WO2013004154A1 - 硫化氢制备硫酸的方法 - Google Patents

硫化氢制备硫酸的方法 Download PDF

Info

Publication number
WO2013004154A1
WO2013004154A1 PCT/CN2012/077968 CN2012077968W WO2013004154A1 WO 2013004154 A1 WO2013004154 A1 WO 2013004154A1 CN 2012077968 W CN2012077968 W CN 2012077968W WO 2013004154 A1 WO2013004154 A1 WO 2013004154A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass tube
cooling medium
cooling
reaction
temperature
Prior art date
Application number
PCT/CN2012/077968
Other languages
English (en)
French (fr)
Inventor
周人
黄锐
Original Assignee
上海科洋科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海科洋科技发展有限公司 filed Critical 上海科洋科技发展有限公司
Priority to US14/130,354 priority Critical patent/US9108846B2/en
Priority to DE112012002793.0T priority patent/DE112012002793B4/de
Priority to UAA201400796A priority patent/UA110980C2/uk
Priority to RU2014101660/05A priority patent/RU2564273C2/ru
Publication of WO2013004154A1 publication Critical patent/WO2013004154A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/508Preparation of sulfur dioxide by oxidation of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/80Apparatus
    • C01B17/806Absorbers; Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • F28D7/1623Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/002Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using inserts or attachments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/006Constructions of heat-exchange apparatus characterised by the selection of particular materials of glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/06Arrangements for sealing elements into header boxes or end plates by dismountable joints
    • F28F9/10Arrangements for sealing elements into header boxes or end plates by dismountable joints by screw-type connections, e.g. gland
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2230/00Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements

