WO2013004088A1 - 独立式同步轨道交通 - Google Patents

独立式同步轨道交通 Download PDF

Info

Publication number
WO2013004088A1
WO2013004088A1 PCT/CN2012/072159 CN2012072159W WO2013004088A1 WO 2013004088 A1 WO2013004088 A1 WO 2013004088A1 CN 2012072159 W CN2012072159 W CN 2012072159W WO 2013004088 A1 WO2013004088 A1 WO 2013004088A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
car
point
signal
clock
Prior art date
Application number
PCT/CN2012/072159
Other languages
English (en)
French (fr)
Inventor
张宁
林华琴
Original Assignee
Zhang Ning
Lin Huaqin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Ning, Lin Huaqin filed Critical Zhang Ning
Publication of WO2013004088A1 publication Critical patent/WO2013004088A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B1/00General arrangement of stations, platforms, or sidings; Railway networks; Rail vehicle marshalling systems

Definitions

  • the invention relates to a rail transit, wherein the rail compartment of the rail transit can realize no intersection intersection waiting, no intermediate station stops, and the whole process runs at full speed and can solve the current urban traffic congestion problem.
  • the present invention provides a new traffic mode and traffic concept.
  • the rail transit network built in this mode can realize the no-intersection waiting in the inner compartment of the net, no intermediate station stops, full-speed and efficient operation at full speed, almost no waiting problem for the occupants before getting on the bus, and the floor space is much smaller than the road. Floor area.
  • the technical solution adopted by the invention is: adopting independent small car and one-way small track, the car in the track network follows the uniform clock rate for synchronous operation, the car is driven by electric power, the system program monitors, and the whole process is automatically completed.
  • the independent small car (hereinafter referred to as "car") is long, wide, high and small, streamlined aerodynamic shape, small single-load capacity, high running frequency, no connection with other cars, and can be operated as a separate car.
  • the three-dimensional dimensions are: 1. 6 meters long and 1.2 meters wide.
  • Two seats are arranged side by side, which can be used for one or two people (for the same destination site); the front and rear axles of the carriage are located on the main beam of the center line of the chassis, driven by motors on the respective axles (for electric and power generation motors)
  • the brake of the car is mainly completed by the generator converting the kinetic energy of the wheel rotation into electric energy, and the generated electric energy is stored in the vehicle battery; the two ends of the axle are two load bars carrying the car body, and the load bar passes through the damper and A thrust tapered roller bearing with an outer diameter of 50 cm is connected to the car body; the motor shaft is in the middle of the axle, the motor is inside the casing, and the motor shaft and the central axis of the steel wheel are the same shaft;
  • the stabilizing column is centered on the housing stabilizing column, and the axle can be freely steered in the track surface with the change of the track direction; the casing has a cone extending into the track groove.
  • the cone is narrow and wide, and is stuck in the track groove to prevent the car from coming off the track.
  • the safety roller on the side of the cone has a gap of 2-3 mm on the inner side of the track;
  • the brush on both sides of the cone has an extension
  • the motor on the power supply driving axle can be introduced from the power pole faces of the two inner sides of the track; two position signal generators (for embedded independent permanent magnets, N pole outwards), two on the bottom surface of the cone Position sensing port, a set of signal transmitting ports, a signal receiving port, and a fault signal sending port, which can be positioned with the track And the transmission and reception of control signals.
  • the position signal generator, the position sensing port, the signal transmitting port and the signal receiving port are all formed by magnets or induction coils, and each induction coil is connected to the system circuit by a pair of leads, and the information exchange between them is transmitted through electricity. Magnetic induction is achieved.
  • the leads of the two position sensing ports of a cone are combined into a system by a logical OR circuit.
  • the front and rear ends of the longitudinal axis of the carriage are respectively mounted with a "buffering pole surface".
  • the pole surface is magnetic pole generated by the DC coil, and the N pole is outward, which avoids steel collision between the front and rear compartments. If four ordinary rubber tires are added to the front and rear axles of the chassis of the chassis through the axle extension rods, and corresponding levers and brakes are provided in the cabin, the cabin can enter the ordinary road as a private compartment.
  • the track width of the unidirectional small track is small, and each track is designed for one-way operation.
  • Each track is marked by a track position signal generator with a short length and continuous track length unit, so as to achieve the pair in the track.
  • the track has a U-shaped cross section, the U-shaped notch is 24 cm wide and 30 cm wide, the single-sided track surface is 3 cm wide, the track is 14 cm high, and the bottom is 32 cm wide.
  • Two pole faces of the power source are mounted on the inner side of the track, and the power pole faces extend with the track to provide power to the car.
  • the track has a width of 5 cm and a height of 3.5 cm at a distance of 1. 2 meters.
  • the two side façades of the "U"-type track are connected at the bottom, and the two sides can be further fixed when the track is laid.
  • a pair of orbital position signal generators are installed at each end of the upper surface of the track connecting section at each of the two track connecting sections on the main track, that is, each pair of orbital position signal generators on the main track is spaced 3. 6 meters apart; other tracks
  • the position signal generator interval of the segment is determined by the preset speed of the car at that location.
  • the track position signal generator is a permanent magnet, typically N pole up, which senses a position pulse when the car passes over the position sensing port on the car cone.
  • Part of the track segment (near the entry point and the branch point) is also equipped with a position sensing port, a signal transmitting port, a signal receiving port and a fault signal receiving port on the side of the track position signal generator to realize position signal and control with the car. Signal transmission and reception. All ports are constructed of coils, and each coil is connected by a pair of leads to a corresponding point of entry or bifurcation to effect the transfer of associated signals.
  • the track that needs to be crossed by the "cross" in the track network adopts a three-dimensional cross form, and the intersection of the two tracks maintains a height difference of 1. 8 m - 2. 0 m in the vertical plane, and the intersection of the two tracks in the same plane is the same direction.
  • the word "person” crosses, and its intersection is referred to herein as the "point of entry” (the carriages on the two tracks merge into one track and run in the same direction) or "the bifurcation point” (the carriage on one track) By this point, it is separated into two tracks to run).
  • the track surface is set to be inclined at a certain angle to the center of the turn, and the angle value is determined according to the turning radius and the preset speed of the track at the place to minimize the centrifugal force generated when the car turns during the turning.
  • the inner edge of the wheel and the pressure of the cone safety roller is referred to herein as the "point of entry” (the carriages on the two tracks merge into one track and run in the same direction) or "the bifurcation point” (the carriage on one track) By this point, it is separated into two tracks to run).
  • the track surface is set to be inclined at a certain angle to the center of the turn, and the angle value is determined according to the turning radius and the preset speed of the track at the place to
  • a proper branching point (called “off-tracking point") is extended from a proper position near a track near a road
  • a special track (called a “transition section track”) is extended to the ordinary road surface, the end section of the track The direction of the track is in the same direction as the road on the road there. Then, the private car can escape from the track network through this branch point and decelerate into the ordinary road. In this way, on the basis of one-way operation, it is also necessary to avoid the two cars passing through the same point of entry at the same time. This is achieved by the simultaneous operation of the network car in accordance with the uniform clock rate and the timely monitoring of the car's operation.
  • the time is divided into time units of shorter duration, continuous length, and length of segments, wherein each time unit is called a "clock unit" of the track network.
  • the distance that the car runs in a clock unit at a predetermined rate of the track segment at any of the track segments is referred to as the "length unit" of the track segment, when the predetermined rate is equal to the nominal rate (the rate at which the net is operating at normal average speed),
  • the corresponding length unit is also referred to as a "standard length unit".
  • a track whose predetermined rate is equal to the rated rate is called the "main track.”
  • the synchronous operation of the car in accordance with the uniform clock rate means: with a clock unit as the node rate, all the cars in the normal operation of each network unit run a length unit; and the car is at any time of any clock unit, Run to the same position on the corresponding track length unit.
  • the length unit of each track is marked on the track by the track position signal generator, and the track distance between the signal generators of each pair of track positions corresponds to a length unit of the track, and the track of one length unit can accommodate at most A car (the difference between the value of the length unit and the length of the car is the error allowable distance).
  • the clock unit is 0. 18 seconds and the car is rated at 72 kilometers per hour
  • the standard length unit of the track is 3. 6 meters. Based on this calculation (the following is the case), a track can run up to 20,000 cars per car per hour, with an average passenger load of 30,000 passengers.
  • the stations in the track network are the originating and terminating stations of the car, which can be placed on one side of the track, above the intersection, in the middle of the two opposing tracks, or other suitable places.
  • the station has an inbound and outbound track, a site information system, a car test and transfer system, a power system, a storage bin, an on-orbit abnormal car exit system, and related ancillary facilities, which are attended by 1-2 people.
  • the inbound track is composed of a deceleration section track, a circular track, a docking groove, a movable track section and a bifurcation point for connecting.
  • the bifurcation point connecting the main track and the deceleration section track is called a "site bifurcation point"; the outbound track It consists of the launching trough, the circular orbit, the accelerating section track and the connecting point of the connecting action.
  • the point of entry connecting the main track and the accelerating section track is called the "site entry point”. 5 ⁇
  • the inbound and outbound circular orbital surface is distributed in the upper and lower layers, the inbound circular orbital surface is higher than the outbound circular orbital surface 4. 5 meters.
  • the main functions of the site information system are as follows: 1. Provide the standard track network clock and system recovery data for the car; 2. Read the car position information in the direction of the other car at the station entry point and the request of the car in each car.
  • Departure information provide the respective departure time for each compartment of the grid; 3. Master the number of compartments in the station and the occupancy information of each stop slot and the departure slot, and close (or open) the site bifurcation point if necessary to make the main track
  • the carriage test transfer system includes a transfer chute, a movable track section, an active track section reserve area and related control facilities. Its main functions are as follows: 1.
  • the test includes: motor (motor, generator) performance detection, cone port (position sensing port, signal transmitting port, signal receiving port, position signal generator and fault signal sending port) detection and cabin system detection.
  • the detection time begins when the detection plug is connected to the integrated signal interface of the chassis and ends until the carriage is transferred into the storage bin.
  • the test result is displayed by the in-vehicle display, and the door indicator lights up in green (normal) or red (fault); on the other hand, according to the detection result (normal or not), the active track segment is correspondingly sent to the storage bin. Inactive zone or fault zone.
  • the power system provides the various power supplies required for the site (systems and facilities), as well as the power supply to the main rails near the site, as well as the power supplies required for the point of entry, the fork point, and various ports on the main track.
  • the storage bin is located in the cylindrical area inside the ring track of the entrance and exit station.
  • the main function is to store Station cars and timely provide qualified cars to each launching trough.
  • the on-orbit abnormal car exit system is mainly composed of a fault signal receiving port, a fault derivation bifurcation point and a fault derivation track.
  • the main function is to timely separate the fault (abnormal) car in the main track in time to ensure that the main track is unblocked.
  • the fault signal receiving port is installed with one set (3) every 100 track length units on the main track, one for each of the track connecting sections corresponding to three consecutive track units, and each branch point on the main track.
  • the previous length unit and the previous length unit of the fault derivation bifurcation point are each installed; the fault derivation bifurcation point is set at each of the 12 length units before the station bifurcation point and the main track at the middle of the two stations.
  • the position signal generator, position sensing port, signal transmission port and signal receiving port, the main installation situation on the track is as follows: 1. Install a pair of position signal generators every other length unit, on the corresponding track connection section One end is mounted on each end of the surface, generally the magnetic pole is poled up. 2. At the point of entry (the unit of length), each position signal generator is equipped with a position sensing port, a signal transmitting port and a signal receiving port in each of the 60 length units in front of the two directions of the vehicle. A pair of position sensing ports and one signal receiving port are installed at the starting points of the two length units before the fork point. The range within the 60 length units before the entry point is called the "point of entry monitoring range" of the point of entry.
  • the track position signal generator at the beginning of the 60th length unit is the double pole set before and after, in order S The pole and N pole are up, and this position is called the "monitoring starting point" of the point of entry. 3.
  • the orbital position signal generator at the beginning of the 3rd length unit before the bifurcation point (the unit of length) is the double magnetic pole set before and after, and the N pole and the S pole are in turn; Length unit)
  • the orbital position signal generator at the starting point is an S pole up pole; if the first 3 length units of a bifurcation point are within the range of the point of entry monitoring, it should be set before the branch point.
  • the double magnetic pole position signal generator at the beginning of the three length units is set at the monitoring starting point of the input point, and the double magnetic pole position signal generator (S, N) is set as the input in the next length unit.
  • the point of entry or the point of branching is in the middle of the unit of length, correspondingly
  • the length unit is called a "join point length unit” or a “mining point length unit”;
  • the start position signal generator of the length unit is called a "point-in point position signal generator” or "a bifurcation point position signal occurs”"".
  • the position signal generator at the beginning of the entry point length unit connected to the ring and the circular track is set to the double magnetic pole (S, N). 5.
  • the position signal generator at the transition point of the toroidal track to the acceleration section is set to the double magnetic pole (N, N). 6.
  • the position signal generator at the starting point of the length unit on the side of the station entrance point acceleration section is set to the double magnetic pole (S, S). 7.
  • the position signal generator at the end of the length unit on the track side of the deceleration section of the station bifurcation point is the pole of the magnetic pole S.
  • the magnetic pole S of the position signal generator at the transition point of the deceleration section to the end of the circular orbit is upward.
  • the bifurcation point connecting the circular track and the docking groove is at the position of the docking groove.
  • the magnetic pole of the signal generator is extremely poled upward. 10.
  • the orbital position signal generator at the starting point of the track slope is set to three magnetic poles (uphill: “N, S, S”, “N, S, N” or “N, N, S”; The slope is: “S, S, N", “S, N, S” or “S, N, N',); at the beginning of the 3rd length unit and at the end of the transition section before the off-network bifurcation point
  • the track position signal generator at 3 meters is set to three magnetic poles, and the upward magnetic poles are: “S, S, S" and "N, N, N".
  • the station leads the car from the main track through the deceleration section track through the station bifurcation point, and the car enters the circular track when the track speed of the deceleration section drops to 50% of the rated speed, and selects one according to the occupancy of the docking groove (in order)
  • the occupied docking groove enters and decelerates again, and finally stops at the "active track segment" at the end of the docking slot (for the carriage test transfer system terminal), and the movable track segment pops up the fixed baffle to fix the car.
  • the active track segment then carries the car down to the lower parking space 2 meters below the docking slot for the occupants to get off.
  • another active track segment of the active track segment reserve area automatically fills the vacancy of the active track segment of the docking slot when the top of the car is lowered to a position lower than the original active track segment to receive the next car. Entering the docking;
  • the active track segment is coupled to the car through the integrated signal plug, and the performance of the car is automatically detected. After the occupant gets off the bus, the car continues to descend 2. 5 meters, and enters the waiting area or fault area of the storage bin according to the performance test result.
  • a compartment is replenished to the starting slot from the waiting area of the storage bin by the transfer system.
  • the movement of the carriage is always carried by the active track section, and only when the carriage is used again, the carriage is separated from the active track section when the vehicle is slipped from the grid, and the activity is at this time.
  • the track segment is automatically transferred to the active track segment reserve area, waiting to be re-used to the docking slot.
  • the car exiting from the station is accelerated to the rated speed via the acceleration section orbit and enters the main orbit operation through the site entry point at the appropriate clock unit.
  • the car is located on the grid before the departure, and is connected to the site information system through the integrated signal interface.
  • the car system selects a mileage based on the stored track network information (a plurality of suitable routes between the stations). The shortest line or the line that is not busy.
  • the site information system is based on the occupancy of the clock unit at the site entry point (the point of entry is obtained through each location sensing port), and the departure time of the car in which the destination has been determined is arranged in coordination, and the car is in system clock with the site information system.
  • the departure time determined by the site information system is appropriate.
  • Start the train the active track segment retracts the fixed baffle and the integrated signal plug before the departure time.
  • the car is accelerated by the launching slot and then enters the circular orbit to correct the vehicle speed. After the acceleration of the acceleration segment, the car accelerates again.
  • the main track is operated at the rated speed through the station entry point.
  • the position sensing ports on the front and rear cones of the car are induced to generate a position pulse, and the car system counts the position pulses induced by the front cone (if the front cone If the position pulse is abnormal, the position pulse of the back cone is used, and the generation time is 0. 045 seconds in advance.
