WO2013000828A1 - Wiederaufladbare elektrische batterie - Google Patents

Wiederaufladbare elektrische batterie Download PDF

Info

Publication number
WO2013000828A1
WO2013000828A1 PCT/EP2012/062054 EP2012062054W WO2013000828A1 WO 2013000828 A1 WO2013000828 A1 WO 2013000828A1 EP 2012062054 W EP2012062054 W EP 2012062054W WO 2013000828 A1 WO2013000828 A1 WO 2013000828A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cooling air
housing
cell
cooling
Prior art date
Application number
PCT/EP2012/062054
Other languages
English (en)
French (fr)
Inventor
Martin Michelitsch
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to CN201280032755.9A priority Critical patent/CN103918101A/zh
Priority to EP12730480.6A priority patent/EP2727168A1/de
Priority to KR1020147000736A priority patent/KR20140042851A/ko
Priority to US14/129,984 priority patent/US20140141298A1/en
Priority to JP2014517612A priority patent/JP6169571B2/ja
Publication of WO2013000828A1 publication Critical patent/WO2013000828A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a rechargeable electric battery, in particular high-voltage battery, preferably for an electric vehicle, with at least two stacks of stacked battery cells, the stacks are arranged side by side in a housing, wherein within the housing arranged transversely to the stacking direction cooling air passages of cooling air can flow, wherein the cooling air ducts are part of a closed cooling air circuit for cooling the battery, wherein preferably the cooling air circuit has at least one cooling air blower and at least one heat exchanger.
  • High-voltage batteries in particular with lithium-ion battery cells, can only be operated within a precisely defined temperature window.
  • the tempering of high-voltage batteries is usually carried out by means of a closed coolant circuit or by means of an open cooling air system.
  • WO 2010/053689 A2 describes a battery arrangement with a housing and a plurality of lithium-ion cells, which are arranged next to one another.
  • the housing is flowed through for cooling with a thermally conductive, electrically insulating fluid.
  • liquid-cooled systems permit high cooling capacities, they nevertheless have many sealing points and thus contain a high risk of leakage. Exiting coolant can cause short circuits inside and / or outside of the battery.
  • a battery with juxtaposed stack of battery cells wherein battery cells are cooled by cooling air.
  • Air-cooled batteries are usually cooled in an open cooling air circuit.
  • cooling air is withdrawn from the environment and led around the battery and / or passed through cooling air channels within the battery, thus dissipating heat from the battery.
  • the heated cooling air is returned to the environment.
  • Temperature fluctuations, humidity fluctuations, air pollution or the like adversely affect the cooling performance and the life of the battery.
  • the publication WO 2011/067490 Al shows a cooling device for a vehicle battery, in which cooling air is passed in a closed circuit by means of blowers on the battery cells. The cooling air is then routed to the front of the battery and cooled again via a heat exchanger.
  • the publications US 2010 236 846 AI and EP 2,133,952 AI show cooling devices for vehicle batteries, wherein the cooling air is guided in a closed circuit.
  • the cooling devices each contain at least one cooling air blower and a heat exchanger.
  • the object of the invention is to avoid the disadvantages mentioned, and to enable a largely independent of environmental influences, efficient cooling of the battery in the simplest possible way.
  • this is achieved in that at least one battery cell is surrounded by a plastic cell shell, the plastic cell shell having a protruding seal seam arranged circumferentially along the narrow side of the battery cell, preferably between approximately the seal seams of adjacent battery cells of a stack a free space is spanned.
  • cooling air blower and / or the heat exchanger are arranged within the housing.
  • This space may form a first and / or second cooling air channel.
  • At least one first cooling air channel in the direction of a vertical axis of the battery and at least one second cooling air channel in the direction of a normal to the vertical axis and normal to the stacking direction formed transverse axis of the battery can be arranged.
  • the cooling of the battery can be largely independent of adverse environmental influences, such as temperature and humidity fluctuations, air pollution, or the like, performed. This ensures constant optimum operating conditions for the battery and enables a long service life of the same.
  • the area between the two adjacent stacks flows through the first cooling air channel and is cooled.
  • the second cooling air passages through which cooling air flows are arranged on the upper side of the battery and serve to cool the cell poles and / or the electrical cell connectors.
  • a particularly good cooling latter can be achieved if at least one preferably a U-profile or Y-profile exhibiting cell connector for electrical connection of two adjacent battery cells protrudes into a second cooling air channel.
  • At least one sealed seam of a battery cell of a first stack can protrude into a free space formed by sealing seams of two adjacent battery cells of a second stack.
  • the sealing seams delimiting the free space or projecting into the free space can form flow guide surfaces for cooling air.
  • the cooling capacity can be increased or space for the cooling can be saved, which also has an advantageous effect on the volumetric energy density.
  • FIG. 1 shows a battery according to the invention in an oblique view from above.
  • Figure 2 shows the battery in a section along the line II - II in Fig. 1.
  • FIG. 4a shows the battery in a section along the line IVa - IVa in Fig. 4;
  • FIG. 10 shows a battery module in a section according to the line X - X in FIG. 9;
  • FIG. 11 shows a detail of this battery module in a section analogous to FIG. 10.
  • the rechargeable battery 1 has in the exemplary embodiment seven battery modules 2, wherein each battery module 2 has two stacks 3, 4 of juxtaposed and strained battery cells 5.
  • the stacks 3, 4 of each battery module 2 are arranged between two structurally stiff corrugated plates 6 made of metal. tall, for example aluminum, or plastic, arranged, wherein the plates 6 may be formed by die castings.
  • the plates 6 themselves are clamped between two holding plates 7, 8 at the front and back of the battery 1, wherein the holding plate 7 is fixedly connected at the front via clamping screws 9 with the holding plate 8 at the rear.
  • the clamping screws 9 are each arranged in the region of the plates 6.
  • the plates 6 together with the holding plates 7, 8 form a holding frame 10 for the battery modules 2.
  • the holding plates 7, 8 have openings in order to keep the weight as low as possible.
  • the - seen in the stacking direction y - defined distance between the clamping screws 9 ensures that the battery cells 5 are installed in the correct position and with certain and over the life of the battery 1 substantially invariable bias.
  • an elastic insulating layer 6a for example of a foam, arranged, which allows a uniform and gentle pressure distribution.
  • the battery 1 together with the holding frame 10 is arranged in a housing 12, wherein between the housing 12 and the battery 1 cooling air flow paths are formed.