Definitions

  • the invention relates to a process for preparing sulfuric acid from hydrogen sulfide. Background technique
  • Hydrogen sulfide is a companion product in the utilization of disposable energy such as coal, natural gas and petroleum. Generally, a large amount of H 2 S is produced in the processes of natural gas purification, petroleum refining, coal gasification and coking. H 2 S is a highly toxic gas of a colorless and smelly egg. It is a strong neurotoxin and has a strong stimulating effect on mucous membranes.
  • H 2 S acid waste gas cannot be directly discharged into the environment.
  • the maximum allowable concentration of H 2 S is 10 mg/Nm 3 as specified in the Chinese Environmental Standard “Design Hygiene Standard for Industrial Enterprises” TJ36-79.
  • H 2 S is generally treated by the Claus process and sulfur is recovered, that is, H 2 S is reacted with oxygen in the air, partially oxidized to S0 2 , and further, in H 2 S and S 2 2 mol (volume
  • the catalytic reaction produces a stone-filled sulfonate at a ratio of 2:1.
  • the reaction due to its complicated process conditions, long process and many equipments, the reaction is limited by the process conditions, and the residual amount of exhaust pollutants is high, which cannot meet the environmental protection standards.
  • the technical problem to be solved by the present invention is to overcome the defects of the prior art Claus process method for treating hydrogen sulfide waste gas, which has high investment, high operating cost and difficulty in operation, and provides a H 2 S.
  • the process for preparing sulfuric acid from hydrogen sulfide of the present invention comprises the following steps:
  • the resulting product is cooled (2) in step (1) to 390 ° C ⁇ 430 ° C, followed by catalytic oxidation with oxygen, the catalytic oxidation graded proceeds to where the outlet concentration of conversion "S0 2 98.7%, or S0 2 550mg /Nm 3 ;
  • step (3) The product obtained in the step (2) is cooled to a temperature of 10 ° C above the dew point temperature of H 2 S0 4 , and then further cooled to 60 ° C to 120 ° C, and the H 2 S0 4 product is collected and cooled to obtain The gas is separated by coalescence and can be directly emptied.
  • a S0 2 by redoxing a gas containing H 2 S with oxygen in an oxygen-enriched air to control a molar percentage of oxygen residual after the redox reaction step > 2%, wherein, when the H 2 S raw material is contained gas is H 2 S molar percentage of> 8%, a redox reaction is a combustion reaction, the reaction temperature> 900 ° C; when H 2 S containing feed gas in the H 2 S molar percentage of ⁇ 8%, the redox The reaction is a catalytic reaction with a reaction light-off temperature > 200 °C.
  • H 2 S In the process of single-use energy utilization such as coal, natural gas and petroleum, or in the process of natural gas purification, petroleum refining, coal gasification and coking, the content of H 2 S is generally in the range of 1% to 90% by mole. The best is 5.2%-28.9%.
  • the NH 3 content thereof is generally 15% by mole, preferably 1.2%.
  • the reaction temperature of the combustion reaction is preferably > 1250 ° C; when the H 2 S mole percentage is ⁇ 8%, the redox
  • the reaction is a catalytic reaction, and NH 3 is also subjected to a catalytic reaction, and the reaction conditions are combined with the H 2 S catalytic reaction strip. The NH 3 is completely cleaved to prevent the ammonium salt from clogging the catalyst bed.
  • the oxygen-enriched air is conventionally known in the art as an air having an oxygen concentration adjustable between 20.8% and 100% by mole, and can be prepared by mixing pure oxygen and air, for example, when a molar percentage of 30 is required. % oxygen-enriched air can be mixed with air and oxygen in a ratio of 7:1. DETAILED oxygen concentration of the enriched air use in the present invention, those skilled in the art will adjust accordingly calculated H 2 S in the feed gas containing H 2 S content and the residual amount of oxygen after the reaction of the present invention is set, for example, when The molar percentage of oxygen in the oxygen-enriched air used was 28% at a molar concentration of H 2 S of 8% to 15%.
  • the oxidation-reduction reaction is a combustion reaction
  • the reaction temperature is preferably 1050 ° C
  • H 2 S containing feed gas in the H 2 S molar percentage content is preferably 8% to 90%.
  • containing H 2 S H 2 S content of the feed gas is preferably 1% by mole to 8%.
  • the catalyst for the catalytic reaction can be conventionally used in the art, generally a ⁇ -alumina-based catalyst, and a fixed bed reactor, that is, a catalyst is loaded on a catalyst grid at the bottom of the reactor, Commercially available.
  • the residual amount of oxygen after the redox reaction step is preferably from 2% to 10% by mole, more preferably from 2% to 6%, still more preferably from 2% to 3%.
  • the apparatus involved in the redox reaction of the H 2 S-containing feed gas and the oxygen in the oxygen-enriched air can be carried out by conventionally used equipment in the art. In this step, no additional fuel or the like is required, and the energy consumption is low.
  • the resulting product is cooled (2) in step (1) to 390 ° C ⁇ 430 ° C, followed by catalytic oxidation with oxygen, the catalytic oxidation graded proceeds to where the outlet concentration of conversion "S0 2 98.7%, or S0 2 550mg /Nm 3 .
  • the temperature at which the product obtained in the step (1) is cooled is preferably from 410 to 420 °C.
  • the content of oxygen in the catalytic oxidation reaction of the step (2) is preferably a molar percentage > 5%, more preferably 5% - 7%, and the content of S0 2 is preferably a molar amount. The percentage is 4%.
  • the amount of oxygen is known to those skilled in the art according to the residual amount in the step (1) and the requirements of the present step.
  • the number of stages of the catalytic oxidation reaction is preferably 2 to 5, more preferably of It is 3 ⁇ 4.
  • the catalytic oxidation reaction is classified to a "99%" in which the conversion ratio of S0 2 is better.
  • the catalyst for the catalytic oxidation reaction can be conventionally used in the art, generally a vanadium-based catalyst, and a fixed bed reactor, that is, a catalyst is packed on the catalyst grid at the bottom of the reactor.
  • the catalytic oxidation reaction preferably adds 50-100 ppm V of gaseous ammonia to convert the gaseous ammonia and NO 2 to a denitrification reaction to N 2 . .
  • the denitrification reaction is a catalytic reaction
  • the catalyst is conventionally used in the art, generally a vanadium-based catalyst (such as V 2 0 5 or the like) and a wo 3 catalyst, and the catalyst can be packed in a fixed bed reactor.
  • the catalysts are all commercially available.
  • the cooling step can be cooled in a manner conventionally used in the art, preferably by cooling the heat exchanger or directly adding air to cool the temperature.
  • a cold process gas or a medium and low pressure is preferably used.
  • Saturated steam is used as a cooling medium for heat recovery to produce superheated steam, which is used as power steam to drive compressor turbine work to save energy.
  • the equipment involved in the catalytic oxidation reaction can be carried out by conventionally used equipment such as a multistage interstage heat exchange reactor, preferably a horizontal multistage reactor.
  • step (3) The product obtained in the step (2) is cooled to a temperature of 10 ° C above the dew point temperature of H 2 S0 4 , and then further cooled to 60 ° C to 120 ° C, and the H 2 S0 4 product is collected and cooled to obtain The gas is separated by coalescence and can be directly emptied.
  • the cooling temperature of the product obtained in the step (2) is preferably from 10 ° C to 30 ° C above the H 2 S0 4 dew point temperature.
  • the dew point temperature is a technical term in the art and refers to the temperature at which H 2 S0 4 vapor is cooled to saturation under constant atmospheric pressure.
  • the temperature is > H 2 S0 4 dew point temperature above 10 ° C means temperature > ( H 2 S0 4 dew point temperature + 10 ° C), H 2 S0 4 dew point temperature above 10 ° C -30 ° C means temperature
  • the range is (H 2 S0 4 dew point temperature + 10 ° C) to (H 2 S0 4 dew point temperature + 30 ° C).
  • the temperature for further cooling is preferably from 105 ° C to 120 ° C.
  • the product obtained in the step (2) is cooled to a temperature of > H 2 S0 4 above the dew point temperature of 10 ° C. It can be cooled by a heat exchanger conventionally used in the art, and a cold process gas or medium and low pressure can also be used.
  • Saturated steam is used as a cooling medium to produce high-pressure saturated steam or superheated steam, which is used to save energy.
  • medium and low pressure saturated steam refers to saturated steam with a pressure of 0.5MpaG-7.8MpaG.
  • the coalescence separation may be carried out by a coalescing separator conventionally used in the art.
  • concentration of H 2 S0 4 in the H 2 S0 4 product obtained by the invention can reach 93% to 98% by mass, and can be further adjusted to a constant concentration of industrial grade concentrated sulfuric acid according to specific needs.
  • the process method for preparing sulfuric acid by using hydrogen sulfide of the invention can produce high-pressure saturated steam or superheated steam, and can produce steam acid with a superheated steam volume of about 0.8 to 1.2 tons, which can be suitably used to promote the turbine of the compressor.
  • the apparatus for further cooling to 60 ° C to 120 ° C is preferably a heat exchanger, the heat exchanger comprising a casing, and the top of the casing is provided with a discharge port of exhaust gas.
  • a bottom portion of the housing is provided with a liquid outlet, and a plurality of glass tubes for circulating a cooling medium are disposed in the housing along a long axis direction of the housing, and the glass tubes are spanned across the housing.
  • one end of the glass tube located upstream of the cooling medium is a head end
  • one end downstream of the cooling medium is a tail end
  • the adjacent glass tubes are connected end to end between the upstream and downstream of the cooling medium.
  • the single-flow cooling medium channel formed by the glass tube can withstand high temperature and strong corrosion, avoid deformation and corrosion in high temperature and strong corrosive environment, thus ensuring the smoothness of the cooling medium and heat exchange during long-term use. Security in use.
  • the horizontal arrangement of the glass tube between the sidewalls of the heat exchanger along the long axis direction of the heat exchanger can effectively shorten the length of the glass tube, increase the rigidity of the glass tube, and overcome the problem of excessive brittleness, poor thermal shock resistance and easy breakage of the glass tube.
  • the glass tube may be borosilicate glass, quartz glass or the like or other well-known high temperature corrosion resistant glass in the chemical field, and is not limited herein.
  • the axis extending direction of the cylinder is the long axis direction of the casing, and the surface formed by the cylinder rotating around the axis is the side. wall.
  • leading end and the trailing end of the glass tube may both be located inside the casing, and at this time, the first end and the tail of the glass tube are connected by an adapted glass pipe.
  • shape of the formed cooling medium flow path Without limitation, it can be a "bow" font, a "Z” font, or other shapes.
  • the cooling medium flow path is provided with a cooling medium inlet and a cooling medium outlet, the cooling medium inlet is close to the top, and the cooling medium outlet is close to the bottom.
  • the cooling medium is air
  • the upward and downward flow direction design can further improve the fluidity of the cooling medium, increase the medium flow rate, and then increase the condensation efficiency.
  • the extending direction of the glass tube is perpendicular to the long axis direction (ie, parallel to the short axis of the heat exchanger), and the first and the tail of the glass tube are extended to correspond to The outside of the side wall.
  • the glass tube can be connected outside the housing for easier assembly.
  • the transversely placed glass tube is more evenly loaded, is easy to install, and is not easily broken.
  • the glass tube is equidistantly distributed and divided into a plurality of glass tube units along the long axis direction; the first end of the glass tube in each of the glass tube units is located on the same side, a side of the glass tube on which the head end is located forms a head portion of the glass tube unit, and a side at which the tail end of the glass tube is located forms a tail portion of the glass tube unit adjacent to the upstream and downstream of the cooling medium
  • the first and last misalignment of the glass tube unit are set and communicated through a tube end.
  • the structure can effectively increase the flow area of the cooling medium, increase the input amount of the cooling medium per unit time, and increase the cooling rate.
  • unitizing the glass tube and connecting adjacent units through the tube box can effectively save assembly time and increase the production efficiency of the heat exchanger.
  • the glass tubes that are uniformly distributed can make the heat exchange of the entire heat exchanger more uniform.
  • the arrangement of the glass tubes in the glass tube unit may be in the form of a matrix or in a divergent form; in addition, the number of the glass tubes in the two sets of glass tube units connected end to end may be equal or unequal, and is not limited herein.
  • the tube box and the corresponding side wall can be connected by fasteners such as bolts which are easy to disassemble. Easy to clean pipes and glass tubes.
  • the adjacent glass tubes are connected by a "U" type pipe.
  • the "U” type pipe can better guide the cooling medium in the glass tube and avoid turbulence at the intersection of the two glass tubes.
  • the "U” type pipe can be made of rubber, metal or glass.
