WO2013001106A1 - Panel modular para transferencia de energía térmica - Google Patents

Panel modular para transferencia de energía térmica Download PDF

Info

Publication number
WO2013001106A1
WO2013001106A1 PCT/ES2011/070479 ES2011070479W WO2013001106A1 WO 2013001106 A1 WO2013001106 A1 WO 2013001106A1 ES 2011070479 W ES2011070479 W ES 2011070479W WO 2013001106 A1 WO2013001106 A1 WO 2013001106A1
Authority
WO
WIPO (PCT)
Prior art keywords
panels
thermal
modular
hydraulic pipe
longitudinal
Prior art date
Application number
PCT/ES2011/070479
Other languages
English (en)
French (fr)
Inventor
Enrique TARRAGA SANCHEZ
Luis JORDAN FERNANDEZ
Original Assignee
Tarraga Sanchez Enrique
Jordan Fernandez Luis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tarraga Sanchez Enrique, Jordan Fernandez Luis filed Critical Tarraga Sanchez Enrique
Priority to CA2840790A priority Critical patent/CA2840790C/en
Priority to EP11770117.7A priority patent/EP2728081B1/en
Priority to ES11770117T priority patent/ES2773050T3/es
Priority to PT117701177T priority patent/PT2728081T/pt
Priority to US14/129,827 priority patent/US10041250B2/en
Priority to AU2011372284A priority patent/AU2011372284A1/en
Priority to KR1020147002850A priority patent/KR20140053163A/ko
Priority to PCT/ES2011/070479 priority patent/WO2013001106A1/es
Publication of WO2013001106A1 publication Critical patent/WO2013001106A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • E04C2/521Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling
    • E04C2/525Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling for heating or cooling
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/48Special adaptations of floors for incorporating ducts, e.g. for heating or ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/141Tube mountings specially adapted therefor
    • F24D3/142Tube mountings specially adapted therefor integrated in prefab construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/148Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor with heat spreading plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • F24F5/0092Systems using radiation from walls or panels ceilings, e.g. cool ceilings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49629Panel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49634Beam or girder