  • To guide the flow of cooling air flow guide surfaces 13 are incorporated into the housing bottom 12a, as shown in FIG. 2 and 4 can be seen.
  • Each battery cell 5 is surrounded by a plastic sheath 14, wherein the plastic sheath 14 approximately in the region of a Zellstoffebene 15 along the narrow side 5a has a protruding seal seam 16 for sealing. Between the sealing seams 16 of two adjacent battery cells 5 of a stack 3, 4 a free space 17 is spanned in each case.
  • each battery module 2 are offset and formed overlapping each other.
  • the offset V is approximately half the thickness D of a battery cell 5.
  • the sealing seams 16 of a battery cell 5 of the one stack 3, 4 protrude into a space of sealing seams 16 of two adjacent battery cells 5 of the other stack 4, 3 open space 17 inside.
  • the free space 17 can be used at least partially by accommodating part of the sealing seams 16. This has a very beneficial effect on the size of the installed space and on the volumetric energy density.
  • the offset v between the two stacks 3, 4 causes the plates 6 form a step 24 in the region of a longitudinal center plane la of the battery 1.
  • connection between the cell connectors 19, 20 and the cell poles 18 may be implemented as a clinching connection 21 comprising one or more clinching points 21a in a clinching process. This allows a particularly high current carrying capacity by means of multiple multiple points arranged next to one another and a corrosion-resistant long-term connection due to the hermetically sealed joints and easy contacting of the cell poles 18 with different materials (copper to aluminum and vice versa), without additional components.
  • two to four sheets can be electrically connected to each other with the same tool, with the materials copper, aluminum and steel, in particular, being suitable for wall thicknesses of 0.1 mm to 0.5 mm.
  • cell voltage monitoring cables 22 can thus be connected to the cell poles 18 in a clinching operation method simultaneously with the cell connectors 19, 20 in one step. Since the position of the clinching points 21a of the clinching joint 21 is allowed to scatter more than, for example, a laser welding joint, a relatively high tolerance compensation capability results.
  • parallel and multiple tools can be realized for larger quantities a simple and cost-effective production, with only a few and easily controllable influencing factors such as material wall thickness, pressing force, etc. are available.
  • the heat-dissipating surface of the battery 1 is increased, which is particularly important in direct air cooling of the cell poles 18 of importance.
  • the protruding clinch points 21a also contribute to the increase in turbulence, which improves the heat transport, in particular in the case of air cooling.
  • clinching points 21a also contribute to increasing the volumetric energy density through efficient use of space.
  • a very thin, thermal and electrical insulator layer 23 for example an insulating film, is arranged between the battery cells 5 in order to avoid the occurrence of a "domino effect" in the case of a thermal overload of an adjacent battery cell 5.
  • the free spaces 17 at the same time form cooling air channels 26, 27.
  • first cooling air channels 26 which are arranged in the direction of the vertical axis z of the battery 1.
  • the sealing seams 16 thereby form flow guide surfaces for the air flow and heat-dissipating surfaces. chen.
  • second cooling air channels 27 are formed in the region of the cell poles 18 through the free spaces 17 at the top of the battery cells 5.
  • the first and second cooling air channels 26, 27 are part of a closed cooling air circuit 28 for cooling the battery 1, wherein the cooling air circuit 28 has at least one cooling air blower 29 and at least one heat exchanger 30.
  • the housing 12 has a cooling air supply flow path 31 and a cooling air discharge flow path 32, here, cooling air supply flow path 31 and cooling air discharge flow path 32 are disposed in the same first longitudinal side la (front side) of the battery 1.
  • the cooling air is - coming from the cooling air blower 29 and the heat exchanger 30 - via thede Kunststoffzuschreibströmungsweg 31 of the housing 12 according to the arrows S in FIG. 4a via the second cooling air channels 27 in the region of the cell poles 18 of the battery cells 5 in the region of the upper side lb of the battery 1 to a first longitudinal side la remote second longitudinal side lc (back) of the battery 1 out.
  • a part Sl of the air flows to a lower side ld of the battery 1 and in the region of the lower side ld in a collecting channel 33 formed between the bottom plate 11 of the battery 1 and the housing 12 back to the first
  • a further part S2 of the cooling air flows through the first cooling air channels 26 between the two stacks 3, 4 of battery cells 5 to the bottom ld of the battery 1 and also passes into the collecting channel 33rd
  • the cooling air thus flows through the second cooling air channels 27 and thereby cools the cell poles 18 and cell connectors 19, 20. Thereafter, part of the cooling air enters the first cooling air channels 26, which lead the cooling air counter to the vertical axis z downwards. In this case, all spaces and clearances 17 of the battery 1 flows through and dissipates accumulating heat. Between the retaining plate 7 on the first longitudinal side la (front) of the battery 1 and the housing 12, the remaining cooling air flows to the housing bottom 12a of the housing 12, where it is passed through the flow guide 13 to the vehicle longitudinal center plane ⁇ and collected. Thereafter, the cooling air exits through thede Kunststoffabbowströmungsweg 32, the housing 12 and is sucked in again by the cooling air blower 29 and cooled in the heat exchanger 30 before it is fed back into the closed cooling circuit 28 of the battery 1.
  • cooling-air blowers 29 and heat exchangers 30 can also be fitted inside the outwardly sealed housing 12 of the battery 1. orders be.
  • the cooling air blower on two fans, which are arranged upstream of the heat exchanger 30.
  • the heat exchanger 30 is designed as an air / water heat exchanger, wherein cooling water inflow and outflow lines 34, 35 are connected to the heat exchanger 30.
  • Reference numeral 36 designates flow guide surfaces for the cooling air S.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Die Erfindung betrifft eine wiederaufladbare elektrische Batterie (1), insbesondere Hochspannungsbatterie, vorzugsweise für ein Elektrofahrzeug, mit zumindest zwei Stapel (3, 4) von in Stapelrichtung (y) aneinandergereihten Batteriezellen (5), wobei die Stapel (3, 4) in einem Gehäuse (12) nebeneinander angeordnet sind, wobei innerhalb des Gehäuses (12) quer zur Stapelrichtung angeordnete Kühlluftkanäle (26, 27) von Kühlluft durchströmbar sind, wobei die Kühlluftkanäle (26, 27) Teil eines geschlossenen Kühlluftkreislaufes (28) zur Kühlung der Batterie (1) sind, wobei vorzugsweise der Kühlluftkreislauf (28) zumindest ein Kühlluftgebläse (29) und zumindest einen Wärmetauscher (30) aufweist. Um eine gute Kühlung der Batterie (1) zu ermöglichen, ist vorgesehen, dass zumindest eine Batteriezelle (5) von einer Kunststoffzellhülle (14) umgeben ist, wobei die Kunststoffzellhülle (14) eine - vorzugsweise etwa im Bereich einer Zellmittelebene (15) - umlaufend entlang der Schmalseite (5a) der Batteriezelle (5) angeordnete, vorragende Siegelnaht (16) aufweist, wobei zwischen jeweils den Siegelnähten (16) von benachbarten Batteriezellen (5) eines Stapels (3, 4) ein Freiraum (17) aufgespannt ist.

