WO2013004632A1 - Procédé pour préparer des phosphates de métaux de transition lithiés nanoparticulaires - Google Patents

Procédé pour préparer des phosphates de métaux de transition lithiés nanoparticulaires Download PDF

Info

Publication number
WO2013004632A1
WO2013004632A1 PCT/EP2012/062754 EP2012062754W WO2013004632A1 WO 2013004632 A1 WO2013004632 A1 WO 2013004632A1 EP 2012062754 W EP2012062754 W EP 2012062754W WO 2013004632 A1 WO2013004632 A1 WO 2013004632A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
lithium transition
lithium
metal phosphate
carbon
Prior art date
Application number
PCT/EP2012/062754
Other languages
German (de)
English (en)
Inventor
Christoph Stinner
Peter Axmann
Margret Wohlfahrt-Mehrens
Wolfgang Weirather
Meike FLEISCHHAMMER
Original Assignee
Süd-Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Süd-Chemie AG filed Critical Süd-Chemie AG
Publication of WO2013004632A1 publication Critical patent/WO2013004632A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for
  • lithium ion batteries also called secondary lithium ion batteries, are considered to be promising battery models for battery-powered motor vehicles.
  • Lithium ion batteries are also used, for example, in power tools, computers and mobile phones.
  • the electrodes and the electrolytes consist of lithium-containing materials.
  • lithium iron phosphate (LiFePO 4 ) in particular has been of great interest for use as cathode material in rechargeable secondary lithium ion batteries. Lithium iron phosphate offers
  • Lithium compounds such as lithium manganese oxide, lithium cobalt oxide and lithium nickel oxide have higher safety properties in the Delithiêtm condition as they are necessary in particular for the future use of batteries in electric cars, electrically operated tools, etc. in the future.
  • the pure lithium iron phosphate material was replaced by the
  • lithium manganese phosphate LiMnPC is of interest in view of its Li / Li + higher Mn 2+ / Mn 3+ redox couple (4.1 volts). LiMnPC has also been described by Goodenough et al. described in US 5,910,382.
  • lithium transition metal phosphates are considered safe electrode materials as opposed to, for example
  • Lithium manganese oxide or lithium cobalt oxide are stable in the charged state even at higher temperatures and do not react under
  • lithium transition metal phosphates are subject to comparison with the purely oxide cathode materials
  • Crystals, the ionic and electronic conductivity of lithium transition metal phosphates is generally low.
  • the property is the so-called
  • Nanoscale i.e. a low primary crystallite size for lithium transition metal phosphates is an essential prerequisite for optimizing their capacity and their
  • Lithium iron phosphate and lithium manganese phosphate is known that nanoscale is a necessary prerequisite for a good electrochemical utilization of the transition metal.
  • Conductive additives can, as already said both in
  • LiMP0 4 - particles is usually carried out by the reaction of zerset zlichen (organic) carbon precursor compounds on lithium transition metal phosphates LiMPC (EP 1 049 182 Bl).
  • Carbon precursor compounds and crystallite size lead to so-called nanocomposite systems, in which in particular the limitation of the crystallite growth by the resulting decomposition products of the carbon precursor compounds is important, which act as so-called sintering inhibitors.
  • Defects may remain in the formed crystals, which have a negative effect on the product quality in terms of their electronic properties.
  • Lithium transition metal phosphates can be obtained without the primary crystallites have defects and thus have a high electronic activity. This object is achieved by a method in which
  • Lithium transition metal phosphate as starting material, a nanoparticulate carbon-free lithium transition metal phosphate LiMP0 4 is obtained in which the carbon layer of the starting material is completely or partially removed.
  • the carbon-coated lithium transition metal phosphate has a very small (primary) crystallite size, since the carbon as
  • Starting material in the process according to the invention are annealed at relatively low temperatures in air, wherein the existing carbon layer is completely or even partially removed by oxidation.