  • those skilled in the art can also use the other pipe connectors in the prior art to connect the glass tubes end to end.
  • the cooling medium inlet and the cooling medium outlet are respectively disposed on two of the pipe boxes.
  • the two ends of the glass tube are respectively disposed in a fastener, and the fastener is disposed on the sidewall.
  • the fastener is in clearance fit with the side wall; and the fastener is further provided with a 0-type sealing jaw between the corresponding inner surface and/or outer surface of the side wall.
  • the fastener is in a clearance fit with the side wall, that is, the outer diameter of the fastener is slightly larger than the diameter of the corresponding mounting portion on the side wall.
  • a filtering mechanism for trapping and separating liquid particles is further disposed upstream of the discharge port. It is inevitable that there is a liquid particle in the exhaust gas after the condensation treatment, and the liquid particles are prevented from being discharged into the atmosphere by filtration through a filtering mechanism.
  • the filtering mechanism is a fiber filter plate.
  • an anti-corrosion protection layer is further disposed on the inner wall of the casing.
  • the structure can protect the casing from corrosion and improve the service life of the casing.
  • the corrosion protection layer is a polytetrafluoroethylene sheet.
  • the portion of the casing close to the liquid outlet is gradually reduced along the draining direction. It is beneficial to centrally recover the viscous condensation products and avoid the walling phenomenon of condensation products in the casing.
  • the preferred heat exchanger of the present invention replaces the precious metal or polytetrafluoroethylene heat exchange tubes of the prior art by using glass tubes, and forms a single-flow cooling medium flow passage, which improves the heat exchanger in a high temperature and strong corrosive environment.
  • the service life By arranging a glass tube between the side walls, the length can be effectively shortened and the strength can be increased. Further, the flow of the cooling medium from the top to the bottom of the single-pass flow can prevent the turbulent flow of the cooling medium in the flow path, which in turn increases the heat exchange efficiency of the heat exchanger.
  • the condensed liquid highly corrosive medium when the condensed liquid highly corrosive medium returns to the bottom of the casing, it encounters a high-temperature gaseous corrosive medium input from the bottom of the casing and a heat-exchanged cooling medium located at the bottom of the casing, which are subjected to them. Under the influence of high temperature, the water in the liquid highly corrosive medium can be further evaporated, thereby increasing the concentration of the condensed product. In addition, due to the improved heat exchange efficiency and sufficient cooling, cooling is achieved. The temperature at which the medium is discharged is higher than that of the prior art, and the heat energy can be reused by connecting with the existing heat energy recovery device, which is more environmentally friendly and energy-saving.
  • the reagents and starting materials used in the present invention are commercially available.
  • the positive progress of the present invention is as follows:
  • DRAWINGS The H 2 S current environmental protection standard for the process for preparing sulfuric acid of hydrogen sulfide according to the present invention, if other pollutants including, but not limited to, S0 2 , S0 3 and N0 2 are superior to the current environmental protection standard GB16297- The requirements of 1996; and the process flow layout is reasonable, the single billing and significant economic benefits, the comprehensive energy utilization rate is high; the specially used transverse high boro
  • Fig. 1 is a schematic structural view of a heat exchanger in Embodiment 1 of the present invention.
  • Figure 2 is a schematic view showing the structure of the right side of the heat exchanger of Figure 1.
  • Fig. 3 is a schematic view showing another structure of the glass tube unit in the first embodiment of the present invention.
  • Fig. 4 is a structural schematic view showing the connection of the glass tube to the side wall of the casing in the embodiment 1 of the present invention.
  • FIG. 5 is a schematic flow chart of a process method according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic flow chart of a process method according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic flow chart of a process method according to Embodiment 4 of the present invention. detailed description
  • Embodiment 1 Heat exchanger of the present invention
  • the heat exchanger in this embodiment is the same as the prior art, and includes a vertically placed rectangular casing 1 having a discharge port 11 for discharging exhaust gas at the top of the casing 1 in the casing.
  • the bottom of 1 has an inlet 12 for inputting acid vapor.
  • the bottom of the casing 1 has a semicircular structure, and the liquid discharge port 13 is located at the bottom of the circular structure.
  • the bottom of the casing 1 may be other structures that are gradually reduced in the direction of liquid discharge, such as an inverted triangle or an inverted trapezoid.
  • the top of the casing 1 is provided upstream of the discharge port 11 with a fiber filter plate 3 as a filtering mechanism for filtering liquid small particles in the exhaust gas generated after condensation.
  • a glass tube is disposed between the left and right side walls of the casing 1 along the long axis direction (ie, the vertical direction in FIG. 1).
  • the glass tube in the example is evenly distributed and divided into twelve glass tube units along the long axis direction, and each group of glass tube units contains a plurality of glass tubes distributed along the horizontal plane.
  • the head end of the glass tube in the same glass tube unit is located on the same side of the housing 1 to form the head of the glass tube unit, and the tail end of the glass tube forms the tail of the glass tube unit for the same reason.
  • a cooling medium inlet 51 is provided on the uppermost one of the headers, and a cooling medium outlet 52 is provided on the lowermost one of the headers, so that the cold air enters from left to right and flows from top to bottom.
  • a plurality of pipe boxes are disposed offsetly above and below the left and right sides of the casing 1.
  • the top portion of the first group of glass tube units 61 is located in the first tube box 53 above the left side, and the tail portion is located in the second tube box 54 above the right side; from the top to the bottom of the second group of glass tube units 62
  • the first portion is located in the second tube box 54, and the tail portion is located in the third tube box 55 below the first tube box 53;
  • the top portion of the third group of glass tube units 63 is located in the third tube box 55, and the tail end is located at the In the fourth tube box 56 below the second tube box 54, and so on, a multi-channel, single-guide flow cooling medium flow path is formed.
  • the tube box on the same side may be integrally formed, including a body extending from above the first group of glass tube units 61 to the last group of glass tube units, and then formed by the body and side walls by a plurality of air deflectors.
  • the chamber is divided into mutually independent air guiding cavities. Adjacent glass tube units are connected through the air guiding chamber.
  • the specific connection method is as described above.
  • the glass tube unit 61 the arrangement of the glass tubes may also be in the form of a matrix of three-dimensional spatial distribution. Therefore, on the basis of space saving, the purpose of increasing the air flow area and increasing the flow rate and cooling efficiency can be achieved.
  • a polytetrafluoroethylene sheet 14 as a corrosion protection layer is further disposed on the inner surface of the side wall of the casing 1 for preventing the shell 1 from directly contacting the strongly corrosive medium, thereby affecting its use. life.
  • the connection relationship between the glass tube and the casing 1 will be further described by taking the glass tube 21 as an example in conjunction with FIG.
  • the end of the glass tube 21 is passed through a bolt 41, and the bolt 41 is passed through the side wall of the casing 1 and then fixed to the casing 1 with a nut 43.
  • the bolt 41 is in a clearance fit with the sidewall of the casing 1 and the Teflon sheet 14 on the inner surface of the sidewall, thereby leaving a space for the thermal expansion of the Teflon sheet 14 to prevent the bolt 41 from being thermally expanded. Extrusion with the glass tube 21 causes the glass tube 21 to rupture.
  • a sealing jaw 42 is also provided between the bolt 41 and the Teflon sheet 14 to effectively seal the portion where the glass tube 21 is mounted to prevent sulfuric acid vapor from leaking from the fitting portion.
  • the number of glass tubes provided in the housing can be increased or decreased according to actual conditions, for example, the number of glass tubes for small heat exchangers used in the laboratory is small, and the heat exchangers for mass production in large industries are used. The number of glass tubes will be larger.
  • the length, width and height of the casing 1 are 2 meters, 1.5 meters and 8 meters, respectively.
  • the total number of glass tubes in the twelve glass tube units is 3,250, and each has a length of 1.6 meters.
  • composition of the acid gas containing H2S is (molar concentration): H 2 S 25.1%, COS 0.94%, C0 2 73.36%, CH 4 0.48%, CH 3 OH 0.12%.
  • FIG. 1 A schematic diagram of the process flow of this embodiment can be seen in FIG.
  • the hot process gas is sent to the heat exchanger E-1 for cooling, and the released heat is used to produce medium and high pressure saturated steam.
  • the cooled process gas is supplemented with air to increase the oxygen concentration in the process gas, and the S0 2 concentration is adjusted at the same time.
  • the degree is 4%, enters the multi-stage catalytic reactor Rl at a temperature of 410 ° C and a concentration of 0 2 higher than 7%, and catalytically oxidizes S0 2 to form S0 3 , and uses the heat exchange between the stages to remove the heat of the process gas, and then lowers the temperature. Further reaction into the next bed, the reaction order is 4; the conversion of S0 2 at the outlet of the catalytic reactor R-1 is 99.2%;
  • the temperature is higher than the temperature difference of the dew point of the sulfuric acid by 15 °C, and the process gas is further lowered in the heat exchanger E-3 to 105 ° C to promote the complete absorption and condensation of the S0 3 and H 2 S0 4 vapors.
  • Concentrated sulfuric acid at the bottom outlet of heat exchanger E-3 is cooled and tempered and sent out of the boundary zone; E-3 outlet non-condensable gas needs to be coalesced by coalescing separator C-1 and collect H 2 S0 4 gas in non-condensable gas.
  • the sol is then condensed and sent to the chimney for venting.
  • the pollutant concentrations are 60 mg/Nm 3 N0 2 and 520 mg/Nm 3 S0 2 , respectively.
  • the H 2 S concentration is lower than 10 ppmV, which strictly meets environmental protection standards.
  • composition of the acid gas containing H2S is (molar concentration): H 2 S 28.9%, COS 1.2%, C0 2 68.59%, CH 4 1.2%, CH 3 OH 0.13%, NH3 1.2%.
  • FIG. 6 A schematic diagram of the process flow of this embodiment can be seen in FIG. 6.
  • the hot process gas is sent to the E-1 for cooling, and the released heat is used to produce medium and high pressure saturated steam.
  • the cooled process gas is supplemented with air to increase the oxygen concentration in the process gas, and the S0 2 concentration is adjusted to 4%, and the process gas needs to be supplemented with 50-100 ppmV of gaseous ammonia at a temperature of 415 ° C, and the concentration of 0 2 is higher.
  • the multi-stage catalytic reactor R-1 is introduced to promote the conversion of N0 2 produced by the above combustion section to N 2 , and then the process gas catalytically oxidizes S0 2 to form S0 3 , and the heat of the process gas is removed by the interstage heat transfer, and the temperature is lowered.
  • reaction order is 2; the conversion of N0 2 at the outlet of R-1 is 95%, and the conversion of S0 2 is 99.2%; (3)
  • the outlet process gas is then further cooled to 280 ° C in E-2 (heat exchanger of Example 1), which is higher than the temperature difference of the sulfuric acid dew point of 17 ° C, and the process gas is then further in E-3 Lower the temperature to 110 °C, so that the S0 3 and H 2 S0 4 vapors are completely absorbed and condensed.
  • the concentrated sulfuric acid at the bottom of the E-3 is cooled and tempered and sent out of the boundary zone; the E-3 outlet is not condensed by the C-1 Coalesce and collect the H 2 S0 4 aerosol in the non-condensable gas, and then send it to the chimney for venting.
  • the pollutant concentration (N0 2 , S0 2 , S0 3 ) strictly meets the environmental protection standard, and the H 2 S concentration is lower than 10ppmV.
  • composition of the acid gas containing H 2 S is (molar concentration): H 2 S 5.2%, COS 0.8%, C0 2 92.6%, CH 4 1.2%, CH 3 OH 0.2%.
  • FIG. 1 A schematic diagram of the process flow of this embodiment can be seen in FIG.
  • the acid gas is characterized by a low H 2 S concentration, and a catalytic oxidation reaction with air in F-1 under the action of a catalyst, the reaction starting temperature is 210 ° C, and the reaction end temperature is 445 ° C, in order to prevent The H 2 S violent oxidation exotherm leads to the catalyst bed flying temperature.
  • the second-stage reaction is adopted.
  • the inter-stage cold medium heat transfer reduces the process gas temperature. After the reaction, the oxygen content in the process gas is 2%.
  • the catalytic reaction raw material acid gas H 2 S is completely oxidized to S0 2 and simultaneously produces a large amount of H 2 0;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