Definitions

  • the present invention relates to a modular panel for the transfer of thermal energy, to a thermal surface for the thermal conditioning of an enclosure obtained by means of a plurality of said modular panels and to a method of assembly thereof.
  • the present invention has been specially designed for thermal conditioning installations in buildings, of the type that employ modular panels for application in ceilings and / or walls.
  • the present invention allows to improve the energy efficiency of the current installations, minimizes the appearance of breakdowns during the operation of the installation, since it does not require intermediate connections of the hydraulic circuit between panels, maximizes the use of the available surface of the enclosure to be conditioned and facilitates assembly work.
  • the thermal conditioning installations in buildings have three clearly differentiated functional parts.
  • the first one corresponds to thermal energy generating equipment, such as boilers, chillers, heat pumps, etc.
  • the second responds to the emitting equipment responsible for assigning or extracting heat from the room to be conditioned, such as fan coils, radiators, condensing and / or evaporating units, radiant panels, among others, and their connections (air ducts, hydraulic pipes, etc. .) with generating equipment.
  • the third part involves the control systems in charge of managing all the thermal and comfort variables of the installation, as well as guaranteeing the proper functioning of the equipment that integrates it.
  • the present invention focuses particularly on the part corresponding to the emitting equipment, which are determinants to achieve a correct thermal conditioning of the enclosure (thermal power, efficiency, location and distribution of equipment, etc.), in addition to guaranteeing adequate conditions of comfort (noise, speed and orientation of air flows, condensations, etc.). More specifically, the present invention focuses on the emitters of the group belonging to modular panels for application in ceilings and / or walls. These modular panels offer multiple advantages over other emitters, that is; they are more energy efficient, improve the uniformity of the ambient temperature of the enclosure, present a better architectural integration, generate less noise, do not occupy useful spaces beyond the enclosures of the enclosure itself, do not present parts where dust or bacteria accumulate and require Less maintenance
  • Modular panels for application on ceilings and / or walls which are currently used in installations for the thermal conditioning of enclosures, comprise a sandwich or stratified structure inside which a hydraulic circuit is fixedly integrated.
  • EP1 004827 offers a representative example of the modular panels currently used.
  • This document describes a self-supporting prefabricated modular panel, whose structure is formed by a layer of plasterboard and a layer of insulating material that integrate a plurality of independent hydraulic circuits arranged in a serpentine shape.
  • the pipes that make up each of the hydraulic circuits are housed directly in the plaster, fixedly, within mechanized cavities in it.
  • the different hydraulic circuits are distributed on the panel, forming different independent zones that can be separated from each other, where each of them has an input connection and an output connection of the circuit at its longitudinal edges.
  • the dimensions of the panel can be modified, within a small number of options, separating a greater or lesser number of the independent zones that make it up.
  • the panel itself, it has a modularity that is practically limited to only three or four different sizes that are generally obtained from a large standard panel, so it offers very little flexibility in its assembly.
  • the energy efficiency of the panel is limited by the low thermal conduction capacity of the plaster.
  • the integration of the hydraulic circuit makes the panel more expensive, more complex to manufacture and less manageable, in addition to not allowing access to said circuit, for maintenance issues, without first having to break the panel itself.
  • the low modularity of the panels does not allow to cover all the available space of the enclosure, especially when it presents intermediate structural elements (columns) or irregular geometry, so that the uniformity in the distribution of the hydraulic circuits is significantly reduced,
  • the resulting thermal distribution is far from being the most suitable and the installed thermal power is less than the potential offered by the enclosure.
  • the Current thermal surfaces have little flexibility in the face of frequent expansion of the hydraulic circuit pipes, since they are completely fixed in the modular panels. This usually causes deformations of the cavities where they are housed, and thus allow the creation of air pores, which further reduces the energy efficiency of the installation.
  • the present invention fully solves the above problems in a satisfactory manner, improving the energy efficiency of current installations, minimizing the occurrence of breakdowns during the operation of the installation, maximizing the use of the available area of the enclosure to be conditioned and facilitating assembly work of the installation.
  • a modular panel for thermal energy transfer is described below, especially configured for application in ceilings and walls.
  • Said modular panel comprises a layer of thermal insulation, preferably of a square or rectangular base, which forms a supporting structure delimited by at least one lower face, an upper face, two lateral faces and two extreme faces.
  • the materials that can be used to form the insulation layer are very numerous and diverse, such as foams of synthetic polymers (such as polyisocyanurate, polyurethane, etc.), mineral wool and natural plant insulation, among others.
  • the panel also comprises at least one conductive plate, preferably of aluminum, attached to the underside of the thermal insulation layer.
  • the conductive plate is made up of:
  • a groove embedded in the thermal insulation layer defining a longitudinal cavity that is configured to accommodate a hydraulic pipe, said groove topped in turn by two longitudinal edges that are flush with the bottom face, defining a longitudinal opening that is located configured to allow the introduction of the hydraulic pipe;
  • the modular panel of the present invention does not incorporate the pipe responsible for transporting the heat transfer fluid, but incorporates the necessary means for that said pipe be mounted after the installation of the panel itself. This allows the panel dimensions to be easily machined during installation, both longitudinally and transversely, for adaptation to the geometric characteristics of the enclosure. In addition, once the modular panels have been installed, the pipe can be easily accessed for maintenance purposes, without breaking them.
  • the pipe itself can be made of any material that makes it possible to mount it inside the groove, although plastic materials are preferably used, such as polypropylene, among others, which allow installation without tools.
  • the material used for the pipe also has a high resistance to erosion, does not oxidize or deteriorate due to contact with other construction elements, such as mortars or additives thereof, concretes, plaster, among others. It also has small expansion forces, a low coefficient of friction and a low pressure drop of the heat transfer fluid.
  • the transfer plate is extended from both longitudinal edges of the groove, to offer a better thermal distribution, and trying to cover the maximum possible surface of the lower face of the insulation layer.
  • the entire modular panel becomes a heat emitting element, the purpose of which is to extract or transfer heat from the environment or from the surfaces close to it.
  • the closing means have an outstanding and important function, since they are responsible for properly sealing the panel after the assembly of the hydraulic pipe to ensure its tightness, and also press it against the groove to favor the conduction of heat between both elements .
  • the configuration of the closing means admits several possible solutions, however, preferably these comprise:
  • Said configuration of the closing means is especially interesting since it is functionally very efficient, simple, economical and easy to assemble.
  • the panel comprises at least one fixing support attached to the upper face.
  • said support runs alternately with the grooves, although specific crossings may occur depending on their layout.
  • Said support admits several possible configurations, however, preferably the fixing support is embedded in the thermal insulation layer occupying the longitudinal central axis thereof and presenting a U-shaped galvanized steel, the ends of which are flush with the face. superior thermal insulation or below it.
  • the grooves of the panel can adopt different paths along the same, giving rise to different panels that once joined allow to shape any type of hydraulic circuit, however complex, thus guaranteeing a thermal distribution of the ideal enclosure.
  • the number of grooves per panel and their layout admits many combinations, giving rise to as many different panels, however the most characteristic panels are described below.
  • Modular turning panel the grooving of at least one conductive plate thereof follows a path of 90 to which it begins on an extreme face and ends on a lateral face.
  • Modular panel of change of direction the groove of at least one conductive plate thereof follows a path of 180 to which it starts and ends on one of the extreme faces.
  • a thermal surface for the thermal conditioning of an enclosure obtained by a plurality of the modular panels described above is described below.
  • Said thermal surface comprises a plurality of modular panels that are arranged adjacently, their conductive plates being linked together and the grooves of said plates forming a continuous longitudinal cavity that is configured to house the hydraulic pipe, where said longitudinal cavity defines a continuous longitudinal opening that is configured to allow the introduction of the hydraulic pipe along it, forming a hydraulic circuit without the need for intermediate connections between panels.
