changes by ⁇ 30 ° C.
  • the maximum spherical aberration C that occurs when the wavelength of the light source changes by ⁇ 5 nm. This is represented by the bar graph of FIG.
  • Such spherical aberration can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
  • the total amount of spherical aberration is the amount of movement of the coupling lens. It is equivalent to.
  • the amount of spherical aberration is obtained regardless of whether the optical surface is an aspherical refractive surface or a diffractive surface. Is about 410 to 430 m ⁇ , and the amount of movement of the coupling lens is relatively small.
  • the total amount of spherical aberration is 680 m ⁇ in the case of an objective lens having an aspherical refracting surface. The amount of movement is required to be about 1.5 times that required when an optical disc having two information recording surfaces is used. Furthermore, as shown in FIG.
  • the objective lens is made of glass and the optical surface is an aspherical refracting surface
  • the objective lens is made of glass and the optical surface is a diffractive surface that corrects spherical aberration that occurs when the wavelength varies, in addition to spherical aberration B caused by environmental temperature changes, spherical aberration C caused by wavelength fluctuations of the light source due to the function of the diffractive surface.
  • the amount of movement of the coupling lens is smaller (corresponding to the correction amount of the spherical aberration of 500 m ⁇ in FIG. 1C).
  • the amount of movement of the coupling lens when the optical disk having two information recording surfaces is used is smaller than that of the coupling lens when the optical disk having four information recording surfaces is used. Since the amount of movement is still about twice, further ingenuity is required to suppress the amount of movement of the coupling lens. The same applies to the amount of movement of the coupling lens when using an optical disc having three information recording surfaces or five or more information recording surfaces.
  • an optical disc having two information recording surfaces an information recording surface having a smaller distance from the light beam incident surface of the optical disc is RL1, an information recording surface having a larger distance from the light beam incident surface of the optical disc is RL2
  • optical disk having four information recording surfaces (assuming that the information recording surface having the smallest distance from the light beam incident surface of the optical disk is RL1, and the information recording surface having the largest distance from the light beam incident surface of the optical disk is RL4), An optical disk was assumed in which the distance from the light beam incident surface of the optical disk to RL1 was 50 ⁇ m and the distance from the light beam incident surface of the optical disk to RL4 was 100 ⁇ m.
  • FIG. 2 shows a coupling lens CL1 including only a positive lens group (one in the figure) L1, and a coupling lens CL2 including a positive lens group (one in the figure) L2 and a negative lens group (one in the figure) L3.
  • the focal length of the coupling lens CL1 is equal to the combined focal length of the coupling lens CL2, which is f. Therefore, the focal length f2 of the positive lens unit L2 of the coupling lens CL2 is shorter than the focal length f of the positive lens unit L1 of the coupling lens CL1.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is a single glass lens.
  • the objective lens is a single convex lens.
  • the objective lens may be composed of only a refractive surface or may have an optical path difference providing structure.
  • the hybrid lens which provided the optical path difference providing structure with the photocurable resin, UV curable resin, or thermosetting resin etc. on the glass lens may be sufficient.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the objective lens is a glass lens, as described with reference to FIG. 1, it is not necessary to move the coupling lens in order to correct the spherical aberration caused by the temperature change. This is preferable because it can be reduced and the optical pickup device can be downsized.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower more preferably 400 ° C. or lower.
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • a physical property value that is important when molding a glass lens is the linear expansion coefficient ⁇ . Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still large compared to the resin material. When lens molding is performed using a glass material having a large linear expansion coefficient ⁇ , cracks are likely to occur when the temperature is lowered.
  • the linear expansion coefficient ⁇ of the glass material is preferably 200 (10E-7 / K) or less, more preferably 120 or less.
  • the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the mass is increased and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity.
  • the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • the sine condition is h when a light beam having a height h 1 from the optical axis is incident on the lens parallel to the optical axis, and when the light beam is emitted from the lens at an emission angle U. 1 / sinU satisfies a certain value.
  • U. 1 / sinU a constant value regardless of the height from the height h 1 from the optical axis
  • the sine condition is satisfied and the lateral magnification of each light ray within the effective diameter can be regarded as constant.
  • This sine condition is a calculated value on the axis, but is effective in correcting off-axis lateral magnification error (ie off-axis coma).
  • FIG. 4 is a graph showing the sine condition violation amount in the objective lens on the horizontal axis and the height from the optical axis on the vertical axis.
  • the graph corresponds to the vertical axis, but in the case of an objective lens that does not satisfy the sine condition, the graph moves away from the vertical axis to the positive side and / or the negative side as shown in FIG. It becomes.
  • the sine condition violation amount always has a maximum value.
  • OSCmax the maximum value on the positive side of the sine condition violation amount
  • OSCmin the maximum value on the negative side
  • the sine condition violation amount has one local maximum value OSCmin on the negative side.
  • Examples in which the sine condition violation amount has one negative maximum OSCmin are not only those shown by the solid line in FIG. 4A, but also the sine condition violation amount from the middle as shown by the dotted line.
  • Such an objective lens may be an example.
  • the manufacturing is easy. Further, even when information is recorded and / or reproduced on the information recording surface having the longest distance from the light incident surface, the third-order coma aberration CM (DT) generated when the optical disc is tilted by the same amount is also obtained.
  • DT third-order coma aberration CM
  • the design substrate thickness that minimizes spherical aberration when a parallel light beam is incident is 0.087 mm or less, 0 It is also possible to use an objective lens designed with a thinner design substrate thickness, such as 0.05 mm or more.
  • the coupling lens moves, higher-order spherical aberration increases, and the change in spherical aberration due to the change in magnification is small. Therefore, when the coupling lens is moved to select an information recording surface in an optical disc having three or more layers, there is a possibility that the necessary movement amount increases.
  • the objective lens having the characteristics shown in FIG. 4C has one local maximum value OSCmax whose sine condition violation amount is between 60% and 90% of the effective radius of the objective lens.
  • OSCmax whose sine condition violation amount monotonously decreases in the peripheral portion, but does not have a negative maximum value.
  • the high-order spherical aberration generated with the movement of the coupling lens is reduced, and the change of the spherical aberration due to the change in magnification is large.
  • the coupling lens is moved to select the surface, the necessary movement amount can be reduced.
  • the BD in an objective lens designed with a thin design substrate thickness such that the design substrate thickness that minimizes spherical aberration when a parallel light beam is incident is 0.15 mm or less and 0.0875 mm or more. preferable.
  • the objective lens having the characteristics shown in FIG. 4B has a maximum value OSCmax where the sine condition violation amount is between 60% and 90% of the effective radius of the objective lens and 10% of the effective radius of the objective lens. Between the maximum value OSCmax, the sine condition violation amount decreases monotonously at the periphery, and the sine condition violation amount on the optical axis side from the maximum value OSCmin. This is an example of monotonously decreasing. This example is a balance between the characteristics shown in FIG. 4A and the characteristics shown in FIG. 4C. Therefore, the information recording surface of an optical disk having three or more layers is ensured while ensuring manufacturability. Therefore, when the coupling lens is moved, a necessary movement amount can be reduced.
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
  • NA2 NA1> NA2
  • NA3 NA2> NA3
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the objective lens satisfies the following conditional expression (9).
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux. Note that f is preferably 1.0 mm or more and 1.8 mm or less.
  • the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an optical pickup device capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
  • FIG. 5 shows that information is appropriately recorded on a BD that is an optical disc having three information recording surfaces RL1 to RL3 in the thickness direction (referred to as RL1, RL2, and RL3 in order of increasing distance from the light incident surface of the optical disc).
  • FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment.
  • the optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the ⁇ / 4 wavelength plate QWP, Coupling CL having a positive lens unit L2 composed of one positive lens having a refractive power and a negative lens unit L3 composed of one negative lens having a negative refractive power, only the positive lens unit L2 in the optical axis direction.
  • the coupling lens CL is disposed between the polarizing prism PBS and the ⁇ / 4 wavelength plate QWP.
  • the objective lens OBJ is a single ball made of glass, but two or more optical elements may be used in combination.
  • the positive lens group L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a weakly convergent light beam, it is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the first thickness is obtained by the objective lens OBJ.
  • the protective substrate PL1 Through the protective substrate PL1, the spot is formed on the first information recording surface RL1 as shown by the solid line.
  • the reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens group L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a substantially parallel light beam, it is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the objective lens OBJ has the second thickness. This is a spot formed on the second information recording surface RL2 as shown by the alternate long and short dash line through the protective substrate PL2 having a thickness (thicker than the first thickness).
  • the reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens group L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a weak divergent light beam, it is converted from linearly polarized light into circularly polarized light by the ⁇ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the third thickness is obtained by the objective lens OBJ. This is a spot formed on the third information recording surface RL3 as shown by the dotted line through the protective substrate PL3 (thicker than the second thickness).
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • FIG. 6 shows that information is appropriately recorded on a BD that is an optical disc having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in order of increasing distance from the light beam incident surface of the optical disc) in the thickness direction.
  • FIG. 6 is a diagram schematically showing a configuration of an optical pickup device PU2 according to a second embodiment capable of performing reproduction. Such an optical pickup device PU2 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment.
  • the optical pickup device PU2 differs from the above-described optical pickup device PU1 only in the arrangement of the coupling lens CL. Specifically, the positive lens group L2 of the coupling lens CL is disposed between the polarizing prism PBS and the objective lens OBJ, and the negative lens group L3 is disposed between the blue-violet semiconductor laser LD and the polarizing prism PBS. Yes. About another structure, it is the same as that of optical pick-up apparatus PU1.
  • the positive lens group L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a weakly convergent light beam, it is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the first thickness is obtained by the objective lens OBJ.
  • the protective substrate PL1 Through the protective substrate PL1, the spot is formed on the first information recording surface RL1 as shown by the solid line.
  • the reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens group L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a substantially parallel light beam, it is converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the objective lens OBJ has the second thickness. This is a spot formed on the second information recording surface RL2 as shown by the alternate long and short dash line through the protective substrate PL2 having a thickness (thicker than the first thickness).
  • the reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens group L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1.
  • the lens unit L2 After passing through the lens unit L2 to be a weak divergent light beam, it is converted from linearly polarized light into circularly polarized light by the ⁇ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the third thickness is obtained by the objective lens OBJ. This is a spot formed on the third information recording surface RL3 as shown by the dotted line through the protective substrate PL3 (thicker than the second thickness).
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the negative lens group in the coupling lens may be disposed on the objective lens side, and the positive lens group may be disposed on the light source side.
  • the objective lens OBJ is attached by the triaxial actuator AC2. Tilt along the radial direction and / or tangential direction of the optical disc. As a result, it is possible to stably record and / or reproduce information on the warped optical disc, and to maintain a good spot quality on the information recording surface even when the optical disc is tilted during rotation.
  • the focal length of the objective lens OBJ is preferably in the range of 1.0 mm to 1.8 mm.
  • the focal length of the objective lens of the condensing optical system is 1.41 mm
  • the focal length of the positive lens of the coupling lens is 8 mm
  • the focal length of the entire coupling lens system is 14.1 mm.
  • the magnification of the system is -0.1.
  • the design wavelength of the condensing optical system is 405 nm
  • ri in the table below is the radius of curvature
  • di is the position in the optical axis direction from the i-th surface to the i + 1-th surface
  • ndi is each of the d-line (587.6 nm).
  • the refractive index of the surface, n405i represents the refractive index of each surface at the design wavelength of 405 nm, and ⁇ d represents the Abbe number in the d-line.
  • the objective lens in the example is made of glass and SK5 manufactured by HOYA Corporation is used. In the following (including the lens data in the table), a power of 10 (for example, 2.5 ⁇ 10 ⁇ 3 ) is represented by using E (for example, 2.5 ⁇ E ⁇ 3).
  • the optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by an equation in which the coefficient shown in Table 1 is substituted into Equation (1).
  • X (h) is an axis in the optical axis direction (the light traveling direction is positive)
  • is a conical coefficient
  • a i is an aspherical coefficient
  • h is a height from the optical axis
  • r is a paraxial curvature.
  • Tables 1 and 2 show the lens data of Example 1. This embodiment is composed of a two-group coupling lens having a negative lens and a positive lens, and an objective lens.
  • the objective lens in this example has a spherical aberration and a sine condition violation amount (with a combination of a protective substrate thickness of 0.075 mm and a magnification of zero (corresponding to the parallel light beam entering the objective lens) ( The shape of the optical surface is determined so that (see FIG. 7) is corrected satisfactorily. Further, the sine condition violation amount of the objective lens in this state is shown in FIG.
  • Table 1 shows a state where information is recorded and / or reproduced on the information recording surface (RL1) having a distance of 0.05 mm from the light incident surface in this embodiment.
  • the positive lens is moved toward the objective lens so that the light beam emitted from the positive lens becomes a weak convergent light beam, and from the light beam incident surface to the information recording surface.
  • the third-order spherical aberration associated with the change in the distance is corrected.
  • Table 2 shows a state where information is recorded and / or reproduced on the information recording surface (RL3) having a distance of 0.1 mm from the light incident surface in the present embodiment.
  • the light beam emitted from the positive lens is weak by moving the positive lens to the light source side.
  • a divergent light beam is used to correct third-order spherical aberration associated with a change in the distance from the light beam incident surface to the information recording surface.
  • Tables 3 and 4 show lens data of Example 2. This embodiment is composed of a two-group coupling lens having a negative lens and a positive lens, and an objective lens.
  • the coupling lens in this example is the same as that in Example 1 described above.
  • spherical aberration is satisfactorily corrected by a combination of a protective substrate thickness of 0.075 mm and a magnification of zero (corresponding to a parallel light beam entering the objective lens).
  • the coma aberration correction state is set so that the sine condition violation amount of the objective lens has a positive maximum value between 60% and 90% of the effective radius, and the sine condition violation amount decreases monotonously at the periphery. Has been. Also, the sine condition violation amount of the objective lens in this state is shown in FIG.
  • Table 3 shows a state where information is recorded and / or reproduced on the information recording surface (RL1) whose distance from the light incident surface in the present embodiment is 0.05 mm.
  • the positive lens is moved toward the objective lens so that the light beam emitted from the positive lens becomes a weak convergent light beam, and from the light beam incident surface to the information recording surface.
  • the third-order spherical aberration associated with the change in the distance is corrected.
  • Table 4 shows a state where information is recorded and / or reproduced on the information recording surface (RL3) having a distance of 0.1 mm from the light incident surface in the present embodiment.
  • the light beam emitted from the positive lens is weak by moving the positive lens to the light source side.
  • a divergent light beam is used to correct third-order spherical aberration associated with a change in the distance from the light beam incident surface to the information recording surface.
  • Tables 5 and 6 show the lens data of Example 3. This embodiment is composed of a two-group coupling lens having a negative lens and a positive lens, and an objective lens.
  • the coupling lens in this example is the same as that in Example 1 described above.
  • the objective lens in this example has a spherical aberration and a sine condition violation amount in a combination of a protective substrate thickness of 0.090 mm and a magnification of zero (corresponding to a parallel light beam entering the objective lens).
  • the optical surface shape is determined so that (see FIG. 7) is corrected satisfactorily. Further, the sine condition violation amount of the objective lens in this state is shown in FIG.
  • Table 5 shows a state where information is recorded and / or reproduced on the information recording surface (RL1) having a distance of 0.05 mm from the light incident surface in this comparative example.
  • the positive lens is moved toward the objective lens so that the light beam emitted from the positive lens becomes a weak convergent light beam, and from the light beam incident surface to the information recording surface.
  • the third-order spherical aberration associated with the change in the distance is corrected.
  • Table 6 shows a state where information is recorded and / or reproduced on the information recording surface (RL3) having a distance of 0.1 mm from the light incident surface in this embodiment.
  • the light beam emitted from the positive lens is weak by moving the positive lens to the light source side.
  • a divergent light beam is used to correct third-order spherical aberration associated with a change in the distance from the light beam incident surface to the information recording surface.
  • Table 7 shows the amount of movement of the positive lens when the information is recorded and / or reproduced with respect to RL1 in Example 1, Example 2, and Example 3 (the zero point of the amount of movement is relative to the objective lens).
  • the position of the positive lens when a parallel light beam is incident “+” when the positive lens moves toward the objective lens with respect to the zero point, and “ ⁇ ” when the positive lens moves in the direction closer to the light source
  • the absolute value of the third-order spherical aberration ( ⁇ rms) and fifth-order spherical aberration ( ⁇ rms) with the positive lens position optimized, and a light beam tilted by 0.5 degrees with respect to the objective lens.
  • Table 8 shows the amount of movement of the positive lens when the information is recorded and / or reproduced with respect to the RL 3 in Example 1, Example 2 and Example 3 (the zero point of the amount of movement is the object lens).
  • the position of the positive lens when a parallel light beam is incident is defined as “+” when the positive lens moves toward the objective lens with respect to the zero point, and “+” when the positive lens moves toward the light source.
  • the movement amount of the positive lens in the coupling lens composed of the positive lens and the negative lens is smaller than that in the case where the coupling lens is a single collimator lens.
  • the objective lens of the condensing optical system of Example 2 has an effective radius of 6 in the state in which a parallel light beam is incident on the objective lens. Between 90% and 90%, the coma aberration correction state is set so that the sine condition violation amount of the objective lens has a positive maximum value, and the sine condition violation amount monotonously decreases in the peripheral area. From the condensing optical system of Example 1, it can be seen that the moving amount of the positive lens can be further reduced by about 10%.
  • Example 2 can be further improved in terms of fifth-order spherical aberration.
  • the objective lens of the condensing optical system of Example 3 has a protective substrate thickness of 0.090 mm when a parallel light beam is incident on the objective lens. Since the shape of the optical surface is determined so that the spherical aberration is minimized, the absolute value of the movement amount of the positive lens in the state in which information is recorded and / or reproduced with respect to RL1 is set with respect to RL3. Thus, the absolute value of the movement amount of the positive lens in a state where information is recorded and / or reproduced is reduced.