Description

Wiederaufladbare elektrische Batterie
Die Erfindung betrifft eine wiederaufladbare elektrische Batterie, insbesondere Hochspannungsbatterie, vorzugsweise für ein Elektrofahrzeug, mit zumindest zwei Stapel von in Stapelrichtung aneinandergereihten Batteriezellen, wobei die Stapel in einem Gehäuse nebeneinander angeordnet sind, wobei innerhalb des Gehäuses quer zur Stapelrichtung angeordnete Kühlluftkanäle von Kühlluft durchströmbar sind, wobei die Kühlluftkanäle Teil eines geschlossenen Kühlluftkreislaufes zur Kühlung der Batterie sind, wobei vorzugsweise der Kühlluftkreislauf zumindest ein Kühlluftgebläse und zumindest einen Wärmetauscher aufweist.
Hochspannungsbatterien, insbesondere mit Lithium-Ionen-Batteriezellen, können nur innerhalb eines genau definierten Temperaturfensters betrieben werden. Die Temperierung von Hochspannungsbatterien erfolgt üblicherweise mittels eines geschlossenen Kühlflüssigkeitskreislauf oder mittels eines offenen Kühlluftsystems.
Die WO 2010/053689 A2 beschreibt eine Batterieanordnung mit einem Gehäuse und einer Mehrzahl von Lithium-Ionen-Zellen, welche nebeneinander angeordnet sind. Das Gehäuse ist zur Kühlung mit einem thermisch leitenden, elektrisch isolierenden Fluid durchströmt. Flüssigkeitsgekühlte Systeme erlauben zwar hohe Kühlleistungen, weisen allerdings viele Dichtstellen auf und beinhalten somit ein hohes Leckagerisiko. Durch austretendes Kühlmittel kann es zu Kurschlüssen innerhalb und/oder außerhalb der Batterie kommen.
Aus der WO 2010/067944 AI ist eine Batterie mit nebeneinander angeordneten Stapel von Batteriezellen bekannt, wobei Batteriezellen durch Kühlluft gekühlt werden. Luftgekühlte Batterien werden üblicherweise in einem offenen Kühlluftkreislauf gekühlt. Dabei wird Kühlluft der Umgebung entzogen und um die Batterie herumgeführt und/oder durch Kühlluftkanäle innerhalb der Batterie geführt und somit Wärme aus der Batterie abgeführt. Die erwärmte Kühlluft wird wieder in die Umgebung geleitet. Temperaturschwankungen, Feuchtigkeitsschwankungen, Luftverschmutzung oder dergleichen wirken sich allerdings nachteilig auf die Kühlleistung und auf die Lebensdauer der Batterie aus.
Die Druckschrift WO 2011/067490 AI zeigt eine Kühleinrichtung für eine Fahrzeugbatterie, bei der Kühlluft in einem geschlossenen Kreislauf mittels Gebläse über die Batteriezellen geleitet wird. Die Kühlluft wird anschließend zur Vorderseite der Batterie geführt und über einen Wärmetauscher wieder gekühlt. Die Veröffentlichungen US 2010 236 846 AI und EP 2 133 952 AI zeigen Kühleinrichtungen für Fahrzeugbatterien, wobei die Kühlluft in einem geschlossenen Kreislauf geführt wird. Die Kühleinrichtungen enthalten jeweils zumindest ein Kühlluftgebläse und einen Wärmetauscher.
Aufgabe der Erfindung ist es, die genannten Nachteile zu vermeiden, und eine von Umwelteinflüssen weitgehend unabhängige, effiziente Kühlung der Batterie auf möglichst einfache Weise zu ermöglichen.
Erfindungsgemäß wird dies dadurch erreicht, dass zumindest eine Batteriezelle von einer Kunststoffzellhülle umgeben ist, wobei die Kunststoffzellhülle eine - vorzugsweise etwa im Bereich einer Zellmittelebene - umlaufend entlang der Schmalseite der Batteriezelle angeordnete, vorragende Siegelnaht aufweist, wobei zwischen jeweils den Siegelnähten von benachbarten Batteriezellen eines Stapels ein Freiraum aufgespannt ist.
In einer besonders kompakten Ausführung der Erfindung ist vorgesehen, dass das Kühlluftgebläse und/oder der Wärmetauscher innerhalb des Gehäuses angeordnet sind .
Dieser Freiraum kann einen ersten und/oder zweiten Kühlluftkanal bilden.
Dabei kann zumindest ein erster Kühlluftkanal in Richtung einer Hochachse der Batterie und zumindest ein zweiter Kühlluftkanal in Richtung einer normal zur Hochachse und normal zur Stapelrichtung ausgebildeten Querachse der Batterie angeordnet sein.
Durch den geschlossenen Kühlluftkreislauf kann die Kühlung der Batterie weitgehend unabhängig von nachteiligen Umwelteinflüssen, wie Temperatur- und Feuchtigkeitsschwankungen, Luftverschmutzung, oder dergleichen, durchgeführt werden. Dies gewährleistet konstante optimale Betriebsbedingungen für die Batterie und ermöglicht eine hohe Lebensdauer derselben.
Über den ersten Kühlluftkanal wird der Bereich zwischen den beiden benachbarten Stapeln durchströmt und gekühlt. Die von Kühlluft durchströmten zweiten Kühlluftkanäle sind an der Oberseite der Batterie angeordnet und dienen der Kühlung der Zellpole und/oder der elektrischen Zellverbinder. Dabei kann eine besonders gute Kühlung letzterer erreicht werden, wenn zumindest ein vorzugsweise ein U-Profil oder Y-Profil aufweisender Zellverbinder zur elektrischen Verbindung zweier benachbarter Batteriezellen in einen zweiten Kühlluftkanal hineinragt. Zumindest eine Siegelnaht einer Batteriezelle eines ersten Stapels kann in einen von Siegelnähten zweier benachbarter Batteriezellen eines zweiten Stapels aufgespannten Freiraum hineinragen. Dabei können die den Freiraum begrenzenden oder in den Freiraum ragenden Siegelnähte Strömungsleitflächen für Kühlluft ausbilden. Dadurch wird einerseits die Kühlluftführung verbessert und andererseits die von Kühlluft überstrichene Oberfläche vergrößert.