提供一种硫化氢制备硫酸的方法,该方法包括如下步骤:(1)将含H2S原料气与富氧空气中的氧气进行氧化还原反应制备SO2,控制该氧化还原反应步骤后的氧气残余量摩尔百分比≥2%;(2)将步骤(1)所得产物冷却至390°C〜430°C,然后与氧气进行催化氧化反应,该催化氧化反应分级进行至其中SO2的转化率≥98.7%或者SO2出口浓度≤550mg/Nm3;(3)将步骤(2)所得产物冷却至温度为≥H2SO4露点温度以上10°C,然后再进一步冷却至60°C〜120°C,并收集H2SO4产品,冷却后得到的气体经过聚结分离,即可直接排空。还提供一种换热器,包括一壳体,在所述壳体内沿所述壳体的长轴方向、在两侧壁之间跨设有若干用于流通冷却介质的玻璃管,相邻的所述玻璃管首尾相连通从而形成至少一条单向导流的冷却介质流道。该方法硫化氢脱除效率高,工艺流程简单,并且能够实现能量的合理利用。

Description

硫化氢制备硫酸的方法
技术领域
本发明涉及一种硫化氢制备硫酸的工艺方法。 背景技术
硫化氢( H2S )是煤炭、 天然气和石油等一次性能源利用过程中的伴生产 物, 一般在天然气净化、 石油精炼、 煤气化利用以及炼焦等过程中均有大量 H2S产生。 H2S是一种无色有臭鸡蛋气味的剧毒气体, 是强烈的神经毒素, 对 粘膜有强烈的刺激作用。
H2S 酸性废气不可直接排放环境, 中国环境标准《工业企业设计卫生标 准》 TJ36-79中规定 H2S最高容许浓度为 10mg/Nm3。 现有技术工业上, 一般 采用克劳斯工艺处理 H2S并回收得到硫磺, 即将 H2S与空气中氧气反应, 部 分氧化为 S02, 进一步地, 在 H2S和 S02摩尔 (体积) 比为 2:1的条件下催 化反应生成石充磺。 然而, 对于克劳斯工艺方法, 由于其工艺条件复杂, 流程 长, 设备多, 同时该反应又受工艺条件限制, 尾气污染物残留量高, 不能满 足环保标准排放, 还另需配套建设庞大的尾气处理装置, 由此可见, 克劳斯 法装置投资高, 运行费用高, 操作困难。 考虑到经克劳斯法高成本生产出的 硫磺中约 90%均用于生产硫酸, 若能将 H2S直接制备浓硫酸, 相比通过克劳 斯装置制备硫磺、 再由硫磺制备浓硫酸的工艺, 具有装置投资低, 运行成本 低的综合优势。 但是, 现有技术中并没有一种有效脱除 H2S、 工艺流程筒单, 设备筒单, 且能实现装置经济效益和能量合理利用的 H2S直接制备浓硫酸的 工艺方法。 该现状亟待解决。 发明内容
本发明所要解决的技术问题是克服了现有技术中的处理硫化氢废气的克 劳斯工艺方法存在投资高、 运行费用高和操作困难的缺陷, 提供了一种 H2S 脱除效率高, 工艺流程筒单, 且能实现装置经济效益和能量合理利用的硫化 氢制备硫酸的工艺方法。
本发明的硫化氢制备硫酸的工艺方法包括如下步骤:
( 1 )将含 H2S原料气与富氧空气中的氧气进行氧化还原反应制备 S02,控 制该氧化还原反应步骤后的氧气残余量摩尔百分比> 2% , 其中, 当含 H2S原 料气中的 H2S摩尔百分比为 > 8%时, 氧化还原反应为燃烧反应, 反应温度> 900 °C ; 当含 H2S原料气中的 H2S摩尔百分比为 < 8%时, 氧化还原反应为催化 反应, 反应起燃温度 > 200°C ;
( 2 )将步骤( 1 )所得产物冷却至 390°C ~430°C , 然后与氧气进行催化氧 化反应, 该催化氧化反应分级进行至其中 S02的转化率》 98.7%或者 S02出口 浓度 550mg/Nm3;
( 3 )将步骤( 2 )所得产物冷却至温度为》 H2S04露点温度以上 10°C , 然 后再进一步冷却至 60°C ~120°C ,并收集 H2S04产品,冷却后得到的气体经过聚 结分离, 即可直接排空。
下面, 进一步对本发明的硫化氢制备硫酸的工艺方法进行详细介绍:
( 1 )将含 H2S原料气与富氧空气中的氧气进行氧化还原反应制备 S02,控 制该氧化还原反应步骤后的氧气残余量摩尔百分比> 2% , 其中, 当含 H2S原 料气中的 H2S摩尔百分比为 > 8%时, 氧化还原反应为燃烧反应, 反应温度> 900 °C ; 当含 H2S原料气中的 H2S摩尔百分比为 < 8%时, 氧化还原反应为催化 反应, 反应起燃温度 > 200°C。 在煤炭、 天然气和石油等一次性能源利用过程中, 或者在天然气净化、 石油 精炼、煤气化利用以及炼焦等过程中产生获得, 其 H2S的含量一般在摩尔百分 比 1%~90%, 较佳的为 5.2%-28.9%。
其中, 当含 H2S原料气中含有 NH3时, 其中的 NH3含量一般在摩尔百分比 15%, 较佳的为 1.2%。 当含 H2S原料气中含有 NH3, H2S摩尔百分比为 > 8% 时, 燃烧反应的反应温度较佳的为 > 1250°C ; H2S摩尔百分比为 < 8%时, 氧 化还原反应为催化反应, NH3也进行催化反应, 其反应条件与 H2S催化反应条 完全裂解 NH3, 防止铵盐堵塞催化剂床层。
本发明中, 所述的富氧空气为本领域常规所说的氧气浓度可在摩尔百分 比 20.8%~100%之间调节的空气, 可通过纯氧和空气混合制备, 例如, 当需要 摩尔百分比 30%的富氧空气, 可将空气与氧气按照 7:1的比例混合即可。 本发 明使用的富氧空气中氧气的具体浓度使用,本领域技术人员会根据含 H2S原料 气中 H2S含量以及本发明设定的反应后的氧气残余量相应计算调整, 例如, 当 H2S摩尔浓度为 8%-15%时, 使用的富氧空气中氧气摩尔百分比为 28%。
本发明中, 所述的氧化还原反应为燃烧反应时, 反应温度较佳的为 1050 °C , 含 H2S原料气中的 H2S含量优选为摩尔百分比 8%~90%。 所述的氧化还原 反应为催化反应时, 含 H2S原料气中的 H2S含量优选为摩尔百分比 1%~8%。
本发明中, 所述的催化反应的催化剂可为本领域常规使用, 一般为 γ -氧 化铝基催化剂, 且采用固定床式反应器, 即催化剂装填于反应器底部的催化 剂栅板上进行, 均市售可得。
本发明中, 所述的氧化还原反应步骤后的氧气残余量较佳的为摩尔百分 比 2%~10%, 更佳的为 2%~6%, 进一步更佳的为 2%-3%。
本发明中,所述的含 H2S原料气与富氧空气中的氧气进行氧化还原反应涉 及的设备为本领域常规使用设备均可实施。 此步骤, 不需要另行添加燃料等 物, 能耗低。
( 2 )将步骤( 1 )所得产物冷却至 390°C~430°C , 然后与氧气进行催化氧 化反应, 该催化氧化反应分级进行至其中 S02的转化率》 98.7%或者 S02出口 浓度 550mg/Nm3
本发明中, 所述的步骤(1 )所得产物冷却的温度较佳的为 410-420°C。 本发明中, 所述的步骤(2 )的催化氧化反应中的氧气的含量较佳的为摩 尔百分比> 5%, , 更佳的为 5%-7%, S02的含量较佳的为摩尔百分比 4%。 所述的氧气的量本领域技术人员知道根据步骤( 1 )中残余量和本步骤的要求 本发明中, 所述的催化氧化反应分级进行的级数较佳的为 2~5级, 更佳的 为 3~4级。
本发明中, 所述的催化氧化反应分级进行至其中 S02的转化率较佳的》 99%。
本发明中, 所述的催化氧化反应的催化剂可为本领域常规使用, 一般为 钒基催化剂, 且采用固定床式反应器, 即催化剂装填于反应器底部的催化剂 栅板上。
本发明中, 空气中的氮气在高温环境下与氧气结合反应生成少量的 N02, 且当含 H2S原料气中含有 NH3时, NH3在高温环境中生成 N02, 因此, 经本发 明人大量实验研究发现, 当含 H2S原料气中含有 NH3时, 所述的催化氧化反应 较佳的加入 50-100ppmV的气氨, 使气氨与 N02进行反硝化反应转化为 N2。 所 述的反硝化反应为催化反应, 催化剂为本领域常规使用催化剂, 一般钒基催 化剂 (如 V205等)和 wo3催化剂, 催化剂可装填于固定床式反应器中。 该催 化剂均市售可得。
本发明中, 所述的冷却步骤可用本领域常规所用方式冷却, 较佳的为换 热器进行冷却或直接添加空气降温, 当使用换热器降温较佳的还使用冷的工 艺气或中低压饱和蒸汽作为冷却介质用于热量回收, 以生产过热蒸汽, 做为 动力蒸汽推动压缩机透平做功, 以节约能耗。 所述的催化氧化反应涉及的设 备为本领域常规使用设备如多级段间换热反应器均可实施, 较佳的为卧式多 级反应器。
( 3 )将步骤( 2 )所得产物冷却至温度为》 H2S04露点温度以上 10°C , 然 后再进一步冷却至 60°C ~120°C ,并收集 H2S04产品,冷却后得到的气体经过聚 结分离, 即可直接排空。