  • carbon-coated starting material was produced. It can be either solid-state, wet-chemical or hydrothermal or by sol-gel synthesis or
  • Carbon layer is removed again. Temperatures of 300 ° C to 500 ° C are usually selected as temperatures for the annealing step. At the selected lower temperatures according to the invention
  • the object of the invention is further solved by a
  • nanoparticulate lithium transition metal phosphate obtainable by the process according to the invention.
  • the lithium transition metal phosphate obtained by the process according to the invention has a
  • Lithium transition metal phosphate according to the invention has excellent electronic properties when used as active material in cathodes of secondary lithium ion batteries.
  • Electrode material is particularly suitable because the material is very homogeneous
  • Lithium transition metal phosphate is selected according to the invention of at least one transition metal selected from the group consisting of cobalt, iron, manganese, nickel. In preferred embodiments of the present invention, the transition metal is cobalt or manganese.
  • the lithium transition metal phosphate is thus lithium cobalt phosphate LiCoPO 4 or lithium manganese phosphate LiMnPO 4 .
  • Lithium transition metal phosphate may be doped or undoped.
  • x is a number ⁇ 1 and> 0.001 and y is a number> 0.001 and ⁇ 0.99.
  • Typical preferred compounds are, for example LiNb y Fe x P0 4 , LiMg y Fe x P0 4 LiB y Fe x P0 4 LiMn y Fe x P0 4 , LiMg y Co x P0 4 , LiCo y Fe x P0 4 , LiMn z Co y Fe x P0 4 , LiMn y Co x P0 4 , LiMg y Fe x Mni_ x _ y P0 4 ,
  • the doped or non-doped lithium transition metal phosphate has, as already stated above, very particularly preferably either an ordered or modified
  • lithium transition metal phosphates in ordered olivine structure can be described in the rhombic space group Pnma (No. 62 of the International Tables), where the crystallographic arrangement of the rhombic unit cell is chosen such that the a axis is the longest axis and the c axis the shortest axis the unit cell Pnma is such that the mirror plane m of the olivine structure is perpendicular to the b axis. Then, the lithium ions of the lithium metal phosphate in Olivin Design arrange in parallel to
  • modified olivine structure means that modification takes place either on the anionic (e.g., phosphate by vanadate) and / or cationic sites in the crystal lattice, with substitution by aliovalent or like charge carriers to provide better diffusion of the anionic (e.g., phosphate by vanadate) and / or cationic sites in the crystal lattice, with substitution by aliovalent or like charge carriers to provide better diffusion of the anionic (e.g., phosphate by vanadate) and / or cationic sites in the crystal lattice, with substitution by aliovalent or like charge carriers to provide better diffusion of the anionic (e.g., phosphate by vanadate) and / or cationic sites in the crystal lattice, with substitution by aliovalent or like charge carriers to provide better diffusion of the anionic (e.g., phosphate by vanadate) and / or cationic sites in the crystal lattice, with substitution by aliovalent or like charge carriers to provide
  • Active material in cathodes of secondary lithium ion batteries is not inferior to conventional carbon-containing corresponding derivatives. Surprisingly, they need this
  • the present invention further relates to an electrode for a lithium secondary lithium ion battery which contains a lithium transition metal phosphate according to the invention, in particular non-doped or doped lithium cobalt phosphate LiCoPO 4 or non-doped or doped lithium manganese phosphate LiMnPO 4 as active material.
  • a lithium transition metal phosphate according to the invention in particular non-doped or doped lithium cobalt phosphate LiCoPO 4 or non-doped or doped lithium manganese phosphate LiMnPO 4 as active material.
  • the electrode according to the invention further contains a binder.
  • binders it is possible to use any binder known per se to the person skilled in the art, for example polytetrafluoroethylene
  • PVDF polyvinylidene difluoride
  • PVDF-HFP polyvinylidene difluoride-hexafluoropropylene copolymers
