WO2013004448A1 - Réacteur d'échange de chaleur - Google Patents

Réacteur d'échange de chaleur Download PDF

Info

Publication number
WO2013004448A1
WO2013004448A1 PCT/EP2012/060854 EP2012060854W WO2013004448A1 WO 2013004448 A1 WO2013004448 A1 WO 2013004448A1 EP 2012060854 W EP2012060854 W EP 2012060854W WO 2013004448 A1 WO2013004448 A1 WO 2013004448A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
tube head
fluid
transfer tubes
fluid chamber
Prior art date
Application number
PCT/EP2012/060854
Other languages
English (en)
Other versions
WO2013004448A8 (fr
Inventor
Helbo Anders HANSEN
Olav Holm-Christensen
Søren GYDE THOMSEN
Original Assignee
Haldor Topsøe A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsøe A/S filed Critical Haldor Topsøe A/S
Priority to CN201290000642.6U priority Critical patent/CN203916623U/zh
Priority to DE212012000120.4U priority patent/DE212012000120U1/de
Priority to RU2014103299/05U priority patent/RU148799U1/ru
Priority to BR112013033842-3A priority patent/BR112013033842B1/pt
Priority to BR212013033842U priority patent/BR212013033842U2/pt
Priority to ES201450003U priority patent/ES1103681Y/es
Priority to KR2020137000082U priority patent/KR20140001590U/ko
Publication of WO2013004448A1 publication Critical patent/WO2013004448A1/fr
Publication of WO2013004448A8 publication Critical patent/WO2013004448A8/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/06Arrangements for sealing elements into header boxes or end plates by dismountable joints
    • F28F9/10Arrangements for sealing elements into header boxes or end plates by dismountable joints by screw-type connections, e.g. gland
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/06Details of tube reactors containing solid particles
    • B01J2208/065Heating or cooling the reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/08Reinforcing means for header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0282Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry of conduit ends, e.g. by using inserts or attachments for modifying the pattern of flow at the conduit inlet or outlet