Durch die beschriebenen Maßnahmen kann die Kühlleistung erhöht bzw. Bauraum für die Kühlung eingespart werden, was sich auch Vorteilhaft auf die volu- metrische Energiedichte auswirkt.
Die Erfindung wird im Folgenden anhand der Fig . näher erläutert. Es zeigen :
Fig. 1 eine erfindungsgemäße Batterie in einer Schrägansicht von oben;
Fig. 2 die Batterie in einem Schnitt gemäß der Linie II - II in Fig. 1;
Fig. 3 die Batterie in einer Vorderansicht;
Fig. 4 die Batterie in einer Schrägansicht von unten;
Fig. 4a die Batterie in einem Schnitt gemäß der Linie IVa - IVa in Fig . 4;
Fig. 4b die Batterie samt Gehäuse in einer Ausführungsvariante, in einem
Schnitt analog zu Fig . 4a;
Fig. 5 ein Batteriemodul der Batterie in einer Schrägansicht;
Fig. 6 dieses Batteriemodul in einer Ansicht von unten;
Fig. 7 einen Stapel von Batteriezellen in einer Schrägansicht;
Fig. 8 diesen Stapel in einer Seitenansicht;
Fig. 9 die Stapel von Batteriezellen eines Batteriemoduls in einer Schrägansicht;
Fig. 10 ein Batteriemodul in einem Schnitt gemäß der Linie X - X in Fig. 9;
und
Fig. 11 ein Detail dieses Batteriemoduls in einem Schnitt analog zu Fig. 10.
Die wiederaufladbare Batterie 1 weist im Ausführungsbeispiel sieben Batteriemodule 2 auf, wobei jedes Batteriemodul 2 zwei Stapel 3, 4 von nebeneinander angeordneten und verspannten Batteriezellen 5 aufweist. Die Stapel 3, 4 jedes Batteriemoduls 2 sind zwischen zwei struktursteifen gewellten Platten 6 aus Me- tall, z.B. Aluminium, oder Kunststoff, angeordnet, wobei die Platten 6 durch Druckgussteile gebildet sein können. Die Platten 6 selbst sind zwischen zwei Halteplatten 7, 8 an der Vorder- und Rückseite der Batterie 1 eingespannt, wobei die Halteplatte 7 an der Vorderseite über Spannschrauben 9 mit der Halteplatte 8 an der Rückseite fest verbunden ist. Die Spannschrauben 9 sind dabei jeweils im Bereich der Platten 6 angeordnet. Die Platten 6 bilden zusammen mit den Halteplatten 7, 8 einen Halterahmen 10 für die Batteriemodule 2. Die Halteplatten 7, 8 weisen Öffnungen auf, um das Gewicht so gering wie möglich zu halten. Der - in Stapelrichtung y gesehene - definierte Abstand zwischen den Spannschrauben 9 gewährleistet, dass die Batteriezellen 5 lagerichtig und mit bestimmter und über die Lebensdauer der Batterie 1 im wesentlichen unveränderlicher Vorspannung verbaut sind. Zwischen den Platten 6 und den angrenzenden Batteriezellen 5 ist dabei jeweils eine elastische Isolierschicht 6a, beispielsweise aus einem Schaumstoff, angeordnet, welcher eine gleichmäßige und schonende Druckverteilung ermöglicht.
Nach unten wird die Batterie 1 durch eine Bodenplatte 11 abgeschlossen.
Die Batterie 1 samt Halterahmen 10 ist in einem Gehäuse 12 angeordnet, wobei zwischen dem Gehäuse 12 und der Batterie 1 Kühlluftströmungswege ausgebildet sind. Zur Führung der Kühlluftströmung sind in den Gehäuseboden 12a Strömungsleitflächen 13 eingearbeitet, wie aus Fig . 2 und 4 ersichtlich ist.
Jede Batteriezelle 5 ist von einer Kunststoffhülle 14 umgeben, wobei die Kunststoffhülle 14 etwa im Bereich einer Zellmittelebene 15 entlang der Schmalseite 5a eine vorragende Siegelnaht 16 zur Abdichtung aufweist. Zwischen den Siegelnähten 16 zweier benachbarter Batteriezellen 5 eines Stapels 3, 4 ist jeweils ein Freiraum 17 aufgespannt.
Um Bauraum einzusparen, sind die zwei nebeneinander angeordneten Stapel 3, 4 jedes Batteriemoduls 2 versetzt und überlappend zueinander ausgebildet. Der Versatz V beträgt dabei etwa der halben Dicke D einer Batteriezelle 5. Die Siegelnähte 16 einer Batteriezelle 5 des einen Stapels 3, 4 ragen dabei in einen von Siegelnähten 16 zweier benachbarter Batteriezellen 5 des anderen Stapels 4, 3 aufgespannten Freiraum 17 hinein. Dadurch kann der Freiraum 17 zumindest teilweise durch die Unterbringung eines Teiles der Siegelnähte 16 genutzt werden. Dies wirkt sich sehr vorteilhaft auf die Größe des verbauten Raumes und auf die volumetrische Energiedichte aus. Der Versatz v zwischen den beiden Stapeln 3, 4 bewirkt, dass die Platten 6 im Bereich einer Längsmittelebene la der Batterie 1 eine Stufe 24 ausbilden. An der oberen Schmalseite 5a ragen aus den Kunststoffhüllen 14 Zellpole 18, welche über U- und Y-förmige Zellverbinder 19, 20 miteinander verbunden sind. Die Verbindung zwischen den Zellverbindern 19, 20 und den Zellpolen 18 kann als einen oder mehrere Clinchpunkte 21a aufweisende Durchsetzfügeverbindung 21 in einem Durchsetzfügeverfahren ausgeführt sein. Dies ermöglicht eine besonders hohe Stromtragfähigkeit durch nebeneinander angeordnete Mehrfachfü- gepunkte sowie eine korrosionsfeste Langzeitverbindung auf Grund der luftdicht abgeschlossenen Fügestellen und eine einfache Kontaktierung der Zellpole 18 mit unterschiedlichen Materialien (Kupfer zu Aluminium und umgekehrt), ohne zusätzliche Bauteile. Mittels Durchsetzfügeverfahren lassen sich zwei bis vier Bleche miteinander elektrisch mit dem selben Werkzeug verbinden, wobei sich besonders die Materialien Kupfer, Aluminium und Stahl, bei Wandstärken von 0, 1 mm bis 0,5 mm eignen. Gegebenenfalls können somit in einem