本发明中, 所述的将步骤(2 )所得产物冷却温度较佳的为 H2S04露点温 度以上 10°C-30°C。所述的露点温度为本领域技术术语,是指恒定气压条件下, H2S04蒸汽冷却到饱和时的温度。 所述的温度为 > H2S04露点温度以上 10°C即 指温度 > ( H2S04露点温度 +10°C ), H2S04露点温度以上 10°C-30°C即指温度范 围为 (H2S04露点温度 +10°C )至 (H2S04露点温度 +30°C )。
本发明中, 所述的再进一步冷却的温度较佳的为 105°C-120°C。 本发明中, 所述的步骤( 2 )所得产物冷却至温度为 > H2S04露点温度以 上 10 °C可用本领域常规所用的换热器进行冷却, 还可使用冷的工艺气或中低 压饱和蒸汽作为冷却介质用于生产高压饱和蒸汽或过热蒸汽, 另作他用以节 约能耗。 其中, 中低压饱和蒸汽是指压力为 0.5MpaG-7.8MpaG的饱和蒸汽。
本发明中, 所述的聚结分离可用本领域常规所用的聚结分离器即可。 本发明所得的 H2S04产品中 H2S04浓度可达质量百分比 93%~98%,可根据 具体需要进一步调整为恒定浓度的工业级浓硫酸方便使用。
本发明的硫化氢制备硫酸的工艺方法流程汇总可生产高压饱和蒸汽或过 热蒸汽, 可产过热蒸汽气量约为 0.8~1.2吨蒸汽 酸, 可适当利用该过热蒸 汽用于推动压缩机的透平, 每天可显著节约电耗约 8000Kw.h。
本发明中,所述进一步冷却至 60 °C ~120 °C使用的设备较佳的为热交换器, 该换热器包括一壳体, 所述壳体的顶部设有一尾气的排放口, 所述壳体的底 部设有一出液口, 在所述壳体内沿所述壳体的长轴方向设有用于流通冷却介 质的若干玻璃管, 所述玻璃管均跨设于所述壳体的两侧壁之间, 所述玻璃管 位于该冷却介质上游的一端为首端, 位于该冷却介质下游的一端为尾端, 在 该冷却介质的上游和下游之间相邻的所述玻璃管首尾相连通从而形成至少一 条单向导流的冷却介质流道。 由玻璃管形成的单向导流的冷却介质通道能够 耐受高温和强腐蚀, 避免在高温和强腐蚀性环境中发生变形和腐蚀现象, 从 而确保长时间使用中冷却介质的流畅性, 以及热交换器使用中的安全性。 另 外, 沿热交换器长轴方向在热交换器侧壁间横向设置玻璃管能有效缩短玻璃 管的长度, 提高玻璃管的刚性, 克服玻璃管过脆、 耐热沖击性差、 易破裂的 问题。 上述玻璃管可以采用硼硅酸盐玻璃、 石英玻璃等或者化学领域中其他 公知的能耐高温防腐蚀的玻璃, 在此不做限制。
需要说明的是, 当上述壳体为一圓柱体时, 该圓柱体的轴线延伸方向即 为所述壳体的长轴方向, 而圓柱体绕该轴线回旋所形成的表面则为所述的侧 壁。
另外, 所述玻璃管的首端和尾端可均位于所述壳体内部, 此时所述玻璃 管的首、 尾通过适配的玻璃管道连接。 在此对所形成的冷却介质流道的形状 不做限制, 其可以为 "弓" 字型、 "Z" 字型或者其他形状。
其中, 所述冷却介质流道设有一冷却介质进口和一冷却介质出口, 所述 冷却介质进口靠近所述顶部, 所述冷却介质出口靠近所述底部。 尤其当冷却 介质为空气时, 为配合冷空气下降的特性, 上进下出的流向设计能进一步提 高冷却介质的流动性, 提高介质流速, 继而提高冷凝效率。
为使玻璃管的长度设置最短, 所述玻璃管的延伸方向与所述长轴方向垂 直(即与热交换器的短轴平行), 并且所述玻璃管的首、 尾均延伸至所对应的 侧壁的外部。 此时可在壳体外部对玻璃管进行连接, 装配更为方便。
尤其当所述热交换器为立式热交换器时,横置的玻璃管的受力更为均匀, 安装方便, 不易破裂。
较佳地, 所述玻璃管为等距离均勾分布并沿所述长轴方向被分成若干玻 璃管单元; 每个所述玻璃管单元中的所述玻璃管的首端位于同侧, 所述玻璃 管的首端所在的一侧形成所述玻璃管单元的首部, 所述玻璃管的尾端所在的 一侧形成所述玻璃管单元的尾部, 在该冷却介质上游和下游之间相邻的所述 玻璃管单元的首尾错位设置并通过一管箱首尾连通。 该结构能有效增加冷却 介质的流动面积, 增大单位时间里冷却介质的输入量, 提高冷却速度。 此外, 将玻璃管单元化并将相邻的单元通过管箱连接能有效节省装配时间, 提高热 交换器的生产效率。 再者, 均勾分布的玻璃管能使得整台热交换器的换热更 为均匀。
当然, 所述玻璃管单元中的玻璃管的排列方式可以为矩阵形式或者为发 散形式;此外首尾相连的两组玻璃管单元中的玻璃管数量可以相等或不相等, 在此不做限制。
而所述管箱与相应的侧壁之间可通过螺栓等便于拆卸的紧固件进行连 接。 便于对管道和玻璃管进行清洗。
其中, 相邻的所述玻璃管之间通过 "U" 型管道连通。 "U" 型管道能对 玻璃管内的冷却介质起到更好的导向作用, 避免在两根玻璃管的交汇处形成 湍流。 该 "U" 型管道的材质可以为橡胶、 金属或者玻璃。 除此之外, 本领 域技术人员也可采用现有技术中其他的管连接件将玻璃管首尾连通。 其中, 所述冷却介质进口和冷却介质出口分别设于两个所述管箱上。 其中, 所述玻璃管的两端分别穿设于一紧固件中, 所述紧固件穿设于所 述侧壁上。
其中, 所述紧固件与所述侧壁为间隙配合; 所述紧固件与所述侧壁上对 应的内表面和 /或外表面之间还设有一 0型密封圏。紧固件与侧壁为间隙配合, 也就是说该紧固件的外径略大于侧壁上对应的安装部位的孔径。 一方面有利 于玻璃管的装配, 更重要的是可以抵消壳体以及壳体上的内村物由于热膨胀 而对紧固件和玻璃管产生的剪切力, 避免玻璃管发生破裂。
其中,在所述排放口的上游还设有一用于捕集分离液体颗粒的过滤机构。 冷凝处理后的废气中难免存在离液体颗粒, 通过过滤机构过滤防止这些离液 体颗粒被排放到大气中。
较佳地, 所述过滤机构为纤维滤板。
其中, 在所述壳体的内壁上还设有一防腐蚀保护层。 该结构能对壳体起 到防腐蚀的保护作用, 提高壳体的使用寿命。
较佳地, 在所述防腐蚀保护层为聚四氟乙烯板材。
其中, 所述壳体靠近所述出液口的部位沿着排液方向逐渐缩小。 有利于 集中回收具有黏性的冷凝产物, 避免冷凝产物在壳体内发生挂壁现象。
其中, 上述换热器的优选条件在符合本领域常识的基础上可任意组合, 即得本发明各较佳换热器。
本发明优选的热交换器利用玻璃管替代现有技术中的贵金属或聚四氟乙 烯换热管, 并形成一单向导流的冷却介质流道, 提高了热交换器在高温、 强 腐蚀环境下的使用寿命。 在侧壁之间跨设玻璃管能有效缩短其长度, 提高其 强度。 进一步地, 自上而下的单向导流的冷却介质流向能避免冷却介质在流 道内发生湍流, 继而也提高热交换器的换热效率。
更进一步地, 当冷凝后的液态强腐蚀性介质回到壳体底部时会遇上自壳 体底部输入的高温气态强腐蚀性介质以及位于壳体底部的换热后的冷却介 质, 受到它们的高温影响, 液态强腐蚀性介质中的水分得以被进一步的蒸发, 从而提高冷凝产物的浓度。 此外, 由于换热效率提高、 冷却充分, 使得冷却 介质排出的温度相较现有技术提高, 通过与现有的热能回收装置连接则可对 这股热能进行二次利用, 更为环保节能。
本发明所用试剂和原料均市售可得。
在符合本领域常识的基础上, 本发明中上述的各技术特征的优选条件可 以任意组合得到本发明较佳实例。
本发明的积极进步效果在于: 本发明的硫化氢制备硫酸的工艺方法 H2S 现行环保标准, 若涉及其他污染物包括但不限于 S02、 S03和 N02均优于现行 环保标准 GB16297-1996的要求; 并且工艺流程布局合理、 筒单且经济效益显 著, 综合能量利用率高; 特别采用的横置高硼硅玻璃换热管使得装置操作筒 便灵活, 设备造价低, 节能环保。 附图说明
图 1为本发明的实施例 1中的热交换器的结构示意图。
图 2为图 1中的热交换器的右侧结构示意图。
图 3为本发明的实施例 1中玻璃管单元的另一结构示意图。
图 4为本发明的实施例 1中玻璃管与壳体侧壁连接的结构示意图。
图 5为本发明实施例 2工艺方法的流程示意图。
图 6为本发明实施例 3工艺方法的流程示意图。
图 7为本发明实施例 4工艺方法的流程示意图。 具体实施方式
下面通过实施例的方式进一步说明本发明, 但并不因此将本发明限制在 所述的实施例范围之中。
实施例 1本发明的热交换器
为叙述方便, 以下采用立式热交换器进行说明, 下文中所称 "左"、 "右" 与图 1本身的左、 右方向一致; 但这不能成为对本发明的限制。 附图中的圓 圏和叉分别表示流向相反的两根玻璃管。 如图 1所示, 与现有技术相同的本实施例中的热交换器包括一竖直放置 的长方形的壳体 1 , 该壳体 1的顶部具有一排放废气的排放口 11 , 在壳体 1 的底部具有一个输入 酸蒸汽的进气口 12。 在进气口 12的下方还具有一个 排液口 13, 用于排出冷凝后的浓 ^£酸。 其中, 该壳体 1的底部成半圓形结构, 排液口 13位于圓形结构的最下方。 当然, 壳体 1底部可以为其他沿液体排出 方向逐渐缩小的结构, 例如倒三角形或者倒梯形。 另外, 壳体 1的顶部位于 排放口 11的上游设有一作为过滤机构的纤维滤板 3, 用于过滤冷凝后产生的 尾气中的液态小颗粒。