Definitions

  • the present invention relates to a heat exchange reactor for carrying out endothermic or exothermic catalytic reactions.
  • the present invention relates to a heat exchange reactor with improved fluid sealing for high temperature reactions.
  • the heat exchange reactor may be part of a large apparatus, such as a production apparatus.
  • Catalytic reactors for carrying out endothermic or exothermic reactions are well known in the art, particular examples being reactors for the endothermic steam reforming of hydrocarbons and reactors for the exothermic methanol synthesis reactions (not limiting the scope of the invention to these reactions).
  • the reactions are typically carried out in tubes loaded with a suitable solid catalyst through which a process gas stream comprising the reactants is passed at elevated pressure.
  • a plurality of tubes is arranged vertically or horizontally in the reactor.
  • the tubes run in parallel along the major axis of the catalytic reactor, while a heat-exchanging medium outside the tubes heats or cools the tubes.
  • the solid catalyst inside the tubes provides a catalyst bed in which the required chemical reactions take place.
  • the catalyst can be provided as solid particles or as a coated structure, for example as a thin layer fixed on the inner wall of the tubes in steam reforming reactors.
  • the solid catalyst particles may be disposed outside said tubes, hereinafter also referred to as heat transfer tubes, whilst the heat exchanging medium passes inside.
  • the solid catalyst outside the heat transfer tubes provides the catalyst bed in which the required chemical reactions take place.
  • a process and reactor in which a catalyst is in indirect contact with a heat exchanging medium is known from EP0271299.
  • This citation discloses a reactor and process that combines steam reforming and autothermal reforming.
  • the steam reforming zone arranged in the lower region of the reactor comprise a number of tubes with catalyst dis- posed inside while on the upper region of the reactor an autothermal reforming catalyst is disposed outside the steam reforming tubes.
  • EP-A-1 106 570 discloses a process for steam reforming in parallel connected tubular reformers (reactors) comprising a number of steam reforming tubes and being heated by indirect heat exchange.
  • the catalyst is disposed in one reactor outside the steam reforming tubes and inside the steam re- forming tubes in the other reactor.
  • WO0156690 describes a heat exchange reactor including an outer shell provided with process gas inlet and outlet ports, a plurality of reactor tubes supported at their upper ends, header means for supplying process gas from said header inlet port to the upper ends of the reactor tubes, said means including two or more primary inlet headers disposed across the upper part of said shell, each primary inlet header having a depth greater than its width, whereby said tubes are supported, relative to the shell directly or indirectly by said primary inlet headers.
  • EP1048343A discloses a heat-exchanger type reactor which has a plurality of tubes holding a catalyst, a shell section through which a heat-transfer medium is passed to carry out heat-transfer with a reaction fluid in said tubes, and upper and lower tube sheets, the upper ends of said tubes being joined to said upper tube sheet by way of first expansion joints fixed to the upper side of said upper tube sheet, the lower ends of said tubes being fixed directly to the floatable lower tube sheet, a floatable room being formed which is partitioned by said lower tube sheet and an inner end plate (inner head) joined to the lower side thereof and has an opening in the lower part, and said opening being joined by way of a second expansion joint to a tube-side outlet to the outside of the reactor.
  • the heat exchange reactor must have a structure which can absorb the differential thermal expansion between the tubes and the housing due to the temperature difference between them. Also the structure must be able to absorb the differential thermal expansion between the tubes, which is caused by the temperature difference between tubes, produced by the difference in reaction and heat-transfer conditions between tubes, the difference being due to the tolerance in tube inner diameter in the reactor, the difference in catalyst packing density in each tube, the difference being due to the tolerance in tube inner diameter in the reactor, the difference in catalyst packing density in each tube, the difference in catalyst activity, the uneven distribution of a reaction gas flowing through the tubes, the uneven distribution of a heat-transfer medium flowing through the shell section etc.
  • the second expansion joint of EP 1048343 are desirably isolated from the reaction fluid or the heat exchange fluid if these have temperatures of for example 500°C or above, because it is a problem to provide gas tight joints for such high temperatures.
  • Another solution is to accept a slight leak of gas at the ex- pansion joint, by providing e.g. a labyrinth seal. This is however not acceptable for all applications.
  • a further object is to pro- vide an improved heat exchange reactor which can operate at high temperatures but still have a gas tight sealing between the tubes and the tube heads.
  • a heat exchange reactor (100) for carrying out endothermic or exothermic reactions comprising,
  • at least a first fluid chamber (107), a second fluid chamber (108) and a third fluid chamber (109) located inside said housing, said first fluid chamber is located in the upper part of the housing above the first tube head, said second fluid chamber is located in the mid-section of the housing between the first and the second tube head, and said third fluid chamber is located in the lower part of the housing under- neath the second tube head,
  • At least four fluid openings in said housing at least one fluid opening (1 10) in the first fluid chamber, at least two fluid openings (1 1 1 , 1 12) in the second fluid chamber and at least one fluid opening (1 13) in the third fluid chamber,
  • the first and the second tube head have bores for each of the heat transfer tubes, wherein the lower part of each heat transfer tube is fixed supported both side-wards and up-wards by the second tube head and the upper part of each heat transfer tube is sliding supported to the first tube head, whereby the second tube head supports the load of the plurality of heat transfer tubes and prevents them from moving relative to the second tube head and the first tube head supports the plurality of heat transfer tubes in a side-wards direction allowing the heat transfer tubes to move up- and downwards relative to the first tube head and the sliding support of the upper part of the heat transfer tubes comprises a fluid-tight sealing (1 18).
  • a heat exchange reactor according to feature 1 wherein said lower part of the heat transfer tubes comprise a bottleneck (1 14), whereby the cross-sectional area of the lower end of the heat transfer tubes and the cross sectional area of each bore in the second tube head is smaller than the cross-sectional area of the heat transfer tubes above the bottleneck.
  • the catalyst beds are located inside the heat transfer tubes and said heat transfer tubes each comprise a support (1 15) located in the lower part of each of the heat transfer tubes above the bottleneck to support the catalyst beds.