  • the count value should be consistent with the count value of the passing clock unit of the car system. Otherwise, the position of the car on the track is behind or ahead.
  • the car system determines whether to pass the adjustment according to the current speed and according to the program. The speed of the car or how to adjust the speed of the car to achieve the purpose of adjusting the relative position of the car.
  • the time point at which the timely position pulse signal is generated is compared with the end point of the corresponding clock unit at the time point, and if the two coincide, the car is considered to be The position in the length unit is accurate, otherwise the system will fine-tune the position of the car according to the program to achieve the purpose of synchronizing the position with the clock.
  • the time difference (should be a clock unit length) generated by the adjacent two pairs of track position signal generators and corresponding to the predetermined speed of the corresponding track segment car to determine the vehicle speed; the third is by measuring the motor speed (ie The speed of the steel wheel) to determine the speed of the vehicle.
  • the adjustment of the vehicle speed is mainly achieved by adjusting the input voltage of the motor or starting the generator to brake. Position adjustment takes precedence over speed adjustment.
  • the car is constantly being calibrated for position and speed during operation so that the speed and position are synchronized with the clock as a whole.
  • the position sensing port on the cone senses a double pulse position signal "01" from the track position signal generator, and the car system receives the signal and starts receiving continuously.
  • the control signal generated by the signal receiving port within 60 clock units.
  • the entry point receives the position signal "1" of the car through the position sensing port on the track, and transmits a control signal for adjusting the position to the car when necessary.
  • the point of entry receives the position information of the car in the monitored range (two directions of the car's track) through the position sensing port, thereby judging whether there will be two cars in the upcoming 60 clock units that will pass through the port in the same clock unit. point.
  • the control system will issue a position adjustment command to the relevant car according to the position information of each car to adjust the relative position of each car to avoid the situation that both cars pass through the entry point at the same time.
  • the position adjustment command is a three-bit binary pulse code, and the corresponding code is transmitted to the signal transmission port of the appropriate length unit track connection section via the lead wire in the appropriate clock unit, and the group code is respectively in the corresponding current conduction direction at the signal transmission port.
  • the three coils are embodied such that different current conduction directions produce different outward magnetic poles on the coil.
  • the three magnetic poles induce a set of three-bit binary pulses in the signal receiving port of the car cone when the associated car passes, which is the position adjustment command issued by the point of entry.
  • the car is adjusted according to the command received by the signal receiving port by adjusting the speed of the car.
  • the binary code generated by all ports appears as positive and negative pulses.
  • the positive pulse is high level “1” and the negative pulse is low level "0".
  • the position pulse signal "1" generated by the position sensor sensing port from the position signal generator on the car cone is directly transmitted to the change point controller of the point of entry.
  • the orbital controller completes the orbital operation of the entry point or maintains the original state when the car enters the orbital position, so as to ensure that the car passes through the point of entry.
  • the direction of the car at the entry point is unobstructed.
  • the position sensing port on the cone senses a pair from the track position signal generator. Pulse position signal "10". When a bifurcation point is within the range of the point of entry monitoring, a pair of pulse position signals "10" are induced to be generated when the car is moved to the point of entry of the point of monitoring.
  • This signal also acts as a trigger signal for the car to transmit the bifurcation point orbit signal, so that the car continues to send the bifurcation point orbit signal through the cone signal sending port when entering the next length unit (each bifurcation point after the running line is determined) The orbital condition has been determined.)
  • the orbital signal (synchronized with the position pulse) is electromagnetically induced to the bifurcation point of the orbital controller when the car passes through the signal receiving port on the track, so that the orbital controller is The car is correctly orbitally operated on time by the fork point.
  • the bifurcation point orbit signal is a set of three-bit binary bursts, and the positive and negative pulses respectively indicate the left and right transitions. The specific meanings are as follows:
  • the first, second, and third digits respectively correspond to the corresponding orbital operations to be performed by the first, second, and third bifurcation points that the vehicle is about to pass.
  • the first branch point After receiving the track change signal, the first branch point first presets the track change operation to the corresponding left position at the start time of the upcoming corresponding clock unit according to the first bit pulse and the corresponding position pulse of the car.
  • the third bifurcation point also performs the same principle of orbital preset and operation, but since the intertrack signal does not have a fourth bit pulse, the set of intertrack signals is only transmitted to the third bifurcation point. If there is another entry point on the track line transmitted by the orbital signal of the first 60 length units of the car at this time, the point of entry is accompanied by an orbital signal when reading the position pulse of the car. The mark indicates that the car will pass through this entry point.
  • the car cone position sensing port senses a three-pulse position sensing signal "100" (or “101” or “110", with different three-pulse position signals. Different slope ranges), after receiving the signal, the car system directly increases the motor input voltage to a higher corresponding value according to the weight of the car body, and then fine-tunes the motor input voltage for controlling the vehicle speed by timely monitoring of the car speed. , allowing the carriage to better pass the upslope track at a predetermined speed.
  • the car cone position sensing port senses a three-pulse position sensing signal "001" (or “010” or “011"), and the car system receives this signal.
  • the motor input voltage is directly reduced to a lower corresponding value, and then the motor input voltage of the control vehicle speed is finely adjusted by timely monitoring of the car speed, or the motor is directly stopped, or the motor is stopped and The generator is started for corresponding braking so that the cabin can better pass the downhill track at a predetermined speed.
  • the monitoring of the speed of the entire system in the car is never interrupted.
  • the position sensing port on the cone senses a double pulse position sensing signal "10".
  • the car system receives the "10" position signal after counting the number of bifurcation points that have passed, and the system immediately transmits the station bifurcation point orbit signal through the cone signal transmission port.
  • the other car sends the "IXX” orbit signal, so the car turns right and leaves the main track through the station bifurcation point into the deceleration track.
  • the car is decelerated into the station through the deceleration section rail to finally complete the whole process.
  • the destination site Before the car arrives at the destination site (with the transmission site bifurcation point change signal as the boundary), the destination site can be reset through the touch screen display in the car.
  • the car is in the process of determining its position by counting the position pulses and counting the passing bifurcation points. If the relevant track position signal generator or cone position sensing port fails, the car can not determine the position in the track network by the position pulse in time and accurately, the car system can be obtained according to the driving distance (by the number of revolutions of the axle) ) Corresponding to the stored data of the running line to determine the relative position of the position and the front point and the point of entry, so as to send or receive various signals in time; or determine the speed according to the speed of the axle, and compare the clock and the location The position controls the operating state of the car.
  • the independent emergency power supply in the car is started and divided into three outputs according to the fault monitoring situation:
  • the first way supplies power to the motor to supplement the power lacking the fault;
  • the third way causes the fault signal transmitting port on the front and rear cones to be turned on, and the port generates the magnetic pole of the "S" pole downward, when passing through the fault signal receiving port provided on the track. The latter induces a strong fault signal "0".
  • the fault signal is sent to the first station in front by the lead, the first fault derivation bifurcation point in front, and the ingress point and bifurcation on the main rail between the fault derivation bifurcation point and the port that generates the fault signal. point.
  • the relevant point of entry can issue appropriate position adjustment commands to the relevant compartments before and after the faulty car when necessary; the relevant branching point performs the corresponding orbital operation in time to make the faulty compartment more reliable.
  • the fault leads to the bifurcation point direction.
  • the subsequent car can pass the magnetic repulsion between the front buffer pole face and the rear buffer pole face of the faulty car (or the preceding car). Push the faulty car forward until the faulty car leaves the main track.
  • the fault signal is detected by the fault signal receiving port, and the fault derivation bifurcation point is opened to lead the car to the main track.
  • the car If the car is a private car with ordinary rubber tires, it will enter the station through the private car passage in the station. After passing the performance test, it will enter the track network from the corresponding launching slot.
  • the starting and running process is the same as other cars, but After the completion of the operation in the track network, the car does not enter the station, but is separated from the main track by the off-network bifurcation point (generally located at the 6 length units in front of the site branching point), and then enters the ordinary road after deceleration. run.
  • the cone position sensing port senses a three-pulse position sensing signal "000" (other cars see this signal as a useless signal).
  • the car system will continuously transmit the off-network bifurcation point change signal "001" through the cone signal transmission port, so that the car passes the off-network.
  • the bifurcation point deviates from the main track and enters the transition section track to start decelerating.
  • the position sensing ports of the front and rear cones are successively induced to generate one.
  • the three-pulse position signal "111" after receiving the signal, the cabin system controls the front and rear housing stabilizing columns to rotate the housing about 90° around the axle, and the housing stabilizing column points straight ahead, so that the housing cannot be rotated in the horizontal direction, The cone is stowed back and simultaneously activates the cabin joystick and brake performance. Then the front and rear steel wheels were separated from the track at a speed of 36 km/h, and the ordinary tires before and after were smoothly contacted with the road surface. At this time, the car finished the program control operation and started the artificial driving operation, thus completing the carriage by the track. The transition from the network to the road network. Running on the road, the car is powered by the in-vehicle battery.
  • Figure 1 shows the three views of the car.
  • “1" is the front buffer pole face
  • “2” is the rear buffer pole face
  • "3” is the axle body
  • "4" is the door.
  • Figure 2 is a three-view view of the track, the direction of the arrow indicates the running direction of the car, "5" is the pole face of the track, “6” is the track connecting section, " ⁇ ” is the position signal generator, and “37” is the position signal generator.
  • the position of the magnetic pole added when setting the double magnetic pole or the three magnetic poles "8” is the position sensing port
  • "9” is the signal transmitting port
  • "10” is the signal receiving port
  • "11” is the fault signal receiving port.
  • Figure 3 is a cone Bottom view of the body, the direction of the arrow indicates the running direction of the cone, "19” is the cone position signal generator, “20” is the cone position sensing port, “21” is the cone signal sending port, and “22” is the cone Signal receiving port,
  • FIG. 4 shows three views of the axle body, "12” for the steel wheel, “13” for the electric and power generator housing, “14” for the housing stability column, “15” for the cone, and “16” for the cone Safety roller,
  • Figure 5 is a view of the combination of the axle body and the track and the axial cutting view of the steel wheel.
  • Figure 6 is a plan view of the inbound orbit. "24” is the deceleration section track, “25” is the inbound ring track, “26” is the active track segment, "27” is the site bifurcation point, and “28” is the stop groove.
  • Figure 7 is a plan view of the outbound track. "29” is the acceleration section track, "30” is the outbound circular track, "31” is the starting slot, “32” is the starting position, and “33” is the station entry point.
  • Figure 8 is a schematic diagram of the distribution of the three-way intersection track.
  • FIG. 9 is a schematic diagram of the orbital distribution at a crossroad.
  • Figure 10 is a schematic diagram of the bifurcation point or the entrance point plane, and "36" is the variable-track gate.
  • Figure 11 is a three-view of the end section of the rail change gate.
  • the in-vehicle display shows: "Please fasten the seat belt and enter the destination site name or code" with a voice prompt. (If the load is too heavy, there are voice and display prompts: Again, the car is limited to 200Kg, now overloaded with XXKg, can't start. At the same time, the door opens automatically.)
  • the system prompts to check the destination site and ask for card confirmation. After confirmation, voice prompt: Please sit down and start immediately.
  • the display now shows the destination site, mileage, estimated time, and estimated charge amount (deducted from the inserted card). After a few seconds the car starts and begins to accelerate out.
  • the main work done by the car system in this process is as follows: First, according to the pre-stored procedure, safety warning and operation line selection; second, according to the set rated load, the car passes through the meter installed under the movable track section to the car The weight is measured to ensure that it is not overloaded, and the output power of the motor at start-up is determined to ensure that the car starts at a uniform acceleration, and this weight value is input into the operation control system as an important part of this trip to control the acceleration and deceleration of the car.
  • Reference parameters third, clock synchronization with the site system and calibration of the orbit information - that is, resetting the clock synchronized with the track network, and checking the entry point (35) and the branch point (34) of all the operable lines in the track network.
  • the location information; the fourth is to send the departure request signal to the site system and obtain the time information from the site system to allow the car to start; the fifth is to turn on the motor power supply before the start of the vehicle to start the two motors to accelerate the car before and after the start;
  • the DC power supply of the front and rear buffer pole faces (1) (2) produces a stronger and more stable magnetic field.
  • the above three, four or two points are connected to the site system through the integrated signal port located at the bottom of the car through the integrated signal plug of the active track segment (26) to complete the relevant information exchange.
  • the site system determines that the departure time of each car is read by entering the site entry point (33) in a timely manner (here, the first 90 track length units in the direction of the main point of the entry point)
  • the track occupancy information and the car position information of the departure request in the departure slot (31) are determined to ensure that the car exits the site in an orderly manner and does not interact with the site on the clock when entering the site entry point (33).
  • the main track is in conflict with the car in the direction of the car.
  • the departure time of the car also refers to the principle of orbital optimization in which the distance between the car and the front and rear cars is not less than 3 length units, so as to facilitate the track segment.
  • the active track segment in the launching slot (31) automatically retracts the integrated signal plug through the relay before the arrival of the car at the time of departure, and simultaneously withdraws the fixed baffle of the car, and removes the connection between the active track segment and the car. And fixed.
  • the car system clock starts to run independently and counts the number of clock units that pass, and the system also counts the position pulses sensed by the front cone position sensing port (20).
  • the timing at which a position pulse is generated corresponds to the end of the previous clock unit and the start of the latter clock unit.
  • the track position sensing port (8) located before point A passes through the cabin cone
  • the position signal generator (19) induces a position pulse "1", which triggers the relay of the changeover device of the entry point (35) to cause the inter-track door (36) to perform the corresponding orbital operation, and the carriage passes smoothly.
  • the point A is merged, and in the same way, the changeover device at the point B, the point B, is normally closed to the grid (31) for the rail (36) to open the ring.
  • the cone position sensing port (20) inductively generates a double pulse position signal "01".
  • the system sends a control signal to lower the motor input voltage, so that the car maintains a uniform speed into the circular track (30).
  • the car system also begins to receive position pulses induced by the rear cone position sensing port (20).
  • the car system determines the car speed by comparing the time difference between the front and rear position sensing port (20) and the same track position signal generator (7) to generate the position pulse.
  • the input voltage of the motor is changed. Change the output power to achieve the purpose of adjusting the speed of the car.
  • the carriage is passed through the circular orbit at a predetermined speed through the point C into the acceleration section track (29).
  • the cone position sensing port (20) senses a double pulse position signal "11" indicating that the car begins to enter the acceleration segment track (29).
  • the car system controls the car acceleration again according to the stored slope, length and other related data of the station acceleration section track (29) and the weight of the car, so that the car enters the acceleration section track and reaches a predetermined speed at any position.
  • the further fine-tuning control of the speed of the carriage in this process is based on the difference between the actual speed of each pair of position signal generators (7) passing through the vehicle and the predetermined speed of the point, and the input voltage of the motor is changed in time to change the acceleration.
  • the car finally enters the main track at a nominal speed through the station entry point (33) D within a predetermined clock unit.
  • the cone position sensing port (20) senses a double pulse position signal "00", indicating that the acceleration section track (29) has ended. After receiving this pulse, the system cuts off the power supply of one of the motors and adjusts the input voltage of the other motor to keep the carriage evenly transported at a lower output power.
  • the system receives a position where the front cone position sensing port (20) produces a composite Pulse, the position pulse count value is increased by 1, the length of time for running one clock unit, and the clock unit count value is increased by 1.
  • the count of the position pulse and the clock unit should be simultaneously counted as a value of one.
  • the car When the car is running in the main track, it is mainly necessary to keep the position and speed of the car running in synchronization with the clock. That is, the car is evenly run to the corresponding position in the corresponding track length unit at any time within any of the clock units.
  • the position pulse induced by the position sensing port (20) counts the number of passing track length units and compares with the used time (the number of system clock units). If the two are not equal, the car is required to be Adjust the relative position so that the corresponding length unit at the position coincides with the corresponding clock unit.