与现有技术不同的是, 如图 1和图 2所示, 在壳体 1左、 右两侧壁之间 沿着长轴方向 (即图 1 中竖直方向)设有玻璃管, 本实施例中的玻璃管为均 匀分布并沿长轴方向被划分成十二个玻璃管单元, 每组玻璃管单元中均包含 多根沿水平面分布的玻璃管。 同一玻璃管单元中的玻璃管的首端位于壳体 1 的同侧从而形成了该玻璃管单元的首部, 同理由这些玻璃管的尾端形成该玻 璃管单元的尾部。 并且, 在冷空气的上游和下游之间相邻的两组玻璃管单元, 即沿竖直方向相邻的两组玻璃管单元的首部和尾部错位设置, 并通过设于壳 体 1外壁上的管箱连通。 在最上方的一个管箱上设有冷却介质进口 51 , 在位 于最下方的一个管箱上设有冷却介质出口 52, 因此冷空气自左向右进入、 自 上而下流动。
具体地, 在壳体 1的左、 右两侧上、 下错位地设置若干管箱。 自上而下 第一组玻璃管单元 61的首部位于左侧上方的第一管箱 53内, 尾部位于右侧 上方的第二管箱 54内; 自上而下第二组玻璃管单元 62的首部位于第二管箱 54内, 尾部位于第一管箱 53下方的第三管箱 55内; 自上而下第三组玻璃管 单元 63的首部位于第三管箱 55 内, 尾端位于第二管箱 54下方的第四管箱 56内, 依次类推, 从而形成多通道、 单向导流的冷却介质流道。
所有的管箱均通过螺栓与壳体连接。 另外, 位于同侧的管箱可为一体成 型, 包括一从第一组玻璃管单元 61上方延伸到最后一组玻璃管单元的本体, 然后由若干的导风板将由该本体和侧壁形成的腔室分割成相互独立的导风 腔。 相邻的玻璃管单元通过导风腔联通, 具体连接方式见上述。 另外, 如图 3所示, 玻璃管单元 61, 中玻璃管的排布也可为三维空间分 布的矩阵形式。 从而能在节省空间的基础上起到增加空气流动面积, 提高流 量和冷却效率的目的。
此外, 如图 4所示, 在壳体 1的侧壁内表面上还设有作为防腐保护层的 聚四氟乙烯板材 14, 用于防止壳体 1与强腐蚀性介质直接接触, 影响其使用 寿命。
下面结合图 4以玻璃管 21为例进一步说明玻璃管与壳体 1的连接关系。 玻璃管 21端部穿设于一螺栓 41中,而螺栓 41穿设于壳体 1的侧壁上随 后用螺母 43将其固定在壳体 1上。 其中, 螺栓 41与壳体 1的侧壁以及侧壁 内表面的聚四氟乙烯板材 14为间隙配合, 从而为聚四氟乙烯板材 14留下受 热膨胀的空间, 避免其受热膨胀后对螺栓 41和玻璃管 21产生挤压导致玻璃 管 21破裂。 在螺栓 41与聚四氟乙烯板材 14之间还设有一密封圏 42从而将 安装玻璃管 21的部位有效密封, 防止硫酸蒸汽从装配部位泄漏。
需要说明的是, 壳体中设置的玻璃管数量可根据实际情况进行增减, 例 如用于实验室使用的小型热交换器的玻璃管数量较少, 而用于大型产业批量 生产的热交换器的玻璃管数量则会较多。
本实施例中, 该壳体 1的长宽高依次为 2米, 1.5米和 8米。 十二组玻璃 管单元中的玻璃管总数为 3250根, 且每根的长度为 1.6米。 实施例 2
含 H2S的酸性气气体组成为(摩尔浓度): H2S 25.1%, COS 0.94%, C02 73.36%, CH40.48%, CH3OH 0.12%。
本实施例的工艺流程示意图可参见图 5所示。
( 1 )该原料气与空气在反应器 F-1中发生燃烧反应,反应温度约为 1050 °C , 反应后工艺气中氧含量为摩尔百分比 3%, 经燃烧反应原料酸性气中 H2S 全部氧化转化为 S02, 同时产生大量的 H20;
( 2 )热工艺气送至换热器 E-1冷却, 所释放的热量用于生产中高压饱和 蒸汽, 经冷却的工艺气补加空气以提高工艺气中氧气浓度, 同时调整 S02浓 度为 4%, 在温度为 410°C , 02浓度高于 7%条件下进入多段催化反应器 R-l , 催化氧化 S02生成 S03, 采用段间换热移出工艺气热量, 降低温度后再进入 下一床层进一步反应, 反应级数为 4级; 催化反应器 R-1 出口处 S02转化率 在 99.2%;
( 3 )然后工艺气在换热器 E-2 (实施例 1的换热器 )中进一步冷却至 275
°C , 该温度高于硫酸露点温度 15 °C的温差, 工艺气然后在换热器 E-3中进一 步降低温度至 105°C , 以促使 S03及 H2S04蒸汽完全吸收及冷凝, 换热器 E-3 底部出口的浓硫酸降温调质后送出界区; E-3 出口的不凝气需经聚结分离器 C-1 聚结和收集不凝气中的 H2S04气溶胶, 然后不凝气送至烟囱放空, 其污 染物浓度分别为 60mg/Nm3 N02和 520mg/Nm3 S02, H2S浓度低于 lOppmV, 该浓度严格满足环保标准。
实施例 3
含 H2S的酸性气气体组成为 (摩尔浓度): H2S 28.9%, COS 1.2%, C02 68.59%, CH4 1.2%, CH3OH 0.13%, NH3 1.2%。
本实施例的工艺流程示意图可参见图 6所示。
( 1 ) 由于酸性气含有 NH3, 需要提高热反应温度以促使 NH3完全反应, 防止 NH3与 S02形成铵盐沉积, 导致催化剂短时失活, 同时堵塞管道和催化 剂床层, 导致系统阻力增大造成系统操作波动; 该酸性气在 F-1 内与 30%氧 含量的富氧空气发生燃烧反应, 该富氧空气通过空气与氧气以 7:1 比例混合 制备。 此条件下 F-1内热反应温度可达到 1250°C , 满足烧氨工艺需要。 反应 后 H2S全部氧化转化为 S02, NH3转化为 N02, 同时产生大量的 H20;
( 2 ) 热工艺气送至 E-1冷却, 所释放的热量用于生产中高压饱和蒸汽。 经冷却的工艺气补加空气以提高工艺气中氧气浓度, 同时调整 S02浓度为 4%, 同时工艺气需补加 50-100ppmV的气氨, 在温度为 415°C , 02浓度高于 7%条件下进入多段催化反应器 R-1 , 促使上述燃烧工段产生的 N02转化为 N2, 然后工艺气催化氧化 S02生成 S03, 采用段间换热移出工艺气热量, 降 低温度后再进入下一床层进一步反应, 反应级数为 2级; R-1 出口处 N02转 化率为 95%, S02转化率在 99.2%; ( 3 ) 然后出口工艺气在 E-2 (实施例 1的换热器) 中进一步冷却至 280 °C , 该温度高于硫酸露点温度 17°C的温差, 工艺气然后在 E-3中进一步降低 温度至 110°C , 以促使 S03及 H2S04蒸汽完全吸收及冷凝, E-3底部出口的浓 硫酸降温调质后送出界区; E-3 出口的不凝气经 C-1 聚结和收集不凝气中的 H2S04气溶胶, 然后不凝气送至烟囱放空, 其污染物浓度(N02, S02, S03 ) 严格满足环保标准, H2S浓度低于 10ppmV。
实施例 4
含 H2S 的酸性气气体组成为 (摩尔浓度): H2S 5.2%, COS 0.8%, C02 92.6%, CH4 1.2%, CH3OH 0.2%。
本实施例的工艺流程示意图可参见图 7所示。
( 1 )该酸性气的特点是 H2S浓度低, 在催化剂作用下与空气在 F-1中发 生催化氧化反应, 反应起始温度为 210°C , 反应结束温度为 445 °C , 为防止 H2S剧烈氧化放热导致催化剂床层飞温, 采用 2级反应, 段间冷介质换热降 低工艺气温度,反应后工艺气中氧含量为 2%, 经催化反应原料酸性气中 H2S 全部氧化转化为 S02, 同时产生大量的 H20;
( 2 )经冷却的工艺气补加空气以提高工艺气中氧气浓度, 同时调整 S02 浓度为 4%, 经补加冷空气后温度降至 420°C , 02浓度提高于 5%进入多段催 化反应器 R-1 , 催化氧化 S02生成 S03, 采用段间换热移出工艺气热量, 降低 温度后再进入下一床层进一步反应, 反应级数为 3级。 R-1 出口处 S02转化 率在 98.7%;
( 3 ) 然后出口工艺气在 E-2 (实施例 1的换热器) 中进一步冷却至 260 °C , 该温度高于 H2S04露点温度 15°C的温差, 工艺气然后在 E-3中进一步降 低温度至 120°C , 以促使 S03及 H2S04蒸汽完全吸收及冷凝, E-3底部出口的 浓硫酸降温调质后送出界区; E-3出口的不凝气需经 C-1聚结和收集不凝气中 的 H2S04气溶胶, 然后不凝气送至烟囱放空,其污染物浓度分别为 30mg/Nm3 N02和 520mg/Nm3 S02 , 该浓度严格满足环保标准, H2S浓度低于 1 OppmV。