  • a heat exchange reactor according to feature 3 further comprising a spacer (1 16) located between the bottleneck and the support to adapt the height of the support. 5. A heat exchange reactor according to feature 4, wherein said support and said spacer is one integrated unit.
  • a heat exchange reactor according to any of the preceding features, wherein at least one of the first and the second tube head has a concave shape.
  • a heat exchange reactor according to any of the preceding features wherein at least one of the first and the second tube head is insulated (1 17) on at least one side of the tube head.
  • the insulation (1 17) is located on the side of the at least one of the first and the second tube head which faces the second fluid chamber and the thickness of the insulation is adapted so that the insulation has a substantially plane surface on the face of the insulation which is facing towards the second fluid chamber.
  • said sealing comprises for each heat transfer tube a stuffing box (1 19) with packing rope (120) which is compressed around the heat transfer tube by compression means (121 ).
  • a heat exchange reactor according to any of the preceding features, wherein a least one of the heat transfer tubes is provided with attachment means (122, 130) at the upper part, thereby enabling lifting at least all of the heat exchange tubes and the second tube head.
  • a heat exchange reactor according to any of the preceding features, wherein said reactor wall forms at least a first tubular section (124) arranged by the second fluid chamber upper part, a second tubular section (125) arranged by the second fluid chamber mid part and a third tubular section (126) arranged by the second fluid chamber lower part, said first and third tubular section have a larger diameter than the second tubular section to allow for at least two ring chambers to evenly distribute the fluid to and from the at least two fluid openings in the second fluid chamber and to and from the lower and upper surface part of the heat transfer tubes.
  • a heat exchange reactor according to any of the preceding features, further comprising a liner (127) arranged around the heat transfer tubes within the second fluid chamber, said liner has perforations (129) for evenly distribution of the fluid to and from the at least two fluid openings in the second fluid chamber and to and from the lower and upper surface part of the heat transfer tubes.
  • a heat exchange reactor according to feature 14 wherein at least a part of the area of said liner which is facing at least one of the at least two fluid openings in the second fluid chamber is without said perforations, whereby said area can act as a fluid impingement plate.
  • a heat exchange reactor for carrying out endother- mic or exothermic reaction comprises a housing with a reactor wall, heat transfer tubes, tube heads, fluid chambers and fluid openings.
  • the housing and the heat transfer tubes are arranged in a substantially vertical position which is advantageous for the structural strength of the components especially under operation at elevated temperature and pressure.
  • the reactor is divided in at least three fluid chambers by the tube heads.
  • a first fluid is let in through a fluid opening and is distributed to the heat transfer tubes.
  • the first fluid flows inside the tubes downwards to the third fluid chamber located in the lower part of the housing underneath the second tube head, where the flow from each tube is collected and let out of a fluid opening.
  • a second fluid is let in via one fluid opening located in the lower part of the mid-section.
  • the second fluid flows upwards in the mid-section while it performs heat exchange with the first fluid through the heat transfer tube walls.
  • the second fluid is let out through another fluid opening.
  • Catalyst beds can be arranged inside the tubes or outside the tubes in the second fluid chamber.
  • the heat transfer tubes are supported by the two tube heads. The tubes are sliding supported in bores in the first upper tube head, hence while the upper part of each tube is supported and fixed against move- ment in horizontal directions they are free to move in vertical directions independent of each other.
  • the tubes are fixed in the second lower tube head, they are not able to move in any direction relative to the second tube head.
  • the lower part of each tube is fixed to the second tube head at the location of a corresponding bore in said tube head; it can be fixed with the lower end of each tube directly above the corresponding bore, fixed with the end of the tube inside the bore or fixed with the end part of the tube within the bore and the tube end underneath the tube head.
  • Fixing the tube to the second tube head can be done in any known way as for instance welding, which is preferable because it is gas tight. It is important that the fixing method can withstand the operating temperatures. It is understood that since the tubes are only sliding fixed to the first tube head in vertical directions, it is the second tube head which supports the load of the plurality of heat transfer tubes.
  • the first fluid may flow in a downwards direction: via a fluid opening in the first fluid chamber it flows from the first fluid chamber, through the heat transfer tubes to the third fluid chamber and out of a fluid opening; or in an other embodiment it may flow in the opposite direction.
  • the second fluid may flow in an upwards direction from a fluid opening in the lower part of the second fluid chamber, up through the second fluid chamber around the tubes and out of the second fluid chamber via a fluid opening in the upper part of the second fluid chamber.
  • the first fluid flows downwards
  • the second fluid flows upwards
  • the catalyst bed is placed inside the heat transfer tubes and the reaction is endothermic, the second fluid must transfer heat to the first fluid.
  • the tubes are fixed for instance by welding to the second tube head where the temperature is the highest.
  • the heat transfer tubes have a bottleneck at their lower part, whereby the outer and inner diameters of the tubes are reduced. Accordingly the lower end part of the tubes which is fixed to the second tube head need a corresponding bore in the second tube head which is only large enough to correspond to the reduced tube diameter, which in return increases the strength of the second tube head compared to a tube head perforated by bores of a larger diameter.
  • a support for the catalyst bed is located inside the tubes in the lower part of the tubes above the bottleneck.
  • the support can be of any suitable construction, for instance a wire mesh on top of a support grid surrounded by a support ring.
  • the bottleneck serves as a lower support stop for the catalyst support and a spacer can be placed between the bottleneck and the catalyst support to adjust the height of the catalyst bed in each tube.
  • the support and the spacer can also be integrated into one single unit, the height of the unit can then be varied to adjust the height of the catalyst bed in each tube as mentioned.
  • At least one of the first and the second tube head has a concave shape.