Abstract

Disclosed is a light pickup device that, while being compact and low-cost, can record/replay information to/from an optical disc having a multi-layered information recording surface. An objective lens is formed from a glass material having a smaller variation in refractive index corresponding to thermal variation compared to, for example, plastic, can suppress an increase in spherical aberration even if the ambient temperature varies, and consequently can suppress the amount of movement of a coupling lens to a low level. Furthermore, of a positive lens group and a negative lens group that configure the aforementioned coupling lens, the information recording surface in the aforementioned optical disc to/from which information is recorded and/or replayed is caused to be selected by moving at least one of the lenses of the aforementioned positive lens group in the direction of the light axis, and thus the amount of movement of the aforementioned coupling lens is suppressed to a yet lower level. As a result, the length of the light path from the light source to the aforementioned objective lens is suppressed, and it is possible to aim to reduce the cost and size of the light pickup device.

Description

光ピックアップ装置Optical pickup device
 本発明は、厚さ方向に3つ以上の情報記録面を有する光ディスクに対して情報の記録及び/又は再生を行える光ピックアップ装置に関する。 The present invention relates to an optical pickup device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction.
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。 There is known a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm. As an example, an optical disc for recording / reproducing information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-ray Disc (hereinafter referred to as BD), DVD (NA 0.6, light source wavelength 650 nm, storage capacity 4. It is possible to record 25 GB of information per layer on an optical disk having a diameter of 12 cm, which is the same size as 7 GB).
 ところで、従来のBDは1層もしくは2層の情報記録面を有しているものが多いが、1枚のBDに、より大きなデータを保存したいという市場の要求から、3層以上の情報記録面を有するBDについても研究が進んでいる。しかるに、情報の記録及び/又は再生を行う際の光束のNAが0.85と大きいため、複数の情報記録面を有するBDでは、一の情報記録面に対して最小の球面収差を付与するようにすると、基板厚さが異なる他の情報記録面においては球面収差が増大し、適切に情報の記録/再生を行えなくなる。かかる球面収差の問題は情報記録面の数が多くなるほど(すなわち、表面からの距離が最も小さい情報記録面と表面からの距離が最も大きい情報記録面との間隔が大きくなるほど)顕在化する。 By the way, many of the conventional BDs have an information recording surface of one layer or two layers, but due to the market demand for storing larger data on one BD, the information recording surface of three layers or more. Research is also progressing on BDs that have. However, since the NA of the luminous flux when recording and / or reproducing information is as large as 0.85, a BD having a plurality of information recording surfaces is supposed to give a minimum spherical aberration to one information recording surface. As a result, spherical aberration increases on other information recording surfaces with different substrate thicknesses, making it impossible to appropriately record / reproduce information. The problem of spherical aberration becomes more apparent as the number of information recording surfaces increases (that is, as the distance between the information recording surface having the smallest distance from the surface and the information recording surface having the largest distance from the surface increases).
 これに対し特許文献1には、光源と対物レンズとの間に配置したカップリングレンズを光軸方向に移動させることで倍率を変更し、選択した情報記録面に対して、収差を抑えた光束を集光させることができる光ピックアップ装置が開示されている。 On the other hand, Patent Document 1 discloses a luminous flux in which a magnification is changed by moving a coupling lens arranged between a light source and an objective lens in the optical axis direction, and aberration is suppressed with respect to a selected information recording surface. An optical pickup device capable of condensing light is disclosed.
特許第4144763号明細書Japanese Patent No. 4144663
 然るに、上記の特許文献1に記載された光ピックアップ装置により、例えば3層以上の情報記録面を有する光ディスクに対して情報の記録/再生を行おうとすると、カップリングレンズの移動距離が長く必要になる。加えてプラスチック製の対物レンズを用いた場合、温度変化に対する屈折率変化が比較的大きいため、環境温度の変動によって球面収差が増大しやすくなるが、これをカップリングレンズの移動により補正する場合、更に長い移動距離が必要になる。カップリングレンズの移動距離が長くなると、光源から対物レンズまでの光路長が長くなり、例えば光ピックアップ装置の小型化を図れないという問題がある。又、カップリングレンズを駆動する大型のアクチュエータが必要になり、コストも増大するという問題がある。特に、小型化が要求される薄型の光ピックアップ装置では、光源から対物レンズまでの光路長が大きく出来ないという制約があるため、3層以上の情報記録面を有するBDへの対応が困難になるという課題がより顕在化する。 However, if the optical pickup device described in the above-mentioned Patent Document 1 is used to record / reproduce information on, for example, an optical disc having three or more layers of information recording surfaces, a long moving distance of the coupling lens is required. Become. In addition, when a plastic objective lens is used, since the refractive index change with respect to the temperature change is relatively large, spherical aberration is likely to increase due to environmental temperature fluctuations, but when this is corrected by movement of the coupling lens, In addition, a longer moving distance is required. When the moving distance of the coupling lens is increased, the optical path length from the light source to the objective lens is increased, and there is a problem that the optical pickup device cannot be reduced in size, for example. In addition, there is a problem that a large actuator for driving the coupling lens is required and the cost is increased. In particular, in a thin optical pickup device that is required to be downsized, there is a restriction that the optical path length from the light source to the objective lens cannot be increased, so that it is difficult to cope with a BD having three or more layers of information recording surfaces. The problem becomes more obvious.
 本発明は、上述の問題を考慮してなされたものであり、コンパクト且つ低コストでありながら、多層の情報記録面を有する光ディスクに対して情報の記録/再生を行うことができる光ピックアップ装置を提供することを目的とする。 The present invention has been made in consideration of the above-mentioned problems, and provides an optical pickup device capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost. The purpose is to provide.
 請求項1に記載の光ピックアップ装置は、厚さ方向に3つ以上の情報記録面を有する光ディスクにおけるいずれかの情報記録面を選択して、情報の記録及び/または再生を行う光ピックアップ装置であって、
 波長λ1(390nm<λ1<415nm)の光束を出射する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、前記光源と前記対物レンズとの間に配置された正の屈折力を有する正レンズ群及び負の屈折力を有する負レンズ群からなるカップリングレンズとを有し、
 前記対物レンズの像側開口数(NA)は0.8以上であり、
 前記対物レンズは単玉であって、ガラス素材から形成されており、
 前記光源から出射された光束を、前記カップリングレンズを介して前記対物レンズに入射させ、前記対物レンズにより前記光ディスクの選択された情報記録面上に集光することによって情報の記録及び/または再生を行うようになっており、
 前記光ディスクにおける情報の記録及び/又は再生を行うべき情報記録面をある情報記録面から他の情報記録面へと変える際、前記正レンズ群の少なくとも1つのレンズを光軸方向に移動させることを特徴とする。
The optical pickup device according to claim 1 is an optical pickup device that selects and records information and / or reproduces information by selecting any information recording surface in an optical disk having three or more information recording surfaces in the thickness direction. There,
A light source that emits a light beam having a wavelength of λ1 (390 nm <λ1 <415 nm), an objective lens that focuses the light beam on an information recording surface of an optical disc, and a positive light source disposed between the light source and the objective lens. A coupling lens composed of a positive lens group having a refractive power and a negative lens group having a negative refractive power,
The image side numerical aperture (NA) of the objective lens is 0.8 or more,
The objective lens is a single ball, formed from a glass material,
Information is recorded and / or reproduced by causing the light beam emitted from the light source to enter the objective lens via the coupling lens and condensing it on the selected information recording surface of the optical disc by the objective lens. Is supposed to do
When changing an information recording surface on which information is to be recorded and / or reproduced on the optical disc from one information recording surface to another information recording surface, at least one lens of the positive lens group is moved in the optical axis direction. Features.
 本発明によれば、前記対物レンズは、例えばプラスチックに比べて温度変化に対する屈折率変化が小さいガラス素材から形成されているので、環境温度が変化しても球面収差の増大を有効に抑制できるから、温度変化に伴い増大する球面収差の補正を行う必要がなくなり、これにより前記カップリングレンズの移動量を小さく抑えることができる。 According to the present invention, since the objective lens is formed of a glass material that has a smaller refractive index change with respect to a temperature change than, for example, plastic, an increase in spherical aberration can be effectively suppressed even when the environmental temperature changes. Thus, it is not necessary to correct spherical aberration that increases with changes in temperature, whereby the amount of movement of the coupling lens can be kept small.
 ところで、情報の記録及び/又は再生を行うべき情報記録面をある情報記録面から他の情報記録面へと変える動作を行う際(以下、本明細書ではかかる動作を「フォーカスジャンプ」と呼ぶことがある)、カップリングレンズの移動量を小さく抑える方法として、カップリングレンズを構成するレンズ群のうち、光軸方向に移動されるレンズ群のパワーを大きく(すなわち、光軸方向に移動されるレンズ群の焦点距離を短く)することが考えられる。これは、光軸方向に移動されるレンズ群の移動量はそのレンズ群のパワーが大きくなるほど(すなわち、そのレンズ群の焦点距離が短くなるほど)小さくなるからである。然るに、カップリングレンズを一群構成とする場合、光軸方向に移動されるレンズ群の焦点距離(すなわち、カップリングレンズの焦点距離に等しい)を短くすると、対物レンズで集光されたスポットが楕円形状になり、BDに対する情報の記録及び/又は再生に支障が出る虞がある。この理由を以下に述べる。 By the way, when performing an operation of changing an information recording surface on which information is to be recorded and / or reproduced from one information recording surface to another information recording surface (hereinafter referred to as “focus jump” in this specification). As a method of suppressing the amount of movement of the coupling lens, the power of the lens group moved in the optical axis direction among the lens groups constituting the coupling lens is increased (that is, moved in the optical axis direction). It is conceivable to shorten the focal length of the lens group. This is because the amount of movement of the lens group moved in the optical axis direction decreases as the power of the lens group increases (that is, as the focal length of the lens group decreases). However, when the coupling lens has a group configuration, if the focal length of the lens group moved in the optical axis direction (that is, equal to the focal length of the coupling lens) is shortened, the spot condensed by the objective lens becomes an ellipse. There is a risk that the recording and / or reproduction of information on the BD may be hindered. The reason for this will be described below.
 一般的に、光ピックアップ装置の光源として用いられる半導体レーザから射出される光束は断面が楕円形状であるため、楕円の長軸方向と短軸方向の光量分布は異なる。カップリングレンズの焦点距離が短くなりすぎると、カップリングレンズが取り込む光量分布の非対称性が顕著になるため、対物レンズで集光されたスポットが楕円形状になり、BDに対する情報の記録及び/又は再生に支障が出る虞がある。従って、カップリングレンズが一群構成の場合は、フォーカスジャンプ時に必要とされるカップリングレンズの移動量を小さくすることと、カップリングレンズが取り込む光量分布の対称性を両立させることは困難である。 Generally, since a light beam emitted from a semiconductor laser used as a light source of an optical pickup device has an elliptical cross section, the light quantity distribution in the major axis direction and the minor axis direction of the ellipse is different. If the focal length of the coupling lens becomes too short, the asymmetry of the light amount distribution taken in by the coupling lens becomes remarkable, so that the spot condensed by the objective lens becomes elliptical, and information recording on the BD and / or There is a risk that playback will be hindered. Therefore, when the coupling lens has a one-group configuration, it is difficult to reduce both the amount of movement of the coupling lens required at the time of focus jump and the symmetry of the light amount distribution captured by the coupling lens.
 上記を両立させるために、本発明の光ピックアップ装置では、カップリングレンズを正レンズ群と負レンズ群とから構成される2群構成とし、正レンズ群の少なくとも1つのレンズを光軸方向に移動させる構成にした。 In order to make the above compatible, in the optical pickup device of the present invention, the coupling lens has a two-group configuration including a positive lens group and a negative lens group, and at least one lens of the positive lens group moves in the optical axis direction. It was made to make it composition.
 カップリングレンズが取り込む光量分布の対称性を良好にし、対物レンズで集光されたスポットの形状を円形状するためには、光源として使用する半導体レーザから射出される光束の楕円率に対して光学系倍率Mを最適な値に設定する必要がある。尚、BD用の光ピックアップ装置では集光光学系の倍率の最適な値は-0.1程度である。 In order to improve the symmetry of the distribution of the amount of light captured by the coupling lens and make the shape of the spot collected by the objective lens circular, it is optical with respect to the ellipticity of the light beam emitted from the semiconductor laser used as the light source. It is necessary to set the system magnification M to an optimum value. In the BD optical pickup device, the optimum value of the magnification of the condensing optical system is about -0.1.
 かかる倍率の最適な値は-0.1を維持し、カップリングレンズを2群構成とし、少なくとも1つのレンズを光軸方向に移動させることで、フォーカスジャンプ時に必要なカップリングレンズの移動量を小さくできる。 The optimum value of the magnification is maintained at −0.1, the coupling lenses are configured in two groups, and at least one lens is moved in the optical axis direction, thereby reducing the amount of movement of the coupling lens required at the time of focus jump. Can be small.
 説明を簡略化するために、カップリングレンズを正レンズと負レンズとから構成される2群構成の薄肉レンズ系とし、フォーカスジャンプ時には正レンズを光軸方向に沿って移動させるものとする。正レンズのパワーをP、正レンズの焦点距離をf、負レンズのパワーをP、負レンズの焦点距離をf、正レンズと負レンズの距離をLとすると、カップリングレンズ全系のパワーP、及び、カップリングレンズ全系の焦点距離fは以下の(1)式で表される。 In order to simplify the description, it is assumed that the coupling lens is a two-group thin lens system composed of a positive lens and a negative lens, and the positive lens is moved along the optical axis direction during focus jump. If the power of the positive lens is P P , the focal length of the positive lens is f P , the power of the negative lens is P N , the focal length of the negative lens is f N , and the distance between the positive lens and the negative lens is L, then the coupling lens The system power P C and the focal length f C of the entire coupling lens system are expressed by the following equation (1).
 P = P+P-L・P・P
 P = 1/f
 P = 1/f+1/f-L/(f・f)   (1)
 ここで、対物レンズの焦点距離をfとすると、カップリングレンズと対物レンズとから構成される集光光学系の倍率Mは以下の(2)式となる。
P C = P P + P N −L · P P · P N
P C = 1 / f C
P C = 1 / f P + 1 / f N −L / (f P · f N ) (1)
Here, when the focal length of the objective lens is f 2 O , the magnification M of the condensing optical system composed of the coupling lens and the objective lens is expressed by the following equation (2).
 M=-f/f (2)
 光源とカップリングレンズとの間に配置される偏光ビームスプリッタ等の光学素子を配置するスペースを考慮すると、カップリングレンズ全系の焦点距離fを極端に短くすることは出来ない。さらに、BDに対して情報の記録及び/または再生を行う際の、対物レンズとBDの距離(作動距離ともいう)が短くなりすぎず、かつ、光ピックアップ装置を薄型化するためには、対物レンズの焦点距離fの最適な範囲は自ずと決まる。以上より、(2)式で定まる値に上記のように最適な値が存在するという条件に基づいて、BD用の光ピックアップ装置用のカップリングレンズとして、その全系の焦点距離範囲はある所定の範囲である必要があり、フォーカスジャンプ時に必要なカップリングレンズの移動量のみを考慮してカップリングレンズ全系の焦点距離fをむやみに小さくすることは出来ない。
M = −f 2 O / f C (2)
Considering the space for arranging an optical element such as a polarizing beam splitter arranged between the light source and the coupling lens, the focal length f C of the entire coupling lens system cannot be extremely shortened. Furthermore, when recording and / or reproducing information on the BD, the distance between the objective lens and the BD (also referred to as a working distance) is not too short, and in order to reduce the thickness of the optical pickup device, optimal range of the focal length f O of the lens naturally determined. From the above, based on the condition that the optimum value as described above exists in the value determined by the expression (2), the entire focal length range of the coupling lens for the optical pickup device for BD is a predetermined value. The focal length f C of the entire coupling lens system cannot be reduced excessively considering only the amount of movement of the coupling lens required at the time of focus jump.
 ここで、本発明の光ピックアップ装置においては、フォーカスジャンプ時の移動量を小さく抑えるために、正レンズのパワーPを大きくし、さらに、カップリングレンズ全系の焦点距離fが短くなり過ぎないように、負レンズのパワーPの絶対値を大きくした((1)式を参照)。 Here, in the optical pickup apparatus of the present invention, in order to reduce the movement amount at the time of focus jump, to increase the power P P of the positive lens, further, the focal length f C of the coupling lens system is too short no way to increase the absolute value of the power P N of the negative lens ((see 1)).
 以上より、本発明における光ピックアップ装置では、フォーカスジャンプ時に必要とされる正レンズ群の移動量を小さくすることと、カップリングレンズが取り込む光量分布の対称性を両立させることが可能となる。 As described above, in the optical pickup device according to the present invention, it is possible to reduce both the amount of movement of the positive lens group required at the time of focus jump and the symmetry of the light amount distribution taken in by the coupling lens.
 また、正レンズ群のみのカップリングレンズに比較して、正レンズ群に負レンズ群を加えることで、カップリングレンズ全系のNAを維持したままカップリングレンズ全系の焦点距離を小さくすることができるので、光ピックアップ装置の小型化が可能になる。 Compared with a coupling lens with only a positive lens group, the negative lens group is added to the positive lens group, thereby reducing the focal length of the entire coupling lens system while maintaining the NA of the entire coupling lens system. Therefore, the optical pickup device can be downsized.
 さらに、カップリングレンズ全系の焦点距離を正レンズ群のみのカップリングレンズの焦点距離より小さくした状態において、カップリングレンズ全系のNAを小さくできるので、カップリングレンズが取り込む光量分布の非対称性を緩和することができる。 Furthermore, the NA of the entire coupling lens system can be reduced in a state where the focal length of the entire coupling lens system is smaller than the focal length of the coupling lens of only the positive lens group, so that the asymmetry of the light quantity distribution captured by the coupling lens Can be relaxed.
 これにより、3層以上の光ディスクという、カップリングレンズの移動量が比較的大きくなりがちな光ピックアップ装置においても、前記光源から前記対物レンズまでの光路長を抑え、光ピックアップ装置の小型化と低コスト化を図ることができる。 As a result, even in an optical pickup device that has a relatively large amount of movement of the coupling lens, which is an optical disc having three or more layers, the optical path length from the light source to the objective lens is suppressed, and the optical pickup device can be reduced in size and size. Cost can be reduced.
 尚、本明細書では、カップリングレンズの正レンズ群に含まれるレンズのうち、光軸方向に移動可能とされたレンズを「可動レンズ」と呼ぶことがある。また、本明細書では、「カップリングレンズの移動量」を「可動レンズの移動量」と同じ意味で用いる。 In the present specification, among the lenses included in the positive lens group of the coupling lens, a lens that is movable in the optical axis direction may be referred to as a “movable lens”. Further, in this specification, “movement amount of the coupling lens” is used in the same meaning as “movement amount of the movable lens”.