  • EPDM ethylene-propylene-diene terpolymers
  • tetrafluoroethylene-hexafluoropropylene copolymers polyethylene oxides (PEO), polyacrylonitriles (PAN), polymethyl methacrylates (PMMA ), Carboxymethylcelluloses (CMC), their derivatives and mixtures thereof.
  • PEO polyethylene oxides
  • PAN polyacrylonitriles
  • PMMA polymethyl methacrylates
  • CMC Carboxymethylcelluloses
  • the electrode further contains a lithium metal oxygen compound selected from doped or undoped lithium metal oxides, lithium metal phosphates (other than those of the invention), lithium metal vanadates, and mixtures from that. It is of course also possible that two, three or even more, different lithium metal-oxygen compounds are included. It will be understood by those skilled in the art that, of course, only lithium-metal-oxygen compounds having the same functionality (ie, acting as cathode active material) may be included in such an electrode formulation.
  • the lithium-metal-oxygen compound is preferred.
  • the second lithium metal-oxygen compound is particularly advantageous in special cathode formulations and is typically present in an amount of about 3 to 50%, based on the lithium transition metal phosphate according to the invention.
  • Fig. 2 shows the charge / discharge of
  • Fig. 3 shows the specific capacity of
  • Lithium cobalt phosphates Lithium cobalt phosphates.
  • Fig. 4 shows SEM photographs of carbon-free
  • Lithium cobalt phosphate obtainable by a direct solid state process of the prior art ( Figure 4a) and the method of the invention ( Figure 4b). embodiments
  • Electrodes To prepare the electrodes, active material (60% by weight) was mixed with AB100 (20% by weight) as conductive additive and hostafion (20% by weight) as binder. The individual components were in the
  • Agate mortar mortars Of the electrode mass obtained therefrom, about 50%
  • the pressed electrode was dried at 130 ° C under vacuum over a period of 8 - 12 h and then measured in test cells with excess electrolyte against lithium as a reference electrode and counter electrode.
  • the electrolyte was a mixture of
  • Ethylene carbonate / dimethyl carbonate (EC: DMC 1: 1 wt% with IM LiPF 6 as conductive salt (LP1-U33 / U34 ÜBE, LP30-17 Merck) used.
  • the electrochemical characterization was carried out by galvanostatic measurement in a potential range of 3.0 V - 5.3 V at a charge / discharge rate of C / 20.
  • Carbon-coated LiCoP0 4 and LiMnP0 4 was carried out either by solid-synthetic route (JP H09-134724, EP 571858 AI, EP 1049182 Bl), wet-chemical way (EP 1379468 Bl) or hydrothermal way (WO2006 / 097324).
  • the carbon coating was carried out either in situ according to EP 1049182 B1 or after isolation of the non
  • LiCoPC and LiMnPC carbon content about 5% by weight were then annealed for 20 hours in air at 400 ° C. This gave a carbon-free LiCoPC.
  • the result was independent of the preparation (i.e., wet chemical, solid-state chemical, or hydrothermal) of the original
  • FIG. 2 shows the charge / discharge of an electrode with carbon-free LiCoP0 4 invention (starting material obtained according to EP 1379468B1) as an active material without further Leitschzusatz in the first cycle measured against Li / Li + .
  • the LiCoP0 4 had a primary crystallite size of 80 nm.
  • the discharge reached a value of 155 mAh / g.
  • the purest L1C0PO 4 has a specific capacity of 167 mAh / g.
  • the measured sample had a Li 3 P0 4 minor phase of 3 to 4% by weight. Therefore, the practical specific capacity of the measured sample is 163 mAh / g.
  • 155 mAh / g represents about 95% of the expected specific capacity of the prepared cathode material LiCoPC of 163 mAh / g.
  • Electrode formulation shows better results than with
  • Crystallite on the electronic properties of these materials were determined as primary crystallite quantities from X-ray diffraction measurements on a Bruker AXS instrument (software TOPAS 4.2).
  • Figure 4 shows in Figure 4a the comparison of the particle morphology of carbon-free L1C0PO 4 obtainable by a solid state process of the prior art (EP 571 858 AI); and in Figure 4b of carbon-free L1C0PO 4 available after the method according to the invention.
  • the product according to the invention has a much lower