  • a concave shape for instance an ellipsoidal shape is advantageous as it transfers the load on the centre part of the tube head out to the periphery of the tube head where the tube head can be supported by the reactor wall.
  • the spacers which adjust the height of the catalyst supports in each tube can be adapted to compensate for the concave shape of the second tube head such that the bottom of the catalyst bed in each tube has the same height in the reactor. This is advantageous when an even catalytic activity in all tubes is desired.
  • At least one of the first and the second tube head is insulated on the side of the tube head facing the second fluid chamber.
  • the insulation protects the insulated tube head from the high temperatures and the tube head thickness can therefore be reduced for given strength requirements. This is especially advantageous for the second load bearing tube head.
  • the insulation thickness can like the catalyst support height be adapted to compensate for a given concave shape of the first and/or the second tube head, whereby the insulation surface is substantially plane and the length of the tubes between the opposing insulation surfaces or between the insulation surface and the opposing tube head can be substantially equal for all the tubes.
  • the top and the bottom of the catalyst beds in each heat transfer tube is located at the same or nearly the same height as the insulation surface.
  • each heat transfer tube is sealed towards the upper tube head.
  • the seal provides the side-wards support of the tubes in the bores of the tube head and a substantially fluid-tight connection, but allows for the described sliding movement of the tubes in the bores relative to the first tube head.
  • the seal comprises a stuffing box for each tube.
  • the stuffing box can be fixed (for instance by welding or other known means) to the first tube head around each bore.
  • the seal may be a ceramic packing rope which is compressed between the stuffing box and the outer wall of each tube around the tube by means of compression such as a threaded nut or any other known compression means.
  • the stuffing box may further comprise locking means, such as a locking bolt to prevent the compression means from dismounting.
  • At least one of the heat transfer tubes is provided with attachment means at the upper part of the tubes.
  • attachment means can be of any known art, such as a thread, bores through the tube, snap locks, barbs, couplings, unions, connectors or the like; and they can be mounted on the outside, inside or both the outside and inside of the tube.
  • the attachment means provide a simple mounting of the heat transfer tubes and the tube heads in the reactor: A number of mechanical stops sufficient to carry the total weight of the tubes and the tube heads are mounted at the attachment means on top of a corresponding number of tubes, where after all the tubes and the first and the second tube head can be lifted. After mounting the tube heads and the tubes in the reactor, the mechanical stops are removed.
  • two fluid distribution ring chambers are provided in connection with the two fluid openings in the second fluid chamber. The ring chambers provides an even fluid distribution from the fluid inlet opening to the area around all the heat transfer tubes nearest one end and an even fluid distribution from the area around all the heat transfer tubes nearest the other end to the fluid outlet opening.
  • Said ring chambers are constructed as sections of the reactor wall around the second fluid chamber with an enlarged diameter which allows for the fluid to flow around the tube bundle. These enlarged diameter sections of the reactor wall are located in the upper part and the lower part of the second fluid chamber, The mid part of the fluid chamber has a reactor wall diameter only slightly larger than the tube bundle outer diameter to minimize the material consumption.
  • the fluid inlet to the second fluid chamber is at the lower part of the second fluid chamber and the fluid outlet from the second fluid chamber is at the upper part of the second fluid chamber. Evenly distribution of the fluid in the second fluid chamber around all the heat transfer tubes as well as an even distribution of catalyst beds in even lengths of heat transfer tubes as mentioned earlier is all ensuring an even reaction level and even heat transfer between the fluid inside and outside the heat transfer tubes.
  • a liner located inside the reactor wall in the second fluid chamber and surrounding all the heat transfer tubes (the tube bundle). At least in a part of the area of the ring chambers, said liner is provided with openings distributed around the liner which is otherwise formed as a sheet enclosing the tube bundle. Through the openings in the liner in the area of the ring chamber for the fluid inlet, the fluid in the second fluid chamber flows from the fluid inlet to the corresponding ring chamber and into the space around the heat transfer tubes nearest one end of the tubes.
  • the fluid in the second fluid chamber flows from the space around the heat transfer tubes nearest the other end of the tubes, through the openings in the liner in the area of the ring chamber for the fluid outlet, to the corresponding ring chamber and out through the fluid outlet of the second fluid chamber.
  • the liner can be seal tight fixed to the reactor wall to ensure that no fluid bypasses between the tube bundle and the reactor wall, because fluid passing between the reactor wall and the tube bundle from the second fluid chamber inlet to the second fluid chamber outlet would lower the heat transfer efficiency.
  • the openings in said liner are evenly distributed around the circumference of each end of the liner, except for the areas of the liner directly facing the fluid openings of the second fluid chamber. In these areas, at least a part of the liner has no openings, whereby this part of the liner acts as a fluid impingement plate which further provides an even fluid distribution around the heat transfer tubes.
  • the tube bundle can be provides with baffles, for instance of the disc and doughnut type to further enhance the heat transfer between the fluid outside and the fluid inside the tubes.
  • Fig. 1 is a
  • Fig. 2 is a
  • Fig. 3 is a
  • Fig. 4 is a
  • Fig. 5 is a
  • Fig. 6 is a
  • Fig. 7 is a
  • Fig. 8 is a
  • Fig. 9 is a detail view of an upper part of a tube including attachment means
  • Fig. 10 is a detail view of the insulated second tube head and the third fluid chamber.
  • Fig. 1 1 is a detail view of a sections of a heat transfer tube.
  • Fig. 12 is a detail view of an embodiment of the stuffing box .
  • lock nut It is to be understood that the following are only some specific embodiments of the invention. One advantage of the invention is that it is scalable, therefore other dimensions and tube-numbers are a scope of the present invention.
  • the HTER as shown in Fig. 1 is a tubular heat exchange reformer. It is a heat ex- change reactor 100, comprising a housing 101 with reactor walls 102 and with catalyst 104 inside the heat transfer tubes 103. It has two separate flows; a process gas (PG) that flows on the tube side (inside the tubes) and an effluent gas (EG) that flows on the shell side (outside the tubes). There are 1300 tubes.
  • the catalytic reaction is an endothermic reaction. Therefore the process gas inside the tubes needs heat transferred from the effluent gas on the shell side of the tubes.