 請求項2に記載の光ピックアップ装置は、請求項1に記載の発明において、前記対物レンズに対して平行光束が入射する状態において、前記対物レンズの有効半径の6割から9割の間で、前記対物レンズの正弦条件違反量が正の極大値を持ち、それより周辺部で正弦条件違反量が単調に減少するようコマ収差の補正状態が設定されていることを特徴とする。 An optical pickup device according to a second aspect of the present invention is the optical pickup device according to the first aspect of the present invention, in a state where a parallel light beam is incident on the objective lens, between 60% and 90% of the effective radius of the objective lens, The coma aberration correction state is set such that the sine condition violation amount of the objective lens has a positive maximum value, and the sine condition violation amount monotonously decreases in the peripheral portion.
 対物レンズに対して平行光束が入射する状態において、前記対物レンズの有効半径の6割から9割の間で、前記対物レンズの正弦条件違反量が正の極大値を持ち、それより周辺部で正弦条件違反量が単調に減少するようコマ収差の補正状態が設定されている対物レンズを使用することによって、対物レンズの倍率が変動した際の球面収差の変化量を大きくすることが可能となり、引いては、カップリングレンズの移動量を低減することが可能となる。 In a state where a parallel light beam is incident on the objective lens, the sine condition violation amount of the objective lens has a positive maximum value between 60% and 90% of the effective radius of the objective lens, and in the peripheral part By using an objective lens in which the coma aberration correction state is set so that the sine condition violation amount monotonously decreases, it becomes possible to increase the amount of change in spherical aberration when the magnification of the objective lens fluctuates, By pulling, it is possible to reduce the amount of movement of the coupling lens.
 尚、「対物レンズに対して平行光束が入射する状態」とは、カップリングレンズから射出されて対物レンズに向かう光束が平行光束となるように、カップリングレンズの可動レンズの位置を最適化することと同義である。 Note that “the state in which a parallel light beam is incident on the objective lens” means that the position of the movable lens of the coupling lens is optimized so that the light beam emitted from the coupling lens and directed to the objective lens becomes a parallel light beam. It is synonymous with that.
 更に、上記の対物レンズを使用することにより、フォーカスジャンプ時に発生する3次球面収差をカップリングレンズの移動によって補正した状態における3次より大きな高次球面収差の残留(本明細書では、「フォーカスジャンプ時の残留収差」と呼ぶこともある)も抑える事が可能となる。 Further, by using the above objective lens, a higher-order spherical aberration larger than the third-order in the state where the third-order spherical aberration generated at the time of focus jump is corrected by the movement of the coupling lens (in this specification, “focus” It is also possible to suppress “residual aberration at the time of jump”.
 上記高次球面収差をより抑制するためには、入射光の発散収束度の変化により対物レンズで発生する3次球面収差、及び、高次球面収差の変化が、フォーカスジャンプ時に発生する3次球面収差、及び、高次球面収差の変化とほぼ相似形となるように正弦条件の正の極大値を設定することが好ましい。 In order to further suppress the higher order spherical aberration, the third order spherical aberration generated by the objective lens due to the change in the divergence / convergence of the incident light and the third order spherical aberration caused by the change in the higher order spherical aberration are generated. It is preferable to set the positive maximum value of the sine condition so as to be approximately similar to the aberration and the change in higher-order spherical aberration.
 さらに、正弦条件違反量の極大値が正側に加えて、負側にも存在することで、対物レンズの光学面同士が光軸垂直方向に平行偏芯した際のコマ収差の発生量(本明細書では、かかるコマ収差の発生量を「面シフト感度」と呼ぶことがある)を小さく抑えることができ、また、光軸上のレンズ厚みが設計値からずれた際に発生する球面収差の発生量(本明細書では、かかる球面収差の発生量を「軸上厚誤差感度」と呼ぶことがある)も小さくできるため、製造しやすい対物レンズを得ることができる。 Furthermore, since the maximum value of the sine condition violation amount exists on the negative side in addition to the positive side, the amount of coma aberration generated when the optical surfaces of the objective lens are decentered parallel to the direction perpendicular to the optical axis (this In the specification, the amount of coma generated (sometimes referred to as “surface shift sensitivity”) can be reduced, and the spherical aberration generated when the lens thickness on the optical axis deviates from the design value. Since the generation amount (in this specification, the generation amount of such spherical aberration may be referred to as “axial thickness error sensitivity”) can be reduced, an objective lens that is easy to manufacture can be obtained.
 かかる作用効果をより発揮するためには、対物レンズの有効半径の1割から5割の間で正弦条件違反量が負の極大値を持ち、それより周辺部で正弦条件違反量が負から正に変わり、有効半径の6割から9割の間で正弦条件違反量が正の極大値を持ち、それより周辺部で正弦条件違反量が単調に減少するように、軸外コマ収差の補正状態が設定されていることが好ましい。 In order to exert such effects more effectively, the sine condition violation amount has a negative maximum value between 10% to 50% of the effective radius of the objective lens, and the sine condition violation amount from negative to positive in the periphery. The off-axis coma aberration correction state so that the sine condition violation amount has a positive maximum value between 60% and 90% of the effective radius, and the sine condition violation amount decreases monotonously at the periphery. Is preferably set.
 本発明の光ピックアップ装置に用いられる対物レンズは、カップリングレンズの移動量を小さくすることを優先して、正弦条件違反量の形状が設定されていてもよいし、フォーカスジャンプ時の残留収差を小さく抑えることを優先して、正弦条件違反量の形状が設定されていてもよいし、面シフト感度や軸上厚誤差感度を小さくすることを優先して、正弦条件違反量の形状が設定されていてもよい。上記3点をバランスさせるように、正弦条件違反量の形状が設定されていてもよいことはもちろんである。 The objective lens used in the optical pickup device of the present invention may be set in the shape of the sine condition violation amount, giving priority to reducing the amount of movement of the coupling lens, and the residual aberration at the time of focus jump. The shape of the sine condition violation amount may be set with priority on keeping it small, or the shape of the sine condition violation amount is set with priority on reducing the surface shift sensitivity and on-axis thickness error sensitivity. It may be. Of course, the shape of the sine condition violation amount may be set so as to balance the three points.
 請求項3に記載の光ピックアップ装置は、請求項1に記載の発明において、前記対物レンズに対して平行光束が入射する状態において、前記対物レンズの有効半径の4割から8割の間で、前記対物レンズの正弦条件違反量が負の極大値を持ち、それより周辺部で正弦条件違反量が単調に減少するようコマ収差の補正状態が設定されていることを特徴とする。 According to a third aspect of the present invention, there is provided the optical pickup device according to the first aspect of the present invention, in a state where a parallel light beam is incident on the objective lens, between 40% and 80% of the effective radius of the objective lens. The coma aberration correction state is set so that the sine condition violation amount of the objective lens has a negative maximum value, and the sine condition violation amount monotonously decreases in the periphery.
 正弦条件違反量の極大値が負側に存在することで、対物レンズの面シフト感度を小さく抑えることができ、また、軸上厚誤差感度も小さくできるため、製造しやすい対物レンズを得ることができる。それによって対物レンズの製造誤差に基づく収差の発生を防止できるため、製造誤差に基づいてカップリングレンズの移動距離が延びてしまうことを抑制することができる。 Since the maximum value of the sine condition violation amount exists on the negative side, the surface shift sensitivity of the objective lens can be kept small, and the on-axis thickness error sensitivity can be reduced, so that an objective lens that is easy to manufacture can be obtained. it can. Accordingly, the occurrence of aberration based on the manufacturing error of the objective lens can be prevented, so that it is possible to suppress the movement distance of the coupling lens from being extended based on the manufacturing error.
 請求項4に記載の光ピックアップ装置は、請求項1に記載の発明において、前記対物レンズを前記光ディスクのラジアル方向及び/またはタンジェンシャル方向に沿って傾けることが可能になっているとともに、前記光ディスクの光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う状態において、前記対物レンズを傾けた場合に発生する3次コマ収差CM(LT)に対する、前記光ディスクを同量傾けた場合に発生する3次コマ収差CM(DT)の比の絶対値が0.4以上であることを特徴とする。 According to a fourth aspect of the present invention, there is provided the optical pickup device according to the first aspect, wherein the objective lens can be tilted along a radial direction and / or a tangential direction of the optical disc. The optical disc against third-order coma aberration CM (LT) generated when the objective lens is tilted in a state where information is recorded and / or reproduced with respect to the information recording surface having the longest distance from the light beam incident surface. The absolute value of the ratio of the third-order coma aberration CM (DT) that occurs when the same is tilted by the same amount is 0.4 or more.
 尚、「光ディスクの光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う状態」とは、光束入射面からの距離が最も大きい情報記録面に対して、前記対物レンズにより集光されたスポットをフォーカスさせた際に発生する3次球面収差が補正されるように、カップリングレンズの可動レンズの位置を最適化することと同義である。 The “state of recording and / or reproducing information on the information recording surface having the longest distance from the light incident surface of the optical disk” means that the information recording surface having the longest distance from the light incident surface is This is synonymous with optimizing the position of the movable lens of the coupling lens so that the third-order spherical aberration generated when the spot focused by the objective lens is focused is corrected.
 光ディスクに対して情報の記録及び/または再生を行う際に、対物レンズを前記光ディスクのラジアル方向及び/またはタンジェンシャル方向に沿って傾けることが可能になっていると、光ディスクの反りや傾き(本明細書ではディスクチルトと呼ぶ)によって発生するコマ収差を対物レンズが傾く(本明細書ではレンズチルトと呼ぶ)ことによって発生するコマ収差でキャンセルさせることが可能となり、光ディスクに対する情報の記録及び/または再生を安定して行うことが可能になる。 When recording and / or reproducing information with respect to an optical disc, it is possible to tilt the objective lens along the radial direction and / or tangential direction of the optical disc. It is possible to cancel the coma generated by the tilt of the objective lens (referred to as lens tilt in the present specification) by the coma generated by the tilting of the objective lens (referred to as disc tilt in the specification). Reproduction can be performed stably.
 ここで、レンズチルトにより発生するコマ収差が、ディスクチルトにより発生するコマ収差に対して小さすぎると、ディスクチルトにより発生するコマ収差を補正するために必要なレンズチルト量が大きくなるため、消費電力が増大したり、レンズチルト時に対物レンズと光ディスクが衝突する、といった問題が発生する。 Here, if the coma generated by the lens tilt is too small relative to the coma generated by the disc tilt, the amount of lens tilt required to correct the coma generated by the disc tilt will increase. Or the objective lens collides with the optical disk when the lens is tilted.
 尚、レンズチルトにより発生するコマ収差は、対物レンズの正弦条件違反量に依存して変化し、その正弦条件違反量は、光ディスクに対して情報の記録及び/または再生を行う状態における対物レンズの倍率に依存して変化する。具体的には、対物レンズに対して平行光束が入射する状態において正弦条件違反量が補正された対物レンズは、対物レンズに対して発散光束が入射する状態では正弦条件違反量がマイナス側に変化するため、レンズチルトにより発生するコマ収差量が小さくなる。かかるコマ収差量は、対物レンズに入射する光束の発散度が大きいほど小さくなる。 The coma generated by the lens tilt changes depending on the sine condition violation amount of the objective lens, and the sine condition violation amount of the objective lens in a state where information is recorded and / or reproduced on the optical disc. It varies depending on the magnification. Specifically, in an objective lens in which the sine condition violation amount is corrected when a parallel light beam is incident on the objective lens, the sine condition violation amount is changed to the negative side when a divergent light beam is incident on the objective lens. Therefore, the amount of coma generated by the lens tilt is reduced. The amount of coma aberration decreases as the divergence of the light beam incident on the objective lens increases.
 BD用の光ピックアップ装置において対物レンズに入射する光束の発散度が最も大きくなるのは、光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う場合である。 In the BD optical pickup device, the divergence of the light beam incident on the objective lens is maximized when information is recorded and / or reproduced on the information recording surface having the longest distance from the light beam incident surface. .
 そこで、本発明の光ピックアップ装置では、光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う状態において、対物レンズを傾けた場合に発生する3次コマ収差CM(LT)に対する、前記光ディスクを同量傾けた場合に発生する3次コマ収差CM(DT)の比の絶対値が0.4以上となるように、光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う状態における対物レンズの正弦条件違反量を設定した。これにより、光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う場合でも、ディスクチルトによるコマ収差をレンズチルトにより良好に補正することが可能となり、光ディスクに含まれる全ての情報記録面に対して良好な記録/再生特性が得られる。 Therefore, in the optical pickup device of the present invention, the third-order coma aberration generated when the objective lens is tilted in a state where information is recorded and / or reproduced with respect to the information recording surface having the longest distance from the light incident surface. Information with the longest distance from the light incident surface so that the absolute value of the ratio of the third-order coma aberration CM (DT) generated when the optical disk is tilted by the same amount with respect to CM (LT) is 0.4 or more. The amount of violation of the sine condition of the objective lens in a state where information was recorded and / or reproduced on the recording surface was set. As a result, even when information is recorded and / or reproduced on the information recording surface having the longest distance from the light incident surface, coma aberration due to the disc tilt can be favorably corrected by the lens tilt. Good recording / reproducing characteristics can be obtained for all the information recording surfaces included.
 かかる効果を一層発揮するためには、LTに対するDTの比の絶対値が0.5以上であることが好ましい。 In order to further exert such effects, it is preferable that the absolute value of the ratio of DT to LT is 0.5 or more.
 また、かかる効果をより一層発揮するためには、対物レンズの正弦条件違反量や球面収差の補正状態を以下に述べるように設定することがより好ましい。 In order to further exert such an effect, it is more preferable to set the sine condition violation amount and spherical aberration correction state of the objective lens as described below.
 一つは、対物レンズに対して平行光束が入射する状態における、対物レンズの正弦条件違反量がプラス側になるように対物レンズの正弦条件違反量を設定することである。 One is to set the amount of violation of the sine condition of the objective lens so that the amount of violation of the sine condition of the objective lens is on the plus side when a parallel light beam is incident on the objective lens.
 別の一つは、対物レンズに対して平行光束が入射する状態において、光束入射面からの距離が最も小さい情報記録面に対して前記対物レンズにより集光されたスポットをフォーカスさせた際に発生する球面収差の絶対値よりも、光束入射面からの距離が最も大きい情報記録面に対して前記対物レンズにより集光されたスポットをフォーカスさせた際に発生する球面収差の絶対値のほうが小さくなるように、対物レンズの球面収差の補正状態を設定することである。 Another one occurs when the spot focused by the objective lens is focused on the information recording surface with the shortest distance from the light beam incident surface in a state where a parallel light beam is incident on the objective lens. The absolute value of the spherical aberration generated when the spot focused by the objective lens is focused on the information recording surface having the longest distance from the light incident surface is smaller than the absolute value of the spherical aberration. Thus, the correction state of the spherical aberration of the objective lens is set.
 これは、対物レンズに平行光束が入射する状態における可動レンズの位置をT0、光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う状態における可動レンズの位置をT1、光束入射面からの距離が最も小さい情報記録面に対して情報の記録及び/または再生を行う状態における可動レンズの位置をT2としたとき、以下の(3)式が成り立つことと同義である。 This is because the position of the movable lens in a state where a parallel light beam is incident on the objective lens is T0, and the position of the movable lens in a state where information is recorded and / or reproduced on the information recording surface having the longest distance from the light beam incident surface. Is T1, and T2 is the position of the movable lens in a state where information is recorded and / or reproduced with respect to the information recording surface with the shortest distance from the light incident surface. It is.
 |T1-T0|<|T2-T0|   (3)
 本発明に係る光ピックアップ装置は、少なくとも1つの光源(第1光源)を有する。勿論、複数種類の光ディスクに対応できるように、複数種類の光源を有していてもよい。さらに、本発明の光ピックアップ装置は、少なくとも第1光源からの第1光束を第1光ディスクの情報記録面上に集光させるための集光光学系を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、集光光学系が、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光するようにしてもよい。また、本発明の光ピックアップ装置は、少なくとも第1光ディスクの情報記録面からの反射光束を受光する受光素子を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、受光素子が、第2光ディスクの情報記録面からの反射光束を受光し、第3光ディスクの情報記録面からの反射光束を受光するようにしてもよい。
| T1-T0 | <| T2-T0 | (3)
The optical pickup device according to the present invention has at least one light source (first light source). Of course, a plurality of types of light sources may be provided so as to support a plurality of types of optical disks. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc. In the optical pickup apparatus that can handle a plurality of types of optical disks, the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense. The optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc. In an optical pickup device that can handle a plurality of types of optical disks, the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
 第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。 The first optical disc has a protective substrate having a thickness t1 and an information recording surface. The second optical disc has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The third optical disc has a protective substrate having a thickness t3 (t2 <t3) and an information recording surface. The first optical disc is preferably a BD, the second optical disc is a DVD, and the third optical disc is preferably a CD, but is not limited thereto.
 第1光ディスクは、厚み方向に重ねて3つ以上の情報記録面を有するものである。当然、4つ以上の情報記録面を有していてもよい。また、第2光ディスクや第3光ディスクも複数の情報記録面を有していてもよい。 The first optical disc has three or more information recording surfaces stacked in the thickness direction. Of course, you may have four or more information recording surfaces. The second optical disc and the third optical disc may also have a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録面のみ有するBDや、3層以上の情報記録面を有するBD等を含むものであるが、本発明の光ピックアップ装置は、少なくとも3層以上の情報記録面を有するBDに対応可能であることが好ましい。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD-Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. A general term for BD series optical discs of about 125 mm, including a BD having only a single information recording surface, a BD having three or more information recording surfaces, etc. The optical pickup device of the present invention has at least three layers. It is preferable to be able to cope with a BD having the above information recording surface. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(4)、(5)、(6)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。 In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (4), (5), and (6), but is not limited thereto. The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
 0.050mm≦t1≦0.125mm   (4)
 0.5mm≦t2≦0.7mm       (5)
 1.0mm≦t3≦1.3mm       (6)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(7)、(8)を満たすことが好ましい。
0.050 mm ≦ t1 ≦ 0.125 mm (4)
0.5mm ≦ t2 ≦ 0.7mm (5)
1.0mm ≦ t3 ≦ 1.3mm (6)
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (7) and (8).
 1.5・λ1<λ2<1.7・λ1     (7)
 1.8・λ1<λ3<2.0・λ1     (8)
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。
1.5 · λ1 <λ2 <1.7 · λ1 (7)