  • the surface comprises a metal protection piece arranged on the underside of at least one modular panel, where said protection piece is configured to internally cover the hydraulic pipe section, at the points where the fixing bracket intersects with the groove.
  • the protection parts play an important role during the installation of the installation, since they allow the operators to work with the security of not damaging the pipe.
  • thermal surface additionally comprises blind panels formed by:
  • a thermal insulation layer that forms a bearing structure bounded by at least one lower face, one upper face, two lateral faces and two extreme faces;
  • These blind panels are configured to fill in the empty spaces that remain on the thermal surface once the modular panels are arranged. That is, they allow to cover possible gaps between panels and enclosures, between panels and intermediate structural elements or between the panels themselves, thereby improving thermal and acoustic insulation.
  • This, together with the total transformability of the modular panels and their versatility to configure any hydraulic circuit allows to take full advantage of the available surface of the enclosure, obtaining maximum uniformity in the distribution of the hydraulic circuit, and therefore an ideal thermal distribution and greater installed thermal power.
  • Said procedure comprises the steps of:
  • the procedure further comprises the stage of: e) cover the empty spaces of modular panels by means of blind panels, previously cut according to the geometry of said spaces.
  • the procedure further comprises the steps of:
  • finishing elements placing finishing elements on the sealant paste layer, fixing said finishing elements to the support structure and to the fixing brackets by means of screws.
  • step b) of the assembly process of the present invention comprises the steps of:
  • Figure 1A is a plan view of the underside of the modular panel of the present invention, according to a straight path.
  • FIG. 1 B is a front view of the modular panel of the present invention, according to a straight path.
  • Figure 2A is a detailed section of a groove after the assembly of a hydraulic pipe.
  • Figure 2B is a section of the closure element.
  • Figure 3A is a plan view of the underside of the modular panel of the present invention, according to a turning path.
  • Figure 3B is a front view of the modular panel of the present invention, according to a turning path.
  • FIG. 4A is a plan view of the underside of the modular panel of the present invention, according to a direction change path.
  • Figure 4B is a front view of the modular panel of the present invention, according to a direction change path.
  • Figure 5A is a plan view of the underside of the modular panel of the present invention, according to a combined layout.
  • Figure 5B is a front view of the modular panel of the present invention, according to a combined layout.
  • Figure 6 is a bottom view of a thermal surface for the thermal conditioning of an enclosure, according to an example of assembly of the present invention.
  • Figure 7 is a top view of the thermal surface of Figure 6.
  • Figure 8 is a schematic of the hydraulic circuit of the thermal surface of Figure 6.
  • Figure 9A is a profile view of the expansion joint.
  • Figure 9B is a front view of the expansion joint.
  • Figure 10A is a plan view of the protection piece.
  • FIG. 10B is a front view of the protection piece.
  • Figure 10C is a profile view of the protection piece.
  • Figure 1 1 A is a plan view of the lower face of the blind panel of the present invention.
  • Figure 1 1 B is a front view of the blind panel of the present invention.
  • FIG. 12 is an example of mounting a thermal surface directly on an enclosure.
  • Figure 13 is an exploded detail exploded view of Figure 12.
  • Figure 14 is an example of mounting a thermal surface on a suspended structure.
  • Figures 1 A and 1 B respectively show a plan view of the lower face of a modular panel (1) and a front view thereof, according to a straight path.
  • the modular panel (1) whose length is not fully represented in the present example, comprises a thermal insulation layer (2) that forms a bearing structure delimited by a lower face (2A), a face upper (2B), two lateral faces (2C, 2D) and two extreme faces (2E, 2F).
  • the panel (1) comprises two conductive plates (3) attached to the underside (2A) of the thermal insulation layer (2).
  • each conductive plate (3) is made up of:
  • a groove (31) embedded in the thermal insulation layer (2) defining a Longitudinal cavity (32) that is configured to house a hydraulic pipe (6), not shown, said groove (31) topped in turn by two longitudinal edges
  • closing means (4) figures 2A and 2B, configured to seal the longitudinal opening (34) and press the hydraulic pipe (6) against the groove (31).
  • the panel comprises a fixing support (5) attached to the upper face (2B ) which runs alternately with the grooves (31).
  • Said support (5) is embedded in the thermal insulation layer (2) occupying the longitudinal central axis thereof and presenting a U-shaped galvanized steel, whose ends are flush with the upper face (2B) of the thermal insulation (2).
  • This first example shows a straight modular panel (1), whose grooves (31) follow a straight path (31 S) that starts at the extreme face (2E) and ends at the extreme face (2F).
  • Figures 2A and 2B show respectively a section in detail of a groove (31) after the assembly of a hydraulic pipe (6).
  • the closing means (4) comprise:
  • an elastic closure element (41) configured to compensate for the expansion of the hydraulic pipe (6) caused by the temperature changes thereof, where said closure element (41) is formed by:
  • Figures 3A and 3B respectively show a plan view of the lower face of the modular panel (1) and a front view thereof, according to a turning path.
  • This second example shows a modular panel (1) of rotation, whose grooves (31) follow a path of 90 to (31 T) that starts on an extreme face (2E, 2F) and ends on a side face (2C, 2D ).
  • Figures 4A and 4B respectively show a plan view of the lower face of the modular panel (1) and a front view thereof, according to a direction change path.
  • This third example shows a modular panel (1) of direction change, whose groove (31) follows a 180 to (31 TO) path that starts and ends on the end face (2F).
  • Figures 5A and 5B respectively show a plan view of the underside of the modular panel (1) and a front view thereof, according to a combination path.
  • This fourth example shows a combined modular panel (1), whose grooves (31) follow straight paths (31 S) and 90 s (31 T).
  • Figure 6 shows a bottom view of a thermal surface (10) for the thermal conditioning of an enclosure, according to an assembly example of the present invention.
  • Said thermal surface (10) comprises a plurality of modular panels (1) that are arranged adjacently, their conductive plates (3) being linked together and the grooves (31) of said plates (3) forming a longitudinal cavity (3) 32) continuous which is configured to house the hydraulic pipe (6), where said longitudinal cavity (32) defines a continuous longitudinal opening (34) that is configured to allow the introduction of the hydraulic pipe (6) along the same, forming a hydraulic circuit (7), figure 8, without the need for intermediate connections between panels (1).
  • Figure 7 shows a top view of the thermal surface (10) of Figure 6, in which the fixing brackets (5) can be seen.
  • Figure 8 shows a diagram of the hydraulic circuit (7) of the thermal surface (10) of Figure 6. As can be seen there are no intermediate connections between panels (1), the general circuit connection being located outside the enclosure. If the characteristics of the installation require it, more than one hydraulic circuit can be configured per enclosure, with their respective general connections located outside or inside the enclosure, depending on where the respective connections that transport the heat transfer fluid from the generating equipment are located.
  • Figures 9A and 9B respectively show a profile view and a front view of the expansion joint (1 1).
  • Said joints (1 1) are arranged at the connecting points of the conductive plates (3) of adjacent panels (1) that make up the thermal surface (10), having the same cross section as that corresponding to said panels (1) adjacent.
  • Figures 1 0A, 10B and 10C respectively show a plan view, a front view and a profile view of the protection piece (12). Said pieces (12) are arranged, after the installation of the pipe (6), on the underside (2A) of the modular panels (1), at the points where the fixing support (5) intersects with the groove ( 31), figure 6, to cover internally the section of hydraulic pipe (6) arranged in said points.
  • Figures 1 1 A and 1 1 B respectively show a plan view of the lower face of the blind panel (21) and a front view thereof.
  • the blind panel (21) whose length is not fully represented in the present example, is formed by:
  • a thermal insulation layer (20) that forms a bearing structure bounded by a lower face (20A), an upper face (20B), two lateral faces (20C, 20D) and two extreme faces (20E, 20F); Y
  • Said blind panels (21) are configured to fill in the empty spaces that remain on the thermal surface (10) once the modular panels (1), figures 6 and 7 are arranged. Generally said empty spaces are located in the perimeter areas of the enclosure. or in perimeter zones to intermediate structural elements.
  • Figures 12 and 13 show an example of mounting a thermal surface (10) directly on an enclosure (9).
  • the assembly procedure includes the steps of: a) selecting the modular panels (1) and adapting their dimensions, depending on the geometry of the enclosure and the hydraulic circuit (7) to be installed;
  • finishing elements (16) placed on the sealant paste layer (15), fixing said finishing elements (16) to the support structure (13) and to the fixing brackets (5, 50) by using screws (17), or other equivalent fixing means.
  • the assembly procedure of the present example comprises the steps of:
  • Figure 14 shows an example of mounting a thermal surface (10) on a suspended structure (1 8).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