Claims

权 利 要 求 书
1、 一种石充化氢制备石充酸的工艺方法, 其特征在于: 其包括如下步骤:
( 1 )将含 H2S原料气与富氧空气中的氧气进行氧化还原反应制备 S02, 控制该氧化还原反应步骤后的氧气残余量摩尔百分比 > 2%, 其中, 当含 H2S 原料气中的 H2S摩尔百分比为 >8%时, 氧化还原反应为燃烧反应, 反应温度 >900°C; 当含 H2S原料气中的 H2S摩尔百分比为 <8%时, 氧化还原反应为 催化反应, 反应起燃温度 > 200°C;
(2)将步骤(1)所得产物冷却至 390°C~430°C, 然后与氧气进行催化 氧化反应, 该催化氧化反应分级进行至其中 S02的转化率>98.7%或者 S02 出口浓度 550mg/Nm3;
(3)将步骤(2)所得产物冷却至温度为 >H2S04露点温度以上 10°C, 然后再进一步冷却至 60°C~120°C, 并收集 H2S04产品, 冷却后得到的气体经 过聚结分离, 即可直接排空。
2、 如权利要求 1所述的工艺方法, 其特征在于: 所述的含 H2S原料气
H2S的含量为摩尔百分比 1%~90%, 较佳的为 5.2%-28.9%; 所述的氧化还原 反应为燃烧反应时, 反应温度为 1050°C; 当含 H2S原料气中含有 NH3, NH3 含量为摩尔百分比 15%, 较佳的为 1.2%, H2S摩尔百分比为 >8%时, 燃烧 反应的反应温度为 > 1250°C; 所述的富氧空气为氧气浓度在摩尔百分比为 20.8%~100%之间的空气。
3、 如权利要求 1所述的工艺方法, 其特征在于: 所述的步骤(1)氧化 还原反应步骤后的氧气残余量为摩尔百分比 2%~10%, 较佳的为 2%~6%, 更 佳的为 2%-3%。
4、 如权利要求 1所述的工艺方法, 其特征在于: 所述的步骤(1)所得 产物冷却的温度为 410-420°C; 所述的步骤(2) 的催化氧化反应中的氧气的 含量为摩尔百分比 >5%, 更佳的为 5%-7%, S02的含量为摩尔百分比 4%; 所述的步骤( 2 )的催化氧化反应分级进行的级数为 2~5级,较佳的为 3~4级; 所述的催化氧化反应分级进行至其中 S02的转化率 >99%。
5、 如权利要求 1所述的工艺方法, 其特征在于: 所述的步骤(2 ) 的催 化氧化反应, 当含 H2S 原料气中含有 NH3时, 所述的催化氧化反应加入 50-100ppmV的气氨。
6、 如权利要求 1所述的工艺方法, 其特征在于: 所述的步骤(2 ) 的冷 却步骤为换热器进行冷却或直接添加空气, 当使用换热器降温还使用工艺气 或中低压饱和蒸汽作为冷却介质。
7、 如权利要求 1所述的工艺方法, 其特征在于: 所述的步骤(3 ) 的将 步骤( 2 )所得产物冷却温度为 H2S04露点温度以上 10°C -30°C ,较佳的为 H2S04 露点温度以上 15 °C -17 °C ; 所述的再进一步冷却的温度为 105 °C -120°C。
8、 如权利要求 1所述的工艺方法, 其特征在于: 所述的步骤(3 ) 的将 步骤( 2 )所得产物冷却至温度为 > H2S04露点温度以上 10 °C用换热器进行冷 却, 使用工艺气或中低压饱和蒸汽作为冷却介质。
9、 如权利要求 1所述的工艺方法, 其特征在于: 所述的步骤(3 ) 的进 一步冷却至 60°C ~120°C使用的设备为热交换器, 该热交换器包括一壳体, 所 述壳体的顶部设有一尾气的排放口, 所述壳体的底部设有一出液口, 在所述 壳体内沿所述壳体的长轴方向、 在两侧壁之间跨设有若干用于流通冷却介质 的玻璃管, 所述玻璃管位于该冷却介质上游的一端为首端, 位于该冷却介质 下游的一端为尾端, 在该冷却介质的上游和下游之间相邻的所述玻璃管首尾 相连通从而形成至少一条单向导流的冷却介质流道。
10、 如权利要求 9所述的工艺方法, 其特征在于: 所述冷却介质流道设 有一冷却介质进口和一冷却介质出口, 所述冷却介质进口靠近所述顶部, 所 述冷却介质出口靠近所述底部;
所述玻璃管的延伸方向与所述长轴方向垂直, 并且所述玻璃管的首、 尾 均延伸至所对应的侧壁的外部;
所述玻璃管为均勾分布并沿所述长轴方向被分成若干玻璃管单元; 每个 所述玻璃管单元中的所述玻璃管的首端位于同侧, 并形成所述玻璃管单元的 首部, 所述玻璃管的尾端所在的一侧形成所述玻璃管单元的尾部, 在该冷却 介质上游和下游之间相邻的所述玻璃管单元的首尾错位设置并通过一管箱首 尾连通。
11、 一种热交换器, 其特征在于, 该热交换器包括一壳体, 所述壳体的 顶部设有一尾气的排放口, 所述壳体的底部设有一出液口, 在所述壳体内沿 所述壳体的长轴方向、在两侧壁之间跨设有若干用于流通冷却介质的玻璃管, 所述玻璃管位于该冷却介质上游的一端为首端, 位于该冷却介质下游的一端 为尾端, 在该冷却介质的上游和下游之间相邻的所述玻璃管首尾相连通从而 形成至少一条单向导流的冷却介质流道。
12、 如权利要求 11所述的热交换器, 其特征在于, 所述玻璃管的延伸方 向与所述长轴方向垂直, 并且所述玻璃管的首、 尾均延伸至所对应的侧壁的 外部;
所述玻璃管为均勾分布并沿所述长轴方向被分成若干玻璃管单元; 每个 所述玻璃管单元中的所述玻璃管的首端位于同侧, 并形成所述玻璃管单元的 首部, 所述玻璃管的尾端所在的一侧形成所述玻璃管单元的尾部, 在该冷却 介质上游和下游之间相邻的所述玻璃管单元的首尾错位设置并通过一管箱首 尾连通。
PCT/CN2012/077968 2011-07-01 2012-06-29 硫化氢制备硫酸的方法 WO2013004154A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/130,354 US9108846B2 (en) 2011-07-01 2012-06-29 Method for preparing sulfuric acid by using hydrogen sulfide
DE112012002793.0T DE112012002793B4 (de) 2011-07-01 2012-06-29 Verfahren zur Herstellung von Schwefelsäure unter Verwendung von Schwefelwasserstoff
UAA201400796A UA110980C2 (uk) 2011-07-01 2012-06-29 Спосіб одержання сірчаної кислоти з використанням сульфіду водню, а також теплообмінник для такого способу
RU2014101660/05A RU2564273C2 (ru) 2011-07-01 2012-06-29 Способ получения серной кислоты с помощью сероводорода