  • the adjustment of the position on the main track is generally achieved by adjusting the vehicle speed to accelerate the car after decelerating (advancing forward) or decelerating and then accelerating (rearward adjustment).
  • the vehicle speed is adjusted by increasing or decreasing the input voltage of the motor (acceleration). Or deceleration) or by starting the generator work on the basis of stopping the motor operation to reduce the kinetic energy of the car (faster deceleration).
  • the monitoring of the speed of the carriage is mainly realized by monitoring the position pulse. The first is determined by measuring the time difference of the position pulse generated when the carriage passes the adjacent two pairs of orbital position signal generators (7), and the second is by measuring the front and rear of the carriage.
  • the position sensing port (20) on the two cones is determined by the time difference of the position pulses generated by the same track position signal generator (7).
  • the car passes through a point of entry (35) to monitor the starting point and enters the monitoring point of the point of entry, the car passes through the position sensing signal (20) of the orbital position signal generator (for dual magnetic pole setting) to generate a double pulse.
  • Position signal "01” after receiving the position signal, the car system starts to receive the signal from the signal receiving port (22) of the cone (the trigger system with no position signal "01” regards the signal of the signal receiving port as an interference signal)
  • the time is 60 clock point units, so that the car position adjustment can be performed according to this signal in time.
  • the entry point simultaneously receives the position information of the two cars in the range of the vehicle direction monitoring through the position sensing port, thereby determining whether there will be two cars in the next 60 clock units that will pass the point in the same clock unit. (35).
  • the car receives a set of "000" from the point (35) via the signal receiving port (22) via the track signal transmitting port (9).
  • Position adjustment command signal According to this signal, the car system reduces the clock unit count by an additional value.
  • the system reduces the input voltage of the motor (the value is determined by the preset program according to the weight of the car) to continuously decelerate the car for 6 clock units with a preset acceleration.
  • the input voltage of the motor is increased to accelerate the acceleration of the six clock units by the preset acceleration.
  • the carriage runs 11 length units in 12 clock units, and the forward adjustment required by the position adjustment command is completed.
  • the requirement of the length unit the speed of the carriage is also restored to the rated value, and the input voltage of the motor is also restored to the value before the speed adjustment, so that the compartment Keep the rated speed running at average speed.
  • the cabin system monitors the change of the speed of the vehicle through the position pulse generated by the cone position sensing port (20), and outputs the correction voltage to the motor in time to ensure that the acceleration changes according to a preset procedure to achieve the cabin adjustment. The location is accurate.
  • the position signal generator (19) on the cone causes the position sensing port (8) on the track connection section to sense a position pulse "1", which is transmitted to the entry point.
  • the variable-track controller triggers the relay of the variable-track controller to drive the orbiting gate (36) to complete the orbital action, so that the direction of the track at the point of entry is unblocked, and then the car passes through the point of entry.
  • the position sensing port (20) on the cone and the track position signal generator (7) sense a double pulse position sensing signal "10".
  • the signal causes the car system to continuously send the bifurcation point change signal "101" through the signal transmission port (21) when entering the next length unit (the three coils of the corresponding signal transmission port are DC forward, reverse and forward conduction respectively) ), the signal causes the latter to sense (synchronized with the position pulse) to generate a set of three-bit binary pulses "101" when the car passes through the signal receiving port (10) on the track, and this pulse (ie, the track change signal) is transmitted to the fork Point (34), according to which the bifurcation point pre-sets the orbital direction of the orbital controller to be left-shifted at the time when the car enters the bifurcation point length unit, and before the car enters the bifurcation point length unit This preset is refreshed once in the length unit.
  • the position pulse induced by the position sensing port (8) on the track connecting section is transmitted to the bifurcation point together with the track change signal, and the bifurcation point is according to the track change signal.
  • the value of one bit causes the relay of the track change controller to pull in, and drives the track change gate (36) to complete the operation of shifting to the left; on the other hand, the change track controller also makes the preset according to the first two clock units. The relay performs the corresponding action to complete the left-tracking operation, so that even if there is a poor control of the transmission control path of the orbital signal, the bifurcation point can complete the correct orbital operation in time when the carriage passes.
  • the position sensing port (20) inductively generates the position signal "0" while the car continues to transmit the orbit signal. This signal causes the system to increment the count of the number of diverging points that have passed by "1" and stop transmitting the metamorphic signal "101".
  • the cone position sensing port (20) When the car runs to the front 36 length units of the "crossing point E" (the monitoring starting point of "return point J"), the cone position sensing port (20) induces a double pulse signal "10" - indicating that there is a front At the bifurcation point, after receiving the double pulse signal, the car system continuously transmits the track change signal "110" through the cone signal transmission port (21). That is, the left side (the first bit is “1") is selected when passing the current first bifurcation point (point E), and the left side is also selected when passing the second bifurcation point (point F).
  • the track signal appears on the coil of the cone signal transmitting port (21) as follows: the first to third positions of the coil are in the forward direction, forward direction, and reverse direction; the outward magnetic pole polarity is represented as N, N, So This signal is induced by the track signal receiving port (10) to generate a "positive pulse, positive pulse, negative pulse” or "110" orbit signal, which is simultaneously detected by the track position sensing port (8).
  • the respective port leads are sent to the control system of the bifurcation point E.
  • the bifurcation point E is combined with the position pulse. According to the first bit of the track change signal "110", it is "1". On the one hand, the control signal of the track change controller is preset to the normal state at the beginning of the corresponding corresponding clock unit.
  • a bifurcation or a point of entry is "normal" to maintain a straight-through state, the normal state of the bifurcation point is just the left-hand pass), and a refresh is preset for each clock unit (every compartment passes each time)
  • the length unit track receives a position pulse and an orbit signal), ensuring that the car passes straight through the E point and runs to point F; on the other hand, the second and third positions of the car position pulse and the orbit signal are "10"
  • the direction of the track to be run along the carriage is sent to the next branch point F (the point of arrival of the carriage is only received by the point J). After the bifurcation point F receives the signal, the system does the same work as the E point.
  • the preset orbit controller controls the F point to the left track in the corresponding clock unit; on the other hand, the distance from the car is Point G, 1 60 length units start, the position pulse of the car is sent to the points G and I respectively through point F, and the accompanying track signal "0" is also sent to the point G at the same time, but Not sent to the point I, the point H directly reads the information about the relevant car in the relevant clock unit from the point G.
  • the cone position sensing port (20) When the car passes through the first 35 length units from the "crossing point E", the cone position sensing port (20) induces a double pulse signal "01", and after receiving the position signal, the system starts receiving the receiving signal from the cone signal ( The signal of 22) is set to 60 clock units for receiving the signal from the cone signal receiving port (22) to perform the car position adjustment based on the received signal.
  • the signal of 22 is set to 60 clock units for receiving the signal from the cone signal receiving port (22) to perform the car position adjustment based on the received signal.
  • the car is 30 lengths from the E point, the distance between the G and I points is 60 length units, and the car cone position sensing port (20) senses the double pulse signal "10" again - indicating that there is still The second bifurcation point. Since the first branch point has not passed, the car system memorizes this signal, that is, the next set of track signals will be sent after passing the first branch point.
  • the cone position sensing port (20) induces a double pulse signal "01", and the system receives the position signal and receives the receiving signal from the cone signal ( The duration of the 22) signal is reset to 60 clock units.
  • the position sensing port of the cone senses a position signal "0", and the system considers that the car is passing the current first bifurcation point according to the signal.
  • the count value of the number of passing bifurcation points is increased by "1"; the second is that the transmitted orbit signal is changed to the three-bit pulse signal "100" corresponding to the next component cross point - the first two digits are respectively.
  • the second, third, and third bits of the previous set of signals are new signals.
  • the control point adjustment of the car point position (the corresponding length unit of a certain clock unit car) is performed by sending a position adjustment command to the car, and the position adjustment command is a set of three digits.
  • the pulse signal is transmitted through the signal transmitting port (9) and the cone signal receiving port (22) is received.
  • the principle is the same as the transmission and reception of the orbit signal.
  • the adjustment information represented by each group of position adjustment commands is as follows:
  • the point G can send a position adjustment command to the car with the track change signal passing through the position of the G point in the track E_F-G segment;
  • the point I can start from the length of 30 points from the E point to the I In all the tracks of the point (except E ⁇ F segment), the position pulse passing through the I point has a car position adjustment command accompanied by the track change signal;
  • the point J can be used to adjust the position of all the cars in the track E-J segment.
  • the position adjustment command of the car in the G-H segment is sent by the point of entry H.
  • the position adjustment command is sent to the corresponding car through the corresponding signal sending port (9) in the corresponding clock unit, and each transmission duration is 0.12 seconds (0.
  • each position adjustment command is sent three times to the corresponding car to ensure that it is received.
  • the car receives the command for the first time, it starts to adjust the operation, and the position adjustment command for the last two times. No more repetitive operations.
  • the system increments the clock unit count by an additional value according to the pre-program, so that the car is considered to be lagging behind the counted clock unit number of cars.
  • One length unit then the car accelerates and then decelerates with the length of 12 clock units.
  • the position adjustment command corresponds to the change of the clock unit count value and the required adjustment time is shown in the above table.
  • the relevant system and port work in the process of passing the site bifurcation point (27) is the same as the car passing through other bifurcation points, only the car at this time
  • the transmitted track signal is "000".
  • the position sensing port senses the position signal "0”, and the position sensing port (20) is induced again after the car passes through the station bifurcation point length unit after the interval of one clock unit.
  • the position signal "0" - the position signal generator at the end point of the length unit of the side branch point deceleration section track (24) - is S pole up.
  • the carriage system does not receive a signal with a position pulse of "0" twice in a time interval of one clock unit, and considers that the carriage enters Into the deceleration section track (24), the system starts the inbound deceleration program according to the stored slope, length and other related data of the deceleration section track and the weight of the car, and stops the motor operation as the case starts to start the deceleration of the car by the generator.
  • the point position signal generator (7) causes the cone position sensing port (20) to sense again.
  • the position pulse signal "0" is generated.
  • the car system receives the position pulse signal after starting the inbound deceleration program
  • the system stops the generator to start the motor according to the program, and the car enters the circular orbit (25) to maintain a constant speed (10 m / s).
  • the carriage In the circular track (25), the carriage continuously passes through the entrance of the 1 ⁇ 3 docking slot (28) (since these docking slots are also occupied by the compartment of the advanced station, the divergence point of the entrance is closed), and enters 4 No. docking slot (28).
  • the track position signal generator (S pole up) disposed here is the position sensing port on the cone (20)
  • the sensor generates a position signal of "0" - the car system receives the position pulse signal "0" for the second time after starting the inbound deceleration program. After receiving this signal, the system stops the motor operation and starts the generator to perform the final deceleration braking on the carriage according to the procedure, the duration is 1.98 seconds.
  • the position sensing port (8) on the branching point induces a position signal for the second time (the first time is on the front cone)
  • the position signal generator senses), the bifurcation point system automatically performs the orbital action according to the two position signals to close the entrance of the docking slot, so that the subsequent carriage can not enter the docking slot temporarily; the position on the front cone at this time
  • the signal generator also passes through a position sensing port that is added to the docking slot.
  • the distance between the port and the position sensing port on the bifurcation point is equal to the distance between the front and rear cones of the car.
  • the position signal generated by the position sensing port directly passes to the bifurcation point of the entrance of the docking groove, which also changes the bifurcation point.
  • the rail gate (36) performs an orbital action to close the entrance of the docking slot; on the other hand, the bifurcation point position sensing port (8) starts to close the entrance timing when the compartment enters the first position signal generated After 0. 1 second, the changeover gate (36) of the bifurcation point also automatically performs the orbital operation to close the entrance of the docking slot.
  • the settings of the above three closed docking bay entrances are independent of each other, ensuring that the docking tank inlet can be closed in time after entering one of the compartments. After the inlet is closed for 0.36 seconds (2 clock cycles), if the two active track segments (26) of the docking slot are unoccupied and can also receive a car entry, the branching point of the docking slot entrance will be connected. The start of a clock length is again turned to the circular orbit to allow the next inbound carriage to enter. When the carriage enters the docking slot 1.08 seconds, through the branching point R in the docking groove, the front cone (15) of the cabin is induced to generate a cabin position signal through a position sensing port (8) 1 meter after the branching point R.
  • This signal causes the orbiting gate (36) of the branching point R to perform the orbital operation, closing the track of the car to open the track leading to the direction of the other movable track segment (26), so that the next car enters the docking slot (28) Another active track segment (26).
  • the deceleration program ends after 1. 98 seconds.
  • the motor, generator and all ports stop working.
  • the car has a speed of 2 meters per second, and (front cone) Just at the entrance of the active track segment (26) at the end of the docking slot.
  • the carriage enters the active track at a speed of 2 meters per second.
  • the front buffer surface (1) of the vehicle is on the same horizontal line as the magnetic pole surface on the entrance baffle of the movable track segment and is opposite to each other (both N poles), and the magnetic repulsion generated between the two pole faces pushes the inlet file.
  • the car When the plate moves toward the end of the movable track segment, the car is decelerated; at the front cone, the front edge of the cone contacts the buffer crossbar in the slot of the movable track segment, and while pushing the buffer bar to the end of the movable track segment, The vehicle is decelerated; when the buffer crossbar moves backward by 0.4 m, the traction crossbar located in the slot of the active track section below the nose cone pops up to buckle the trailing edge of the front cone, and the traction crossbar is in the docking groove.
  • the motor is driven to move toward the end of the movable track segment along with the cone. If the carriage speed is less than the predetermined value, the traction crossbar acts to pull the carriage to fully enter the active track segment.
  • the buffer crossbar and the inlet baffle are connected to the generator in the docking tank through a transmission device, on the one hand, the kinetic energy of the car is converted into electric energy, and on the other hand, different deceleration resistances are provided according to different car speeds to make different weights, Cars of different speeds (within a certain range) are better able to park in the active track segments of the same length.
  • the inlet baffle moves to the end of the active track segment (the car speed is 0, the inlet baffle rests on the end wall of the docking trough), triggering the movable track segment to fix the baffle switch, so that the fixed baffle under the rear cone is from the active track
  • the rear edge of the rear cone is ejected in the slot, and the rails on both sides of the buffer rail are ejected.
  • Two fixing bolts are inserted into the fixing jacks on both sides of the buffer rail to fix the buffer rail, so that the cabin is buffered and fixed.
  • the plate is fixed on the active track segment. 1 ⁇ , The distance between the magnetic pole surface on the inlet baffle and the front buffer surface of the car is 0.
  • the two fixing bolts drive the movable track segment provided at the other end of the test pin to test the switching contact of the transfer power source when the buffer rail is inserted, so that the power is turned on.
  • the car is lowered with the active track segment to the lower parking space 2 meters below the docking slot under the control of the transfer system, and the integrated signal plug extends from the movable track segment slot to the integrated signal interface at the bottom of the car.
  • the detection of the car is started; at the same time, an active track segment in the reserve area of the active track section above the docking slot is synchronously descended with the car, and the position of the original active track segment is replenished at the end of the docking slot.
  • the inlet baffle on the end wall of the docking groove slides to the initial position of 0. 4 meters from the entrance of the active track segment and is automatically connected with the buffer crossbar to the transmission device of the generator in the docking station.
  • the ejected crossbar is also automatically connected to the transmission of the motor in the docking station.
  • the active track section is ready to accommodate the next inbound carriage.
  • the car display shows: The XXX site has been docked and ready to get off. And accompanied by voice prompts. Also shown are: driving XX kilometers, time XX minutes, billing XX yuan. After the car arrives at the lower parking space, the doors on both sides will open automatically. The voice prompt in the car: Please take the card at the exit door of the right door. After getting off the card, the door is automatically closed and closed. Continue to transfer to the storage bin with the active track segment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种独立式同步轨道交通,采用独立小车厢和单向小轨道,车厢遵从统一的时钟节率,进行同步、电动、自动控制运行。全程以全速无中停(无路口等待和中途站点停靠)的方式运行。主要用于城市交通,也可用于长途运输。轨道可铺设于地下、地面或架空。一条轨道的运载力可达每小时2万人次,可解决城市交通拥堵问题。