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un phosphate de métal de transition lithié nanoparticulaire LiMPO4 à partir d'un phosphate de métal de transition lithié revêtu de carbone, la couche de carbone étant ensuite éliminée.
PCT/EP2012/062754 2011-07-01 2012-06-29 Procédé pour préparer des phosphates de métaux de transition lithiés nanoparticulaires WO2013004632A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011106326.2 2011-07-01
DE102011106326A DE102011106326B3 (de) 2011-07-01 2011-07-01 Verfahren zur Herstellung von nanopartikulären Lithiumübergangsmetallphosphaten; nanopartikuläres Lithiumübergangsmetallphosphat und Kathode damit

Publications (1)

Publication Number Publication Date
WO2013004632A1 true WO2013004632A1 (fr) 2013-01-10

Family

ID=46466494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/062754 WO2013004632A1 (fr) 2011-07-01 2012-06-29 Procédé pour préparer des phosphates de métaux de transition lithiés nanoparticulaires

Country Status (3)

Country Link
DE (1) DE102011106326B3 (fr)
TW (1) TW201307197A (fr)
WO (1) WO2013004632A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658000B (zh) * 2013-05-08 2019-05-01 長園科技實業股份有限公司 鋰鎳錳鈷磷之氧化物之合成及特徵

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571858A1 (fr) 1992-05-18 1993-12-01 Mitsubishi Cable Industries, Ltd. Batterie secondaire au lithium
JPH09134724A (ja) 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US6514640B1 (en) 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
EP1379468B1 (fr) 2001-04-10 2004-12-29 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Phosphates de lithium binaires, ternaires et quaternaires, leur procede de production et leur utilisation
WO2005051840A1 (fr) 2003-11-14 2005-06-09 Süd-Chemie AG Lithium-metal-phosphate, procedes de realisation associes et utilisation comme matiere d'electrode
WO2006097324A2 (fr) 2005-03-18 2006-09-21 Süd-Chemie AG Cycle de production par voie humide de phosphates metalliques de lithium
WO2007058432A1 (fr) * 2005-11-21 2007-05-24 Jae Kook Kim Methode pour synthetiser une matiere d'electrode, faisant appel a un procede de production de polyols
EP1049182B1 (fr) 1999-04-30 2008-01-02 Hydro-Quebec Matériaux d'électrode présentant une conductivité de surface élevée
WO2008077447A1 (fr) * 2006-12-22 2008-07-03 Umicore SYNTHÈSE D'UNE POUDRE DE LiMnPO4 NANOMÉTRIQUE CRISTALLINE ÉLECTROACTIVE
WO2008130093A1 (fr) * 2007-04-20 2008-10-30 Sung Yoon Chung Procédé de production de nanoparticules de lithium métaux de transition phosphates
WO2010109869A1 (fr) * 2009-03-27 2010-09-30 住友大阪セメント株式会社 Procede de production de materiau actif d'electrode positive pour batterie au lithium-ion, materiau actif d'electrode positive pour batterie au lithium-ion, electrode pour batterie au lithium-ion, et batterie au lithium-ion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087348B2 (en) * 2002-07-26 2006-08-08 A123 Systems, Inc. Coated electrode particles for composite electrodes and electrochemical cells

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571858A1 (fr) 1992-05-18 1993-12-01 Mitsubishi Cable Industries, Ltd. Batterie secondaire au lithium
JPH09134724A (ja) 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
US5910382A (en) 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US6514640B1 (en) 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries
EP1049182B1 (fr) 1999-04-30 2008-01-02 Hydro-Quebec Matériaux d'électrode présentant une conductivité de surface élevée
EP1379468B1 (fr) 2001-04-10 2004-12-29 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Phosphates de lithium binaires, ternaires et quaternaires, leur procede de production et leur utilisation
WO2005051840A1 (fr) 2003-11-14 2005-06-09 Süd-Chemie AG Lithium-metal-phosphate, procedes de realisation associes et utilisation comme matiere d'electrode
WO2006097324A2 (fr) 2005-03-18 2006-09-21 Süd-Chemie AG Cycle de production par voie humide de phosphates metalliques de lithium
WO2007058432A1 (fr) * 2005-11-21 2007-05-24 Jae Kook Kim Methode pour synthetiser une matiere d'electrode, faisant appel a un procede de production de polyols
WO2008077447A1 (fr) * 2006-12-22 2008-07-03 Umicore SYNTHÈSE D'UNE POUDRE DE LiMnPO4 NANOMÉTRIQUE CRISTALLINE ÉLECTROACTIVE
WO2008130093A1 (fr) * 2007-04-20 2008-10-30 Sung Yoon Chung Procédé de production de nanoparticules de lithium métaux de transition phosphates
WO2010109869A1 (fr) * 2009-03-27 2010-09-30 住友大阪セメント株式会社 Procede de production de materiau actif d'electrode positive pour batterie au lithium-ion, materiau actif d'electrode positive pour batterie au lithium-ion, electrode pour batterie au lithium-ion, et batterie au lithium-ion
EP2413402A1 (fr) * 2009-03-27 2012-02-01 Sumitomo Osaka Cement Co., Ltd. Procede de production de materiau actif d'electrode positive pour batterie au lithium-ion, materiau actif d'electrode positive pour batterie au lithium-ion, electrode pour batterie au lithium-ion, et batterie au lithium-ion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOODENOUGH ET AL., J. ELECTROCHEM. SOC., vol. 144, 1997, pages 1188 - 1194
WANG Y ET AL: "Enhanced electrochemical performance of unique morphological LiMnPO4/C cathode material prepared by solvothermal method", SOLID STATE COMMUNICATIONS, PERGAMON, GB, vol. 150, no. 1-2, 1 January 2010 (2010-01-01), pages 81 - 85, XP026754579, ISSN: 0038-1098, [retrieved on 20091004], DOI: 10.1016/J.SSC.2009.09.046 *