Panel modular para transferencia de energía térmica, especialmente configurado para su aplicación en techos y paredes, que comprende una capa de aislamiento térmico (2) que conforma una estructura portante delimitada por una cara inferior (2A), una cara superior (2B), dos caras laterales (2C, 2D) y dos caras extremas (2E, 2F). Dicho panel (1) comprende al menos una placa conductora (3) unida a la cara inferior (2A). Dicha placa conductora (3) se encuentra conformada por una acanaladura (31) incrustada en la capa de aislamiento térmico (2), definiendo una cavidad longitudinal (32) que se encuentra configurada para alojar una tubería hidráulica (6), y definiendo una abertura longitudinal (34) que permite la introducción de la tubería hidráulica (6); una plancha de transferencia (35) que se extiende sobre la cara inferior (2A) y medios de cierre (4) configurados para sellar la abertura longitudinal (34) y presionar la tubería hidráulica (6) contra la acanaladura (31).

Description

PANEL MODULAR PARA TRANSFERENCIA DE ENERGIA TÉRMICA.
Objeto de la invención.
La presente invención se refiere a un panel modular para la transferencia de energía térmica, a una superficie térmica para el acondicionamiento térmico de un recinto obtenida mediante una pluralidad de dichos paneles modulares y a un procedimiento de montaje de la misma.
La presente invención ha sido especialmente diseñada para instalaciones de acondicionamiento térmico en edificios, del tipo de las que emplean paneles modulares de aplicación en techos y/o paredes.
La presente invención permite mejorar la eficiencia energética de las instalaciones actuales, minimiza la aparición de averías durante el funcionamiento de la instalación, ya que no precisa de conexiones intermedias del circuito hidráulico entre paneles, maximiza el aprovechamiento de la superficie disponible del recinto a acondicionar y facilita las labores de montaje.
Antecedentes de la invención.
Las instalaciones de acondicionamiento térmico en edificios presentan tres partes funcionales claramente diferenciadas La primera de ellas corresponde a los equipos generadores de energía térmica, tales como calderas, enfriadoras, bombas de calor, etc. La segunda responde a los equipos emisores encargados de ceder o extraer calor del recinto a acondicionar, tales como fan coils, radiadores, unidades condensadoras y/o evaporadoras, paneles radiantes, entre otros, y a sus conexiones (conductos de aire, tuberías hidráulicas, etc.) con los equipos generadores. Finalmente, la tercera parte implica los sistemas de control encargados de gestionar todas las variables térmicas y de confort de la instalación, así como garantizar el buen funcionamiento de los equipos que la integran.
La presente invención se centra particularmente en la parte correspondiente a los equipos emisores, los cuales son determinantes para lograr un correcto acondicionamiento térmico del recinto (potencia térmica, eficiencia, ubicación y distribución de equipos, etc.) , además de garantizar unas adecuadas condiciones de confort (ruido, velocidad y orientación de flujos de aire, condensaciones, etc.). Más concretamente, la presente invención se centra en los emisores del grupo perteneciente a paneles modulares de aplicación en techos y/o paredes. Dichos paneles modulares ofrecen múltiples ventajas respecto al resto de emisores, es decir; resultan más eficientes energéticamente, mejoran la uniformidad de la temperatura ambiente del recinto, presentan una mejor integración arquitectónica, generan menos ruido, no ocupan espacios útiles más allá de los propios cerramientos del recinto, no presentan partes donde se acumule el polvo o bacterias y precisan un menor mantenimiento.
Los paneles modulares de aplicación en techos y/o paredes, que se emplean actualmente en instalaciones para el acondicionamiento térmico de recintos, comprenden una estructura emparedada o estratificada en cuyo interior se encuentra integrado de forma fija un circuito hidráulico.
El documento EP1 004827 ofrece un ejemplo representativo de los paneles modulares empleados actualmente. Este documento describe un panel modular prefabricado auto- soportante, cuya estructura se encuentra formada por una capa de cartón yeso y una capa de material aislante que integran una pluralidad de circuitos hidráulicos independientes dispuestos en forma serpentín. Las tuberías que conforman cada uno de los circuitos hidráulicos se encuentran alojadas directamente en el yeso, de forma fija, dentro de unas cavidades mecanizadas en el mismo. Los distintos circuitos hidráulicos se distribuyen sobre el panel, formando diferentes zonas independientes separables entre sí, donde cada una de ellas presenta en sus bordes longitudinales una conexión de entrada y una conexión de salida del circuito. Las dimensiones del panel se pueden modificar, dentro de un reducido número de opciones, separando respecto del mismo un mayor o menor número de las zonas independientes que lo conforman.
La paneles actuales, como el descrito anteriormente, presentan grandes inconvenientes, que afectan tanto al propio panel como a la superficie térmica obtenida mediante los mismos, así como al procedimiento de montaje de dicha superficie, según se desprende a continuación.
En cuanto al propio panel se refiere, éste presenta una modularidad prácticamente limitada a sólo tres o cuatros tamaños distintos que generalmente se obtienen de un panel estándar de grandes dimensiones, por lo que ofrece muy poca flexibilidad en su montaje. Además, el rendimiento energético del panel se encuentra acotado por la baja capacidad de conducción térmica del yeso. Finalmente, la integración del circuito hidráulico hace que el panel sea más caro, más complejo de fabricar y menos manejable, además de que no permite el acceso a dicho circuito, para cuestiones de mantenimiento, sin previamente tener que romper el propio panel.
En cuanto a la superficie obtenida mediante los paneles actuales, cabe destacar sobretodo los inconvenientes que afectan al buen funcionamiento de la instalación y al bajo aprovechamiento de la superficie disponible del recinto. En este sentido, es fundamental incidir en el elevado número de conexiones a realizar durante la instalación, tanto para mantener la continuidad de los circuitos hidráulicos que conforman un mismo panel como su conexión a los circuitos de paneles adyacentes. Todo ello, además del elevado tiempo de montaje que representa, repercute plenamente en un aumento considerable del riesgo de averías, principalmente por la pérdida de estanqueidad del circuito debido a conexiones mal realizadas. Asimismo, la baja modularidad de los paneles no permite cubrir todo el espacio disponible del recinto, más aún cuando éste presenta elementos estructurales intermedios (columnas) o una geometría irregular, por lo que la uniformidad en la distribución de los circuitos hidráulicos se reduce notablemente, la distribución térmica resultante queda lejos de ser la más idónea y la potencia térmica instalada es menor a la potencial que ofrece el recinto. Además, las superficies térmicas actuales presentan poca flexibilidad frente a las frecuentes dilataciones de las tuberías del circuito hidráulico, ya que éstas se encuentran completamente fijas en los paneles modulares. Ello suele provocar deformaciones de las cavidades donde se encuentran alojadas, y permitir de este modo la creación de poros de aire, lo que reduce todavía más el rendimiento energético de la instalación.
Finalmente, en cuanto a los inconvenientes del procedimiento de montaje se refiere, cabe destacar de nuevo el importante tiempo destinado al mismo. Sobretodo debido a la realización de las numerosas conexiones necesarias, por la falta de continuidad de los distintos circuitos hidráulicos. Además, no resulta fácil manipular los paneles, debido a su considerable tamaño y peso, teniendo en cuenta que integran las tuberías hidráulicas.
La presente invención resuelve de manera plenamente satisfactoria los problemas anteriormente, mejorando la eficiencia energética de las instalaciones actuales, minimizando la aparición de averías durante el funcionamiento de la instalación, maximizando el aprovechamiento de la superficie disponible del recinto a acondicionar y facilitando las labores de montaje de la instalación.
Descripción de la invención.
De acuerdo a un primer objeto de la presente invención, a continuación se describe un panel modular para transferencia de energía térmica, especialmente configurado para su aplicación en techos y paredes.
Dicho panel modular comprende una capa de aislamiento térmico, preferentemente de base cuadrada o rectangular, que conforma una estructura portante delimitada por al menos una cara inferior, una cara superior, dos caras laterales y dos caras extremas. Los materiales que se pueden emplear para formar la capa de aislamiento resultan muy numerosos y diversos, como por ejemplo las espumas de polímeros sintéticos (como el poliisocianurato, el poliuretano, etc.), las lanas minerales y los aislamientos vegetales naturales, entre otros.
A su vez, el panel comprende también al menos una placa conductora, preferentemente de aluminio, unida a la cara inferior de la capa de aislamiento térmico. Asimismo, la placa conductora se encuentra conformada por:
• una acanaladura incrustada en la capa de aislamiento térmico, definiendo una cavidad longitudinal que se encuentra configurada para alojar una tubería hidráulica, dicha acanaladura rematada a su vez por dos bordes longitudinales que quedan enrasados con la cara inferior, definiendo una abertura longitudinal que se encuentra configurada para permitir la introducción de la tubería hidráulica;
• una plancha de transferencia que se prolonga desde al menos uno de los bordes longitudinales y que se extiende sobre la cara inferior; y
• medios de cierre configurados para sellar la abertura longitudinal y presionar la tubería hidráulica contra la acanaladura.
Por lo tanto, el panel modular de la presente invención no incorpora la tubería encargada de transportar el fluido caloportador, sino que incorpora los medios necesarios para que dicha tubería sea montada tras la instalación del propio panel. Ello permite que las dimensiones del panel se puedan mecanizar fácilmente durante la instalación, tanto en sentido longitudinal como transversal, para su adaptación a las características geométricas del recinto. Además, una vez instalados los paneles modulares, se puede acceder fácilmente a la tubería para cuestiones de mantenimiento, sin necesidad de romper los mismos.
En cuanto a la propia tubería, ésta puede ser de cualquier material que posibilite su montaje dentro de la acanaladura, aunque preferentemente se emplean materiales plásticos, como el polipropileno, entre otros, que permiten su instalación sin necesidad de herramientas. Preferentemente el material empleado para la tubería presenta además una alta resistencia a la erosión, no se oxida ni se deteriora por el contacto con otros elementos constructivos, tales como morteros u aditivos de los mismos, hormigones, yeso entre otros. Asimismo, presenta también fuerzas de expansión pequeñas, un bajo coeficiente de fricción y una baja caída de presión del fluido caloportador.