Description

独立式同步轨道交通 技术领域
本发明涉及一种轨道交通, 该轨道交通其网内车厢可实现无交叉路口等待, 无中间站点停靠, 全程全速高效运行, 能解决目前城市交通拥堵问题。
背景技术
目前,城市交通主要有公路和地铁两种模式。作为公共交通均存在多站点停 靠问题, 这导致大量的能源和时间的浪费; 更为普遍的公路交通还存在大量的交 叉路口等待问题, 这又是一个巨大的能源和时间的浪费。在公共交通上如何大副 降低能耗、 提高效率、 解决拥堵, 仍无较好的办法。
发明内容
为了有效解决城市交通拥堵, 降低交通能耗, 提高交通效率, 本发明提供了 一种新的交通模式和交通理念。 以该模式建成的轨道交通网, 其网内车厢可实现 无交叉路口等待, 无中间站点停靠, 全程全速高效运行, 对于乘员也几乎没有上 车前的等待问题, 且占地面积远小于公路的占地面积。
本发明所采用的技术方案是: 采用独立小车厢和单向小轨道, 轨道网内的车 厢遵从统一的时钟节率进行同步运行, 车厢由电力驱动, 系统程序监控, 自动完 成全程运行。
独立小车厢 (以下简称 "车厢") 为长、 宽、 高尺寸小, 流线形气动外形, 单次运载量小,运行频率高,不与其他车厢相连接,可进行单独运行的独立车厢。 其三维尺寸为: 长 1. 6米, 宽 1. 2米。 内设并排两座位, 可搭载 1人或 2人(为 同一目的地站点); 车厢前后两轮轴位于底盘中线的主梁上, 分别由各自轮轴上 的电机(为电动、 发电两用电机)驱动; 车厢的制动主要由发电机将车轮转动的 动能转换成电能来完成,产生的电能储存于车内蓄电池中; 轮轴两端是两个承载 车厢体的负载杆, 负载杆通过减振器和一个外径 50厘米的推力圆锥滚子轴承与 车厢体连接; 轮轴中间为电机壳体, 壳体内为电机, 电机转轴与钢轮的中心轴为 同一根轴; 壳体上方有一圆柱形壳体稳定柱, 以壳体稳定柱为中心点, 轮轴可在 轨道面随轨道方向的改变进行自由转向; 壳体上有一延伸至轨道槽内的锥体。锥 体上窄下宽, 卡于轨道槽内起到防止车厢脱离轨道的作用, 正常运行时锥体侧面 的安全滚轮与轨道内侧面间隙 2-3毫米; 锥体两侧有延伸出的电刷, 可从轨道两 个内侧面的电源极面导入动力电源驱动轮轴上的电动机;锥体底面上设有两个位 置信号发生器 (为嵌入式的独立永磁铁, N极向外)、 两个位置感应端口、 一组 信号发送端口、一个信号接收端口和一个故障信号发送端口, 可与轨道进行位置 和控制信号的发送和接收。位置信号发生器、位置感应端口、信号发送端口和信 号接收端口,均是由磁铁或感应线圈构成, 每一感应线圈由一对引线与系统电路 相联, 它们之间的信息交换传送是通过电磁感应实现的。一个锥体的两个位置感 应端口的引线经逻辑或运算电路合成一路后输入系统。车厢纵向轴线上的前后两 端点外侧, 各安装有一个 "缓冲极面", 此极面由直流线圈产生磁极, N极向外, 可避免前后两车厢发生钢性碰撞。若通过轮轴延伸杆在车厢底盘前后轮轴上加装 4个普通橡胶轮胎, 并在车厢内设置相应的操纵杆及制动器, 则此车厢可作为私 人车厢进入普通公路运行。
单向小轨道的轨道宽度小、每条轨道均为单向运行设计, 每一段轨道均由轨 道位置信号发生器标示出一段段长度较短的、连续的轨道长度单元, 以便于实现 对在轨道上运行的车厢的监控。 轨道横截面为 "U"形, U形槽口内宽 24厘米、 外宽 30厘米, 单侧轨道面宽 3厘米, 轨道高 14厘米, 底部宽 32厘米。 轨道两 内侧面上安装有动力电源的两个极面, 电源极面随轨道延伸, 为车厢提供动力。 轨道每隔 1. 2米距离有一宽 5厘米, 厚 3. 5厘米的轨道连接段将 "U"型轨道两 侧立面在底部连接起来,铺设轨道时可对两侧面做进一步固定。在主轨道上每间 隔 2个轨道连接段处的轨道连接段上表面两端, 安装有一对轨道位置信号发生 器, 即主轨道上每两对轨道位置信号发生器间隔 3. 6米; 其他轨道段的位置信号 发生器间隔由该处车厢预设速度确定。 轨道位置信号发生器是一个永磁铁, 一 般为 N极向上,当车厢经过时此磁极在车厢锥体上的位置感应端口感应产生一个 位置脉冲。 部分轨道段(汇入点和分叉点附近)在轨道位置信号发生器边上还装 有位置感应端口、信号发送端口、信号接收端口和故障信号接收端口, 以实现与 车厢进行位置信号和控制信号的传送与接收。所有端口均为线圈构成, 并且每一 线圈由一对引线连接到相应的汇入点或分叉点, 以实现对相关信号的传送。轨道 网内需 "十字"交叉的轨道均采用立体交叉形式, 两轨道交叉处在垂直面上保持 1. 8米 -2. 0米的高度差, 两条轨道在同一平面的相交均为同向的 "人"字交叉, 其交叉点在这里称为 "汇入点"(两个轨道上的车厢经该点汇入到一条轨道上同 向运行)或 "分叉点"(一个轨道上的车厢经该点分开到两条轨道上运行)。 在转 弯处的轨道, 轨道面设置为向转弯中心方向倾斜一定角度, 其角度值根据转弯半 径和该处轨道预设速度确定,以最大限度抵消车厢在转弯时产生的离心力减小轨 道对车厢钢轮内沿以及锥体安全滚轮的压力。
若从一公路附近轨道的适当位置, 通过一专用分叉点 (称为 "脱网分叉点") 延伸出一条专用轨道 (称为 "过渡段轨道") 至普通公路路面, 轨道的末端段轨 道方向与在该处公路上的行车同向。则私人车厢可经此分叉点脱离轨道网并减速 成后进入普通公路运行。 这样, 在单向运行的基础上, 还要避开两车厢在同一时刻通过同一汇入点。 这由在网车厢遵从统一时钟节率同步运行和对车厢运行的适时监控来实现的。
把时间分为时长较短的、连续的、一段段等长度的时间单元, 其中每一段时 间单元均称之为轨道网的 "时钟单元"。 车厢在任一轨道段以该轨道段的预定速 率在一个时钟单元内运行的距离称之为该轨道段的 "长度单元", 当预定速率等 于额定速率(在网正常均速运行的速率) 时, 对应的长度单元也称为 "标准长度 单元"。预定速率等于额定速率的轨道称为 "主轨道"。 车厢遵从统一的时钟节率 同步运行是指: 以一个时钟单元为节率, 每一时钟单元内所有在网正常运行的车 厢均运行一个长度单元; 并且车厢在任一时钟单元的任一时刻, 均运行至相应轨 道长度单元的同一位置上。以轨道位置信号发生器将每一轨道的长度单元在轨道 上标示出来,每两对轨道位置信号发生器之间的轨道距离即对应为该轨道的一个 长度单元, 一个长度单元的轨道内最多容纳一个车厢(长度单元的值与车厢长度 值的差为误差允许距离)。 若时钟单元为 0. 18秒, 车厢额定速率为每小时 72千 米, 则轨道的标准长度单元为 3. 6米。 以此计 (以下均以此计), 一条轨道每小 时最多可运行 2万个车 (厢) 次, 平均载客 3万人次。
轨道网中的站点, 是车厢运行的始发站和终点站, 可设置于轨道的一侧、交 叉路口的上方、两条相向轨道的中间上方或其他适当的地方。站点有进出站轨道、 站点信息系统、 车厢测试和转运系统、 电源系统、 储车仓、 在轨异常车厢导出系 统以及相关附属设施, 由 1-2人值守。 进站轨道由减速段轨道、 环形轨道、 停靠 槽、活动轨道段以及起连接作用的分叉点构成, 连接主轨道和减速段轨道的分叉 点称为 "站点分叉点"; 出站轨道由发车槽、 环形轨道、 加速段轨道以及起连接 作用的汇入点构成, 连接主轨道和加速段轨道的汇入点称为 "站点汇入点"。 进 出站环形轨道面为上下层分布, 进站环形轨道面高出出站环形轨道面 4. 5米。站 点信息系统主要功能有: 1、为车厢提供标准的轨道网时钟以及系统恢复数据; 2、 通过读取站点汇入点的另一来车方向上的车厢位置信息和各发车槽内车厢的请 求发车信息, 为各发车槽的车厢提供各自的发车时刻; 3、 掌握站点内车厢数量 和各停靠槽、 发车槽适时的占用信息, 在必要时关闭 (或开启) 站点分叉点,使 主轨道的车厢不能 (或可以) 再进入该站点; 4、 在掌握站点内车厢数量和进出 站点车厢情况并与其他站点进行适时信息交流的基础上,必要时及时向其他相应 站点发送空车厢,这样可腾出储车仓车位以容纳更多的进站车厢或向车厢不足的 站点输送可用的车厢。 车厢测试转运系统包括转运滑道、活动轨道段、活动轨道 段储备区及相关控制设施, 其主要功能有: 1、 在活动轨道段上对每一个进站车 厢进行性能指标检测; 2、 根据检测结果将活动轨道段上的车厢转运到储车仓的 待用区或故障区; 3、 及时在停靠槽的末端补充上新的活动轨道段, 以使其他进 站车厢继续进入; 4、 及时将车厢从储车仓输送至发车槽。 当车厢进入活动轨道 段并被固定后, 活动轨道伸出综合信号插头与车厢底盘的综合信号接口相连,开 始对车厢进行检测。 检测内容包含: 电机 (电动机、 发电机)性能检测、 锥体端 口 (位置感应端口、 信号发送端口、 信号接收端口、 位置信号发生器和故障信号 发送端口)检测和车厢系统检测。检测时间从检测插头与车厢底盘的综合信号接 口相连开始至车厢被转运进储车仓前结束。 检测结果通过车内显示器显示出来, 并使车门指示灯亮绿灯 (正常) 或红灯 (故障); 另一方面, 根据检测结果 (正 常与否)活动轨道段相应地将车厢送入储车仓的待用区或故障区。 电源系统为站 点(各系统和设施)提供所需的各种电源, 也为该站点附近的主轨道提供动力电 源以及主轨道上汇入点、分叉点和各种端口等所需的电源。储车仓位于进出站环 形轨道内侧的圆柱形区域, 可存储 400个车厢, 包括待用区(存储性能合格的车 厢)和故障区(存储需维修的车厢)两个区, 主要功能是存储进站车厢并及时向 各个发车槽提供性能合格的车厢。在轨异常车厢导出系统主要由故障信号接收端 口、故障导出分叉点及故障导出轨道组成,主要功能是及时将主轨道中的故障 (异 常) 车厢及时分离出来, 确保主轨道畅通。 故障信号接收端口在主轨道上每隔 100个轨道长度单元安装一组(3个), 分别于连续三个轨道单元对应的轨道连接 段中间位置各安装一个,在主轨道上每一分叉点前一个长度单元以及故障导出分 叉点前一个长度单元均安装一个; 故障导出分叉点在站点分叉点前 12个长度单 元处和两个站点中部的主轨道处各设置一个。
位置信号发生器、位置感应端口、信号传送端口和信号接收端口, 在轨道上 的主要安装情况是这样的: 1、 每隔一个长度单元安装一对位置信号发生器, 在 相应的轨道连接段上表面的两端各安装一个, 一般为磁极 N极向上。 2、 在汇入 点 (所处的长度单元) 两个来车轨道方向前各 60个长度单元内每一个位置信号 发生器旁均装一位置感应端口、 信号发送端口和信号接收端口; 在分叉点前 2 个长度单元起始点处各安装一对位置感应端口和一个信号接收端口。 汇入点前 60个长度单元内的范围称为该汇入点的 "汇入点监控范围", 第 60个长度单元 起始处的轨道位置信号发生器为前后设置的双磁极, 依次为 S极和 N极向上,该 位置称为该汇入点的 "监控起始点"。 3、 在分叉点 (所处的长度单元) 前第 3 个长度单元起始处的轨道位置信号发生器为前后设置的双磁极, 依次为 N极和 S 极向上; 分叉点 (所处的长度单元) 起始点处的轨道位置信号发生器为一个 S 极向上的磁极; 若一分叉点前 3个长度单元在一汇入点监控范围内, 则应设于该 分叉点前第 3个长度单元起始处的双磁极位置信号发生器改设于汇入点的监控 起始点处, 在接下来的一个长度单元再设双磁极位置信号发生器(S、 N)作为该 汇入点的监控起始点。汇入点或分叉点均处于所在长度单元的中间位置, 相应地 该长度单元称为 "汇入点长度单元"或 "分叉点长度单元"; 该长度单元的起始 位置信号发生器称为 "汇入点位置信号发生器"或 "分叉点位置信号发生器"。 4、 在发车槽与环形轨道相连的汇入点长度单元的起始处的位置信号发生器为双磁 极 (S、 N) 设置。 5、 在环形轨道至加速段轨道过渡点处的位置信号发生器为双 磁极 (N、 N) 设置。 6、 在站点汇入点加速段轨道一侧的长度单元起始点处的位 置信号发生器为双磁极 (S、 S ) 设置。 7、 在站点分叉点减速段轨道一侧的长度 单元结束点处的位置信号发生器为的磁极为 S极向上。 8、 在减速段轨道至环形 轨道过渡点处的位置信号发生器的磁极为 S极向上。 9、 连接环形轨道与停靠槽 的分叉点在停靠槽入口处的位置信号发生器的磁极为 S极向上。 10、在轨道坡度 较大的起始点的轨道位置信号发生器为三磁极设置(上坡为: "N、 S、 S "、 "N、 S、 N"或 "N、 N、 S "; 下坡为: " S、 S、 N"、 " S、 N、 S "或 " S、 N、 N',); 在脱网分 叉点前第 3个长度单元起始处和过渡段轨道末端 0. 3米处的轨道位置信号发生器 均为三磁极设置, 向上磁极分别是: " S、 S、 S "和 "N、 N、 N"。