1.8 · λ1 <λ3 <2.0 · λ1 (8)
When BD, DVD, and CD are used as the first optical disc, the second optical disc, and the third optical disc, respectively, the first wavelength λ1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm. The second wavelength λ2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、カップリングレンズと対物レンズを有する。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変えるレンズ群のことをいう。カップリングレンズは、正レンズ群と負レンズ群とを有する。正レンズ群は少なくとも1枚の正レンズを有する。正レンズ群は、正レンズ1枚のみでもよいし、複数のレンズを有していてもよい。負レンズ群は少なくとも1枚の負レンズを有する。負レンズ群は、負レンズ1枚のみでもよいし、複数のレンズを有していてもよい。好ましいカップリングレンズの例は、正レンズ1枚と負レンズ1枚との組み合わせからなるものである。 The condensing optical system has a coupling lens and an objective lens. The coupling lens is a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam. The coupling lens has a positive lens group and a negative lens group. The positive lens group has at least one positive lens. The positive lens group may include only one positive lens or may include a plurality of lenses. The negative lens group has at least one negative lens. The negative lens group may include only one negative lens or may include a plurality of lenses. An example of a preferable coupling lens is a combination of one positive lens and one negative lens.
 また、正レンズ群と負レンズ群の配置は、光源側から負レンズ群、正レンズ群の順に配置されていても良いし、光源側から正レンズ群、負レンズ群の順に配置されていても良い。前者においては、光源からの光を負レンズで発散角を拡大して正レンズに入射させ、後者においては、光源からの光を正レンズで集光してから負レンズに入射させる。光径の観点では、前者においては、負レンズから正レンズにいくに従って大きくなり、後者においては、正レンズ入射時に大きくなり、負レンズに向けて小さくなる。従って、カップリングレンズの小型化のために光径を小さくするという観点において、好ましい配置は前者である。 Further, the arrangement of the positive lens group and the negative lens group may be arranged in the order of the negative lens group and the positive lens group from the light source side, or may be arranged in the order of the positive lens group and the negative lens group from the light source side. good. In the former, the light from the light source is incident on the positive lens with the divergence angle enlarged by the negative lens, and in the latter, the light from the light source is incident on the negative lens after being condensed by the positive lens. From the viewpoint of the light diameter, the former increases from the negative lens to the positive lens, and the latter increases when the positive lens is incident and decreases toward the negative lens. Therefore, from the viewpoint of reducing the light diameter in order to reduce the size of the coupling lens, the preferred arrangement is the former.
 以上より、本発明の光ピックアップ装置におけるカップリングレンズの最適な例は、正レンズ1枚と負レンズ1枚の組み合わせから成り、光源側から負レンズ、正レンズの順に配置されているものである。 As described above, the optimum example of the coupling lens in the optical pickup device of the present invention is a combination of one positive lens and one negative lens, and is arranged in order of the negative lens and the positive lens from the light source side. .
 第1光ディスクの選択された情報記録面において発生する球面収差を補正するために、正レンズ群の少なくとも1枚のレンズ(好ましくは正レンズ)は光軸方向に移動可能となっている。例えば、第1光ディスクのある情報記録面の記録及び/又は再生を行い、次に、第1光ディスクの他の情報記録面の記録及び/又は再生を行う場合、カップリングレンズ群の正レンズ群の中の少なくとも1枚のレンズが光軸方向に移動し、光束の発散度を変化させ、対物レンズの倍率を変化させることにより、第1光ディスクの異なる情報記録面へのフォーカスジャンプ時に発生する球面収差を補正する。 In order to correct spherical aberration generated on the selected information recording surface of the first optical disc, at least one lens (preferably positive lens) of the positive lens group is movable in the optical axis direction. For example, when recording and / or reproducing on one information recording surface of the first optical disk and then recording and / or reproducing on another information recording surface of the first optical disk, the positive lens group of the coupling lens group Spherical aberration that occurs at the time of focus jump to a different information recording surface of the first optical disk by moving at least one lens in the optical axis direction, changing the divergence of the light beam, and changing the magnification of the objective lens Correct.
 図1は、本発明者が行った検討結果を示す図である。本発明者は、プラスチック製であって、焦点距離f=1.18mmであり光学面が非球面もしくは回折面であり像側開口数が0.85である対物レンズを例として、複数の情報記録面を有する光ディスク(BD)において、最大限離れた情報記録面にそれぞれ最適な集光スポットを形成した際に生じる最大の球面収差の差Aと、環境温度が±30℃変化したときに生じる最大の球面収差Bと、光源の波長が±5nm変化した際に生じる最大の球面収差Cとを求めた。これを図1の棒グラフで表す。かかる球面収差は、カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変化させることで補正できるが、同じカップリングレンズを用いるとすると、球面収差量の合計がカップリングレンズの移動量に相当することとなる。 FIG. 1 is a diagram showing the results of studies conducted by the present inventors. The inventor has made a plurality of information recordings using an objective lens made of plastic, having a focal length f = 1.18 mm, an optical surface being an aspherical surface or a diffractive surface, and an image-side numerical aperture of 0.85. In an optical disc (BD) having a surface, the maximum spherical aberration difference A that occurs when an optimum focused spot is formed on each information recording surface that is the maximum distance, and the maximum that occurs when the environmental temperature changes by ± 30 ° C. And the maximum spherical aberration C that occurs when the wavelength of the light source changes by ± 5 nm. This is represented by the bar graph of FIG. Such spherical aberration can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens. However, if the same coupling lens is used, the total amount of spherical aberration is the amount of movement of the coupling lens. It is equivalent to.
 ここで、図1(a)、(b)に示すように、情報記録面を2つ有する光ディスクを使用する場合、光学面が非球面屈折面、回折面のいずれの対物レンズでも、球面収差量の合計は410~430mλ程度であり、カップリングレンズの移動量は比較的小さいといえる。一方、図1(c)に示すように、情報記録面を4つ有する光ディスクを使用する場合、光学面が非球面屈折面の対物レンズでは、球面収差量の合計は680mλとなり、カップリングレンズの移動量は、情報記録面を2つ有する光ディスクを使用する場合に比べて、約1.5倍必要になる。更に、図1(d)に示すように、光学面が回折面の対物レンズでは、情報記録面を4つ有する光ディスクを使用する場合、回折面の効果として、温度変化に伴って発生する球面収差を低減しているが、その分、波長変化に伴って発生する球面収差が増加してしまい、結果として、球面収差量の合計は660mλとなり、カップリングレンズの移動量は、情報記録面を2つ有する光ディスクを使用する場合に比べて、同様に約1.5倍必要になる。 Here, as shown in FIGS. 1A and 1B, when an optical disk having two information recording surfaces is used, the amount of spherical aberration is obtained regardless of whether the optical surface is an aspherical refractive surface or a diffractive surface. Is about 410 to 430 mλ, and the amount of movement of the coupling lens is relatively small. On the other hand, as shown in FIG. 1C, when an optical disk having four information recording surfaces is used, the total amount of spherical aberration is 680 mλ in the case of an objective lens having an aspherical refracting surface. The amount of movement is required to be about 1.5 times that required when an optical disc having two information recording surfaces is used. Furthermore, as shown in FIG. 1D, when an optical disk having four information recording surfaces is used in an objective lens having a diffractive optical surface, spherical aberration that occurs as a result of the temperature change is caused by the diffractive surface. However, as a result, the spherical aberration generated with the change in wavelength increases, and as a result, the total amount of spherical aberration becomes 660 mλ, and the amount of movement of the coupling lens is 2 on the information recording surface. Similarly, about 1.5 times as much is required as compared with the case of using one optical disk.
 但し、対物レンズをガラス製とし且つ光学面を非球面屈折面とすると、環境温度変化による球面収差B(=140mλ)がほぼゼロとなるため、よりカップリングレンズの移動量は小さく(図1(c)において球面収差540mλの補正量相当)なる。さらに、対物レンズをガラス製とし且つ光学面を波長変動時に発生する球面収差を補正する回折面とすると、環境温度変化による球面収差Bに加え、回折面の機能により光源の波長変動による球面収差Cも減少できるため、カップリングレンズの移動量はより小さく(図1(c)において球面収差500mλの補正量相当)なる。しかしながら、このように対物レンズを改良しても、2つの情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量に対し、4つの情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量は依然として2倍程度であるため、カップリングレンズの移動量を抑制する更なる工夫が必要である。同様なことは、3つの情報記録面もしくは5つ以上の情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量についても言える。 However, if the objective lens is made of glass and the optical surface is an aspherical refracting surface, the spherical aberration B (= 140 mλ) due to the environmental temperature change becomes almost zero, and therefore the amount of movement of the coupling lens is smaller (FIG. 1 ( c), the spherical aberration is equivalent to the correction amount of 540 mλ. Furthermore, if the objective lens is made of glass and the optical surface is a diffractive surface that corrects spherical aberration that occurs when the wavelength varies, in addition to spherical aberration B caused by environmental temperature changes, spherical aberration C caused by wavelength fluctuations of the light source due to the function of the diffractive surface. Therefore, the amount of movement of the coupling lens is smaller (corresponding to the correction amount of the spherical aberration of 500 mλ in FIG. 1C). However, even if the objective lens is improved in this way, the amount of movement of the coupling lens when the optical disk having two information recording surfaces is used is smaller than that of the coupling lens when the optical disk having four information recording surfaces is used. Since the amount of movement is still about twice, further ingenuity is required to suppress the amount of movement of the coupling lens. The same applies to the amount of movement of the coupling lens when using an optical disc having three information recording surfaces or five or more information recording surfaces.
 尚、上記検討において、情報記録面を2つ有する光ディスクとして(光ディスクの光束入射面からの距離が小さいほうの情報記録面をRL1、光ディスクの光束入射面からの距離が大きいほうの情報記録面をRL2、とする)、光ディスクの光束入射面からRL1までの距離が75μmであり、光ディスクの光束入射面からRL2までの距離が100μmである光ディスクを想定した。さらに、情報記録面を4つ有する光ディスクとして(光ディスクの光束入射面からの距離が最小の情報記録面をRL1、光ディスクの光束入射面からの距離が最大の情報記録面をRL4、とする)、光ディスクの光束入射面からRL1までの距離が50μmであり、光ディスクの光束入射面からRL4までの距離が100μmである光ディスクを想定した。 In the above examination, as an optical disc having two information recording surfaces (an information recording surface having a smaller distance from the light beam incident surface of the optical disc is RL1, an information recording surface having a larger distance from the light beam incident surface of the optical disc is RL2), an optical disc in which the distance from the light incident surface of the optical disc to RL1 is 75 μm and the distance from the light incident surface of the optical disc to RL2 is 100 μm. Further, as an optical disk having four information recording surfaces (assuming that the information recording surface having the smallest distance from the light beam incident surface of the optical disk is RL1, and the information recording surface having the largest distance from the light beam incident surface of the optical disk is RL4), An optical disk was assumed in which the distance from the light beam incident surface of the optical disk to RL1 was 50 μm and the distance from the light beam incident surface of the optical disk to RL4 was 100 μm.
 以下、カップリングレンズの構成と、移動量との関係を述べる。図2は、正レンズ群(図では1枚)L1のみを含むカップリングレンズCL1と、正レンズ群(図では1枚)L2及び負レンズ群(図では1枚)L3を含むカップリングレンズCL2の断面図である。ここで、カップリングレンズCL1の焦点距離は、カップリングレンズCL2の合成焦点距離と等しく、これをfとする。従って、カップリングレンズCL2の正レンズ群L2の焦点距離f2は、カップリングレンズCL1の正レンズ群L1の焦点距離fより短いこととなる。 The following describes the relationship between the configuration of the coupling lens and the amount of movement. FIG. 2 shows a coupling lens CL1 including only a positive lens group (one in the figure) L1, and a coupling lens CL2 including a positive lens group (one in the figure) L2 and a negative lens group (one in the figure) L3. FIG. Here, the focal length of the coupling lens CL1 is equal to the combined focal length of the coupling lens CL2, which is f. Therefore, the focal length f2 of the positive lens unit L2 of the coupling lens CL2 is shorter than the focal length f of the positive lens unit L1 of the coupling lens CL1.
 ここで、同じ倍率変化を与える場合のカップリングレンズの移動量は、移動するレンズのパワー(=1/焦点距離)に逆比例する。よって、同じ倍率変化を与えるために、カップリングレンズCL1の正レンズ群L1と、カップリングレンズCL2の正レンズ群L2を移動させたとき、(1/f)<(1/f2)であるから、(カップリングレンズCL1の移動量)>(カップリングレンズCL2の移動量)となる。即ち、1枚レンズのカップリングレンズCL1を移動させるより、正レンズと負レンズの2枚レンズのカップリングレンズCL2の正レンズ群L2を移動させる方が、必要な移動量が少なくて済むのである。 Here, the amount of movement of the coupling lens when giving the same magnification change is inversely proportional to the power of the moving lens (= 1 / focal length). Therefore, when the positive lens unit L1 of the coupling lens CL1 and the positive lens unit L2 of the coupling lens CL2 are moved to give the same magnification change, (1 / f) <(1 / f2). , (Movement amount of coupling lens CL1)> (movement amount of coupling lens CL2). In other words, the movement amount of the positive lens unit L2 of the coupling lens CL2 of the two lenses of the positive lens and the negative lens is less than the movement of the coupling lens CL1 of one lens. .
 本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉のガラスレンズである。好ましくは単玉の凸レンズからなる対物レンズである。対物レンズは屈折面のみからなっていてもよいし、光路差付与構造を有していてもよい。尚、ガラスレンズの上に光硬化性樹脂、UV硬化性樹脂、又は熱硬化性樹脂などで光路差付与構造を設けたハイブリッドレンズであってもよい。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens is a single glass lens. Preferably, the objective lens is a single convex lens. The objective lens may be composed of only a refractive surface or may have an optical path difference providing structure. In addition, the hybrid lens which provided the optical path difference providing structure with the photocurable resin, UV curable resin, or thermosetting resin etc. on the glass lens may be sufficient. The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 対物レンズがガラスレンズであると、図1を参照して説明したように、温度変化によって発生する球面収差を補正するためにカップリングレンズを移動させる必要がないため、カップリングレンズの移動量を減らすことができ、光ピックアップ装置を小型化できるため好ましい。 When the objective lens is a glass lens, as described with reference to FIG. 1, it is not necessary to move the coupling lens in order to correct the spherical aberration caused by the temperature change. This is preferable because it can be reduced and the optical pickup device can be downsized.
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下、更に好ましくは400℃以下であるガラス材料を使用することが好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。このようなガラス転移点Tgが低いガラス材料としては、例えば(株)住田光学ガラス製のK-PG325や、K-PG375(共に製品名)がある。 When the objective lens is a glass lens, it is preferable to use a glass material having a glass transition point Tg of 500 ° C. or lower, more preferably 400 ° C. or lower. By using a glass material having a glass transition point Tg of 500 ° C. or lower, molding at a relatively low temperature is possible, so that the life of the mold can be extended. Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
 加えて,ガラスレンズを成形して製作する際に重要となる物性値が線膨張係数αである。仮にTgが400℃以下の材料を選んだとしても、樹脂材料と比較して室温との温度差は依然大きい。線膨張係数αが大きい硝材を用いてレンズ成形を行った場合、降温時に割れが発生しやすくなる。硝材の線膨張係数αは、200(10E-7/K)以下にあることが好ましく、更に好ましくは120以下であることが好ましい。 In addition, a physical property value that is important when molding a glass lens is the linear expansion coefficient α. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still large compared to the resin material. When lens molding is performed using a glass material having a large linear expansion coefficient α, cracks are likely to occur when the temperature is lowered. The linear expansion coefficient α of the glass material is preferably 200 (10E-7 / K) or less, more preferably 120 or less.
 ところで、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、質量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が4.0以下であるのが好ましく、更に好ましくは比重が3.0以下であるものである。 By the way, since the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the mass is increased and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 次に、対物レンズの正弦条件の好ましい条件について説明する。正弦条件とは図3に示すように、光軸からの高さhの光線が、レンズに対して光軸平行入射時に、かかる光線がレンズから出射した際の射出角度がUである時にh/sinUが一定値を満たすことである。これが光軸からの高さhからの高さに関わらず一定値である場合には、正弦条件が満たされて有効径内の各光線の横倍率が一定であるとみなせる。この正弦条件は軸上での計算値であるが、軸外の横倍率誤差(すなわち軸外コマ収差)補正を行う上では有効である。 Next, preferable conditions for the sine condition of the objective lens will be described. As shown in FIG. 3, the sine condition is h when a light beam having a height h 1 from the optical axis is incident on the lens parallel to the optical axis, and when the light beam is emitted from the lens at an emission angle U. 1 / sinU satisfies a certain value. When this is a constant value regardless of the height from the height h 1 from the optical axis, the sine condition is satisfied and the lateral magnification of each light ray within the effective diameter can be regarded as constant. This sine condition is a calculated value on the axis, but is effective in correcting off-axis lateral magnification error (ie off-axis coma).
 一方、h/sinUが一定値にならない場合、OSC=h/sinU-fを正弦条件違反量と定義する。図4は、対物レンズにおける正弦条件違反量を横軸にとり、光軸からの高さを縦軸にとって示したグラフである。正弦条件を満足する対物レンズの場合、グラフは縦軸に一致するが、正弦条件を満足しない対物レンズの場合、図2に示すようにグラフは縦軸から正側及び/又は負側に離れることとなる。また、正弦条件を満足しない対物レンズについて、光軸及び有効径付近で正弦条件を満足させるようにすると、正弦条件違反量は必ず極大値を持つ。ここで、正弦条件違反量の正側の極大値をOSCmaxとし、負側の極大値をOSCminとする。 On the other hand, when h 1 / sin U does not become a constant value, OSC = h 1 / sin U−f is defined as the sine condition violation amount. FIG. 4 is a graph showing the sine condition violation amount in the objective lens on the horizontal axis and the height from the optical axis on the vertical axis. In the case of an objective lens that satisfies the sine condition, the graph corresponds to the vertical axis, but in the case of an objective lens that does not satisfy the sine condition, the graph moves away from the vertical axis to the positive side and / or the negative side as shown in FIG. It becomes. For an objective lens that does not satisfy the sine condition, if the sine condition is satisfied near the optical axis and effective diameter, the sine condition violation amount always has a maximum value. Here, the maximum value on the positive side of the sine condition violation amount is OSCmax, and the maximum value on the negative side is OSCmin.