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110184128.4A CN102320579B (zh) 2011-07-01 2011-07-01 硫化氢制备硫酸的工艺方法
CN201110184128.4 2011-07-01

Publications (1)

Publication Number Publication Date
WO2013004154A1 true WO2013004154A1 (zh) 2013-01-10

Family

ID=45448459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077968 WO2013004154A1 (zh) 2011-07-01 2012-06-29 硫化氢制备硫酸的方法

Country Status (6)

Country Link
US (1) US9108846B2 (zh)
CN (1) CN102320579B (zh)
DE (1) DE112012002793B4 (zh)
RU (1) RU2564273C2 (zh)
UA (1) UA110980C2 (zh)
WO (1) WO2013004154A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320579B (zh) * 2011-07-01 2013-04-24 上海科洋科技发展有限公司 硫化氢制备硫酸的工艺方法
CN103449382B (zh) * 2012-05-30 2015-03-11 四川制药制剂有限公司 一种制造医用硫酸的系统
CN105080309B (zh) * 2014-05-23 2018-01-05 国网山西省电力公司电力科学研究院 一种用于六氟化硫检测尾气的净化处理方法与装置
CN104876190A (zh) * 2015-04-17 2015-09-02 安徽海德石油化工有限公司 一种富氧助燃的废酸裂解工艺
IT201600097320A1 (it) 2016-09-28 2018-03-28 Saipem Spa Scambiatore di calore a flusso incrociato
CN109520331A (zh) * 2019-01-03 2019-03-26 浙江海帆机械有限公司 一种海上运输设备用热交换器
WO2020140799A1 (zh) * 2019-01-04 2020-07-09 科洋环境工程(上海)有限公司 硫化氢酸性气的多级氧化制酸装置及制酸工艺
CN110040691B (zh) * 2019-03-20 2024-03-15 河南心连心深冷能源股份有限公司 一种利用酸性气制备生产高纯二氧化硫的装置及生产方法
CN110655044A (zh) * 2019-11-01 2020-01-07 武汉青江化工黄冈有限公司 一种试剂硫酸生产装置及其工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738310A (en) * 1985-08-26 1988-04-19 United Mcgill Corporation Heat exchanger
CN101152958A (zh) * 2006-09-25 2008-04-02 赫多特普索化工设备公司 制备硫酸的方法
CN101618863A (zh) * 2009-06-05 2010-01-06 中国石化集团南京设计院 含硫化氢的废气制硫酸的方法
CN102320579A (zh) * 2011-07-01 2012-01-18 上海科洋科技发展有限公司 硫化氢制备硫酸的工艺方法
CN202166354U (zh) * 2011-07-01 2012-03-14 上海科洋科技发展有限公司 热交换器
CN102384696A (zh) * 2011-07-01 2012-03-21 上海科洋科技发展有限公司 热交换器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071598A (en) * 1935-01-11 1937-02-23 American Lurgi Corp Method of producing fuming sulphuric acid having a high concentration
US2880018A (en) * 1955-06-15 1959-03-31 Pfaudler Permutit Inc Glassed tube sheet seal
US3475120A (en) * 1967-03-28 1969-10-28 Chemical Construction Corp Production of sulfuric acid
CH630719A5 (de) * 1978-02-13 1982-06-30 Agresto Ag International Sa Rohrbuendelwaermeaustauscher.
JPS5528757A (en) * 1978-08-24 1980-02-29 Mitsubishi Heavy Ind Ltd Treating method of non-condensing gas containing hydrogen sulfide
DK155723C (da) * 1982-03-25 1989-10-09 Haldor Topsoe As Fremgangsmaade og apparat til fremstilling af svovlsyre
JPS61197410A (ja) * 1985-02-27 1986-09-01 Nippon Steel Corp コ−クス炉ガス脱硫廃液からの硫酸製造方法
US4653575A (en) * 1986-03-03 1987-03-31 Germain Courchesne Air-to-air heat exchanger
US5477846A (en) * 1994-08-17 1995-12-26 Cameron; Gordon M. Furnace-heat exchanger preheating system
US20030194366A1 (en) 2002-03-25 2003-10-16 Girish Srinivas Catalysts and process for oxidizing hydrogen sulfide to sulfur dioxide and sulfur
RU72306U1 (ru) * 2007-12-18 2008-04-10 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" (ООО "Национальная инновационная компания" "НЭП") Тепловлагообменник
PL2330075T3 (pl) 2009-12-01 2016-02-29 Bayer Ag Sposób wytwarzania kwasu siarkowego
PL2507167T3 (pl) 2009-12-01 2017-07-31 Chemetics, Inc. Urządzenie i sposób do spalania siarki i związków zawierających siarkę

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738310A (en) * 1985-08-26 1988-04-19 United Mcgill Corporation Heat exchanger
CN101152958A (zh) * 2006-09-25 2008-04-02 赫多特普索化工设备公司 制备硫酸的方法
CN101618863A (zh) * 2009-06-05 2010-01-06 中国石化集团南京设计院 含硫化氢的废气制硫酸的方法
CN102320579A (zh) * 2011-07-01 2012-01-18 上海科洋科技发展有限公司 硫化氢制备硫酸的工艺方法
CN202166354U (zh) * 2011-07-01 2012-03-14 上海科洋科技发展有限公司 热交换器
CN102384696A (zh) * 2011-07-01 2012-03-21 上海科洋科技发展有限公司 热交换器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, DINGGUO: "Producing Sulphuric Acid from Low-concentration H2S Gas -TOPSOE's wet-gas process of producing acid for avoiding energy consumption", SULPHURIC ACID INDUSTRY, vol. S3, 1980, pages 11 - 14 AND 22 *
YE, SHUHUAN: "Making Concentrated Sulphuric Acid with Wet Contact Process Taking Acidic Gas as Raw Material", FUEL & CHEMICAL PROCESSES, vol. 29, no. 4, July 1998 (1998-07-01), pages 210 - 213 *

Also Published As

Publication number Publication date
UA110980C2 (uk) 2016-03-10
US20140205534A1 (en) 2014-07-24
RU2564273C2 (ru) 2015-09-27
DE112012002793B4 (de) 2022-02-03
DE112012002793T5 (de) 2014-03-20
RU2014101660A (ru) 2015-08-20
CN102320579B (zh) 2013-04-24
CN102320579A (zh) 2012-01-18
US9108846B2 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
WO2013004154A1 (zh) 硫化氢制备硫酸的方法
CN102910593B (zh) 酸性气废气处理系统及处理方法
WO2017121022A1 (zh) 含氰类、烃类和NOx的工业废气一体化净化方法及系统
CN101092577A (zh) 用煤气湿式氧化脱硫工艺生成的硫磺及废液制取硫酸的工艺及其设备
CN103072957A (zh) 一种制取硫酸的工艺
CN113237337B (zh) 废弃物协同处置的水泥生产碳捕集装置及工艺
CN101792139A (zh) 一种co2的回收方法
CN113509834B (zh) 局部钙循环与纯氧燃烧耦合的水泥生产碳捕集装置及工艺
CN100497165C (zh) 用煤气湿式氧化脱硫工艺生成的硫磺及废液制取硫酸的设备
BRPI0704106B1 (pt) processo para a produção de ácido sulfúrico
CN113200693A (zh) 离线式分解炉与钙循环耦合的水泥生产碳捕集装置及工艺
CN109368641B (zh) 一种活性炭制备可燃气体循环利用装置
CN101920166A (zh) 脱硫后置的脱硝方法
CN209740726U (zh) 一种活性炭制备可燃气体循环利用装置
CN102910592B (zh) 一种准等温文丘里热能置换转化器
CN203359987U (zh) 一种从煤化工及电厂含硫化物中获得硫磺的装置
CN107191956B (zh) 一种烟气净化系统
CN216409509U (zh) 一种空压机余热利用的空分装置
US11440798B2 (en) Process system and process method for conversion of sulfur-containing flue gas to sulfuric acid
CN220558898U (zh) 热管节能型离子溶液碳捕集装置
WO2020140799A1 (zh) 硫化氢酸性气的多级氧化制酸装置及制酸工艺
CN203112502U (zh) 一种制取硫酸的设备
CN217838826U (zh) 一种煤气转化箱
CN210030054U (zh) 一种废酸再生设备
CN202880883U (zh) 一种准等温文丘里热能置换转化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120027930

Country of ref document: DE

Ref document number: 112012002793

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: A201400796

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2014101660

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130354

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12807964

Country of ref document: EP

Kind code of ref document: A1