Preferentemente la plancha de transferencia se prolonga desde ambos bordes longitudinales de la acanaladura, para ofrecer una mejor distribución térmica, e intentando cubrir la máxima superficie posible de la cara inferior de la capa de aislamiento. De este modo, todo el panel modular se convierte en un elemento emisor de calor, cuya finalidad es extraer o ceder el calor del ambiente o de las superficies próximas al mismo.
Los medios de cierre presentan una destacada e importante función, ya que son los encargados de sellar correctamente el panel tras el montaje de la tubería hidráulica para garantizar su estanqueidad, y además presionar la misma contra la acanaladura para favorecer la conducción de calor entre ambos elementos. La configuración de los medios de cierre admite diversas soluciones posibles, no obstante, preferentemente éstos comprenden:
• un relieve longitudinal de perfil dentado dispuesto en cada uno de los bordes longitudinales; y
• un elemento de cierre elástico configurado para compensar las dilataciones de la tubería hidráulica provocadas por los cambios de temperatura de la misma, donde dicho elemento de cierre se encuentra formado por:
o dos lados longitudinales de perfil dentado que encajan con los relieves longitudinales para permitir la sujeción del elemento de cierre a la placa conductora y sellar la abertura longitudinal, garantizando la estanqueidad de la cavidad longitudinal;
o un asiento longitudinal que se encuentra configurado para presionar la tubería hidráulica contra la acanaladura, garantizando la transferencia de energía térmica entre la tubería hidráulica y la placa conductora; y
o una base inferior que queda enrasada con la cara inferior.
Dicha configuración de los medios de cierre resulta especialmente interesante ya que es funcionalmente muy eficiente, sencilla, económica y fácil de montar.
Por otro lado, para facilitar la fijación del panel a cualquier elemento estructural, así como permitir la fijación sobre el mismo de elementos de acabado, tales como placas de yeso, de madera, de piedra, placas metálicas decorativas u otros revestimientos prefabricados, etc., el panel comprende al menos un soporte de fijación unido a la cara superior. Preferentemente dicho soporte discurre en posición alternada con las acanaladuras, aunque según el trazado de las mismas se pueden producir cruces puntuales. Dicho soporte admite diversas configuraciones posibles, sin embargo, preferentemente el soporte de fijación se encuentra incrustado en la capa de aislamiento térmico ocupando el eje central longitudinal de la misma y presentando una forma de U de acero galvanizado, cuyos extremos se encuentran enrasados con la cara superior del aislamiento térmico o por debajo de la misma.
Las acanaladuras del panel pueden adoptar diferentes trazados a lo largo del mismo, dando lugar a paneles distintos que una vez unidos permiten dar forma a cualquier tipo de circuito hidráulico, por complejo que resulte, garantizando de este modo una distribución térmica del recinto idónea. El número de acanaladuras por panel y el trazado de las mismas admite muchas combinaciones, dando lugar a otros tantos paneles distintos, no obstante los paneles más característicos se describen a continuación.
Panel modular recto, las acanaladuras del mismo siguen un trazado recto que se inicia en una cara extrema y finaliza en la otra cara extrema.
Panel modular de giro, la acanaladura de al menos una placa conductora del mismo sigue un trazado de 90a que se inicia en una cara extrema y finaliza en una cara lateral.
Panel modular de cambio de sentido, la acanaladura de al menos una placa conductora del mismo sigue un trazado de 180a que se inicia y termina en una de las caras extremas.
De acuerdo a un segundo objeto de la presente invención, a continuación se describe una superficie térmica para el acondicionamiento térmico de un recinto obtenida mediante una pluralidad de los paneles modulares descritos anteriormente.
Dicha superficie térmica comprende una pluralidad de paneles modulares que se encuentran dispuestos de forma adyacente, quedando sus placas conductoras enlazadas entre sí y conformando las acanaladuras de dichas placas una cavidad longitudinal continua que se encuentra configurada para alojar la tubería hidráulica, donde dicha cavidad longitudinal define una abertura longitudinal continua que se encuentra configurada para permitir la introducción de la tubería hidráulica a lo largo de la misma, formando un circuito hidráulico sin necesidad de conexiones intermedias entre paneles.
Asimismo, para compensar las dilataciones que frecuentemente sufren dichas tuberías hidráulicas, debido a sus cambios de temperatura, en los puntos de enlace de las placas conductoras de paneles adyacentes que conforman la superficie térmica se dispone de una junta de dilatación de material elástico que presenta la misma sección transversal que la correspondiente a dichos paneles adyacentes. Además, aunque los medios de cierre ejercen una presión sobre la tubería hidráulica para asegurar su contacto con la acanaladura, dicha tubería no se encuentra fija a la misma y presenta una cierta movilidad . La movilidad de la tubería y las juntas de dilatación entre paneles permiten absorber las dilataciones que se producen durante el funcionamiento de la instalación, Por ello, la tubería presenta una cierta movilidad que junto a las juntas de dilatación, evitando la creación de poros de aire y aumentando la longevidad de la instalación.
Además, para proteger la tubería durante la instalación, la superficie comprende una pieza de protección metálica dispuesta en la cara inferior de al menos una panel modular, donde dicha pieza de protección se encuentra configurada para cubrir interiormente el tramo de tubería hidráulica, en los puntos donde el soporte de fijación se cruza con la acanaladura. Las piezas de protección juegan un destacado papel durante el montaje de la instalación, ya que permiten a los operarios trabajar con la seguridad de no dañar la tubería.
Finalmente, la superficie térmica comprende adicionalmente paneles ciegos formados por:
• una capa de aislamiento térmico que conforma una estructura portante delimitada por al menos una cara inferior, una cara superior, dos caras laterales y dos caras extremas; y
• un soporte de fijación unido a la cara superior.
Dichos paneles ciegos se encuentran configurados para rellenar los espacios vacíos que quedan en la superficie térmica una vez dispuestos los paneles modulares. Es decir, permiten cubrir posibles huecos entre paneles y cerramientos, entre paneles y elementos estructurales intermedios o entre los propios paneles, mejorando de este modo el aislamiento térmico y acústico. Ello, junto a la total transformabilidad de los paneles modulares y polivalencia de los mismos para configurar cualquier circuito hidráulico, permite aprovechar completamente la superficie disponible del recinto, obteniendo una uniformidad máxima en la distribución del circuito hidráulico, y por lo tanto una distribución térmica idónea y una mayor potencia térmica instalada.
De acuerdo a un tercer objeto de la presente invención, a continuación se describe un procedimiento de montaje de la superficie térmica para el acondicionamiento térmico de un recinto descrita anteriormente.
Dicho procedimiento comprende las etapas de:
a) seleccionar los paneles modulares y adaptar las dimensiones de los mismos, en función de la geometría del recinto y del circuito hidráulico a instalar;
b) colocar los paneles modulares de forma adyacente sobre una estructura de soporte, enlazando sus placas conductoras para que las acanaladuras de las mismas formen la cavidad longitudinal continua y la abertura longitudinal continua;
c) introducir la tubería hidráulica a lo largo de la abertura longitudinal continua y alojarla en la cavidad longitudinal continua, formando el circuito hidráulico sin necesidad de conexiones intermedias entre paneles; y
d) fijar los medios de cierre a las placas conductoras para sellar la abertura longitudinal continua y presionar la tubería hidráulica contra las acanaladuras de las mismas.
En este sentido, cabe destacar la completa ausencia de conexiones entre paneles adyacentes, lo que reduce extraordinariamente el tiempo de montaje de la instalación.
Asimismo, el procedimiento comprende adicionalmente la etapa de: e) cubrir los espacios vacíos de paneles modulares mediante paneles ciegos, previamente cortados según la geometría de dichos espacios.
Asimismo, el procedimiento comprende adicionalmente las etapas de:
f) aplicar una capa de pasta selladora sobre la cara inferior de los paneles modulares y de los paneles ciegos; y
g) colocar unos elementos de acabado sobre la capa de pasta selladora, fijando dichos elementos de acabado a la estructura de soporte y a los soportes de fijación mediante el empleo de tornillos.
Finalmente, la estructura de soporte sobre la que se colocan los paneles admite numerosas posibilidades. En este sentido, la estructura de soporte puede ser directamente el cerramiento (techo o pared) sobre el que se instala la superficie térmica o sobre una estructura suspendida o adosada del mismo, para configurar un falso techo o un revestimiento de pared respectivamente, entre otras posibilidades. No obstante, el presente procedimiento contempla también la posibilidad de realizar una estructura particular que ofrece unas ventajas añadidas. En este sentido, opcionalmente, la etapa b) del procedimiento de montaje de la presente invención comprende las etapas de:
b.1 . colocar unas vigas de perfil H sobre la estructura de soporte, de forma equidistante, a una distancia coincidente con la anchura de los paneles modulares; y
b.2. colocar los paneles modulares encajando sus caras laterales entre las alas de dos vigas contiguas.
Esta configuración estructural agiliza aún más las tareas de montaje de la instalación. Es importante mencionar que todas las etapas del procedim iento se pueden ir desarrollando en serie y/o paralelo por diversos equipos de trabajo, permitiendo que el montaje de la superficie térmica sea muy flexible. Por ejemplo un primer equipo empieza seleccionando y colocando los paneles modulares y ciegos, un segundo equipo va introduciendo la tubería hidráulica y fijando los medios de cierre a medida que el primer equipo avanza y un tercer equipo va colocando los elementos de acabado.
Breve descripción de los dibujos.
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente distintas realizaciones preferentes de dicha invención que se presentan como ejemplos no limitativos de la misma.
La figura 1 A es una vista en planta de la cara inferior del panel modular de la presente invención, de acuerdo a un trazado recto.
- La figura 1 B es una vista frontal del panel modular de la presente invención, de acuerdo a un trazado recto.
La figura 2A es una sección en detalle de una acanaladura tras el montaje de una tubería hidráulica.
La figura 2B es una sección del elemento de cierre. La figura 3A es una vista en planta de la cara inferior del panel modular de la presente invención, de acuerdo a un trazado de giro.
La figura 3B es una vista frontal del panel modular de la presente invención, de acuerdo a un trazado de giro.
- La figura 4A es una vista en planta de la cara inferior del panel modular de la presente invención, de acuerdo a un trazado de cambio de sentido.