 図4(a)に示す特性の対物レンズは、正弦条件違反量が負側の極大値OSCminを1つ有する例である。(正弦条件違反量が負側の極大値OSCminを1つ有する例としては、図4(a)の実線で示したようなものだけでなく、点線で示すように、正弦条件違反量が途中から正の値になるような例であってもよい。)このような対物レンズによれば、面シフト感度が小さく、また軸上厚誤差感度が小さいため、製造が容易である。また、光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う状態においても、前記光ディスクを同量傾けた場合に発生する3次コマ収差CM(DT)を対物レンズを傾けた場合に発生する3次コマ収差(CT)でキャンセルすることができる上、記録・再生する層に関わらずスポット径の変化を抑えることができる。これは通常光束入射面からの距離が最も大きい情報記録面に対してDTをCTでキャンセルするためには正弦条件違反量が正である必要があるが、負の極大値を有しないとマージナル光線の正弦条件違反量が正の大きな値となり、スポット径が大きくなってしまうためである。特に、対物レンズの正弦条件違反量が負側の極大値を1つ有する場合、BDにおいては、平行光束を入射させたときに球面収差が最小となる設計基板厚が、0.087mm以下、0.05mm以上というように、薄めの設計基板厚にて設計した対物レンズを用いることも可能となる。一方、カップリングレンズの移動に伴い、高次球面収差が増大し、倍率変化による球面収差の変化が小さいという特性を有する。従って、3層以上の光ディスクにおける情報記録面の選択のためカップリングレンズを移動する場合に、必要な移動量が増大する恐れがある。 4A is an example in which the sine condition violation amount has one local maximum value OSCmin on the negative side. (Examples in which the sine condition violation amount has one negative maximum OSCmin are not only those shown by the solid line in FIG. 4A, but also the sine condition violation amount from the middle as shown by the dotted line. Such an objective lens may be an example.) According to such an objective lens, since the surface shift sensitivity is small and the on-axis thickness error sensitivity is small, the manufacturing is easy. Further, even when information is recorded and / or reproduced on the information recording surface having the longest distance from the light incident surface, the third-order coma aberration CM (DT) generated when the optical disc is tilted by the same amount is also obtained. In addition to canceling with third-order coma aberration (CT) that occurs when the objective lens is tilted, changes in spot diameter can be suppressed regardless of the recording / reproducing layer. Usually, in order to cancel DT with CT for the information recording surface having the longest distance from the light incident surface, the sine condition violation amount needs to be positive, but if there is no negative maximum value, the marginal ray This is because the sine condition violation amount becomes a large positive value and the spot diameter becomes large. In particular, when the sine condition violation amount of the objective lens has one negative maximum value, in BD, the design substrate thickness that minimizes spherical aberration when a parallel light beam is incident is 0.087 mm or less, 0 It is also possible to use an objective lens designed with a thinner design substrate thickness, such as 0.05 mm or more. On the other hand, as the coupling lens moves, higher-order spherical aberration increases, and the change in spherical aberration due to the change in magnification is small. Therefore, when the coupling lens is moved to select an information recording surface in an optical disc having three or more layers, there is a possibility that the necessary movement amount increases.
 これに対し、図4(c)に示す特性の対物レンズは、対物レンズの有効半径の6割から9割の間において正弦条件違反量が正側の極大値OSCmaxを1つ有し、それより周辺部で正弦条件違反量が単調に減少するが、負側の極大値を有さない例である。このような対物レンズによれば、カップリングレンズの移動に伴って発生する高次球面収差が減少し、倍率変化による球面収差の変化が大きいという特性を有するため、3層以上の光ディスクにおける情報記録面の選択のためカップリングレンズを移動する場合に、必要な移動量を小さくできる。特に、BDにおいては、平行光束を入射させたときに球面収差が最小となる設計基板厚が、0.15mm以下、0.0875mm以上というように、薄めの設計基板厚にて設計した対物レンズにおいて好ましい。 On the other hand, the objective lens having the characteristics shown in FIG. 4C has one local maximum value OSCmax whose sine condition violation amount is between 60% and 90% of the effective radius of the objective lens. This is an example in which the sine condition violation amount monotonously decreases in the peripheral portion, but does not have a negative maximum value. According to such an objective lens, the high-order spherical aberration generated with the movement of the coupling lens is reduced, and the change of the spherical aberration due to the change in magnification is large. When the coupling lens is moved to select the surface, the necessary movement amount can be reduced. In particular, in the BD, in an objective lens designed with a thin design substrate thickness such that the design substrate thickness that minimizes spherical aberration when a parallel light beam is incident is 0.15 mm or less and 0.0875 mm or more. preferable.
 更に、図4(b)に示す特性の対物レンズは、対物レンズの有効半径の6割から9割の間における正弦条件違反量が正側の極大値OSCmaxと、対物レンズの有効半径の1割から5割の間における負側の極大値OSCminを1つずつ有し、極大値OSCmaxより周辺部で正弦条件違反量が単調に減少し、また極大値OSCminより光軸側で正弦条件違反量が単調に減少する例である。本例は、図4(a)に示す特性と、図4(c)に示す特性のバランスをとったものであり、従って製造容易性を確保しながらも、3層以上の光ディスクにおける情報記録面の選択のため、カップリングレンズを移動する場合に、必要な移動量を小さくできるというものである。 Furthermore, the objective lens having the characteristics shown in FIG. 4B has a maximum value OSCmax where the sine condition violation amount is between 60% and 90% of the effective radius of the objective lens and 10% of the effective radius of the objective lens. Between the maximum value OSCmax, the sine condition violation amount decreases monotonously at the periphery, and the sine condition violation amount on the optical axis side from the maximum value OSCmin. This is an example of monotonously decreasing. This example is a balance between the characteristics shown in FIG. 4A and the characteristics shown in FIG. 4C. Therefore, the information recording surface of an optical disk having three or more layers is ensured while ensuring manufacturability. Therefore, when the coupling lens is moved, a necessary movement amount can be reduced.
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc. Is NA2 (NA1> NA2), and the image-side numerical aperture of the objective lens necessary for reproducing / recording information on the third optical disk is NA3 (NA2> NA3). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 また、対物レンズは、以下の条件式(9)を満たすことが好ましい。 Moreover, it is preferable that the objective lens satisfies the following conditional expression (9).
 0.9≦d/f≦1.5   (9)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。なお、fは、1.0mm以上、1.8mm以下となることが好ましい。
0.9 ≦ d / f ≦ 1.5 (9)
However, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux. Note that f is preferably 1.0 mm or more and 1.8 mm or less.
 BDのような短波長、高NAの光ディスクに対応する対物レンズの場合、対物レンズの焦点距離に対する光軸上の厚さの比が大きくなりすぎると、対物レンズに対して軸外光束が入射した際に非点収差が発生しやすくなったり、作動距離が確保出来なくなるという課題が生じる。一方、対物レンズの焦点距離に対する光軸上の厚さの比が小さくなりすぎると、面シフト感度が大きくなるという課題が生じる。条件式(9)を満たすことにより非点収差の発生や面シフト感度を抑制することが可能となる。 In the case of an objective lens corresponding to an optical disk with a short wavelength and high NA such as BD, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too large, an off-axis light beam enters the objective lens. In this case, astigmatism tends to occur, and a working distance cannot be secured. On the other hand, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too small, there arises a problem that the surface shift sensitivity increases. By satisfying conditional expression (9), it is possible to suppress astigmatism and surface shift sensitivity.
 また、第1光ディスクを用いる際の対物レンズの作動距離は、0.15mm以上、1.0mm以下であることが好ましい。 Also, the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、コンパクト且つ低コストでありながら、多層の情報記録面を有する光ディスクに対して情報の記録/再生を行うことができる光ピックアップ装置を提供することができる。 According to the present invention, it is possible to provide an optical pickup device capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
本発明者が行った検討結果に基づく各球面収差を比較して示す図である。It is a figure which compares and shows each spherical aberration based on the examination result which this inventor performed. 比較例のカップリングレンズCL1と、本発明の一例にかかるカップリングレンズCL2の断面図である。It is sectional drawing of coupling lens CL1 of a comparative example, and coupling lens CL2 concerning an example of this invention. 正弦条件を説明するための図である。It is a figure for demonstrating a sine condition. 正弦条件不満足量の例を示す図である。It is a figure which shows the example of sine condition dissatisfaction amount. 光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1. 光ピックアップ装置PU2の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU2. 実施例の正弦条件違反量を示すグラフである。It is a graph which shows the sine condition violation amount of an Example.
(第1の実施の形態)
 以下、本発明の実施の形態を、図面を参照して説明する。図5は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 5 shows that information is appropriately recorded on a BD that is an optical disc having three information recording surfaces RL1 to RL3 in the thickness direction (referred to as RL1, RL2, and RL3 in order of increasing distance from the light incident surface of the optical disc). FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU1は、対物レンズOBJ、対物レンズOBJをフォーカシング方向及びトラッキング方向に移動させ、光ディスクのラジアル方向、及び/または、タンジェンシャル方向に傾ける3軸アクチュエータAC2、λ/4波長板QWP、正の屈折力を有する1枚の正レンズからなる正レンズ群L2と負の屈折力を有する1枚の負レンズからなる負レンズ群L3とを有するカップリングCL、正レンズ群L2のみ光軸方向に移動させる1軸アクチュエータAC1、偏光プリズムPBS、405nmのレーザ光束(光束)を射出する半導体レーザLD、センサ用レンズSL、BDの情報記録面RL1~RL3からの反射光束を受光する受光素子PDを有する。本実施の形態においては、カップリングレンズCLは、偏光プリズムPBSとλ/4波長板QWPとの間に配置されている。尚、本実施の形態では、対物レンズOBJはガラス製の単玉であるが、2つ以上の光学素子を組み合わせて用いても良い。 The optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the λ / 4 wavelength plate QWP, Coupling CL having a positive lens unit L2 composed of one positive lens having a refractive power and a negative lens unit L3 composed of one negative lens having a negative refractive power, only the positive lens unit L2 in the optical axis direction. A uniaxial actuator AC1 to be moved, a polarizing prism PBS, a semiconductor laser LD that emits a laser beam (beam) of 405 nm, a sensor lens SL, and a light receiving element PD that receives reflected beams from the information recording surfaces RL1 to RL3 of the BD. . In the present embodiment, the coupling lens CL is disposed between the polarizing prism PBS and the λ / 4 wavelength plate QWP. In the present embodiment, the objective lens OBJ is a single ball made of glass, but two or more optical elements may be used in combination.
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により実線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、更に正レンズ群L2を通過して弱い収束光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの保護基板PL1を介して、実線で示すように第1の情報記録面RL1上に形成されるスポットとなる。 First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens group L3 of the collimator lens CL, and the divergence angle is increased. After passing through the lens unit L2 to be a weakly convergent light beam, it is converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the first thickness is obtained by the objective lens OBJ. Through the protective substrate PL1, the spot is formed on the first information recording surface RL1 as shown by the solid line.
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2及び負レンズ群L3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens group L2 and the negative lens group L3 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により一点鎖線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、更に正レンズ群L2を通過して略平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さ(第1の厚さより厚い)の保護基板PL2を介して、一点鎖線で示すように第2の情報記録面RL2上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the second information recording surface RL2 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens group L3 of the collimator lens CL, and the divergence angle is increased. After passing through the lens unit L2 to be a substantially parallel light beam, it is converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the objective lens OBJ has the second thickness. This is a spot formed on the second information recording surface RL2 as shown by the alternate long and short dash line through the protective substrate PL2 having a thickness (thicker than the first thickness).
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2及び負レンズ群L3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens group L2 and the negative lens group L3 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により点線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、更に正レンズ群L2を通過して弱い発散光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さ(第2の厚さより厚い)の保護基板PL3を介して、点線で示すように第3の情報記録面RL3上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the third information recording surface RL3 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens group L3 of the collimator lens CL, and the divergence angle is increased. After passing through the lens unit L2 to be a weak divergent light beam, it is converted from linearly polarized light into circularly polarized light by the λ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the third thickness is obtained by the objective lens OBJ. This is a spot formed on the third information recording surface RL3 as shown by the dotted line through the protective substrate PL3 (thicker than the second thickness).
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2及び負レンズ群L3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。
(第2の実施の形態)
 図6は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDに対して適切に情報の記録/再生を行うことができる第2の実施の形態にかかる光ピックアップ装置PU2の構成を概略的に示す図である。かかる光ピックアップ装置PU2は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。
The reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens group L2 and the negative lens group L3 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
(Second Embodiment)
FIG. 6 shows that information is appropriately recorded on a BD that is an optical disc having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in order of increasing distance from the light beam incident surface of the optical disc) in the thickness direction. FIG. 6 is a diagram schematically showing a configuration of an optical pickup device PU2 according to a second embodiment capable of performing reproduction. Such an optical pickup device PU2 can be mounted on an optical information recording / reproducing device. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU2は、上述した光ピックアップ装置PU1に対して、カップリングレンズCLの配置のみが異なる。具体的には、カップリングレンズCLの正レンズ群L2が偏光プリズムPBSと対物レンズOBJとの間に配置され、負レンズ群L3が青紫色半導体レーザLDと偏光プリズムPBSとの間に配置されている。それ以外の構成については、光ピックアップ装置PU1と同様である。 The optical pickup device PU2 differs from the above-described optical pickup device PU1 only in the arrangement of the coupling lens CL. Specifically, the positive lens group L2 of the coupling lens CL is disposed between the polarizing prism PBS and the objective lens OBJ, and the negative lens group L3 is disposed between the blue-violet semiconductor laser LD and the polarizing prism PBS. Yes. About another structure, it is the same as that of optical pick-up apparatus PU1.
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により実線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、偏光プリズムPBSを透過し、更に正レンズ群L2を通過して弱い収束光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの保護基板PL1を介して、実線で示すように第1の情報記録面RL1上に形成されるスポットとなる。 First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1. Here, the divergent light beam of the light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD passes through the negative lens group L3 of the collimator lens CL, increases the divergence angle, passes through the polarizing prism PBS, and is further positive. After passing through the lens unit L2 to be a weakly convergent light beam, it is converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the first thickness is obtained by the objective lens OBJ. Through the protective substrate PL1, the spot is formed on the first information recording surface RL1 as shown by the solid line.
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens unit L2 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により一点鎖線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、偏光プリズムPBSを透過し、更に正レンズ群L2を通過して略平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さ(第1の厚さより厚い)の保護基板PL2を介して、一点鎖線で示すように第2の情報記録面RL2上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the second information recording surface RL2 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1. Here, the divergent light beam of the light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD passes through the negative lens group L3 of the collimator lens CL, increases the divergence angle, passes through the polarizing prism PBS, and is further positive. After passing through the lens unit L2 to be a substantially parallel light beam, it is converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and the objective lens OBJ has the second thickness. This is a spot formed on the second information recording surface RL2 as shown by the alternate long and short dash line through the protective substrate PL2 having a thickness (thicker than the first thickness).
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens unit L2 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズ群L2は、1軸アクチュエータAC1により点線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、コリメートレンズCLの負レンズ群L3を通過して発散角が増大され、偏光プリズムPBSを透過し、更に正レンズ群L2を通過して弱い発散光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さ(第2の厚さより厚い)の保護基板PL3を介して、点線で示すように第3の情報記録面RL3上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the third information recording surface RL3 of the BD will be described. In such a case, the positive lens group L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1. Here, the divergent light beam of the light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD passes through the negative lens group L3 of the collimator lens CL, increases the divergence angle, passes through the polarizing prism PBS, and is further positive. After passing through the lens unit L2 to be a weak divergent light beam, it is converted from linearly polarized light into circularly polarized light by the λ / 4 wave plate QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and the third thickness is obtained by the objective lens OBJ. This is a spot formed on the third information recording surface RL3 as shown by the dotted line through the protective substrate PL3 (thicker than the second thickness).
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCLの正レンズ群L2を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the aperture, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. After passing through the positive lens unit L2 to be a convergent light beam and reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 尚、以上の実施の形態において、カップリングレンズにおける負レンズ群を対物レンズ側に配置し、正レンズ群を光源側に配置しても良い。 In the above embodiment, the negative lens group in the coupling lens may be disposed on the objective lens side, and the positive lens group may be disposed on the light source side.
 また、以上の実施の形態において、光ディスクに対して情報の記録及び/または再生行う際に、光ディスクの反りや傾きにより発生するコマ収差を補正するために、3軸アクチュエータAC2で、対物レンズOBJを光ディスクのラジアル方向及び/またはタンジェンシャル方向に沿って傾ける。これにより、反りを持つ光ディスクに対する情報の記録及び/または再生を安定して行え、かつ、光ディスクが回転中に傾いた場合でも情報記録面上のスポットの品質を良好に保つことが可能になる。 In the above embodiment, in order to correct coma caused by warping or tilting of the optical disc when information is recorded and / or reproduced on the optical disc, the objective lens OBJ is attached by the triaxial actuator AC2. Tilt along the radial direction and / or tangential direction of the optical disc. As a result, it is possible to stably record and / or reproduce information on the warped optical disc, and to maintain a good spot quality on the information recording surface even when the optical disc is tilted during rotation.