  • the relative cold process gas (cold relative to the Effluent gas) enters the first fluid chamber 107 at the very top of the reactor through the fluid opening 1 10 in the first fluid chamber and distributes via the first tube head 105 to the heat transfer tubes.
  • the PG flows through the tubes that are filled with catalyst and a reforming reaction takes place while receiving heat from the shell side.
  • the PG leaves the tubes via the second tube head 106, flows to the third fluid chamber 109 and exits through the fluid opening 1 13.
  • the relative hot EG enters the second fluid chamber 108 on the shell side of the tubes through the fluid opening 1 12 in the lower part of the second fluid chamber.
  • the flow passes by the tubes in a baffle configuration delivering the heat to the reaction inside the tubes.
  • the EG exits through the fluid opening 1 1 1 in the upper part of the second fluid chamber.
  • the baffles 128 are of the disc and donut configuration and cause a large degree of cross flow past the tubes.
  • Distributing the EG flow to/from the tube bundle is done via a ring chamber in the first upper tubular section of the reactor wall 124 and the third lower tubular section of the reactor wall 126 and a liner 127 giving a desired radial inlet to and a radial outlet from the tube bundle as can be seen in fig. 2.
  • the EG enters the reactor it is distributed on the circumference in a ring chamber around the liner.
  • the EG then flow through perforations 129 made in the liner. There are fewer perforations at the nozzle position. In this way the liner acts as an impingement plate.
  • the liner that stretches from the bottom to the top of the reactor is also perforated in the top to obtain a radial flow when the EG exits the baffle configuration.
  • the liner is welded to the reactor wall 102 to avoid by- pass of the EG.
  • the liner is near the tube bundle, as no fluid is indented to by-pass in this section.
  • the shell of the reactor including the liner and the tube bundle is shown in fig 3 separately as seen before the bundle is mounted inside the reactor.
  • the load from the 1300 tubes is taken up by the ellipsoidal tube head in the bottom of the reactor.
  • the tube head is insulated 1 17 above the tube head resulting in a tube head temperature of the process gas exiting the tubes.
  • the load of the upper ellipsoidal tube head, the baffles and tie rods is taken up at the top shell flange.
  • the upper tube head is insulated below the head giving it PG inlet temperatures.
  • the load from the liner is taken up by the shell at the cone connection.
  • the tubes are fixed at the bottom tube head.
  • the thermal elongations of the tubes are taken up by one mechanism - a stuffing box 1 19 pr tube at the upper tube head. This allows for individual differences in tube elongation as seen in fig. 4.
  • the baffle configuration hangs from the top tube head with tie rods and moves downward when heated.
  • the liner is welded to the shell. The two ends of the liner will from this point expand upwards and downwards respectively.
  • the upper tube head has a number of lugs 123 for lifting in the installation activity of the bundle.
  • the head is insulated from below with a fibrous ceramic material which is held in place by a liner plate.
  • the tube head is perforated for the 1300 tubes. At each perforation there is a stuffing box assembly above the head.
  • Lower tube head assembly
  • the head is insulated from above with a fibrous ceramic material which is held in place by a metallic liner plate, see fig. 5.
  • the liner is welded to a cone on the shell. It is perforated at the top and bottom.
  • the baffles are held in place by tie rods.
  • the tie rods are connected to the upper tube head as can be seen on fig. 6.
  • the tubes have varying length due to the ellipsoidal tube heads.
  • attachment means 122 such as a threaded section in the top of the tube in a part of the tubes. This is used for mounting of lock nuts 130 when lifting the bundle by the lifting lugs.
  • the catalyst rests on a support grid 1 15.
  • Spacers 1 16 such as thin walled cylindrical tubes keep the catalyst support grid in correct height.
  • the tube diameter is taken down in a bottleneck 1 14 at the bottom part of the tubes. This is done to gain a larger ligament and therefore a thinner tube head.
  • a different embodiment is shown in fig. 1 1 , which omits the necessity of a spacer by instead varying the length of the lower, reduced diameter part of the heat transfer tubes, and instead of the bottleneck, the diameter of the lower part of the tubes is reduced by means of a rim.
  • Stuffing box assembly is shown in fig. 1 1 , which omits the necessity of a spacer by instead varying the length of the lower, reduced diameter part of the heat transfer tubes, and instead of the bottleneck, the diameter of the lower part of the tubes is reduced by means of a rim.
  • the 1300 stuffing boxes 1 19 are comprised of a stuffing box where a seal 1 18 comprising packing rope 120 is placed.
  • compression means 121 such as a gland ring which works as a hollow bolt that rotates around the tube when the ropes are compressed.
  • a follower ring that protects the packing rope from friction forces when the box is tightened.
  • the stuffing box assembly is welded to the tube head from inside.
  • a further embodiment of the stuffing boxes is seen on fig. 12. Here the compression gland ring is locked by a further ring, 121 a.
  • Fig. 9 The Stuffing box assembly shown with lock nut 130 (left top).
  • the lock nuts act as connections between the upper tube head where the crane is connected and the tubes and lower tube head. When the bundle is in place the seal weld is made between the lower tube head and the shell connection.
  • Fig. 10 Final assembly steps of bottom part of reactor. The bundle is lowered and the ellipsoidal tube head and the shell connection are seal welded.
  • the ⁇ 410°C cold process gas enters at the very top of the reactor and distributes to the tubes.
  • the PG flows through the tubes that are filled with catalyst and reforming reac- tion takes place while receiving heat from the shell side.
  • the PG leaves the tubes at ⁇ 750°C and exits through the bottom outlet.
  • the ⁇ 1005°C hot EG enters on the shell side through the lower nozzle.
  • the flow passes by the tubes in a baffle configuration delivering the heat to the reaction inside the tube.
  • the EG exits through the upper shell side nozzle at a temperature of ⁇ 600°C.
  • the top head has an inner diameter of 4250mm is 85mm thick and is made from SA- 387 gr22 cl2.
  • the head is insulated from below with a fibrous ceramic material which is held in place by a 3 mm thick Inconel 693 liner plate.
  • the lower head is 50mm thick and has an inner diameter of 3600mm.
  • the head is made from either Inconel 625 or Haynes 230.
  • the head is insulated above with a fibrous ceramic material which is held in place by a 3 mm thin Inconel 693 liner plate.
  • the liner, baffles and tie rods are made from Inconel 693.
  • the tubes are approx. 1 1 meters long with an inner diameter of 50mm and an outer diameter of 60mm. All parts of the tube assembly are made from Inconel 693.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