Also Published As

Publication number Publication date
TW201307197A (zh) 2013-02-16
DE102011106326B3 (de) 2013-01-03

Similar Documents

Publication Publication Date Title
DE69919168T2 (de) Lithium enthaltendes silicium/phosphat, verfahren zu seiner herstellung und seine verwendung
EP2681786B1 (fr) Oxyde mixte de lithium et de titane
EP2488451B1 (fr) Phosphate de lithium-aluminium-titane exempt de phases, son procédé de production et son utilisation
DE102015115691B4 (de) Lithium-Nickel-Mangan-basierte Übergangsmetalloxidpartikel, deren Herstellung sowie deren Verwendung als Elektrodenmaterial
EP2528862B1 (fr) Phosphate métallique de lithium-manganèse substitué
WO2010130684A1 (fr) Matériau composite comportant un mélange d&#39;oxyde métallique au lithium
EP2769427B1 (fr) Matière active pour batteries
EP2529443B1 (fr) Électrode pour une batterie au lithium-ion secondaire
DE102005015613A1 (de) Kristallines Ionenleitendes Nanomaterial und Verfahren zu seiner Herstellung
DE60305203T2 (de) Boron enthaltende lithiuminterkalationsverbindungen zur verwendung als aktive materialien für elektroden , speichermedien und electrochromische vorrichtungen
EP2561567A2 (fr) Matériau composite carboné contenant un composé métal de transition-lithium oxygéné
DE112011102340T5 (de) Aktives Material für positive Elektrode, positive Elektrode und Sekundärbatterie mit nichtwässrigem Elektrolyten
DE112013007268T5 (de) Beschichtete lithiumreiche Schichtoxide und ihre Vorbereitung
DE102013111853A1 (de) Kohlenstoffbeschichtetes Lithiumsulfid
DE102021128305A1 (de) Verfahren zur herstellung eines kathodenaktivmaterials, kathodenaktivmaterial und verfahren zur herstellung einer lithium-ionen-batterie
WO2011092277A1 (fr) Électrode exempte d&#39;additifs conducteurs pour une batterie au lithium-ion secondaire
WO2008125647A2 (fr) Procédé de préparation d&#39;oxydes métalliques riches en lithium
El-Khalfaouy et al. Modeling and synthesis of carbon-coated LiMnPO4 cathode material: Experimental investigation and optimization using response surface methodology
DE102011106326B3 (de) Verfahren zur Herstellung von nanopartikulären Lithiumübergangsmetallphosphaten; nanopartikuläres Lithiumübergangsmetallphosphat und Kathode damit
DE102011088960B4 (de) Kathodenzusammensetzung für einen Lithiumakkumulator und Verfahren zur Herstellung derselben
WO2024070137A1 (fr) Matériau d&#39;électrode positive de batterie secondaire au lithium et son procédé de fabrication, électrode positive de batterie secondaire au lithium et batterie secondaire au lithium
DE112021001526T5 (de) Positives aktivmaterial für energiespeichervorrichtung, positive elektrode für energiespeichervorrichtung, energiespeichervorrichtung, und energiespeichergerät
WO2013113682A1 (fr) Matériau pour électrodes pour batteries lithium-ion, procédé de production et utilisation
WO2024068134A1 (fr) Procédé de production d&#39;un matériau ou d&#39;un composant pour une batterie à l&#39;état solide
DE112022002236T5 (de) Sekundärbatterie mit nicht-wässrigem elektrolyten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12733069

Country of ref document: EP

Kind code of ref document: A1