站点通过减速段轨道经站点分叉点把车厢从主轨道导出,车厢在减速段轨道 运行速度降到额定速度的 50%时进入环形轨道, 并根据停靠槽的占用情况(按次 序)选择一个不被占用的停靠槽进入并再次减速, 最后在该停靠槽末端的 "活动 轨道段"(为车厢测试转运系统终端) 上停下, 活动轨道段弹出固定档板将车厢 固定。随即该活动轨道段载着车厢下降到停靠槽下方 2米处的下车位, 以便乘员 下车。 与此同时, 一方面, 在车厢顶部下降至低于原活动轨道段位置时活动轨道 段储备区的另一活动轨道段自动把该停靠槽活动轨道段的空位补上,以接收下一 车厢的进入停靠; 另一方面, 在车厢被固定开始, 活动轨道段通过综合信号插头 与车厢联接, 自动开始对该车厢的性能进行检测。待乘员下车后, 车厢继续下降 2. 5米, 并根据性能检测结果进入储车仓的待用区或故障区。 当发车槽有空车位 时 (有车厢发出), 通过转运系统从储车仓的待用区及时向该发车槽补充一个车 厢。 从车厢进站被固定在活动轨道段上后, 车厢的移动始终由活动轨道段承载, 只有该车厢再次被使用一-车厢从发车槽滑出发车时才与活动轨道段分离, 此时 该活动轨道段自动转移至活动轨道段储备区, 等待再次向停靠槽补充使用。
从站点驶出的车厢, 经加速段轨道加速至额定速率, 在适当的时钟单元通过 站点汇入点进入主轨道运行。车厢发车前位于发车槽上, 通过综合信号接口与站 点信息系统相联,在乘员输入目的地站点后, 车厢系统根据已存储的轨道网信息 (各站点间的多条适宜线路) 选择确定一条里程最短的线路或不繁忙的线路。站 点信息系统根据站点汇入点处的时钟单元占用情况(汇入点通过各位置感应端口 获得), 统筹安排各发车槽已确定目的地的车厢的发车时刻, 车厢在与站点信息 系统进行系统时钟同步和轨道信息校对后根据站点信息系统确定的发车时刻适 时启动发车 (活动轨道段在发车时刻到来前收回固定档板和综合信号插头)。 车 厢先经发车槽加速后进入环形轨道对车速进行校正, 再经加速段轨道再次加速, 在轨道网某一时钟单元的开始时刻以额定速率通过站点汇入点进入主轨道运行。
当车厢在主轨道运行每经过一对轨道位置信号发生器时,车厢前后锥体上的 位置感应端口均感应生成一个位置脉冲,车厢系统对前锥体感应的位置脉冲进行 计数(若前锥体位置脉冲出现异常则使用后锥体的位置脉冲, 并在使用生成时间 上作 0. 045秒的提前)。 其计数值应与车厢系统对经过的时钟单元的个数计数值 相一致, 否则说明车厢在轨道上的位置落后了或超前了, 此时车厢系统根据当前 的车速并按程序确定是否要通过调整车速或如何调整车速,以达到调整车厢相对 位置的目的。在计得的位置脉冲数和时钟单元数一致的情况下将适时的位置脉冲 信号产生的时间点与对应的时钟单元的结束点在时间点上进行比对,若二者重合 则认为车厢在该长度单元中所处位置准确,否则系统也将按程序对车厢位置进行 微调, 以达到位置与时钟同步的目的。车厢运行速度的监测方法有三种: 一是通 过测量车厢经同一轨道位置信号发生器时前后锥体位置感应端口产生的位置脉 冲信号的时间差来确定车速的;二是通过测量同一锥体位置感应端口经过相邻两 对轨道位置信号发生器时产生的位置脉冲信号的时间差 (应为一个时钟单元长 度)并对应于相应轨道段车厢的预定速度来确定车速的; 三是通过测量电动机的 转速(即钢轮的转速)来确定车速的。 车速的调整主要是通过调整电动机的输入 电压或启动发电机进行制动来实现的。位置调整优先于速度调整。车厢在运行过 程中不断地进行位置和速度的修正, 这样整体上达到速度和位置与时钟同步。
当车厢运行到一汇入点监控起始点时,一方面, 锥体上的位置感应端口从轨 道位置信号发生器上感应生成一双脉冲位置信号 "01 ", 车厢系统收到此信号后 开始接收持续 60个时钟单元时长内信号接收端口产生的控制信号。 另一方面, 该汇入点通过轨道上的位置感应端口接收该车厢的位置信号 " 1 ", 并在必要时向 该车厢发送调整位置的控制信号。汇入点通过位置感应端口接收监控范围内(两 个来车轨道方向) 车厢的位置信息, 从而判断在即将到来的 60个时钟单元内是 否会有两个车厢将在同一时钟单元经过该汇入点。若有, 控制系统将根据各车厢 的位置信息向相关车厢发出位置调整指令, 以调整各车厢相对位置, 避免两车厢 同时经过汇入点的情况发生。位置调整指令为三位二进制脉冲代码, 相应的代码 在适当的时钟单元经引线传到适当的长度单元轨道连接段上的信号发送端口,该 组代码分别以相应的电流导通方向在信号发送端口的三个线圈上体现,即不同的 电流导通方向在线圈上产生不同的向外磁极。这三个磁极在相关的车厢通过时在 车厢锥体的信号接收端口中感应产生一组三位二进制的脉冲,该脉冲即为汇入点 发出的位置调整指令。车厢根据信号接收端口收到的指令通过调整车厢速度达到 调整车厢相对位置的目的。 所有端口产生的二进制代码均以正负脉冲形式出现, 正脉冲即是高电平 " 1 ", 负脉冲即是低电平 "0"。
当车厢进入一汇入点长度单元时,该处轨道位置感应端口从车厢锥体上的位 置信号发生器感应生成的位置脉冲信号 " 1 "被直接传送到该汇入点的变轨控制 器上, 作为变轨控制器的变轨操作触发信号, 使变轨控制器在该车厢进入变轨处 时完成汇入点的变轨操作或保持原有状态,以确保该车厢经过汇入点时汇入点处 的该车厢轨道方向畅通。
当车厢运行到一分叉点前第 3个长度单元(该分叉点不处于某汇入点监控范 围)起始处时, 锥体上的位置感应端口从轨道位置信号发生器上感应生成一双脉 冲位置信号 " 10"。 当一分叉点处于一汇入点监控范围内, 车厢运行至此汇入点 监控起始点时感应生成一双脉冲位置信号 " 10"。 此信号也作为车厢发送分叉点 变轨信号的触发信号,使车厢在进入下一个长度单元时通过锥体信号发送端口持 续发出分叉点变轨信号(运行线路确定后其每一分叉点的变轨情况就已确定了), 该变轨信号(与位置脉冲同步)在车厢通过轨道上的信号接收端口时经电磁感应 传递给分叉点的变轨控制器,使变轨控制器在车厢通过分叉点前准时进行正确的 变轨操作。分叉点变轨信号为一组三位二进制冲, 正负脉冲分别表示向左和向右 变轨。 具体含义见下表:
Figure imgf000008_0001
第一、 二、 三位的脉冲分别对应车厢即将通过的第一、 二、 三个分叉点将要 进行的相应变轨操作。第一个分叉点收到该变轨信号后, 根据第一位脉冲和该车 厢相应的位置脉冲,先将变轨操作在即将到来的相应时钟单元的开始时刻预置为 相应的向左或向右变轨, 并在后面的每个时钟单元都进行一次刷新, 直至该车厢 通过; 其次, 根据第一位脉冲的正负性将第二、三位脉冲送往左侧或右侧轨道方 向的下一分叉点或汇入点, 若此时在该车厢前方 60个长度单元范围内除该分叉 点外无其他分叉点或汇入点, 则后两位脉冲不再被发送。第二个分叉点收到从第 一个分叉点来的变轨信号后所做的工作与第一个分叉点一样,所不同的是此时它 所读到的第一位脉冲是原变轨信号的第二位脉冲。第三个分叉点也进行相同原理 的变轨预置和操作,但因变轨信号没有第四位脉冲, 所以该组变轨信号只传送至 第三个分叉点。 若此时在该车厢前 60个长度单元的变轨信号传送的轨道线上有 其他汇入点,则该汇入点在读取该车厢位置脉冲时对该位置脉冲做上有变轨信号 伴随的标记, 表示该车厢将通过本汇入点。
当车厢运行至一坡度较大的上坡段轨道前时,车厢锥体位置感应端口感应生 成一个三脉冲位置感应信号 " 100 " (或 " 101 "或 " 110 ", 不同的三脉冲位置信 号表示不同的坡度范围), 车厢系统收到此信号后, 根据车体重量使电动机输入 电压直接提高到一个较高的相应值上,再通过对车厢速度的适时监测对控制车速 的电动机输入电压进行微调, 使车厢能更好地以预定速度通过该上坡段轨道。当 车厢运行至一坡度较大的下坡段轨道前时,车厢锥体位置感应端口感应生成一个 三脉冲位置感应信号 "001 " (或 "010"或 "011 " ), 车厢系统收到此信号后, 根据车体重量使电动机输入电压直接降低到一个较低的相应值上,再通过对车厢 速度的适时监测对控制车速的电动机输入电压进行微调, 或直接停止电动机工 作, 或停止电动机工作并启动发电机进行相应的制动, 使车厢能更好地以预定速 度通过该下坡段轨道。 在车厢运行的全程系统对车速的监控从不中断。
当车厢运行到目的地站点分叉点前 3个长度单元时,锥体上的位置感应端口 感应生成双脉冲位置感应信号 " 10 "。 车厢系统根据运行的线路, 对所通过的分 叉点个数计数达到预定的值后收到 " 10 "位置信号, 则系统立即通过锥体信号发 送端口持续发送站点分叉点变轨信号 " 000", 其他车厢发送 " I X X "的变轨信 号,所以该车厢向右转弯通过该站点分叉点离开主轨道进入减速段轨道。车厢通 过减速段轨道减速进站最终完成全程的运行。在车厢到达目的地站点前(以发送 站点分叉点变轨信号为界), 均可通过车厢内触摸显示屏重新设定目的地站点。
车厢在运行过程是通过位置脉冲和对经过的分叉点进行计数来确定自身所 处的位置。若相关的轨道位置信号发生器或锥体位置感应端口出现故障, 车厢无 法通过位置脉冲及时、准确地确定在轨道网中所处的位置时, 车厢系统可根据行 车距离(通过轮轴的转数得到)对照存储的运行线路的资料来确定自身位置和前 方各分差点、汇入点的相对位置, 从而及时发送或接收各种信号; 也可根据轮轴 的转速适时确定车速, 并对照时钟和所处的位置对车厢的运行状态进行控制。
若车厢在运行过程中性能出现异常难以正常运行,则车内独立的应急电源启 动并根据故障监测情况分三路输出: 第一路为电动机提供电力, 以补充因故障缺 失的动力; 第二路为缓冲极面提供电力增强前后缓冲极面的磁场强度, 以提高对 前后车厢间可能发生撞击的缓冲能力;第三路使前后锥体上的故障信号发送端口 导通, 端口产生 " S "极向下的磁极, 当经过设于轨道上的故障信号接收端口时 使后者感应生成强故障信号 "0"。 此故障信号通过引线被送往前方第一个站点、 前方第一个故障导出分叉点以及此故障导出分叉点与感应生成故障信号的端口 之间的主轨道上的汇入点和分叉点。根据此故障信号, 相关的汇入点在必要时可 对故障车厢前后的相关车厢发出适当的位置调整指令;相关的分叉点及时进行相 应变轨操作使之更可靠地把故障车厢往最近的故障导出分叉点方向引导。若故障 车厢速度过小或无法提供动力而不能及时到达故障导出分叉点脱离主轨道,则后 续车厢可通过前缓冲极面与故障车厢(或前车)的后缓冲极面之间的磁斥力推动 故障车厢前进, 直至故障车厢脱离主轨道。 当车厢到达前方第一个故障导出分叉 点前时,通过设于此处的故障信号接收端口感应的故障信号, 故障导出分叉点开 启, 将该车厢导出主轨道。
若车厢为加装了普通橡胶轮胎的私人车厢,则是经站点中的私车通道进入站 点, 性能检测合格后从相应的发车槽进入轨道网运行, 其发车和运行过程与其他 车厢一样, 但完成轨道网内的运行后该车厢不进入站点, 而是经脱网分叉点(一 般设于站点分叉点前 6个长度单元处)脱离主轨道进入脱网减速轨道, 减速后进 入普通公路运行。车厢运行至脱网分叉点前 3个长度单元时, 锥体位置感应端口 感应生成一个三脉冲位置感应信号 "000 " (其他车厢视该信号为无用信号)。 此 时私人车厢对通过的分叉点个数的计数值若已达到预定值,则车厢系统将通过锥 体信号发送端口持续发送脱网分叉点变轨信号 "001 ", 使车厢通过脱网分叉点脱 离主轨道进入过渡段轨道开始减速运行, 车厢在通过过渡段轨道末端 0. 3米时 (此处轨道 U型槽口内宽 26厘米),前后锥体的位置感应端口先后感应产生一个 三脉冲位置信号 " 111 ", 车厢系统收到此信号后控制前后壳体稳定柱使壳体绕轮 轴旋转 90° , 壳体稳定柱指向正前方, 使壳体不能在水平方向上转动, 也使锥 体向后收起, 并同时启动车厢操纵杆和制动器性能。 随即前后钢轮以 36千米 / 小时的速度先后脱离轨道, 同时前后的普通轮胎先后平稳地接触上公路路面,此 时车厢结束了程序控制运行开始人为的驾驶操作,这样就完成了车厢由轨道网到 公路网的过渡。 在公路上运行, 车厢由车内蓄电池提供动力电源。