 更に、以上の実施の形態において、対物レンズOBJの焦点距離は、1.0mmから1.8mmの範囲であることが好ましい。これにより、小型化が要求される薄型の光ピックアップ装置に対して好適な光ピックアップ装置を得ることができる。 Furthermore, in the above embodiment, the focal length of the objective lens OBJ is preferably in the range of 1.0 mm to 1.8 mm. Thereby, an optical pickup device suitable for a thin optical pickup device that is required to be downsized can be obtained.
 次に、上述の実施の形態に用いることができる集光光学系の実施例について以下に説明する。集光光学系の対物レンズの焦点距離は1.41mmであり、カップリングレンズの正レンズの焦点距離は8mmであり、カップリングレンズ全系の焦点距離は14.1mmであるので、集光光学系の倍率は-0.1である。更に、集光光学系の設計波長は405nm、以下の表中のriは曲率半径、diは第i面から第i+1面までの光軸方向の位置、ndiはd線(587.6nm)における各面の屈折率、n405iは設計波長405nmにおける各面の屈折率、νdはd線におけるアッベ数を表している。また、実施例における対物レンズがガラス製でHOYA株式会社製のSK5を用いている。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表すものとする。対物レンズの光学面は、それぞれ数1式に表1に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。 Next, examples of a condensing optical system that can be used in the above-described embodiment will be described below. The focal length of the objective lens of the condensing optical system is 1.41 mm, the focal length of the positive lens of the coupling lens is 8 mm, and the focal length of the entire coupling lens system is 14.1 mm. The magnification of the system is -0.1. Further, the design wavelength of the condensing optical system is 405 nm, ri in the table below is the radius of curvature, di is the position in the optical axis direction from the i-th surface to the i + 1-th surface, and ndi is each of the d-line (587.6 nm). The refractive index of the surface, n405i represents the refractive index of each surface at the design wavelength of 405 nm, and νd represents the Abbe number in the d-line. Further, the objective lens in the example is made of glass and SK5 manufactured by HOYA Corporation is used. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) is represented by using E (for example, 2.5 × E−3). The optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by an equation in which the coefficient shown in Table 1 is substituted into Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。
(実施例1)
 表1、及び、表2に実施例1のレンズデータを示す。本実施例は負レンズと正レンズを有する2群構成のカップリングレンズと対物レンズとから構成される。本例における対物レンズは、0.075mmの厚さの保護基板厚と倍率ゼロ(対物レンズに対して平行光束が入射することに相当する)の組合せにて球面収差、及び、正弦条件違反量(図7参照)が良好に補正されるように光学面形状が決定されている。また、この状態における対物レンズの正弦条件違反量を図7(A)に示す。
Here, X (h) is an axis in the optical axis direction (the light traveling direction is positive), κ is a conical coefficient, A i is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial curvature. Radius.
Example 1
Tables 1 and 2 show the lens data of Example 1. This embodiment is composed of a two-group coupling lens having a negative lens and a positive lens, and an objective lens. The objective lens in this example has a spherical aberration and a sine condition violation amount (with a combination of a protective substrate thickness of 0.075 mm and a magnification of zero (corresponding to the parallel light beam entering the objective lens) ( The shape of the optical surface is determined so that (see FIG. 7) is corrected satisfactorily. Further, the sine condition violation amount of the objective lens in this state is shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1は、本実施例において光束入射面からの距離が0.05mmの情報記録面(RL1)に対して情報の記録及び/または再生を行う状態を表すものである。RL1に対して情報の記録及び/または再生を行う際には、正レンズを対物レンズ側に移動することで、正レンズから射出される光束が弱い収束光束とし、光束入射面から情報記録面までの距離が変わったことに伴う3次球面収差を補正する。 Table 1 shows a state where information is recorded and / or reproduced on the information recording surface (RL1) having a distance of 0.05 mm from the light incident surface in this embodiment. When recording and / or reproducing information with respect to RL1, the positive lens is moved toward the objective lens so that the light beam emitted from the positive lens becomes a weak convergent light beam, and from the light beam incident surface to the information recording surface. The third-order spherical aberration associated with the change in the distance is corrected.
 一方、表2は、本実施例において光束入射面からの距離が0.1mmの情報記録面(RL3)に対して情報の記録及び/または再生を行う状態を表すものである。光束入射面からの距離が0.1mmの情報記録面に対して情報の記録及び/または再生を行う際には、正レンズを光源側に移動することで、正レンズから射出される光束が弱い発散光束とし、光束入射面から情報記録面までの距離が変わったことに伴う3次球面収差を補正する。
(実施例2)
 表3、及び、表4に実施例2のレンズデータを示す。本実施例は負レンズと正レンズを有する2群構成のカップリングレンズと対物レンズとからされる。本実施例におけるカップリングレンズは上述した実施例1と同じものである。本実施例における対物レンズは、0.075mmの厚さの保護基板厚と倍率ゼロ(対物レンズに対して平行光束が入射することに相当する)の組合せにて球面収差が良好に補正されるとともに、有効半径の6割から9割の間で、対物レンズの正弦条件違反量が正の極大値を持ち、それより周辺部で正弦条件違反量が単調に減少するようコマ収差の補正状態が設定されている。また、この状態における対物レンズの正弦条件違反量を図7(B)に示す。
On the other hand, Table 2 shows a state where information is recorded and / or reproduced on the information recording surface (RL3) having a distance of 0.1 mm from the light incident surface in the present embodiment. When recording and / or reproducing information on an information recording surface whose distance from the light beam incident surface is 0.1 mm, the light beam emitted from the positive lens is weak by moving the positive lens to the light source side. A divergent light beam is used to correct third-order spherical aberration associated with a change in the distance from the light beam incident surface to the information recording surface.
(Example 2)
Tables 3 and 4 show lens data of Example 2. This embodiment is composed of a two-group coupling lens having a negative lens and a positive lens, and an objective lens. The coupling lens in this example is the same as that in Example 1 described above. In the objective lens in this example, spherical aberration is satisfactorily corrected by a combination of a protective substrate thickness of 0.075 mm and a magnification of zero (corresponding to a parallel light beam entering the objective lens). The coma aberration correction state is set so that the sine condition violation amount of the objective lens has a positive maximum value between 60% and 90% of the effective radius, and the sine condition violation amount decreases monotonously at the periphery. Has been. Also, the sine condition violation amount of the objective lens in this state is shown in FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3は、本実施例において光束入射面からの距離が0.05mmの情報記録面(RL1)に対して情報の記録及び/または再生を行う状態を表すものである。RL1に対して情報の記録及び/または再生を行う際には、正レンズを対物レンズ側に移動することで、正レンズから射出される光束が弱い収束光束とし、光束入射面から情報記録面までの距離が変わったことに伴う3次球面収差を補正する。 Table 3 shows a state where information is recorded and / or reproduced on the information recording surface (RL1) whose distance from the light incident surface in the present embodiment is 0.05 mm. When recording and / or reproducing information with respect to RL1, the positive lens is moved toward the objective lens so that the light beam emitted from the positive lens becomes a weak convergent light beam, and from the light beam incident surface to the information recording surface. The third-order spherical aberration associated with the change in the distance is corrected.
 一方、表4は、本実施例において光束入射面からの距離が0.1mmの情報記録面(RL3)に対して情報の記録及び/または再生を行う状態を表すものである。光束入射面からの距離が0.1mmの情報記録面に対して情報の記録及び/または再生を行う際には、正レンズを光源側に移動することで、正レンズから射出される光束が弱い発散光束とし、光束入射面から情報記録面までの距離が変わったことに伴う3次球面収差を補正する。
(実施例3)
 表5、及び、表6に実施例3のレンズデータを示す。本実施例は負レンズと正レンズを有する2群構成のカップリングレンズと対物レンズとからされる。本実施例におけるカップリングレンズは上述した実施例1と同じものである。本実施例における対物レンズは、0.090mmの厚さの保護基板厚と倍率ゼロ(対物レンズに対して平行光束が入射することに相当する)の組合せにて球面収差、及び、正弦条件違反量(図7参照)が良好に補正されるように光学面形状が決定されている。また、この状態における対物レンズの正弦条件違反量を図7(C)に示す。
On the other hand, Table 4 shows a state where information is recorded and / or reproduced on the information recording surface (RL3) having a distance of 0.1 mm from the light incident surface in the present embodiment. When recording and / or reproducing information on an information recording surface whose distance from the light beam incident surface is 0.1 mm, the light beam emitted from the positive lens is weak by moving the positive lens to the light source side. A divergent light beam is used to correct third-order spherical aberration associated with a change in the distance from the light beam incident surface to the information recording surface.
(Example 3)
Tables 5 and 6 show the lens data of Example 3. This embodiment is composed of a two-group coupling lens having a negative lens and a positive lens, and an objective lens. The coupling lens in this example is the same as that in Example 1 described above. The objective lens in this example has a spherical aberration and a sine condition violation amount in a combination of a protective substrate thickness of 0.090 mm and a magnification of zero (corresponding to a parallel light beam entering the objective lens). The optical surface shape is determined so that (see FIG. 7) is corrected satisfactorily. Further, the sine condition violation amount of the objective lens in this state is shown in FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5は、本比較例において光束入射面からの距離が0.05mmの情報記録面(RL1)に対して情報の記録及び/または再生を行う状態を表すものである。RL1に対して情報の記録及び/または再生を行う際には、正レンズを対物レンズ側に移動することで、正レンズから射出される光束が弱い収束光束とし、光束入射面から情報記録面までの距離が変わったことに伴う3次球面収差を補正する。 Table 5 shows a state where information is recorded and / or reproduced on the information recording surface (RL1) having a distance of 0.05 mm from the light incident surface in this comparative example. When recording and / or reproducing information with respect to RL1, the positive lens is moved toward the objective lens so that the light beam emitted from the positive lens becomes a weak convergent light beam, and from the light beam incident surface to the information recording surface. The third-order spherical aberration associated with the change in the distance is corrected.
 一方、表6は、本実施例において光束入射面からの距離が0.1mmの情報記録面(RL3)に対して情報の記録及び/または再生を行う状態を表すものである。光束入射面からの距離が0.1mmの情報記録面に対して情報の記録及び/または再生を行う際には、正レンズを光源側に移動することで、正レンズから射出される光束が弱い発散光束とし、光束入射面から情報記録面までの距離が変わったことに伴う3次球面収差を補正する。 On the other hand, Table 6 shows a state where information is recorded and / or reproduced on the information recording surface (RL3) having a distance of 0.1 mm from the light incident surface in this embodiment. When recording and / or reproducing information on an information recording surface whose distance from the light beam incident surface is 0.1 mm, the light beam emitted from the positive lens is weak by moving the positive lens to the light source side. A divergent light beam is used to correct third-order spherical aberration associated with a change in the distance from the light beam incident surface to the information recording surface.
 表7に、実施例1、実施例2、実施例3において、RL1に対して情報の記録及び/または再生を行う際の、正レンズの移動量(移動量のゼロ点は対物レンズに対して平行光束が入射する場合の正レンズの位置とし、ゼロ点に対して正レンズが対物レンズに近づく方向に移動する場合を「+」、正レンズが光源に近づく方向に移動する場合を「-」とする)、正レンズの位置を最適化した状態での3次球面収差(λrms)と5次球面収差(λrms)の絶対値、対物レンズに対して0.5度傾いた光束が入射する場合に対物レンズで発生する3次コマ収差(λrms)の絶対値と5次コマ収差(λrms)の絶対値、対物レンズを0.5度傾けた場合に発生する3次コマ収差(λrms)の絶対値と5次コマ収差(λrms)の絶対値、光ディスクを0.5度傾けた場合に発生する3次コマ収差(λrms)の絶対値と5次コマ収差(λrms)の絶対値を示す。 Table 7 shows the amount of movement of the positive lens when the information is recorded and / or reproduced with respect to RL1 in Example 1, Example 2, and Example 3 (the zero point of the amount of movement is relative to the objective lens). The position of the positive lens when a parallel light beam is incident, “+” when the positive lens moves toward the objective lens with respect to the zero point, and “−” when the positive lens moves in the direction closer to the light source The absolute value of the third-order spherical aberration (λrms) and fifth-order spherical aberration (λrms) with the positive lens position optimized, and a light beam tilted by 0.5 degrees with respect to the objective lens. The absolute value of the third-order coma aberration (λrms) generated in the objective lens and the absolute value of the fifth-order coma aberration (λrms), and the absolute value of the third-order coma aberration (λrms) generated when the objective lens is tilted by 0.5 degrees. Value and absolute value of fifth-order coma aberration (λrms), optical data Indicating the absolute value and the absolute value of the fifth-order coma aberration ([lambda] rms) of the third-order coma aberration generated by tilting the disk 0.5 degrees ([lambda] rms).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 また、表8に、実施例1、実施例2、実施例3において、RL3に対して情報の記録及び/または再生を行う際の、正レンズの移動量(移動量のゼロ点は対物レンズに対して平行光束が入射する場合の正レンズの位置とし、ゼロ点に対して正レンズが対物レンズに近づく方向に移動する場合を「+」、正レンズが光源に近づく方向に移動する場合を「-」とする)、正レンズの位置を最適化した状態での3次球面収差(λrms)と5次球面収差(λrms)の絶対値、対物レンズに対して0.5度傾いた光束が入射する場合に対物レンズで発生する3次コマ収差(λrms)の絶対値と5次コマ収差(λrms)の絶対値、対物レンズを0.5度傾けた場合に発生する3次コマ収差(λrms)の絶対値と5次コマ収差(λrms)の絶対値、光ディスクを0.5度傾けた場合に発生する3次コマ収差(λrms)の絶対値と5次コマ収差(λrms)の絶対値を示す。 Table 8 shows the amount of movement of the positive lens when the information is recorded and / or reproduced with respect to the RL 3 in Example 1, Example 2 and Example 3 (the zero point of the amount of movement is the object lens). On the other hand, the position of the positive lens when a parallel light beam is incident is defined as “+” when the positive lens moves toward the objective lens with respect to the zero point, and “+” when the positive lens moves toward the light source. -"), The absolute value of the third-order spherical aberration (λrms) and fifth-order spherical aberration (λrms) with the positive lens position optimized, and a light beam inclined by 0.5 degrees with respect to the objective lens is incident The absolute value of the third-order coma aberration (λrms) and the absolute value of the fifth-order coma aberration (λrms) generated by the objective lens, and the third-order coma aberration (λrms) generated when the objective lens is tilted by 0.5 degrees. And the absolute value of the fifth-order coma aberration (λrms) Indicating the absolute value of the absolute value of the third-order coma aberration ([lambda] rms) that occurs by tilting the optical disc 0.5 degrees and fifth-order coma aberration ([lambda] rms).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 先ず、実施例1において、正レンズと負レンズの2枚からなるカップリングレンズにおける正レンズの移動量は、カップリングレンズが単玉のコリメータレンズである場合に比して、移動量が小さくなっている。更に、図7、表7、及び、表8からわかるように、実施例2の集光光学系の対物レンズは、対物レンズに対して平行光束が入射する状態において、対物レンズの有効半径の6割から9割の間で、前記対物レンズの正弦条件違反量が正の極大値を持ち、それより周辺部で正弦条件違反量が単調に減少するようコマ収差の補正状態が設定されているので、実施例1の集光光学系から、更に正レンズの移動量を1割程度小さくすることが出来ることがわかる。また、正レンズの位置を最適化した状態での5次球面収差(フォーカスジャンプ時の残留収差)も、実施例1では0.01λrms程度残留するのに対し、実施例2ではほぼゼロになっており、5次球面収差の点で実施例2はより改善出来ていることがわかる。 First, in Example 1, the movement amount of the positive lens in the coupling lens composed of the positive lens and the negative lens is smaller than that in the case where the coupling lens is a single collimator lens. ing. Further, as can be seen from FIG. 7, Table 7, and Table 8, the objective lens of the condensing optical system of Example 2 has an effective radius of 6 in the state in which a parallel light beam is incident on the objective lens. Between 90% and 90%, the coma aberration correction state is set so that the sine condition violation amount of the objective lens has a positive maximum value, and the sine condition violation amount monotonously decreases in the peripheral area. From the condensing optical system of Example 1, it can be seen that the moving amount of the positive lens can be further reduced by about 10%. Further, the fifth-order spherical aberration (residual aberration at the time of focus jump) with the position of the positive lens optimized is approximately 0.01λrms in the first embodiment, but is substantially zero in the second embodiment. Thus, it can be seen that Example 2 can be further improved in terms of fifth-order spherical aberration.
 また、表7、及び、表8からわかるように、実施例3の集光光学系の対物レンズは、対物レンズに対して平行光束が入射する状態において、0.090mmの厚さの保護基板厚に対して球面収差が最小になるように光学面の形状が決定したことで、RL1に対して情報の記録及び/または再生を行う状態における正レンズの移動量の絶対値よりも、RL3に対して情報の記録及び/または再生を行う状態における正レンズの移動量の絶対値を小さくした。これにより、RL3に対して情報の記録及び/または再生を行う際に、対物レンズを傾けた場合に発生する3次コマ収差(LT)に対する、光ディスクを同量傾けた場合に発生する3次コマ収差CM(DT)の比の絶対値を0.73と高くすることが出来た。この結果、光ディスクの反りや傾きにより発生するコマ収差を補正するために必要な対物レンズの傾け量が小さくてすむ。これに対して、実施例1の集光光学系では、LTに対するDTの比の絶対値は0.36であるので、実施例3において、光ディスクの反りや傾きにより発生するコマ収差を補正するために必要な対物レンズの傾け量をより小さく出来る点で、より好ましい例となっていることがわかる。 As can be seen from Tables 7 and 8, the objective lens of the condensing optical system of Example 3 has a protective substrate thickness of 0.090 mm when a parallel light beam is incident on the objective lens. Since the shape of the optical surface is determined so that the spherical aberration is minimized, the absolute value of the movement amount of the positive lens in the state in which information is recorded and / or reproduced with respect to RL1 is set with respect to RL3. Thus, the absolute value of the movement amount of the positive lens in a state where information is recorded and / or reproduced is reduced. Thus, when recording and / or reproducing information with respect to RL3, the third-order coma generated when the optical disk is tilted by the same amount with respect to the third-order coma aberration (LT) generated when the objective lens is tilted. The absolute value of the ratio of aberration CM (DT) could be increased to 0.73. As a result, the amount of tilt of the objective lens required to correct coma caused by warpage or tilt of the optical disk can be reduced. On the other hand, in the condensing optical system of Example 1, since the absolute value of the ratio of DT to LT is 0.36, in Example 3, in order to correct coma aberration generated due to the warp or tilt of the optical disk. It can be seen that this is a more preferable example in that the amount of tilt of the objective lens necessary for the above can be reduced.
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
 OBJ 対物レンズ
 PU1 光ピックアップ装置
 PU2 光ピックアップ装置
 LD 青紫色半導体レーザ
 AC1 1軸アクチュエータ
 AC2 3軸アクチュエータ
 PBS 偏光プリズム
 CL カップリングレンズ
 L2 正レンズ群
 L3 負レンズ群
 PL1 第1の保護基板
 PL2 第2の保護基板
 PL3 第3の保護基板
 RL1 第1の情報記録面
 RL2 第2の情報記録面
 RL3 第3の情報記録面
 QWP λ/4波長板
OBJ Objective lens PU1 Optical pickup device PU2 Optical pickup device LD Blue-violet semiconductor laser AC1 Single-axis actuator AC2 Three-axis actuator PBS Polarizing prism CL Coupling lens L2 Positive lens group L3 Negative lens group PL1 First protective substrate PL2 Second protection Substrate PL3 Third protective substrate RL1 First information recording surface RL2 Second information recording surface RL3 Third information recording surface QWP λ / 4 wavelength plate