La figura 4B es una vista frontal del panel modular de la presente invención, de acuerdo a un trazado de cambio de sentido.
La figura 5A es una vista en planta de la cara inferior del panel modular de la presente invención, de acuerdo a un trazado combinado.
La figura 5B es una vista frontal del panel modular de la presente invención, de acuerdo a un trazado combinado.
La figura 6 es una vista inferior de una superficie térmica para el acondicionamiento térmico de un recinto, de acuerdo a un ejemplo de montaje de la presente invención. - La figura 7 es una vista superior de la superficie térmica de la figura 6.
La figura 8 es un esquema del circuito hidráulico de la superficie térmica de la figura 6.
La figura 9A es una vista de perfil de la junta de dilatación.
La figura 9B es una vista frontal de la junta de dilatación.
La figura 10A es una vista en planta de la pieza de protección.
- La figura 10B es una vista frontal de la pieza de protección.
La figura 10C es una vista de perfil de la pieza de protección.
La figura 1 1 A es una vista en planta de la cara inferior del panel ciego de la presente invención.
La figura 1 1 B es una vista frontal del panel ciego de la presente invención.
- La figura 12 es un ejemplo de montaje de una superficie térmica directamente sobre un cerramiento.
La figura 13 es un despiece de montaje en detalle de la figura 12.
La figura 14 es un ejemplo de montaje de una superficie térmica sobre una estructura suspendida.
Realización preferente de la invención.
Las figuras 1 A y 1 B muestran respectivamente una vista en planta de la cara inferior de un panel modular (1 ) y una vista frontal del mismo, de acuerdo a un trazado recto.
Como se puede apreciar, el panel modular (1 ), cuya longitud no se representa en su totalidad en el presente ejemplo, comprende una capa de aislamiento térmico (2) que conforma una estructura portante delimitada por una cara inferior (2A), una cara superior (2B), dos caras laterales (2C, 2D) y dos caras extremas (2E, 2F). A su vez, el panel (1 ) comprende dos placas conductoras (3) unidas a la cara inferior (2A) de la capa de aislamiento térmico (2) . Asimismo, cada placa conductora (3) se encuentra conformada por:
• una acanaladura (31 ) incrustada en la capa de aislamiento térmico (2), definiendo una cavidad longitudinal (32) que se encuentra configurada para alojar una tubería hidráulica (6) , no representada, dicha acanaladura (31 ) rematada a su vez por dos bordes longitudinales
(33) que quedan enrasados con la cara inferior (2A), definiendo una abertura longitudinal
(34) que se encuentra configurada para permitir la introducción de la tubería hidráulica (6) ; · una plancha de transferencia (35) que se prolonga desde los bordes longitudinales (33) y que se extiende sobre la cara inferior (2A) ; y
• medios de cierre (4), figuras 2A y 2B, configurados para sellar la abertura longitudinal (34) y presionar la tubería hidráulica (6) contra la acanaladura (31 ).
Para facilitar la fijación del panel (1 ) a cualquier elemento estructural, así como permitir la fijación sobre el mismo de elementos de acabado (16), figura 13, el panel comprende un soporte de fijación (5) unido a la cara superior (2B) que discurre en posición alternada con las acanaladuras (31 ). Dicho soporte (5) se encuentra incrustado en la capa de aislamiento térmico (2) ocupando el eje central longitudinal de la misma y presentando una forma de U de acero galvanizado, cuyos extremos se encuentran enrasados con la cara superior (2B) del aislamiento térmico (2).
Este primer ejemplo muestra un panel modular (1 ) recto, cuyas acanaladuras (31 ) siguen un trazado recto (31 S) que se inicia en la cara extrema (2E) y finaliza en la cara extrema (2F).
Las figuras 2A Y 2B muestran respectivamente una sección en detalle de una acanaladura (31 ) tras el montaje de una tubería hidráulica (6).
Como se puede apreciar los medios de cierre (4) comprenden:
• un relieve longitudinal (36) de perfil dentado dispuesto en cada uno de los bordes longitudinales (33) ; y
• un elemento de cierre (41 ) elástico configurado para compensar las dilataciones de la tubería hidráulica (6) provocadas por los cambios de temperatura de la misma, donde dicho elemento de cierre (41 ) se encuentra formado por:
o dos lados longitudinales (42) de perfil dentado que encajan con los relieves longitudinales (36) para permitir la sujeción del elemento de cierre (41 ) a la placa conductora (3) y sellar la abertura longitudinal (34), garantizando la estanqueidad de la cavidad longitudinal (32);
o un asiento longitudinal (43) que se encuentra configurado para presionar la tubería hidráulica (6) contra la acanaladura (31 ), garantizando la transferencia de energía térmica entre la tubería hidráulica (6) y la placa conductora (3) ; y
o una base inferior (44) que queda enrasada con la cara inferior (2A).
Las figuras 3A y 3B muestran respectivamente una vista en planta de la cara inferior del panel modular (1 ) y una vista frontal del mismo, de acuerdo a un trazado de giro. Este segundo ejemplo muestra un panel modular (1 ) de giro, cuyas acanaladuras (31 ) siguen un trazado de 90a (31 T) que se inicia en una cara extrema (2E, 2F) y finaliza en una cara lateral (2C, 2D). Las figuras 4A y 4B muestran respectivamente una vista en planta de la cara inferior del panel modular (1 ) y una vista frontal del mismo, de acuerdo a un trazado de cambio de sentido. Este tercer ejemplo muestra un panel modular (1 ) de cambio de sentido, cuya acanaladura (31 ) siguen un trazado de 180a (31 TO) que se inicia y termina en la cara extrema (2F).
Las figuras 5A y 5B muestran respectivamente una vista en planta de la cara inferior del panel modular (1 ) y una vista frontal del mismo, de acuerdo a un trazado de combinado. Este cuarto ejemplo muestra un panel modular (1 ) combinado, cuyas acanaladuras (31 ) siguen trazados rectos (31 S) y de 90s (31 T).
La figura 6 muestra una vista inferior de una superficie térmica (10) para el acondicionamiento térmico de un recinto, de acuerdo a un ejemplo de montaje de la presente invención.
Dicha superficie térmica (10) comprende una pluralidad de paneles modulares (1 ) que se encuentran dispuestos de forma adyacente, quedando sus placas conductoras (3) enlazadas entre sí y conformando las acanaladuras (31 ) de dichas placas (3) una cavidad longitudinal (32) continua que se encuentra configurada para alojar la tubería hidráulica (6), donde dicha cavidad longitudinal (32) define una abertura longitudinal (34) continua que se encuentra configurada para permitir la introducción de la tubería hidráulica (6) a lo largo de la misma, formando un circuito hidráulico (7) , figura 8, sin necesidad de conexiones intermedias entre paneles (1 ).
La figura 7 muestra una vista superior de la superficie térmica (10) de la figura 6, en la que se pueden apreciar los soportes de fijación (5).
La figura 8 muestra un esquema del circuito hidráulico (7) de la superficie térmica (10) de la figura 6. Como se puede apreciar no existen conexiones intermedias entre paneles (1 ), estando situada la conexión general del circuito fuera del recinto. Si las características de la instalación lo requieren, se puede configurar más de un circuito hidráulico por recinto, con sus respectivas conexiones generales situadas fuera o dentro del recinto, dependiendo de donde se encuentren las respectivas acometidas que transportan el fluido caloportador desde los equipos generadores.
Las figuras 9A y 9B muestran respectivamente una vista de perfil y una vista frontal de la junta de dilatación (1 1 ). Dichas juntas (1 1 ) se encuentran dispuestas en los puntos de enlace de las placas conductoras (3) de paneles (1 ) adyacentes que conforman la superficie térmica (10), presentando la misma sección transversal que la correspondiente a dichos paneles (1 ) adyacentes.
Las figura 1 0A, 10B y 10C muestran respectivamente una vista en planta, una vista frontal y una vista de perfil de la pieza de protección (12). Dichas piezas (12) se disponen, tras la instalación de la tubería (6), en la cara inferior (2A) de los paneles modulares (1 ), en los puntos donde el soporte de fijación (5) se cruza con la acanaladura (31 ) , figura 6, para cubrir interiormente el tramo de tubería hidráulica (6) dispuesto en dichos puntos. Las figuras 1 1 A y 1 1 B muestran respectivamente una vista en planta de la cara inferior del panel ciego (21 ) y una vista frontal del mismo.
Como se puede apreciar el panel ciego (21 ), cuya longitud no se representa en su totalidad en el presente ejemplo, se encuentran formado por:
· una capa de aislamiento térmico (20) que conforma una estructura portante delimitada por una cara inferior (20A), una cara superior (20B), dos caras laterales (20C, 20D) y dos caras extremas (20E, 20F) ; y
• un soporte de fijación (50) unido a la cara superior (20B).
Dichos paneles ciegos (21 ) se encuentran configurados para rellenar los espacios vacíos que quedan en la superficie térmica (10) una vez dispuestos los paneles modulares (1 ) , figuras 6 y 7. Generalmente dichos espacios vacíos se encuentran en las zonas perimetrales del recinto o en zonas perimetrales a elementos estructurales intermedios.
Las figuras 12 y 13 muestran un ejemplo de montaje de una superficie térmica (10) directamente sobre un cerramiento (9). El procedimiento de montaje comprende las etapas de: a) seleccionar los paneles modulares (1 ) y adaptar las dimensiones de los mismos, en función de la geometría del recinto y del circuito hidráulico (7) a instalar;
b) colocar los paneles modulares (1 ) de forma adyacente sobre una estructura de soporte (13), enlazando sus placas conductoras (3) para que las acanaladuras (31 ) de las mismas formen la cavidad longitudinal (32) continua y la abertura longitudinal (34) continua;
c) introducir la tubería hidráulica (6) a lo largo de la abertura longitudinal (34) continua y alojarla en la cavidad longitudinal (32) continua, formando el circuito hidráulico (7) sin necesidad de conexiones intermedias entre paneles (1 ) ;
d) fijar los medios de cierre (4) a las placas conductoras (3) para sellar la abertura longitudinal (34) continua y presionar la tubería hidráulica (6) contra las acanaladuras (31 ) de las mismas;
e) cubrir los espacios vacíos de paneles modulares (1 ) mediante paneles ciegos (21 ), previamente cortados según la geometría de dichos espacios;
f) aplicar una capa de pasta selladora (15) sobre la cara inferior (2A, 20A) de los paneles modulares (1 ) y de los paneles ciegos (21 ) ; y
g) colocar unos elementos de acabado (16) sobre la capa de pasta selladora (15), fijando dichos elementos de acabado (16) a la estructura de soporte (13) y a los soportes de fijación (5, 50) mediante el empleo de tornillos (17) , u otros medios de fijación equivalentes.
Este ejemplo contempla la realización de una estructura particular que ofrece unas ventajas añadidas. En este sentido, el procedimiento de montaje del presente ejemplo comprende las etapas de:
b.1 . colocar unas vigas (14) de perfil H sobre la estructura de soporte (13), de forma equidistante, a una distancia (d) coincidente con la anchura de los paneles modulares (1 ); y
b.2. colocar los paneles modulares (1 ) encajando sus caras laterales (2C, 2D) entre las alas de dos vigas (14) contiguas.
La figura 14 muestra un ejemplo de montaje de una superficie térmica (10) sobre una estructura suspendida (1 8).