La présente invention concerne un réacteur d'échange de chaleur qui permet d'effectuer des réactions catalytiques endothermiques ou exothermiques avec une meilleure étanchéité aux fluides pour des réactions à haute température au moyen d'un support fixé au fond des tubes de transfert de chaleur se trouvant dans le réacteur et d'un support coulissant au niveau supérieur et étanche, desdits tubes.
PCT/EP2012/060854 2011-07-01 2012-06-08 Réacteur d'échange de chaleur WO2013004448A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201290000642.6U CN203916623U (zh) 2011-07-01 2012-06-08 热交换反应器
DE212012000120.4U DE212012000120U1 (de) 2011-07-01 2012-06-08 Wärmetauschreaktor
RU2014103299/05U RU148799U1 (ru) 2011-07-01 2012-06-08 Теплообменный реактор
BR112013033842-3A BR112013033842B1 (pt) 2011-07-01 2012-06-08 Reator de troca de calor
BR212013033842U BR212013033842U2 (pt) 2011-07-01 2012-06-08 reator de troca de calor
ES201450003U ES1103681Y (es) 2011-07-01 2012-06-08 Reactor de intercambio de calor
KR2020137000082U KR20140001590U (ko) 2011-07-01 2012-06-08 열 교환 반응기

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EPPCT/EP2011/000328 2011-07-01
EPPCT/EP2011/003283 2011-07-01
PCT/EP2011/003283 WO2013004254A1 (fr) 2011-07-01 2011-07-01 Réacteur échangeur de chaleur