附图说明
图 1为车厢三视图, " 1 "为前缓冲极面, " 2 "为后缓冲极面, " 3 "为轮轴体, "4" 为车门。 图 2为一段轨道三视图, 箭头方向表示车厢的运行方向, " 5 " 为 轨道电源极面, "6 " 为轨道连接段, " Ί "为位置信号发生器, " 37 "是位置信号 发生器为双磁极或三磁极设置时所增加的磁极的位置, "8 "为位置感应端口," 9" 为信号发送端口, " 10"为信号接收端口, " 11 "为故障信号接收端口。 图 3为锥 体底面视图,箭头方向表示锥体的运行方向, "19"为锥体位置信号发生器, "20" 为锥体位置感应端口, "21"为锥体信号发送端口, "22"为锥体信号接收端口,
"23"为故障信号发送端口。 图 4为轮轴体三视图, "12"为钢轮, "13"为电动、 发电两用机壳体, "14" 为壳体稳定柱, "15"为锥体, "16"为锥体安全滚轮,
"17" 为电刷, "18" 为负载杆。 图 5为轮轴体与轨道结合视图以及钢轮轴向切 割视图。 图 6为进站轨道的平面示意图, "24"为减速段轨道, "25"为进站环形 轨道, "26"为活动轨道段, "27"为站点分叉点, "28"为停靠槽。 图 7为出站 轨道的平面示意图, "29"为加速段轨道, "30" 为出站环形轨道, "31"为发车 槽, "32"为发车位, "33"为站点汇入点。 图 8为三叉路口轨道分布示意图,图 中线条表示轨道, 线条上的箭头表示车厢, 箭头方向表示该轨道上车厢的运行方 向, "34"为分叉点, "35"为汇入点。 图 9为十字交叉路口轨道分布示意图。 图 10为分叉点或汇入点平面示意图, "36"为变轨闸门。 图 11为变轨闸门末端段 的三视图。
具体实施方式
当我们在一站点的发车位 (31) 登上一车厢并关门 (4) 后, 车内显示器显 示: "请扣好安全带并输入目的地站点名称或代码"并伴有语音提示。 (若负载超 重则有语音和显示提示: 对不起, 本车厢限载 200Kg, 现超载 XXKg, 不能发车。 同时车门自动打开。) 输入目的地站点后系统提示核对目的地站点并要求插卡确 认。 确认后, 语音提示: 请坐好, 马上发车。 此时显示器显示目的地站点、 行车 里程、 预计所需时间和预计收费金额 (将从插入的卡中扣除)。 几秒后车厢启动 并开始加速驶出。
这一过程车厢系统所做的主要工作有: 一是根据预先存储的程序, 进行安全 提示及运行线路选择; 二是根据设定的额定负载, 车厢通过安装在活动轨道段下 的计量器对车厢重量进行测量,确保不超载运行, 并以此确定启动时电动机的输 出功率,保证车厢以统一的加速度发车, 并将这一重量值输入运行控制系统作为 这一行程每次控制车厢加减速的重要参考参数;三是与站点系统进行时钟同步和 轨道信息校对——即重新设置与轨道网同步的时钟,并校对轨道网中所有可运行 的线路的汇入点 (35)和分叉点 (34) 的位置信息; 四是向站点系统发送发车请 求信号并从站点系统获取允许车厢发车的时刻信息;五是在发车时刻到达时接通 电动机的动力电源启动前后两个电动机加速车厢; 六是接通前后缓冲极面 (1) (2) 的直流电源使之产生较强的较稳定的磁场。 以上三、 四两点是通过位于车 厢底部的综合信号端口经活动轨道段(26)的综合信号插头与站点系统相连接完 成相关信息交换的。站点系统确定每一车厢的发车时刻是通过适时读取进入站点 汇入点 (33) 监控范围 (此处为汇入点主轨道来车方向前 90个轨道长度单元) 的轨道占用信息以及发车槽 (31 ) 内发出发车请求的车厢位置信息来确定的,以 确保车厢有序驶出站点并在进入站点汇入点(33)时在时钟上不与站点汇入点的 主轨道来车方向的车厢发生冲突。 在该监控范围内轨道长度单元占用度较低时, 确定车厢发车时刻亦参考以车厢进入主轨道后与前后车厢的距离均不小于 3个 长度单元的入轨优化原则, 以方便该轨道段的车厢在通过下一汇入点 (35 )时其 他车厢的汇入。 另一方面, 发车槽(31 ) 中的活动轨道段在车厢发车时刻到达前 的一个时钟单元,通过继电器自动收回综合信号插头, 并同时收回车厢的固定档 板, 撤除活动轨道段与车厢的连接和固定。
当车厢启动后加速驶出发车位 (32 ), 此刻车厢系统时钟开始独立运行并对 经过的时钟单元个数进行计数, 系统也对前锥体位置感应端口 (20)感应的位置 脉冲进行计数(一个位置脉冲产生的时刻对应着前一个时钟单元的结束和后一个 时钟单元的开始), 经汇入点 A时, 位于 A点前的轨道位置感应端口 (8)在车厢 经过时经车厢锥体位置信号发生器(19)感应生成一位置脉冲 " 1 ", 此脉冲触发 该汇入点 (35) 的变轨装置的继电器使变轨间门 (36) 进行相应的变轨操作,车 厢顺利通过汇入点 A, 并以同样的方式通过汇入点 B——汇入点 B处的变轨装置 在常态下为变轨闸门 (36 )对发车槽 (31 )关闭, 对环形轨道开通。 当车厢通过 B点时, 锥体位置感应端口 (20) 感应生成一双脉冲位置信号 "01 ", 系统收到 此位置信号后,发出控制信号降低电动机输入电压, 使车厢保持匀速进入环形轨 道(30), 同时车厢系统也开始接收后锥体位置感应端口 (20)感应的位置脉冲。 车厢系统通过比较前后位置感应端口 (20) 与同一轨道位置信号发生器 (7) 感 应产生位置脉冲的时间差来确定车厢速度,若车厢的速度未达到预定值时, 则通 过改变电动机的输入电压来改变其输出功率,达到调整车厢速度的目的。使车厢 以预定速度通过环形轨道经 C点进入加速段轨道 (29)。
当车厢运行至 C点前时, 锥体位置感应端口 (20)感应生成一双脉冲位置信 号 " 11 ", 表示车厢开始进入加速段轨道(29)。 车厢系统收到此信号后根据存储 的该站点加速段轨道(29) 的坡度、 长度等相关数据以及车厢重量, 再次控制车 厢加速,使车厢进入加速段轨道后在任一位置均达到预定的速度。这一过程车厢 速度的进一步微调控制是根据车厢所经过每一对位置信号发生器 (7) 时的实际 速度与该点的预定速度进行比较的差值适时改变电动机的输入电压,从而通过改 变加速度来实现的。车厢最终实现以额定的速度、在预定的时钟单元内通过站点 汇入点 (33 ) D, 进入主轨道。 当车厢通过站点汇入点 D前的最后一对位置信号 发生器时, 锥体位置感应端口 (20) 感应生成一双脉冲位置信号 "00", 表示加 速段轨道(29) 已结束。 系统收到此脉冲后, 一方面切断其中一个电动机的动力 电源并调整另一个电动机的输入电压, 使之以较低的输出功率保持车厢匀速运 行; 另一方面清除之前对位置脉冲和时钟单元的计数值, 开始对在主轨道运行的 位置脉冲和时钟单元进行计数——系统收到前锥体位置感应端口(20)产生合成 的一个位置脉冲, 位置脉冲计数值增 1, 运行一个时钟单元的时间长度, 时钟单 元计数值增 1。 在车厢通过站点汇入点 (33)进入主轨道后通过第一对轨道位置 信号发生器 (7) 时, 对位置脉冲和时钟单元的计数应同时计得数值 1。
当车厢在主轨道运行时,主要是要保持车厢运行的位置和速率与时钟同步运 行。即在任一时钟单元内的任一时刻车厢匀运行至相应的轨道长度单元之中的相 应位置上。 车厢通过位置感应端口 (20)感应的位置脉冲对经过的轨道长度单元 个数进行计数, 并与所用的时间 (系统时钟单元的个数)进行比较, 若二者不相 等, 则说明该车厢要调整相对位置, 以使所处位置的相应长度单元与对应时钟单 元相一致。主轨道上位置的调整一般是通过调整车速使车厢先加速后减速(向前 调整)或先减速后加速(向后调整)来实现的, 调整车速是通过提高或减小电动 机的输入电压(加速或减速)或在停止电动机工作的基础上启动发电机工作以减 小车厢的动能(更快的减速)的方式来实现。对车厢速度的监测主要是通过监测 位置脉冲来实现的, 一是通过测量车厢通过相邻两对轨道位置信号发生器 (7) 时产生的位置脉冲的时间差来确定的,二是通过测量车厢前后两个锥体上的位置 感应端口 (20) 先后通过同一轨道位置信号发生器 (7) 时产生的位置脉冲的时 间差来确定的。通过对车厢位置与运行速率不间断的监测与控制, 使车厢实现在 任一轨道段均能以预定速度同步运行。
当车厢经过一汇入点(35 )监控起始点进入汇入点监控范围时, 车厢通过该 处轨道位置信号发生器(为双磁极设置) 时锥体的位置感应端口 (20)感应生成 双脉冲位置信号 "01 ", 车厢系统收到此位置信号后, 开始接收来自锥体的信号 接收端口 (22) 的信号 (无位置信号 "01 "的触发系统将信号接收端口的信号视 为干扰信号), 时长 60个时钟点单元, 以便及时根据此信号进行车厢位置调整。 该汇入点通过位置感应端口同时接收两个来车方向监控范围内的车厢位置信息, 从而判断在接下来的 60个时钟单元内是否会有两个车厢将在同一时钟单元经过 该汇入点(35 )。在该车厢距汇入点单元 52个长度单元时, 车厢通过信号接收端 口 (22) 收到该汇入点 (35 )经该处轨道信号发送端口 (9)发来的一组 "000" 的位置调整指令信号。 车厢系统根据此信号使时钟单元计数额外减小 1个值,系 统减小电动机的输入电压(其值根据车厢重量由预设程序确定)使车厢以预设的 加速度持续减速 6个时钟单元的时长,再提高电动机的输入电压使车厢以预设的 加速度持续加速 6个时钟单元的时长, 此时车厢在 12个时钟单元内运行了 11 个长度单元, 完成了位置调整指令要求的向前调整一个长度单元的要求, 车厢速 度大小也恢复到了额定值, 电动机的输入电压随即也恢复到调速前的值, 使车厢 保持额定速率均速运行。 在这一调速过程中, 车厢系统通过锥体位置感应端口 (20)产生的位置脉冲的时间对车速大小变化进行监测, 及时向电动机输出修正 电压, 确保加速度按预设程序变化, 实现车厢调整位置的准确。 当车厢进入汇入 点长度单元时, 锥体上的位置信号发生器(19)使该处轨道连接段上的位置感应 端口 (8) 感应产生位置脉冲 "1", 该脉冲传至汇入点的变轨控制器, 触发变轨 控制器的继电器吸合, 带动变轨闸门 (36)完成变轨动作, 使汇入点处的该车厢 轨道方向畅通, 随即车厢通过了汇入点。
当车厢进入一分叉点(34)长度单元前第 3个长度单元时, 锥体上的位置感 应端口 (20)与轨道位置信号发生器(7)感应生成一双脉冲位置感应信号 "10" 此信号使车厢系统在进入下一个长度单元时通过信号发送端口(21)持续发出分 叉点变轨信号 "101" (对应的信号发送端口的三个线圈分别为直流正向、 反向和 正向导通), 该信号在车厢通过轨道上的信号接收端口 (10) 时使后者感应 (与 位置脉冲同步)生成一组三位二进制脉冲 "101", 此脉冲 (即变轨信号)传送给 分叉点 (34), 据此分叉点预先将变轨控制器的变轨方向在车厢进入分叉点长度 单元的时刻预置为向左变轨,并在车厢进入分叉点长度单元前 1个长度单元时将 这一预置进行一次刷新。在车厢进入分叉点长度单元时, 一方面, 该处轨道连接 段上的位置感应端口 (8) 感应产生的位置脉冲与变轨信号一起传至分叉点, 分 叉点根据变轨信号第一位的值使变轨控制器的继电器吸合, 带动变轨闸门 (36) 完成向左变轨的操作; 另一方面, 变轨控制器根据前两个时钟单元的预置情况也 同时使继电器进行相应动作完成向左变轨操作,这样即使有一个变轨信号的传送 控制途径出现不畅的情况分叉点也能在车厢通过时及时完成正确的变轨操作。在 车厢进入分叉点长度单元时,车厢在继续发送变轨信号的同时位置感应端口(20) 感应生成位置信号 "0"。 此信号使系统对经过的分叉点个数的计数增加 "1",并 停止发送变轨信号 "101"。