Arbeitsschritt gleichzeitig mit den Zellverbindern 19, 20 auch Zellspannungsüberwachungskabel 22 an den Zellpolen 18 in einem Durchsetzfügeverfahren angebunden werden. Da die Position der Clinchpunkte 21a der Durchsetzfügeverbindung 21 mehr streuen darf, als zum Beispiel bei einer Laserschweißverbindung, ergibt sich ein relativ hohes Toleranzkompensationsvermögen. Durch Verwendung von Parallel- und Mehrfachwerkzeugen lässt sich für größere Stückzahlen eine einfache und kostengünstige Fertigung realisieren, wobei nur wenige und leicht beherrschbare Einflussgrößen wie Materialwandstärke, Presskraft etc. vorliegen. Durch die in den Kühlluftkanal 27 ragenden Clinchpunkte 21a wird die wärmeableitende Oberfläche der Batterie 1 erhöht, was insbesondere bei direkter Luftkühlung der Zellpole 18 von Bedeutung ist. Die hervorstehenden Clinchpunkte 21a tragen dabei auch zur Turbulenzerhöhung bei, was insbesondere bei Luftkühlung den Wärmetransport verbessert. Durch Ihre positive Auswirkung auf die Kühlung tragen somit Clinchpunkte 21a auch zur Erhöhung der volumetrischen Energiedichte durch effiziente Bauraumausnutzung bei.
Um eine besonders gute volumetrische Energiedichte zu erreichen, ist es erforderlich, die Batteriezellen 5 möglichst nahe aneinander zu positionieren. Dazu wird zwischen den Batteriezellen 5 eine möglichst dünne, thermische und elektrische Isolatorschicht 23, zum Beispiel eine Isolationsfolie, angeordnet, um das Auftreten eines "Dominoeffektes" bei einer thermischen Überlastung einer benachbarten Batteriezelle 5 zu vermeiden.
Die Freiräume 17 bilden zugleich Kühlluftkanäle 26, 27 aus. Im Bereich der Überlappung 25 der beiden Stapel 3, 4, also im Bereich der Längsmittelebene la der Batterie 1, bilden die Freiräume 17 erste Kühlluftkanäle 26, welche in Richtung der Hochachse z der Batterie 1 angeordnet sind . Die Siegelnähte 16 bilden dabei Strömungsleitflächen für die Luftströmung und wärmeabführende Oberflä- chen. In Richtung einer Querachse x normal auf die Hochachse z und normal auf die Stapelrichtung y sind zweite Kühlluftkanäle 27 im Bereich der Zellpole 18 durch die Freiräume 17 an der Oberseite der Batteriezellen 5 gebildet.
Die ersten und zweiten Kühlluftkanäle 26, 27 sind Teil eines geschlossenen Kühlluftkreislaufes 28 zur Kühlung der Batterie 1, wobei der Kühlluftkreislauf 28 zumindest ein Kühlluftgebläse 29 und zumindest einen Wärmetauscher 30 aufweist.
Bei der in Fig . 4a schematisch dargestellten Ausführung weist dass Gehäuse 12 einen Kühlluftzufuhrströmungsweg 31 und einen Kühlluftabfuhrströmungsweg 32 auf, wobei hier Kühlluftzufuhrströmungsweg 31 und Kühlluftabfuhrströmungsweg 32 im Bereich derselben ersten Längsseite la (Vorderseite) der Batterie 1 angeordnet sind . Die Kühlluft wird dabei - vom Kühlluftgebläse 29 und dem Wärmetauscher 30 kommend - über den Kühlluftzufuhrströmungsweg 31 des Gehäuses 12 gemäß den Pfeilen S in Fig . 4a über die zweiten Kühlluftkanäle 27 im Bereich der Zellpole 18 der Batteriezellen 5 im Bereich der Oberseite lb der Batterie 1 zu einer der ersten Längsseite la abgewandten zweiten Längsseite lc (Rückseite) der Batterie 1 geführt. Zwischen der zweiten Längsseite lc der Batterie 1 und dem Gehäuse 12 strömt ein Teil Sl der Luft zu einer Unterseite ld der Batterie 1 und im Bereich der Unterseite ld in einem zwischen der Bodenplatte 11 der Batterie 1 und dem Gehäuse 12 gebildeten Sammelkanal 33 zurück zur ersten Längsseite la der Batterie 1 und weiter zum Kühlluftabfuhrströmungsweg 32. Ein weiterer Teil S2 der Kühlluft strömt durch die ersten Kühlluftkanäle 26 zwischen den beiden Stapeln 3, 4 von Batteriezellen 5 zur Unterseite ld der Batterie 1 und gelangt ebenfalls in den Sammelkanal 33.
Die Kühlluft durchströmt somit die zweiten Kühlluftkanäle 27 und kühlt dabei die Zellpole 18 und Zellverbinder 19, 20. Danach gelangt ein Teil der Kühlluft in die ersten Kühlluftkanäle 26, welche die Kühlluft entgegen der Hochachse z nach unten führen. Dabei werden alle Zwischenräume und Freiräume 17 der Batterie 1 durchströmt und anfallende Wärme abgeführt. Zwischen der Halteplatte 7 an der ersten Längsseite la (Vorderseite) der Batterie 1 und dem Gehäuse 12 strömt auch die restliche Kühlluft zum Gehäuseboden 12a des Gehäuses 12, wo es durch die Strömungsleitflächen 13 zur Fahrzeuglängsmittelebene ε geleitet und gesammelt wird. Danach verlässt die Kühlluft durch den Kühlluftabfuhrströmungsweg 32 das Gehäuse 12 und wird wieder durch das Kühlluftgebläse 29 angesaugt und im Wärmetauscher 30 abgekühlt, bevor es wieder im geschlossenen Kühlkreislauf 28 der Batterie 1 zugeführt wird.
Wie in Fig . 4b dargestellt ist, können Kühlluftgebläse 29 und Wärmetauscher 30 auch innerhalb des nach außen abgedichteten Gehäuses 12 der Batterie 1 ange- ordnet sein. Bei der gezeigten Ausführung weist das Kühlluftgebläse zwei Lüfter auf, welche stromaufwärts des Wärmetauschers 30 angeordnet sind. Der Wärmetauscher 30 ist als Luft/Wasser-Wärmetauscher ausgebildet, wobei Kühlwas- serzufluss- und -abflussleitungen 34, 35 an den Wärmetauscher 30 angeschlossen sind . Mit Bezugszeichen 36 sind Strömungsleitflächen für die Kühlluft S bezeichnet.