Claims

Reivindicaciones.
1 . - Panel modular para transferencia de energía térmica, especialmente configurado para su aplicación en techos y paredes, que comprende una capa de aislamiento térmico (2) que conforma una estructura portante delimitada por al menos una cara inferior (2A), una cara superior (2B), dos caras laterales (2C, 2D) y dos caras extremas (2E, 2F), dicho panel (1 ) caracterizado porque comprende al menos una placa conductora (3) unida a la cara inferior (2A) de la capa de aislamiento térmico (2), donde dicha placa conductora (3) se encuentra conformada por:
· una acanaladura (31 ) incrustada en la capa de aislamiento térmico (2), definiendo una cavidad longitudinal (32) que se encuentra configurada para alojar una tubería hidráulica (6), dicha acanaladura (31 ) rematada a su vez por dos bordes longitudinales (33) que quedan enrasados con la cara inferior (2A), definiendo una abertura longitudinal (34) que se encuentra configurada para permitir la introducción de la tubería hidráulica (6) ;
· una plancha de transferencia (35) que se prolonga desde al menos uno de los bordes longitudinales (33) y que se extiende sobre la cara inferior (2A) ; y
• medios de cierre (4) configurados para sellar la abertura longitudinal (34) y presionar la tubería hidráulica (6) contra la acanaladura (31 ).
2. - Panel modular para transferencia de energía térmica, según la reivindicación 1 caracterizado porque los medios de cierre (4) comprenden:
• un relieve longitudinal (36) de perfil dentado dispuesto en cada uno de los bordes longitudinales (33) ; y
• un elemento de cierre (41 ) elástico configurado para compensar las dilataciones de la tubería hidráulica (6) provocadas por los cambios de temperatura de la misma, donde dicho elemento de cierre (41 ) se encuentra formado por:
o dos lados longitudinales (42) de perfil dentado que encajan con los relieves longitudinales (36) para permitir la sujeción del elemento de cierre (41 ) a la placa conductora (3) y sellar la abertura longitudinal (34), garantizando la estanqueidad de la cavidad longitudinal (32) ;
o un asiento longitudinal (43) que se encuentra configurado para presionar la tubería hidráulica (6) contra la acanaladura (31 ) , garantizando la transferencia de energía térmica entre la tubería hidráulica (6) y la placa conductora (3) ; y
o una base inferior (44) que queda enrasada con la cara inferior (2A).
3. - Panel modular para transferencia de energía térmica, según cualquiera de las reivindicaciones anteriores 1 a 2 caracterizado porque comprende un soporte de fijación (5) unido a la cara superior (2B).
4. - Panel modular para transferencia de energía térmica, según la reivindicación 3 caracterizado porque el soporte de fijación (5) se encuentra incrustado en la capa de aislamiento térmico (2) y presenta una forma de U.
5.- Panel modular para transferencia de energía térmica, según cualquiera de las reivindicaciones anteriores 1 a 4 caracterizado porque la acanaladura (31 ) de al menos una placa conductora (3) sigue un trazado recto (31 S) que se inicia en la cara extrema (2E) y finaliza en la cara extrema (2F).
6.- Panel modular para transferencia de energía térmica, según cualquiera de las reivindicaciones anteriores 1 a 5 caracterizado porque la acanaladura (31 ) de al menos una placa conductora (3) sigue un trazado de 90a (31 T) que se inicia en una cara extrema (2E, 2F) y finaliza en una cara lateral (2C, 2D).
7. - Panel modular para transferencia de energía térmica, según cualquiera de las reivindicaciones anteriores 1 a 6 caracterizado porque la acanaladura (31 ) de al menos una placa conductora (3) sigue un trazado de 180a (31 TO) que se inicia y termina en una de las caras extremas (2E, 2F).
8. - Superficie térmica para el acondicionamiento térmico de un recinto, que comprende una pluralidad de paneles modulares (1 ) según cualquiera de las reivindicaciones anteriores 1 a 7, dicha superficie (10) caracterizada porque los paneles modulares (1 ) se encuentran dispuestos de forma adyacente, quedando sus placas conductoras (3) enlazadas entre sí y conformando las acanaladuras (31 ) de dichas placas (3) una cavidad longitudinal (32) continua que se encuentra configurada para alojar la tubería hidráulica (6), donde dicha cavidad longitudinal (32) define una abertura longitudinal (34) continua que se encuentra configurada para permitir la introducción de la tubería hidráulica (6) a lo largo de la misma, formando un circuito hidráulico (7) sin necesidad de conexiones intermedias entre paneles (1 ).
9. - Superficie térmica para el acondicionamiento térmico de un recinto, según la reivindicación 8 caracterizada porque en los puntos de enlace de las placas conductoras (3) de paneles (1 ) adyacentes se dispone de una junta de dilatación (1 1 ) de material elástico que presenta la misma sección transversal que la correspondiente a dichos paneles (1 ) adyacentes.
10. - Superficie térmica para el acondicionamiento térmico de un recinto, según cualquiera de las reivindicaciones 8 a 9 caracterizada porque comprende una pieza de protección (12) metálica dispuesta en la cara inferior (2A) de al menos un panel modular (1 ), donde dicha pieza de protección (12) se encuentra configurada para cubrir interiormente el tramo de tubería hidráulica (6) , en los puntos donde el soporte de fijación (5) se cruza con la acanaladura (31 ).
1 1 . - Superficie térmica para el acondicionamiento térmico de un recinto, según cualquiera de las reivindicaciones 8 a 10, caracterizada porque adicionalmente comprende paneles ciegos (21 ) formados por:
· una capa de aislamiento térmico (20) que conforma una estructura portante delimitada por al menos una cara inferior (20A), una cara superior (20B) , dos caras laterales (20C, 20D) y dos caras extremas (20E, 20F) ; y
• un soporte de fijación (50) unido a la cara superior (20B) ;
donde dichos paneles ciegos (21 ) se encuentran configurados para rellenar los espacios vacíos que quedan en la superficie térmica (10) una vez dispuestos los paneles modulares (1 ).
12. - Procedimiento de montaje de una superficie térmica para el acondicionamiento térmico de un recinto, según cualquiera de las reivindicaciones anteriores 8 a 1 1 caracterizado porque comprende las etapas de:
a) seleccionar los paneles modulares (1 ) y adaptar las dimensiones de los mismos, en función de la geometría del recinto y del circuito hidráulico (7) a instalar;
b) colocar los paneles modulares (1 ) de forma adyacente sobre una estructura de soporte (13) , enlazando sus placas conductoras (3) para que las acanaladuras (31 ) de las mismas formen la cavidad longitudinal (32) continua y la abertura longitudinal (34) continua;
c) introducir la tubería hidráulica (6) a lo largo de la abertura longitudinal (34) continua y alojarla en la cavidad longitudinal (32) continua, formando el circuito hidráulico (7) sin necesidad de conexiones intermedias entre paneles (1 ) ; y
d) fijar los medios de cierre (4) a las placas conductoras (3) para sellar la abertura longitudinal (34) continua y presionar la tubería hidráulica (6) contra las acanaladuras (31 ) de las mismas.
13. - Procedimiento de montaje según la reivindicación 12 caracterizado porque comprende adicionalmente la etapa de:
e) cubrir los espacios vacíos de paneles modulares (1 ) mediante paneles ciegos (21 ) , previamente cortados según la geometría de dichos espacios.
14.- Procedimiento de montaje según la reivindicación 13 caracterizado porque comprende adicionalmente las etapas de:
f) aplicar una capa de pasta selladora (15) sobre la cara inferior (2A, 20A) de los paneles modulares (1 ) y de los paneles ciegos (21 ) ; y
g) colocar unos elementos de acabado (16) sobre la capa de pasta selladora (15), fijando dichos elementos de acabado (16) a la estructura de soporte (13) y a los soportes de fijación
(5, 50) mediante el empleo de tornillos (17).
15.- Procedimiento de montaje según cualquiera de las reivindicaciones anteriores 12 a 14 caracterizado porque la etapa b) comprende las etapas de:
b.1 . colocar unas vigas (14) de perfil H sobre la estructura de soporte (13), de forma equidistante, a una distancia (d) coincidente con la anchura de los paneles modulares (1 ) ; y
b.2. colocar los paneles modulares (1 ) encajando sus caras laterales (2C, 2D) entre las alas de dos vigas (14) contiguas.
PCT/ES2011/070479 2011-06-30 2011-06-30 Panel modular para transferencia de energía térmica WO2013001106A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2840790A CA2840790C (en) 2011-06-30 2011-06-30 Modular panel for thermal energy transfer
EP11770117.7A EP2728081B1 (en) 2011-06-30 2011-06-30 Modular panel for thermal energy transfer
ES11770117T ES2773050T3 (es) 2011-06-30 2011-06-30 Panel modular para transferencia de energía térmica
PT117701177T PT2728081T (pt) 2011-06-30 2011-06-30 Painel modular para transferência de energia térmica
US14/129,827 US10041250B2 (en) 2011-06-30 2011-06-30 Modular panel for thermal energy transfer
AU2011372284A AU2011372284A1 (en) 2011-06-30 2011-06-30 Modular panel for thermal energy transfer
KR1020147002850A KR20140053163A (ko) 2011-06-30 2011-06-30 열에너지 전달용 모듈형 패널
PCT/ES2011/070479 WO2013001106A1 (es) 2011-06-30 2011-06-30 Panel modular para transferencia de energía térmica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070479 WO2013001106A1 (es) 2011-06-30 2011-06-30 Panel modular para transferencia de energía térmica