Claims (4)

  1.  厚さ方向に3つ以上の情報記録面を有する光ディスクにおけるいずれかの情報記録面を選択して、情報の記録及び/または再生を行う光ピックアップ装置であって、
     波長λ1(390nm<λ1<415nm)の光束を出射する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、前記光源と前記対物レンズとの間に配置された正の屈折力を有する正レンズ群及び負の屈折力を有する負レンズ群からなるカップリングレンズとを有し、
     前記対物レンズの像側開口数(NA)は0.8以上であり、
     前記対物レンズは単玉であって、ガラス素材から形成されており、
     前記光源から出射された光束を、前記カップリングレンズを介して前記対物レンズに入射させ、前記対物レンズにより前記光ディスクの選択された情報記録面上に集光することによって情報の記録及び/または再生を行うようになっており、
     前記光ディスクにおける情報の記録及び/又は再生を行うべき情報記録面をある情報記録面から他の情報記録面へと変える際、前記正レンズ群の少なくとも1つのレンズを光軸方向に移動させることを特徴とする光ピックアップ装置。
    An optical pickup device that selects and records information and / or reproduces information by selecting any information recording surface in an optical disc having three or more information recording surfaces in the thickness direction,
    A light source that emits a light beam having a wavelength of λ1 (390 nm <λ1 <415 nm), an objective lens that focuses the light beam on an information recording surface of an optical disc, and a positive light source disposed between the light source and the objective lens. A coupling lens composed of a positive lens group having a refractive power and a negative lens group having a negative refractive power,
    The image side numerical aperture (NA) of the objective lens is 0.8 or more,
    The objective lens is a single ball, formed from a glass material,
    Information is recorded and / or reproduced by causing the light beam emitted from the light source to enter the objective lens via the coupling lens and condensing it on the selected information recording surface of the optical disc by the objective lens. Is supposed to do
    When changing an information recording surface on which information is to be recorded and / or reproduced on the optical disc from one information recording surface to another information recording surface, at least one lens of the positive lens group is moved in the optical axis direction. A characteristic optical pickup device.
  2.  前記対物レンズに対して平行光束が入射する状態において、前記対物レンズの有効半径の6割から9割の間で、前記対物レンズの正弦条件違反量が正の極大値を持ち、それより周辺部で正弦条件違反量が単調に減少するようコマ収差の補正状態が設定されていることを特徴とする請求項1に記載の光ピックアップ装置。 In a state where a parallel light beam is incident on the objective lens, the sine condition violation amount of the objective lens has a positive maximum value between 60% and 90% of the effective radius of the objective lens, and the peripheral portion The optical pickup device according to claim 1, wherein the coma aberration correction state is set so that the sine condition violation amount decreases monotonously.
  3.  前記対物レンズに対して平行光束が入射する状態において、前記対物レンズの有効半径の4割から8割の間で、前記対物レンズの正弦条件違反量が負の極大値を持ち、それより周辺部で正弦条件違反量が単調に減少するようコマ収差の補正状態が設定されていることを特徴とする請求項1に記載の光ピックアップ装置。 In a state where a parallel light beam is incident on the objective lens, the sine condition violation amount of the objective lens has a negative maximum value between 40% to 80% of the effective radius of the objective lens, and the peripheral portion The optical pickup device according to claim 1, wherein the coma aberration correction state is set so that the sine condition violation amount decreases monotonously.
  4.  前記光ディスクに対して情報の記録及び/または再生を行う際に、前記対物レンズを前記光ディスクのラジアル方向及び/またはタンジェンシャル方向に沿って傾けることが可能になっているとともに、前記光ディスクの光束入射面からの距離が最も大きい情報記録面に対して情報の記録及び/または再生を行う状態において、前記対物レンズを傾けた場合に発生する3次コマ収差CM(LT)に対する、前記光ディスクを同量傾けた場合に発生する3次コマ収差CM(DT)の比の絶対値が0.4以上であることを特徴とする請求項1に記載の光ピックアップ装置。 When recording and / or reproducing information on the optical disc, the objective lens can be tilted along the radial direction and / or the tangential direction of the optical disc, and the light flux incident on the optical disc The same amount of the optical disc with respect to the third-order coma aberration CM (LT) generated when the objective lens is tilted in a state where information is recorded and / or reproduced with respect to the information recording surface having the longest distance from the surface. 2. The optical pickup device according to claim 1, wherein an absolute value of a ratio of third-order coma aberration CM (DT) generated when tilted is 0.4 or more.
PCT/JP2010/068570 2009-10-28 2010-10-21 Light pickup device WO2011052469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011538378A JPWO2011052469A1 (en) 2009-10-28 2010-10-21 Optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-247237 2009-10-28
JP2009247237 2009-10-28