当车厢要通过一十字交叉路口时, 为了在预定的正确路线 (此处为通过点 E →F→G→H的轨道线) 上运行, 需要在车厢通过每一分叉点 (34) 时各分叉点都 给予正确的变轨操作使其进入正确的轨道, 在车厢通过汇入点 (35)时确保不与 从另一条轨道上通过该点的车厢发生冲突。 车厢运行至距 "分叉点 E"前 36个 长度单元 ( "汇入点 J" 的监控起始点) 时锥体位置感应端口 (20) 感应生成 双脉冲信号 "10"——表示前方有一个分叉点, 车厢系统收到此双脉冲信号后, 通过锥体信号发送端口 (21)持续发送变轨信号 "110"。 即表示通过当前第一个 分叉点 (E点) 时选择左侧 (第一位为 "1") 通行, 通过第二个分叉点 (F点) 时也选择左侧 (第二位也为 "1")通行, 通过第三个分叉点 (即通过两个分叉点 E、 F和汇入点6、 H后的下一分叉点) 时选择右侧 (第三位为 "0") 通行。 此变 轨信号在锥体信号发送端口 (21 )的线圈上表现为: 第一至三位的线圈导通方向 依次为正向、 正向、 反向; 向外磁极极性表现为 N、 N、 So 此信号经轨道信号接 收端口 (10) 感应生成 "正脉冲、 正脉冲、 负脉冲" 即 " 110"变轨信号, 此信 号与轨道位置感应端口 (8)感应生成的车厢位置脉冲 " 1 "同时经各自的端口引 线被送给分叉点 E的控制系统。 分叉点 E结合位置脉冲, 根据变轨信号 " 110" 的第一位为 " 1 ", 一方面将变轨控制器的控制信号在即将到来的相应的时钟单元 开始时预置为常态 (任一分叉点或汇入点其 "常态"均为保持直行畅通状态,该 分叉点的常态正好为左侧通行), 并在每个时钟单元对其预置进行一次刷新 (车 厢每经过一个长度单元轨道均收到一次位置脉冲和变轨信号), 确保车厢到达 E 点时直行通过, 向 F点运行; 另一方面将车厢位置脉冲和变轨信号的第二、三位 即 " 10"沿着车厢将要运行的轨道方向一同送给下一分叉点 F (汇入点 J只收到 该车厢的位置脉冲信号)。分叉点 F收到信号后系统所做的工作与 E点原理一样, 一方面预置变轨控制器在相应的时钟单元使 F点向左侧轨道畅通; 另一方面,从 车厢距汇入点 G、 1 60个长度单元开始, 该车厢的位置脉冲就通过 F点被分别发 送到汇入点 G和 I, 而伴随的变轨信号 "0"也被同时发送到汇入点 G, 但不发送 给汇入点 I, 汇入点 H则直接从汇入点 G读取相关时钟单元内相关车厢的信息。 当车厢通过距 "分叉点 E"前 35个长度单元时, 锥体位置感应端口 (20) 感应 生成双脉冲信号 "01 ", 系统收到此位置信号后开始接收来自锥体信号接收端口 ( 22 ) 的信号, 并将接收来自锥体信号接收端口 (22 ) 的信号的时长设置为 60 个时钟单元, 以便根据收到的信号进行车厢位置调整。 当车厢距 E点 30个长度 单元时, 此时距 G点和 I点均为 60个长度单元, 车厢锥体位置感应端口 (20) 再次感应生成双脉冲信号 " 10"——表示前方还有第二个分叉点。 因还未通过第 一个分叉点, 车厢系统对此信号进行记忆保存, 即是将在通过第一个分叉点后发 送下一组变轨信号。 当车厢通过距 "分叉点 E"前 29个长度单元时, 锥体位置 感应端口 (20) 感应生成双脉冲信号 "01 ", 系统收到此位置信号后将接收来自 锥体信号接收端口 (22 ) 的信号的时长重新设置为 60个时钟单元。 当车厢进入 分叉点 E的长度单元时, 锥体的位置感应端口感应生成位置信号 "0", 系统根据 此信号认为车厢正通过当前第一个分叉点。一是对经过的分叉点个数的计数值增 加 " 1 "; 二是发送的变轨信号改为对应于下一组分叉点的三位脉冲信号 " 100" ——前两位分别为前一组信号的第二、三位, 第三位为新的信号。 当车厢进入分 叉点 F的长度单元时,系统根据位置信号" 0",使分叉点个数计数值再次增加" 并结束此次变轨信号的发送。
在这期间汇入点对车厢位置 (某一时钟单元车厢所处的相应的长度单元)的 控制调整是通过向车厢发送位置调整指令进行的,位置调整指令是一组三位二进 制脉冲信号, 通过信号发送端口 (9) 发送, 锥体信号接收端口 (22 ) 接收, 其 原理与变轨信号的发送和接收相同,每一组位置调整指令所代表的调整信息见下 表:
Figure imgf000016_0001
汇入点 G可对在轨道 E—F—G段内其通过 G点的位置脉冲有伴随变轨信号的 车厢发送位置调整指令; 汇入点 I可对距 E点 30个长度单元开始到 I点 (除 E →F段)的所有轨道内其通过 I点的位置脉冲有伴随变轨信号的车厢发送位置调 整指令; 汇入点 J可对在轨道 E—J段内所有的车厢发送位置调整指令; 在 G—H 段的车厢其位置调整指令由汇入点 H发送。位置调整指令是在相应的时钟单元通 过相应的信号发送端口 (9 ) 向相应的车厢发送的, 每次发送持续时间为 0. 12 秒 (在相应时钟单元开始前 0. 04秒至该时钟单元开始后 0. 08秒), 每个位置调 整指令均向相应车厢连续发送三次, 以确保其收到, 车厢在第一次收到该指令时 即开始调整操作,对后两次的位置调整指令不再进行重复操作。 当车厢通过信号 接收端口 (22 ) 接收到 " 100 " 的位置调整指令后, 系统按预先程序使时钟单元 计数额外增加 1个值,这样车厢就认为相对于计到的时钟单元个数车厢位置滞后 1个长度单元, 接着车厢用 12个时钟单元的时长对速度进行先加速后减速, 当 车度恢复正常时就完成了向前调整一个长度单元的调整目的。位置调整指令对应 时钟单元计数值变化及所需调整时间见上表。
当车厢即将完成主轨道运行进入减速段轨道(24 )时,在通过站点分叉点(27) 的过程各相关系统和端口的工作原理与车厢通过其他分叉点是一样的,只是此时 车厢发送的变轨信号为 "000"。 当车厢进入站点分叉点 (27 )长度单元时位置感 应端口感应生成位置信号" 0", 在间隔 1个时钟单元后车厢通过该站点分叉点长 度单元时位置感应端口 (20 ) 再次感应生成位置信号 "0"——在站点分叉点减 速段轨道(24 )—侧的长度单元结束点处的位置信号发生器为 S极向上。车厢系 统在间隔 1个时钟单元连续两次别收到位置脉冲为 "0" 的信号, 则认为车厢进 入减速段轨道 (24), 系统根据存储的该减速段轨道的坡度、 长度等相关数据以 及车厢重量启动进站减速程序,视情停止电动机工作启动发电机对车厢进行程序 性减速。 当车厢通过减速段轨道 (24 )减速后以 36千米 /小时的速度经汇入点 P 进入环形轨道时, 汇入点位置信号发生器 (7 ) 使锥体位置感应端口 (20) 再次 感应生成位置脉冲信号 "0"。车厢系统在启动进站减速程序后收到位置脉冲信号
"0", 则认为进入进站环形轨道 (25 ), 系统按程序停止发电机工作启动电动机 使车厢进入环形轨道 (25 ) 保持匀速 (10米 /秒) 运行。 在环形轨道 (25 ) 中车 厢连续通过了 1 ^3号停靠槽 (28 ) 的入口 (因这些停靠槽都还被先进站的车厢 占用, 其入口的分叉点为关闭状态), 进入了 4号停靠槽 (28)。
当车厢前锥体 (15 ) 离开环形轨道进入停靠槽 (28 ) 入口的分叉点 Q时,设 置于此处的轨道位置信号发生器 (S极向上) 在锥体上的位置感应端口 (20 )感 应生成 "0" 的位置信号——车厢系统在启动进站减速程序后第二次收到位置脉 冲信号 "0"。收到此信号后系统停止电动机工作启动发电机按程序对车厢进行最 后的减速制动, 时长为 1. 98秒。 当车厢后锥体 (15 ) 也进入停靠槽 (28 ) 入口 的分叉点时, 分叉点上的位置感应端口 (8 ) 第二次感应产生位置信号 (第一次 为前锥体上的位置信号发生器感应产生), 分叉点系统根据这两次的位置信号, 自动进行变轨动作关闭该停靠槽的入口, 使后续车厢暂时无法进入该停靠槽;此 时前锥体上的位置信号发生器正好也经过加设于停靠槽上的一个位置感应端口
(该端口与分叉点上的位置感应端口的距离等于车厢前后两锥体间的距离), 此 位置感应端口感应产生的位置信号直接传到停靠槽入口的分叉点也使分叉点变 轨闸门 (36 )进行变轨动作关闭该停靠槽的入口; 另一方面, 分叉点位置感应端 口(8 )在该车厢进入产生的第一个位置信号时,分叉点开始为关闭入口计时, 0. 1 秒后该分叉点的变轨闸门 (36 )亦自动进行变轨操作关闭该停靠槽的入口。 以上 三个关闭停靠槽入口的设置相互独立,确保一个车厢进入后该停靠槽入口能及时 关闭。 入口关闭 0. 36秒 (2个时钟周期) 后, 若停靠槽的两个活动轨道段 (26) 均未被占用,还可以接收一个车厢进入, 则该停靠槽入口的分叉点将在接下来一 个时钟长度的开始时刻再次向环形轨道开启, 让下一进站车厢进入。 当车厢进入 停靠槽 1. 08秒后通过停靠槽内的分叉点 R, 车厢前锥体(15 )通过分叉点 R后 1 米处一位置感应端口 (8 ) 感应生成一车厢位置信号, 此信号使分叉点 R的变轨 闸门 (36 ) 进行变轨操作, 关闭该车厢轨道方向开启通向另一活动轨道段 (26) 方向的轨道, 使下一车厢进入该停靠槽 (28 ) 的另一活动轨道段 (26 )。 当车厢 进入停靠槽 (28 ) 减速运行 1. 98秒后进站减速程序结束, 其电动机、 发电机以 及所有端口停止工作, 此时车厢还有每秒 2米的速度, 并且(前锥体)正好处于 停靠槽末端的活动轨道段(26 )的入口处。 车厢以每秒 2米的速度进入活动轨道 段, 此时车厢前缓冲极面 (1 ) 与活动轨道段入口档板上的磁极面在同一水平线 上且为同极相向 (均为 N极), 两极面之间产生的磁斥力推动入口档板向活动轨 道段末端移动的同时使车厢得到减速; 在前锥体处, 锥体前沿与活动轨道段槽内 的缓冲横杆接触后,在推动缓冲横杆向活动轨道段末端移动的同时也使车厢得到 减速; 在缓冲横杆向后移动 0. 4米时, 位于前锥体下方活动轨道段槽内的牵引横 杆向上弹出扣住前锥体后沿,牵引横杆在停靠槽内的电动机驱动下随锥体一同向 活动轨道段末端运动。若车厢速度小于预定值牵引横杆则起到牵引车厢使之完全 进入活动轨道段的作用。缓冲横杆和入口档板通过传动装置与停靠槽内的发电机 相连, 一方面将车厢的动能转换成电能, 另一方面也可随着车厢速度的不同提供 相应不同的减速阻力使不同重量、 不同车速(一定范围内)的车厢均能较好地在 相同长度的活动轨道段内停车。当入口档板移动到活动轨道段末端时(车厢速度 为 0, 入口档板靠在停靠槽末端立壁上), 触发活动轨道段固定档板开关, 使后 锥体下的固定档板从活动轨道段槽内弹出卡住后锥体的后沿,缓冲横杆两侧的轨 道面弹出两固定栓插入缓冲横杆两侧的固定插孔将缓冲横杆固定,这样车厢被缓 冲横杆和固定档板固定在活动轨道段上。若入口档板移动到活动轨道段末端时车 厢速度还大于 0, 则车厢最多继续向前缓冲 0. 1米——入口档板上的磁极面与车 厢前缓冲极面间距为 0. 1米,之后在磁斥力的推动下车厢退到固定位置。缓冲横 杆随锥体先向前继续移动,这后在弹簧的作用下随锥体退回到固定位置由固定栓 将之固定。
在车厢被固定的同时,两个固定栓在插入缓冲横杆时带动设于其上另一端的 活动轨道段测试转运电源的开关触点,使电源接通。随即车厢在转运系统的控制 下经 1. 5秒的时间随活动轨道段下降到停靠槽下方 2米处的下车位,同时综合信 号插头从活动轨道段槽内伸出与车厢底部的综合信号接口相连接,开始对车厢进 行检测; 与此同时, 位于停靠槽上方的活动轨道段储备区内一个活动轨道段随车 厢同步下降,在停靠槽末端及时补充了原活动轨道段的位置。活动轨道段到位后 在停靠槽末端立壁上的入口档板滑向距活动轨道段入口 0. 4米处的初始位置并 与缓冲横杆一起自动连接上了停靠槽内发电机的传动装置,未弹出的牵引横杆也 自动连接上了停靠槽内电动机的传动装置, 至此, 活动轨道段已做好容纳下一进 站车厢的准备。当活动轨道段与停靠槽内发电机和电动机均连接上时, 停靠槽向 其入口分叉点输出打开入口的指令,使停靠槽入口在适当时刻再次向环形轨道开 启, 开始接收下一个车厢进入。活动轨道段在开始对车厢进行检测时, 车内显示 器显示: 已停靠 X X X站点, 准备下车。 并伴有语音提示。 同时显示的还有:行 车 X X千米、 用时 X X分钟、 计费 X X元。 车厢到达下车位后, 两侧车门自动打 开, 车内语音提示: 请于右车门外出卡口取卡。 下车取卡后车门自动并闭, 车厢 随活动轨道段继续向储车仓转运。到达储车仓前活动轨道段完成了对车厢所有性 能的检测, 检测结果合格, 车门绿色指示灯亮, 活动轨道段将车厢送入储车仓的 待用区, 等待进入发车槽进行新一轮的运行。