Publications (2)

Publication Number Publication Date
WO2013004448A1 true WO2013004448A1 (fr) 2013-01-10
WO2013004448A8 WO2013004448A8 (fr) 2014-02-06

Family

ID=44628755

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2011/003283 WO2013004254A1 (fr) 2011-07-01 2011-07-01 Réacteur échangeur de chaleur
PCT/EP2012/060854 WO2013004448A1 (fr) 2011-07-01 2012-06-08 Réacteur d'échange de chaleur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/003283 WO2013004254A1 (fr) 2011-07-01 2011-07-01 Réacteur échangeur de chaleur

Country Status (7)

Country Link
KR (1) KR20140001590U (fr)
CN (1) CN203916623U (fr)
BR (2) BR212013033842U2 (fr)
DE (1) DE212012000120U1 (fr)
ES (1) ES1103681Y (fr)
RU (1) RU148799U1 (fr)
WO (2) WO2013004254A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983131A (zh) * 2014-05-29 2014-08-13 南通航海机械集团有限公司 船用轻型高效率加热器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693849A (zh) * 2015-08-04 2017-05-24 中国石化工程建设有限公司 一种甲烷化反应器和甲烷化工艺
CN106582468B (zh) * 2015-10-14 2019-04-26 中国石化工程建设有限公司 一种轴向微通道耦合反应器及应用
US9816767B2 (en) * 2016-01-12 2017-11-14 Hamilton Sundstrand Corporation Tubes and manifolds for heat exchangers
KR101983667B1 (ko) * 2016-09-29 2019-05-29 디앤이에스 주식회사 저유량 냉동기와 냉난방 유체의 저유량 제어를 이용한 냉난방 에너지절약형 자동제어 시스템
DE102017203058A1 (de) * 2017-02-24 2018-08-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wärmeübertrager und Reaktor
CN109289749B (zh) * 2017-07-24 2024-05-07 北京燕东兆阳新能源科技有限公司 无焰氧化制热反应器
WO2021217330A1 (fr) * 2020-04-27 2021-11-04 北京燕东兆阳新能源科技有限公司 Dispositif de vaporisation et de mélange de méthanol, réacteur de chauffage de méthanol, dispositif de chauffage sans flamme de méthanol et procédé de commande
WO2022162051A1 (fr) * 2021-01-28 2022-08-04 Topsoe A/S Réacteur d'échange de chaleur catalytique à écoulement hélicoïdal
EP4309780A1 (fr) * 2022-07-20 2024-01-24 Linde GmbH Fond tubulaire pour un réacteur tubulaire et réacteur doté d'un tel fond tubulaire