Publications (1)

Publication Number Publication Date
WO2013001106A1 true WO2013001106A1 (es) 2013-01-03

Family

ID=44801023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070479 WO2013001106A1 (es) 2011-06-30 2011-06-30 Panel modular para transferencia de energía térmica

Country Status (8)

Country Link
US (1) US10041250B2 (es)
EP (1) EP2728081B1 (es)
KR (1) KR20140053163A (es)
AU (1) AU2011372284A1 (es)
CA (1) CA2840790C (es)
ES (1) ES2773050T3 (es)
PT (1) PT2728081T (es)
WO (1) WO2013001106A1 (es)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9248492B2 (en) * 2012-09-12 2016-02-02 Michael G. Sullivan Thermal transfer panels with channel structures and method of using thermal transfer panels
US20140352915A1 (en) * 2013-05-31 2014-12-04 Narayanan Raju Radiant thermal systems and methods for enclosed structures
US10358778B2 (en) * 2015-02-06 2019-07-23 Michael Gregory Theodore, Jr. Temperature controlled structure assembly
WO2016180278A1 (zh) * 2015-05-08 2016-11-17 宁波信远工业集团有限公司 一种波热转化结构及其应用
EP3112549A1 (fr) * 2015-07-01 2017-01-04 KEOKI Company SA Panneau de construction destiné à la réalisation de parois chauffantes et/ou refroidissantes de bâtiments
CN108139015B (zh) * 2015-08-20 2020-05-12 哈金森公司 用于热绝缘的具有中间定位部分的组件和铰接面板
RU2655489C1 (ru) * 2017-03-16 2018-05-28 Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) Трехслойная стеновая панель и способ ее изготовления
US10006643B1 (en) 2017-04-14 2018-06-26 Scandic Builders, Inc. Technologies for underfloor fluid conduction
US20210254840A1 (en) * 2018-08-22 2021-08-19 Elitile Ag Covering, functional element for a covering, and method for producing a covering
US20200149748A1 (en) * 2018-11-14 2020-05-14 Francesco Giovanni Longo Building System
KR102217346B1 (ko) * 2019-05-03 2021-02-17 김건수 게르마늄 함유 난방 타일 및 이를 이용한 난방 시스템
CA3102712C (en) * 2020-04-24 2023-06-20 Systemes Norbec Inc. Insulated panel structure
AT17934U1 (de) * 2022-03-04 2023-08-15 B M Newtec Gmbh Flächiges Fertigbau-Element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2509841A1 (de) * 1975-03-06 1976-09-16 Gerhard Dipl Ing Pruefling Fussbodenheizung
WO1988007158A1 (en) * 1987-03-16 1988-09-22 Luciano Pesce A modular plate for thermic systems
EP1004827A1 (en) 1998-11-23 2000-05-31 Plan Holding GmbH Self-supporting, modular, prefabricated radiating panel, methods for its production and radiating surface obtained therewith
GB2383057A (en) * 2001-12-12 2003-06-18 Nu Heat Uk Ltd Prefabricated underfloor heating tile
DE10357937A1 (de) * 2003-09-05 2005-04-07 Schütz GmbH & Co. KGaA Systemplatte aus Kunststoff zum Verlegen von Kunststoffrohren der Heiz- bzw. Kühlkreise von Flächen-Heiz- und Kühlinstallationen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1800150A (en) * 1927-01-29 1931-04-07 Musgrave Joseph Leslie Heating and cooling of buildings
US1771269A (en) * 1927-06-01 1930-07-22 Musgrave Joseph Leslie Heating and cooling of buildings
US4306616A (en) * 1980-02-04 1981-12-22 Duke Manufacturing Co. Refrigerated shelf for a food display counter
US4639836A (en) * 1984-12-19 1987-01-27 Union Carbide Corporation Unencapsulated chip capacitor
US5454428A (en) * 1993-11-22 1995-10-03 Radiant Engineering, Inc. Hydronic radiant heat distribution panel and system
US5743330A (en) * 1996-09-09 1998-04-28 Radiant Technology, Inc. Radiant heat transfer panels
US7013609B2 (en) * 2002-03-01 2006-03-21 Hydock Gary J Modular radiant heat panel system
CA2466624C (en) * 2003-05-07 2007-01-02 Dale H. Pickard Hydronic radiant heat tubing receptacle and heat distribution panel system
KR200432475Y1 (ko) * 2006-09-20 2006-12-04 두 년 김 난방용 가장자리 패널
CN101680670B (zh) * 2007-04-16 2012-10-03 东洋克斯株式会社 制冷制暖面板
US20090101306A1 (en) * 2007-10-22 2009-04-23 Reis Bradley E Heat Exchanger System
US8881476B2 (en) * 2011-04-25 2014-11-11 BTU Comfort Systems, LLC. Panels having multiple channel structures
US9146038B2 (en) * 2013-06-12 2015-09-29 Codi Group, Llc Impact and/or sound deadening hydronic sub-flooring panel and related system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2509841A1 (de) * 1975-03-06 1976-09-16 Gerhard Dipl Ing Pruefling Fussbodenheizung
WO1988007158A1 (en) * 1987-03-16 1988-09-22 Luciano Pesce A modular plate for thermic systems
EP1004827A1 (en) 1998-11-23 2000-05-31 Plan Holding GmbH Self-supporting, modular, prefabricated radiating panel, methods for its production and radiating surface obtained therewith
GB2383057A (en) * 2001-12-12 2003-06-18 Nu Heat Uk Ltd Prefabricated underfloor heating tile
DE10357937A1 (de) * 2003-09-05 2005-04-07 Schütz GmbH & Co. KGaA Systemplatte aus Kunststoff zum Verlegen von Kunststoffrohren der Heiz- bzw. Kühlkreise von Flächen-Heiz- und Kühlinstallationen

Also Published As

Publication number Publication date
EP2728081B1 (en) 2019-12-11
EP2728081A1 (en) 2014-05-07
ES2773050T3 (es) 2020-07-09
US10041250B2 (en) 2018-08-07
CA2840790C (en) 2018-10-30
AU2011372284A1 (en) 2014-06-26
US20140196867A1 (en) 2014-07-17
EP2728081A8 (en) 2014-07-09
KR20140053163A (ko) 2014-05-07
CA2840790A1 (en) 2013-01-03
PT2728081T (pt) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2013001106A1 (es) Panel modular para transferencia de energía térmica
ES2328774B1 (es) Panel de cerramiento arquitectonico colector de energia solar, y cubierta colectora de energia solar transitable.
ES2363911T3 (es) Sistema de control climático de bajo consumo energético.
US11415328B2 (en) Facade panel conditioning system
JP2014510255A5 (es)
JP6207561B2 (ja) 断熱壁構造、断熱壁構造組立方法、及び建築構造物
RU2722614C2 (ru) Система отопления и охлаждения модульного жилого здания
ES2684311T5 (es) Revestimiento de pared o techo y módulo con el mismo
ES2401519B1 (es) Panel modular para transferencia de energía térmica.
JP6414608B2 (ja) 遮熱防湿ユニット、壁パネル、および建物の外壁構造
KR20180099025A (ko) 단열성 및 보온성을 높인 단위블록 및 이를 이용한 단열 벽체
WO2009151307A1 (es) Sistema de disipación de calor en construcciones con block y bovedilla de concreto
ES2436031B1 (es) Panel modular para transferencia de energía térmica, mejorado.
EP3452760B1 (en) Recuperator for exchange of energy between two air flows
WO2012101311A1 (es) Elemento prefabricado para la construcción de tabiques, revestimientos y similares, y procedimiento correspondiente
IT201600093943A1 (it) Pannello radiante per la climatizzazione di ambienti
ES2242508A1 (es) Escudo termico para la climatizacion de edificios en general.
WO2011015690A2 (es) Cerramiento térmico industrializado de fácil montaje
JP3156870U (ja) 熱交換構造体
ES2331674B1 (es) Sistema de climatiacion modular.
ES2380527B1 (es) Aislamiento termico forzado e inteligente
EP2239529A2 (en) Modular element for a surface heating system
WO2017160181A1 (ru) Модульное здание "дубль дом"
ES1061045U (es) Bandeja para fachada ligera ventilada.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11770117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2840790

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011770117

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147002850

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14129827

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011372284

Country of ref document: AU

Date of ref document: 20110630

Kind code of ref document: A