Claims

权利要求书
、 一种独立式同步轨道交通, 其特征是: 使用独立小车厢、 单向小轨道、 由电 力驱动、 程序自动控制, 遵从统一的时钟节率进行同步运行。
、 根据权利要求 1所述的独立式同步轨道交通, 其特征是: 独立小车厢为长、 宽、 高尺寸小, 流线形气动外形, 单次运载量小, 运行频率高, 不与其他车 厢相连接, 可进行单独运行的独立车厢。
、 根据权利要求 1所述的独立式同步轨道交通, 其特征是: 单向小轨道是指轨 道宽度小、 每条轨道均为单向运行设计, 每一段轨道均由轨道位置信号发生 器标示出一段段长度较短的、 连续的轨道长度单元, 以便于实现对在轨道上 运行的车厢的监控。
、 根据权利要求 3所述的独立式同步轨道交通, 其特征是: 轨道长度单元的长 度值是车厢以所处轨道段的预定速度在一个时钟单元内运行的距离。
、 根据权利要求 1所述的独立式同步轨道交通, 其特征是: 遵从统一的时钟节 率运行是指把时间分为一段段长度较短的、 连续的、 等长度的时钟单元, 以 一个时钟单元为节率, 每一时钟单元内所有在轨道网内正常运行的车厢均运 行一个长度单元。
、 根据权利要求 1所述的独立式同步轨道交通, 其特征是: 同步运行是指车厢 以遵从统一的时钟节率运行为基础, 在任一时钟单元的任一时刻, 均运行至 相应轨道长度单元的同一位置上。
、 根据权利要求 6所述的独立式同步轨道交通, 其特征是: 同步运行是车厢和 轨道通过位置信号发生器、 位置感应端口、 信号发送端口和信号接收端口, 对照时钟对车厢所处的位置和运行速度进行不间断的监测与控制实现的。 、 根据权利要求 7所述的独立式同步轨道交通, 其特征是: 位置信号发生器、 位置感应端口、 信号发送端口和信号接收端口, 是由磁铁或线圈构成, 它们 之间的信息交换传送是通过磁感应实现的。
、 根据权利要求 1所述的独立式同步轨道交通, 其特征是: 独立小车厢通过加 装普通橡胶轮胎和操纵杆可离开轨道网在普通公路网中运行。
PCT/CN2012/072159 2011-07-04 2012-03-10 独立式同步轨道交通 WO2013004088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110187468A CN102328660A (zh) 2011-07-04 2011-07-04 独立式同步轨道交通
CN201110187468.2 2011-07-04

Publications (1)

Publication Number Publication Date
WO2013004088A1 true WO2013004088A1 (zh) 2013-01-10

Family

ID=45480697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072159 WO2013004088A1 (zh) 2011-07-04 2012-03-10 独立式同步轨道交通

Country Status (2)

Country Link
CN (1) CN102328660A (zh)
WO (1) WO2013004088A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328660A (zh) * 2011-07-04 2012-01-25 张宁 独立式同步轨道交通
CN104015731A (zh) * 2014-05-30 2014-09-03 赵毅 大运能直达轨交系统
CN104389246B (zh) * 2014-11-19 2015-12-16 王昕鑫 一种电动轮驱自动运输系统
CN108569311A (zh) * 2017-03-08 2018-09-25 华东交通大学 一种感应线圈式的动车组站台侧识别装置
CN106988722B (zh) * 2017-04-12 2020-06-02 中国石油天然气集团公司 指向式旋转导向系统偏心轴电机转速控制方法
CN109774837B (zh) * 2019-01-17 2024-03-22 淮阴工学院 一种基于共享单车的智能自行车
CN111452807A (zh) * 2020-04-10 2020-07-28 张立发 一种管道物流运输系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172063A (zh) * 1996-07-26 1998-02-04 李嘉骏 全密封通道、全自动运输系统
CN1239456A (zh) * 1996-12-02 1999-12-22 朴泰珍 利用进路预定方式与支线停车方式的小型高速运送系统
US6314278B1 (en) * 1998-12-30 2001-11-06 Uniden America Corporation Adjusting gain in a receiver using received signal sample values
CN1526596A (zh) * 2003-01-30 2004-09-08 小型车辆的轨道交通系统
CN102069824A (zh) * 2010-12-30 2011-05-25 北京交通大学 轨道交通车辆的定位装置和方法
CN102328660A (zh) * 2011-07-04 2012-01-25 张宁 独立式同步轨道交通

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE420802T1 (de) * 2002-06-26 2009-01-15 Jerry M Roane Massentransportsystem
CN201280036Y (zh) * 2008-09-18 2009-07-29 湖北三江航天万山特种车辆有限公司 公路铁路两用车辆
CN202219782U (zh) * 2011-07-04 2012-05-16 张宁 独立式同步轨道交通

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172063A (zh) * 1996-07-26 1998-02-04 李嘉骏 全密封通道、全自动运输系统
CN1239456A (zh) * 1996-12-02 1999-12-22 朴泰珍 利用进路预定方式与支线停车方式的小型高速运送系统
US6314278B1 (en) * 1998-12-30 2001-11-06 Uniden America Corporation Adjusting gain in a receiver using received signal sample values
CN1526596A (zh) * 2003-01-30 2004-09-08 小型车辆的轨道交通系统
CN102069824A (zh) * 2010-12-30 2011-05-25 北京交通大学 轨道交通车辆的定位装置和方法
CN102328660A (zh) * 2011-07-04 2012-01-25 张宁 独立式同步轨道交通

Also Published As

Publication number Publication date
CN102328660A (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2013004088A1 (zh) 独立式同步轨道交通
WO2015180677A1 (zh) 大运能直达轨交系统
US9415783B2 (en) Transitional mode high speed rail systems
KR101463250B1 (ko) 자동운전차량시스템에서의 차량의 군집주행방법
US8483895B1 (en) Transportation system, system components and process
US20130327244A1 (en) Autonomous moving highway
WO2012167594A1 (zh) 悬挂式独轨车公共交通系统
CN102951160A (zh) 一种空中轨道交通系统
CN102114861A (zh) 区域无线网络传递信息的智能化轨道交通系统
CN101596867B (zh) 具有固定位置自动停止控制机构的电气车辆的控制装置
US3037462A (en) Railway control system for coincident local and express service
CN106364530B (zh) 基于雷达的列车控制系统及列车控制方法
JP2019512417A (ja) 自動輸送システム
CN101905702A (zh) 无线网络控制的轨道交通系统
CN104787047A (zh) 旅客列车过站不停的乘客上下车方法
CN202219782U (zh) 独立式同步轨道交通
CN105696821A (zh) 一种公交通行方法
CN114475714A (zh) 山地轨道交通列车的运行控制系统、控制方法和装备
JP3041525B2 (ja) 誘導車両自動制御方法及び誘導車両自動制御装置
CN103465912A (zh) 恒速环绕传输系统
CN108163008A (zh) 一种公共动态搭乘交通工具的轨道系统及其控制方法
CN108146523A (zh) 一种动态搭乘的公共交通系统及其控制方法
JP5512193B2 (ja) 列車制御方法、列車制御装置、および車両
JP4436073B2 (ja) 鉄道車両の運行方法及び運行システム
CN102114845A (zh) 双层轨立体快速交通系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12806991

Country of ref document: EP

Kind code of ref document: A1