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374832A (en) * 1966-05-13 1968-03-26 Lummus Co Inlet cone device and method
US3771596A (en) * 1971-10-27 1973-11-13 Babcock & Wilcox Co Industrial technique
WO1987000081A1 (fr) * 1985-06-27 1987-01-15 Stone & Webster Engineering Corporation Production de gaz de synthese a l'aide du reformage par convection
EP0271299A2 (fr) 1986-12-10 1988-06-15 The British Petroleum Company p.l.c. Appareil et utilisation de celui-ci dans la production d'un gaz de synthèse
EP1048343A2 (fr) 1999-04-26 2000-11-02 Toyo Engineering Corporation Réacteur à échangeur de chaleur
US6153152A (en) * 1990-04-03 2000-11-28 The Standard Oil Company Endothermic reaction apparatus and method
EP1106570A2 (fr) 1999-12-02 2001-06-13 Haldor Topsoe A/S Procédé et dispositif pour la mise en oeuvre des réactions catalytiques non-adiabatiques
WO2001056690A1 (fr) 2000-02-01 2001-08-09 Imperial Chemical Industries Plc Reacteur a echange thermique
US20050287053A1 (en) * 2004-06-29 2005-12-29 Toyo Engineering Corporation Reformer
US20090010821A1 (en) * 2007-05-29 2009-01-08 Manfred Lehr Tube bundle reactors with pressure fluid cooling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1316886A (en) * 1970-12-24 1973-05-16 Semenov V P Apparatus for use in reforming hydrocarbons under pressure
US4871014A (en) * 1983-03-28 1989-10-03 Tui Industries Shell and tube heat exchanger
GB9516125D0 (en) * 1995-08-07 1995-10-04 Ici Plc Heat exchange apparatus and process
JP3646027B2 (ja) * 1999-11-05 2005-05-11 株式会社日本触媒 接触気相酸化用反応器およびそれを使用した(メタ)アクリル酸の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374832A (en) * 1966-05-13 1968-03-26 Lummus Co Inlet cone device and method
US3771596A (en) * 1971-10-27 1973-11-13 Babcock & Wilcox Co Industrial technique
WO1987000081A1 (fr) * 1985-06-27 1987-01-15 Stone & Webster Engineering Corporation Production de gaz de synthese a l'aide du reformage par convection
EP0271299A2 (fr) 1986-12-10 1988-06-15 The British Petroleum Company p.l.c. Appareil et utilisation de celui-ci dans la production d'un gaz de synthèse
US6153152A (en) * 1990-04-03 2000-11-28 The Standard Oil Company Endothermic reaction apparatus and method
EP1048343A2 (fr) 1999-04-26 2000-11-02 Toyo Engineering Corporation Réacteur à échangeur de chaleur
EP1106570A2 (fr) 1999-12-02 2001-06-13 Haldor Topsoe A/S Procédé et dispositif pour la mise en oeuvre des réactions catalytiques non-adiabatiques
WO2001056690A1 (fr) 2000-02-01 2001-08-09 Imperial Chemical Industries Plc Reacteur a echange thermique
US20050287053A1 (en) * 2004-06-29 2005-12-29 Toyo Engineering Corporation Reformer
US20090010821A1 (en) * 2007-05-29 2009-01-08 Manfred Lehr Tube bundle reactors with pressure fluid cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983131A (zh) * 2014-05-29 2014-08-13 南通航海机械集团有限公司 船用轻型高效率加热器

Also Published As

Publication number Publication date
DE212012000120U1 (de) 2014-02-14
CN203916623U (zh) 2014-11-05
ES1103681Y (es) 2014-06-10
BR112013033842B1 (pt) 2019-09-24
ES1103681U (es) 2014-03-19
WO2013004448A8 (fr) 2014-02-06
BR212013033842U2 (pt) 2015-11-03
WO2013004254A1 (fr) 2013-01-10
RU148799U1 (ru) 2014-12-20
KR20140001590U (ko) 2014-03-17

Similar Documents

Publication Publication Date Title
WO2013004448A1 (fr) Réacteur d'échange de chaleur
US7635456B2 (en) Low pressure drop reforming reactor
CN102151524B (zh) 具有压力液体冷却的管束反应器
KR870000086B1 (ko) 반응기
US5567398A (en) Endothermic reaction apparatus and method
JP3564172B2 (ja) 高温熱交換器
CN101687161B (zh) 用于催化方法的反应器面板
JPS60150824A (ja) 改良反応器
AU2013270814A1 (en) Pressure vessel with replaceable tubes
US6153152A (en) Endothermic reaction apparatus and method
EP0038098B1 (fr) Réacteur pour réactions exothermiques et usage de ce réacteur pour la préparation d'hydrocarbures
RU2719986C2 (ru) Трубный изотермический каталитический реактор
US9039986B2 (en) Chemical reactor with a plate heat exchanger
US20170028373A1 (en) Isothermal tubular catalytic reactor
CA2590411C (fr) Reacteur pour reaction de conversion catalytique
WO2018205943A1 (fr) Réacteur modulaire de régulation de température
RU2775262C2 (ru) Химический реактор с адиабатическими слоями катализатора и аксиальным потоком

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290000642.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12727830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: U201450003

Country of ref document: ES

ENP Entry into the national phase

Ref document number: 20137000082

Country of ref document: KR

Kind code of ref document: U

WWE Wipo information: entry into national phase

Ref document number: 2120120001204

Country of ref document: DE

Ref document number: 212012000120

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 212013033842

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12727830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 212013033842

Country of ref document: BR

Kind code of ref document: U2

Effective date: 20131227