Claims

P A T E N T A N S P R Ü C H E
1. Wiederaufladbare elektrische Batterie (1), insbesondere Hochspannungsbatterie, vorzugsweise für ein Elektrofahrzeug, mit zumindest zwei Stapel (3, 4) von in Stapelrichtung (y) aneinandergereihten Batteriezellen (5), wobei die Stapel (3, 4) in einem Gehäuse (12) nebeneinander angeordnet sind, wobei innerhalb des Gehäuses (12) quer zur Stapelrichtung angeordnete Kühlluftkanäle (26, 27) von Kühlluft durchströmbar sind, wobei die Kühlluftkanäle (26, 27) Teil eines geschlossenen Kühlluftkreislaufes (28) zur Kühlung der Batterie (1) sind, wobei vorzugsweise der Kühlluftkreislauf (28) zumindest ein Kühlluftgebläse (29) und zumindest einen Wärmetauscher (30) aufweist, dadurch gekennzeichnet, dass zumindest eine Batteriezelle (5) von einer Kunststoffzellhülle (14) umgeben ist, wobei die Kunst- stoffzellhülle (14) eine - vorzugsweise etwa im Bereich einer Zellmittelebene (15) - umlaufend entlang der Schmalseite (5a) der Batteriezelle (5) angeordnete, vorragende Siegelnaht (16) aufweist, wobei zwischen jeweils den Siegelnähten (16) von benachbarten Batteriezellen (5) eines Stapels (3, 4) ein Freiraum (17) aufgespannt ist.
2. Batterie (1) nach Anspruch 1, dadurch gekennzeichnet, dass zumindest ein erster Kühlluftkanal (26) in Richtung einer Hochachse (z) der Batterie (1) und zumindest ein zweiter Kühlluftkanal (27) in Richtung einer normal zur Hochachse (z) und normal zur Stapelrichtung (y) ausgebildeten Querachse (x) der Batterie (1) angeordnet ist.
3. Batterie (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste und/oder zweite Kühlluftkanal (25, 26) durch den Freiraum (17) ausgebildet ist.
4. Batterie (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zumindest eine Siegelnaht (16) einer Batteriezelle (5) des einen Stapels (3, 4) in einen von den Siegelnähten (16) zweier benachbarter Batteriezellen (5) des anderen Stapels (4, 3) aufgespannten Freiraum (17) hineinragt.
5. Batterie (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die den Freiraum (17) begrenzenden oder in den Freiraum (17) ragenden Siegelnähte (16) Strömungsleitflächen für Kühlluft ausbilden.
6. Batterie (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest ein - vorzugsweise ein U-Profil oder Y-Profil aufweisender - Zellverbinder (19, 20))zur elektrischen Verbindung zweier benachbarter Batteriezellen (5) in einen zweiten Kühlluftkanal (27) hineinragt.
7. Batterie (1) nach einem Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gehäuse (12) zumindest einen Kühlluftzufuhrweg (31) und zumindest einen Kühlluftabfuhrströmungsweg (32) aufweist, wobei vorzugsweise Kühlluftzufuhrströmungsweg (31) und Kühlluftabfuhrströmungsweg (32) im Bereich derselben ersten Längsseite (la) der Batterie (1) angeordnet sind .
8. Batterie (1) nach einem Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Kühlluft vom Kühlluftzufuhrströmungsweg (31) kommend über die zweiten Kühlluftkanäle (27) im Bereich der Zellpole (18) der Batteriezellen (5) im Bereich der Oberseite der Batterie (1) zumindest teilweise zu einer der ersten Längsseite abgewandten zweiten Längsseite der Batterie (1), zwischen zweiter Längsseite der Batterie (1) und dem Gehäuse (12) zu einer Unterseite der Batterie (1) und an der Unterseite der Batterie (1) zwischen einer Bodenplatte (11) der Batterie (1) und dem Gehäuse (12) zur ersten Längsseite (la) der Batterie (1) und weiter zum Kühlluftabfuhrströmungsweg (32) geführt ist.
9. Batterie (1) nach Anspruch 8, dadurch gekennzeichnet, dass zumindest ein Teil der Kühlluft von den zweiten Kühlluftkanälen (27) über die ersten Kühlluftkanäle (26) zur Unterseite (ld) der Batterie (1) und an der Unterseite (ld) der Batterie (1) zwischen einer Bodenplatte (11) der Batterie (1) und dem Gehäuse (12) zur ersten Längsseite (la) der Batterie (1) und weiter zum Kühlluftabfuhrströmungsweg (32) geführt ist.
10. Batterie (1) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass zwischen der Bodenplatte (11) der Batterie (1) und dem Gehäuse (12) zumindest ein Sammelkanal (33) ausgebildet ist, wobei vorzugsweise der Sammelkanal (33) zumindest eine durch eine längs zur Strömung ausgebildete Rippe der Bodenplatte (11) und/oder des Gehäuses (12) ausgebildete Strömungsleitfläche (13) aufweist.
11. Batterie (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Kühlluftgebläse (29) und/oder der Wärmetauscher (30) innerhalb des Gehäuses (12) angeordnet sind.
PCT/EP2012/062054 2011-06-30 2012-06-22 Wiederaufladbare elektrische batterie WO2013000828A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280032755.9A CN103918101A (zh) 2011-06-30 2012-06-22 可再充电电池
EP12730480.6A EP2727168A1 (de) 2011-06-30 2012-06-22 Wiederaufladbare elektrische batterie
KR1020147000736A KR20140042851A (ko) 2011-06-30 2012-06-22 재충전 가능한 전지
US14/129,984 US20140141298A1 (en) 2011-06-30 2012-06-22 Rechargeable electric battery
JP2014517612A JP6169571B2 (ja) 2011-06-30 2012-06-22 再充電可能電気バッテリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA959/2011A AT511669B1 (de) 2011-06-30 2011-06-30 Wiederaufladbare elektrische batterie
ATA959/2011 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013000828A1 true WO2013000828A1 (de) 2013-01-03