Publications (1)

Publication Number Publication Date
WO2011052469A1 true WO2011052469A1 (en) 2011-05-05

Family

ID=43921892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068570 WO2011052469A1 (en) 2009-10-28 2010-10-21 Light pickup device

Country Status (2)

Country Link
JP (1) JPWO2011052469A1 (en)
WO (1) WO2011052469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005672A1 (en) * 2011-07-07 2013-01-10 コニカミノルタアドバンストレイヤー株式会社 Optical pickup device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085806A (en) * 2001-09-07 2003-03-20 Pentax Corp Objective lens for optical head and optical head using the same
JP2007133967A (en) * 2005-11-10 2007-05-31 Canon Inc Optical information recording and reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085806A (en) * 2001-09-07 2003-03-20 Pentax Corp Objective lens for optical head and optical head using the same
JP2007133967A (en) * 2005-11-10 2007-05-31 Canon Inc Optical information recording and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005672A1 (en) * 2011-07-07 2013-01-10 コニカミノルタアドバンストレイヤー株式会社 Optical pickup device

Also Published As

Publication number Publication date
JPWO2011052469A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JPWO2005101393A1 (en) Objective optical system for optical pickup device, optical pickup device, drive device for optical information recording medium, condensing lens, and optical path synthesis element
JP5071883B2 (en) Optical pickup device and objective optical element
WO2010044355A1 (en) Objective lens and optical pickup device
JPWO2007010770A1 (en) Optical pickup device and optical information recording medium recording / reproducing device
JP4193915B2 (en) Optical pickup device and objective optical element for optical pickup device
WO2011099329A1 (en) Objective lens of optical pickup device and optical pickup device
WO2011052469A1 (en) Light pickup device
JP2010153006A (en) Objective optical element and optical pickup device
JP5083621B2 (en) Objective lens and optical pickup device
JP5713248B2 (en) Objective lens for optical pickup device and optical pickup device
WO2010004858A1 (en) Objective lens and optical pickup device
JP2013206496A (en) Optical pickup device and objective
JPWO2008146675A1 (en) Objective optical element for optical pickup device and optical pickup device
JP5582421B2 (en) Optical pickup device and optical information recording / reproducing device
WO2011122275A1 (en) Optical pickup device and coupling lens for the optical pickup device
WO2012070438A1 (en) Objective lens for optical pickup device and optical pickup device
JP2010097664A (en) Objective lens
WO2011065276A1 (en) Objective lens for light pickup device-use and light pickup device
WO2011078022A1 (en) Objective lens for optical pickup device and optical pickup device
JPWO2007113995A1 (en) Optical pickup device
WO2011099317A1 (en) Optical pickup device
JP2012164401A (en) Objective lens, optical pickup device, and adjustment method therefor
JP2009015951A (en) Correction element for optical pickup device, objective optical element unit, and optical pickup device
JP2011243268A (en) Objective lens for optical pickup device, and optical pickup device
JP2011165288A (en) Objective lens of optical pickup and optical pickup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538378

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826601

Country of ref document: EP

Kind code of ref document: A1