Family

ID=46397222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/062054 WO2013000828A1 (de) 2011-06-30 2012-06-22 Wiederaufladbare elektrische batterie

Country Status (7)

Country Link
US (1) US20140141298A1 (de)
EP (1) EP2727168A1 (de)
JP (1) JP6169571B2 (de)
KR (1) KR20140042851A (de)
CN (1) CN103918101A (de)
AT (1) AT511669B1 (de)
WO (1) WO2013000828A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647118A (zh) * 2013-12-30 2014-03-19 成都凯迈科技有限公司 电池温控装置
EP2999024A4 (de) * 2013-05-15 2016-03-30 Lg Chemical Ltd Grundplatte für eine batteriemodulbaugruppe mit neuartiger struktur
CN111180614A (zh) * 2018-11-12 2020-05-19 马勒国际有限公司 蓄电池装置
WO2024052000A1 (de) * 2022-09-06 2024-03-14 Mahle International Gmbh Akkumulatoranordnung

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245154B2 (ja) * 2014-12-01 2017-12-13 トヨタ自動車株式会社 電池パックおよび車両
US10632857B2 (en) 2016-08-17 2020-04-28 Shape Corp. Battery support and protection structure for a vehicle
US11214137B2 (en) 2017-01-04 2022-01-04 Shape Corp. Vehicle battery tray structure with nodal modularity
US20180287225A1 (en) * 2017-03-28 2018-10-04 Ford Global Technologies, Llc System for closed loop direct cooling of a sealed high voltage traction battery pack
US10483510B2 (en) 2017-05-16 2019-11-19 Shape Corp. Polarized battery tray for a vehicle
WO2018213383A1 (en) 2017-05-16 2018-11-22 Shape Corp. Vehicle battery tray with integrated battery retention and support features
US10886513B2 (en) 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
US11482742B2 (en) * 2017-07-31 2022-10-25 Panasonic Intellectual Property Management Co., Ltd. Battery module, battery pack, and integrated battery pack
CN111108015A (zh) 2017-09-13 2020-05-05 形状集团 具有管状外围壁的车辆电池托盘
DE102017217108A1 (de) * 2017-09-26 2019-03-28 Robert Bosch Gmbh Batteriezelle, Verfahren zu deren Herstellung und Batteriemodul
US10661646B2 (en) 2017-10-04 2020-05-26 Shape Corp. Battery tray floor assembly for electric vehicles
DE202017107183U1 (de) * 2017-11-27 2017-12-07 Elektrosil Systeme Der Elektronik Gmbh Ladevorrichtung zum drahtlosen Laden eines mobilen Endgerätes
KR102378539B1 (ko) * 2017-12-06 2022-03-23 주식회사 엘지에너지솔루션 셀 에지 직접 냉각 방식의 배터리 모듈 및 이를 포함하는 배터리 팩
CN112055898A (zh) 2018-03-01 2020-12-08 形状集团 与车辆电池托盘集成的冷却系统
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component
CN209071425U (zh) * 2018-11-16 2019-07-05 宁德时代新能源科技股份有限公司 电池包
KR20220010796A (ko) * 2020-07-20 2022-01-27 주식회사 엘지에너지솔루션 정하중 스프링을 포함하는 전지 모듈 및 이를 포함하는 전지 팩
KR20220011967A (ko) * 2020-07-22 2022-02-03 주식회사 엘지에너지솔루션 전지 모듈, 전지 모듈 시스템 및 전지 모듈을 포함하는 전지 팩
US11784369B1 (en) * 2023-03-10 2023-10-10 Dimaag-Ai, Inc. Swappable battery modules comprising immersion-thermally controlled prismatic battery cells and methods of fabricating thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021442A1 (en) * 2002-07-30 2004-02-05 Nissan Motor Co., Ltd. Battery module
EP1523058A1 (de) * 2003-10-10 2005-04-13 Nissan Motor Company, Ltd. Batterie
EP1575103A2 (de) * 2004-03-11 2005-09-14 Nissan Motor Co., Ltd. Batterie
EP1583170A2 (de) * 2004-03-31 2005-10-05 Nissan Motor Co., Ltd. Batterie
US20090208828A1 (en) * 2005-06-17 2009-08-20 Nec Corporation Electric device assembly and film-covered electric device structure
EP2133952A1 (de) 2008-06-11 2009-12-16 Valeo Systèmes Thermiques Modul zur Temperaturkontrolle einer Stromversorgungsquelle in einem Kraftfahrzeug
WO2010053689A2 (en) 2008-10-29 2010-05-14 Edgewater Automation, Llc Temperature-controlled battery configuration
WO2010067944A1 (en) 2008-12-12 2010-06-17 Lg Chem, Ltd. Middle or large-sized battery pack of novel air cooling structure
US20100236846A1 (en) 2009-03-20 2010-09-23 Dennis Kramer Battery pack with dual mode cooling scheme
WO2011067490A1 (fr) 2009-12-02 2011-06-09 Renault Sas Vehicule automobile comportant un moteur electrique alimente par une batterie et des moyens de refroidissement de la batterie

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242153B2 (ja) * 1992-06-08 2001-12-25 本田技研工業株式会社 バッテリモジュールの温度調節用構造体
JP4366100B2 (ja) * 2003-03-24 2009-11-18 パナソニックEvエナジー株式会社 電池パック
KR100905392B1 (ko) * 2006-04-03 2009-06-30 주식회사 엘지화학 이중 온도조절 시스템의 전지팩
DE102007063185A1 (de) * 2007-08-06 2009-02-19 Daimler Ag Batterie
JP2010244732A (ja) * 2009-04-01 2010-10-28 Denso Corp 電池システム
US8623537B2 (en) * 2009-08-18 2014-01-07 Samsung Sdi Co., Ltd. Rechargeable battery and battery module
DE102009052508A1 (de) * 2009-11-11 2011-05-12 Carl Freudenberg Kg Mechanisch flexibles und poröses Ausgleichselement zur Temperierung elektrochemischer Zellen
FR2953167B1 (fr) * 2009-12-02 2012-04-20 Renault Sa Dispositif de refroidissement a air pour une batterie de traction.
EP2432043B1 (de) * 2010-09-21 2015-04-22 Carl Freudenberg KG Dichtungsrahmen zur Verwendung in einer Batterie sowie Batterie

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021442A1 (en) * 2002-07-30 2004-02-05 Nissan Motor Co., Ltd. Battery module
EP1523058A1 (de) * 2003-10-10 2005-04-13 Nissan Motor Company, Ltd. Batterie
EP1575103A2 (de) * 2004-03-11 2005-09-14 Nissan Motor Co., Ltd. Batterie
EP1583170A2 (de) * 2004-03-31 2005-10-05 Nissan Motor Co., Ltd. Batterie
US20090208828A1 (en) * 2005-06-17 2009-08-20 Nec Corporation Electric device assembly and film-covered electric device structure
EP2133952A1 (de) 2008-06-11 2009-12-16 Valeo Systèmes Thermiques Modul zur Temperaturkontrolle einer Stromversorgungsquelle in einem Kraftfahrzeug
WO2010053689A2 (en) 2008-10-29 2010-05-14 Edgewater Automation, Llc Temperature-controlled battery configuration
WO2010067944A1 (en) 2008-12-12 2010-06-17 Lg Chem, Ltd. Middle or large-sized battery pack of novel air cooling structure
US20100236846A1 (en) 2009-03-20 2010-09-23 Dennis Kramer Battery pack with dual mode cooling scheme
WO2011067490A1 (fr) 2009-12-02 2011-06-09 Renault Sas Vehicule automobile comportant un moteur electrique alimente par une batterie et des moyens de refroidissement de la batterie

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2999024A4 (de) * 2013-05-15 2016-03-30 Lg Chemical Ltd Grundplatte für eine batteriemodulbaugruppe mit neuartiger struktur
US9660233B2 (en) 2013-05-15 2017-05-23 Lg Chem, Ltd. Base plate of battery module assembly with novel structure
CN103647118A (zh) * 2013-12-30 2014-03-19 成都凯迈科技有限公司 电池温控装置
CN111180614A (zh) * 2018-11-12 2020-05-19 马勒国际有限公司 蓄电池装置
CN111180614B (zh) * 2018-11-12 2024-03-05 马勒国际有限公司 蓄电池装置
WO2024052000A1 (de) * 2022-09-06 2024-03-14 Mahle International Gmbh Akkumulatoranordnung

Also Published As

Publication number Publication date
EP2727168A1 (de) 2014-05-07
CN103918101A (zh) 2014-07-09
JP6169571B2 (ja) 2017-07-26
US20140141298A1 (en) 2014-05-22
AT511669B1 (de) 2015-06-15
KR20140042851A (ko) 2014-04-07
JP2014523079A (ja) 2014-09-08
AT511669A1 (de) 2013-01-15

Similar Documents

Publication Publication Date Title
EP2727168A1 (de) Wiederaufladbare elektrische batterie
EP2727169B1 (de) Wiederaufladbare elektrische batterie
AT511670B1 (de) Wiederaufladbare elektrische batterie
EP2497145B1 (de) Energiespeichervorrichtung
AT511667B1 (de) Wiederaufladbare elektrische batterie
EP2153487B1 (de) Elektrochemische energiespeichereinheit mit kühlvorrichtung
AT511887B1 (de) Wiederaufladbare batterie
DE112018002536T5 (de) Gegenstrom-wärmetauscher mit seitlichen einlassarmaturen
EP2176921A1 (de) Batterie, insbesondere für einen hybridantrieb
DE102017202768A1 (de) Energiespeicheranordnung und Kraftfahrzeug
DE102012218724A1 (de) Anordnung und System zum Temperieren eines Energiespeichers, Batteriemodul mit einem solchen System und Verfahren zum Herstellen einer solchen Anordnung und eines solchen Systems
DE102011007069A1 (de) Elektrischer Energiespeicher mit mehreren Zellen und wenigstens einem zwischen den Zellen angeordneten Kühlelement
WO2009080270A2 (de) Batteriemodul mit mehreren einzelzellen
WO2017021018A1 (de) Traktionsbatterie für ein kraftfahrzeug mit einer kühlvorrichtung
DE102020109999A1 (de) Brennstoffzelleneinheit
WO2007068223A1 (de) Batteriehalter
DE102013219665B4 (de) Kühlanordnung
DE102019203743B4 (de) Brennstoffzellenstapel und Verfahren zum Herstellen einer Dummyzelle
DE102020134481A1 (de) Temperierbare und temperierte Batteriezellen-Anordnung sowie Verfahren zum Temperieren einer Batteriezellen-Anordnung
WO2019228823A1 (de) Elektrischer energiespeicher
DE102012218750B4 (de) Batteriemodul mit mehreren Vorrichtungen zum Temperieren eines Energiespeichers
EP3832783A1 (de) Kühlkörper, elektrisches system und verfahren zur herstellung eines elektrischen systems
DE102019132827A1 (de) Kühlkörper und elektrisches System
DE102022121853A1 (de) Fluidtemperierbare Traktionsbatterie
DE102023114819A1 (de) Energiespeichervorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12730480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014517612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147000736

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14129984

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012730480

Country of ref document: EP