WO2012176984A2 - 수용액 형태의 티아민 다이-라우릴 설페이트를 함유하는 식물병 방제 및 예방용 농약 - Google Patents

수용액 형태의 티아민 다이-라우릴 설페이트를 함유하는 식물병 방제 및 예방용 농약 Download PDF

Info

Publication number
WO2012176984A2
WO2012176984A2 PCT/KR2012/003612 KR2012003612W WO2012176984A2 WO 2012176984 A2 WO2012176984 A2 WO 2012176984A2 KR 2012003612 W KR2012003612 W KR 2012003612W WO 2012176984 A2 WO2012176984 A2 WO 2012176984A2
Authority
WO
WIPO (PCT)
Prior art keywords
tds
lauryl sulfate
thiamine
plant
disease control
Prior art date
Application number
PCT/KR2012/003612
Other languages
English (en)
French (fr)
Other versions
WO2012176984A3 (ko
Inventor
유재성
조정섭
임태빈
정명훈
이태우
Original Assignee
주식회사 두산에코비즈넷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산에코비즈넷 filed Critical 주식회사 두산에코비즈넷
Priority to CN201280039826.8A priority Critical patent/CN103732068A/zh
Publication of WO2012176984A2 publication Critical patent/WO2012176984A2/ko
Publication of WO2012176984A3 publication Critical patent/WO2012176984A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond

Definitions

  • the present invention relates to a pesticide for controlling and preventing plant diseases, and more particularly, containing thiamine di-lauryl sulfate (TDS) in the form of an aqueous solution prepared by dissolving in ethanol and diluting in water. It relates to a pesticide for plant disease control and prevention.
  • TDS thiamine di-lauryl sulfate
  • vitamin B 1 extracted from rice bran is one of the earliest known vitamins and is synthesized by green plants or microorganisms, and is contained in rice bran, embryos, yeast, and the like. Vitamin B 1 is also found in animal nerves, and has been considered as one of the alternative natural pesticides known to activate plant self-defense genes and contribute to growth.
  • vitamin B 1 since vitamin B 1 has a problem in thermal stability, it is likely to be lost in the heat treatment process, and there is a problem in that the stability in water is low.
  • the present invention is to develop and provide a method for preparing a new type of vitamin B 1- containing pesticides with high thermal stability and stability in water.
  • the present invention provides a thiamine di-lauryl slfate (TDS) powder in a 50-95% (v / v) ethanol aqueous solution. Stirring to prepare a TDS ethanol solution; Adding water to the TDS ethanol solution and then stirring to prepare a TDS aqueous solution; And adding the TDS aqueous solution as an active ingredient.
  • the method provides a method of preparing a pesticide for plant disease control and prevention, comprising: a.
  • TDS Thiamine di-lauryl sulfate
  • the thiamine di-lauryl sulfate is, for example, an aqueous thiamine hydrochloride (thiamine hydrochloride) and sodium lauryl
  • aqueous solution of sodium lauryl sulfate may be prepared by mixing and reacting at room temperature, followed by crystallization.
  • thiamine di-lauryl sulfate (TDS) powder is added to an aqueous 50-95% (v / v) ethanol solution, followed by stirring and TDS. Preparing an ethanol solution; And, after adding water to the TDS ethanol solution, the step of stirring; provides a pesticide for plant disease control and prevention, characterized in that containing the aqueous solution of TDS prepared from the active ingredient.
  • TDS thiamine di-lauryl sulfate
  • the pesticide of the present invention is applicable to both monocot and dicotyledonous plants including rice and vegetable crops such as pepper, cucumber, ginseng, lettuce, potatoes and tomatoes.
  • the pesticide of the present invention may be mixed with other conventional synthetic pesticides or biopesticides or mixed with fertilizers.
  • the pesticides for controlling and preventing plant diseases of the present invention may contain 1 to 1,000 ppm of thiamine di-lauryl sulfate (TDS).
  • the plant disease is, for example, Botrytis Ceria ( Botrytis cinerea ), Collotry tree dance Gloosporioides ( Colletotrichum gloeosporioides ), Sclerotinia sclerotiorum ( Sclerotinia sclerotiorum ) And Phytophthora infestans ( Phytopthora infestans ) May be caused by any one of the pathogens selected.
  • Botrytis Ceria Botrytis cinerea
  • Collotry tree dance Gloosporioides Colletotrichum gloeosporioides
  • Sclerotinia sclerotiorum Sclerotinia sclerotiorum
  • Phytophthora infestans Phytopthora infestans
  • the present invention is a third aspect of the present invention, in which a pesticide containing an aqueous solution of thiamine di-lauryl sulfate (TDS) prepared by the method described in the first aspect of the present invention is sprayed onto a plant. It provides a plant disease control method characterized in that.
  • TDS thiamine di-lauryl sulfate
  • the pesticide throughput in the present invention does not deviate significantly from the existing throughput or handles in a smaller amount range.
  • TDS a derivative of vitamin B 1 of the present invention
  • TDS can be treated by conventional pharmaceutical treatment methods such as spraying, irrigation or dipping.
  • the plant to be applied may be any one selected from, for example, pepper, cucumber, ginseng, lettuce, potato and tomato.
  • TDS Thiamine di-lauryl sulfate
  • Pesticides in aqueous solution containing thiamine di-lauryl sulfate (TDS) according to the present invention solves the disadvantages of organic synthetic pesticides, which are a problem recently, and environmental pollution, such as groundwater and soil, in a nontoxic and safe state It has a direct growth inhibitory effect on pathogens causing plant diseases.
  • the pesticide of the present invention has the advantage that it can also express the autoimmune and defense mechanisms inherent in vitamin B 1 because the active ingredient is a vitamin B 1 derivative.
  • the present invention will ultimately be able to make a great contribution to the eco-friendly organic materials and pesticide industry necessary for eco-friendly agricultural production.
  • TDS thiamine di-lauryl sulfate
  • TDS aqueous thiamine di-lauryl sulfate
  • FIG. 3 shows the results of antifungal activity of a sample of simply diluted thiamine di-lauryl sulfate (TDS) powder and a sample of aqueous thiamin di-lauryl sulfate (TDS) solution.
  • 'a' is a control (untreated) sample
  • 'b' is 100 ppm sample of TDS powder
  • 'c' is 50 ppm sample of aqueous TDS solution
  • 'd' is 100 ppm sample of aqueous TDS solution.
  • 'A' is a control (untreated) sample
  • 'B' is 100 ppm sample of TDS powder
  • 'C' is 50 ppm sample of aqueous TDS solution
  • 'D' is 100 ppm sample of aqueous TDS solution.
  • FIG. 5 is a photograph of a mycelia of a thiamine di-lauryl sulfate (TDS) aqueous solution showing antifungal activity.
  • TDS thiamine di-lauryl sulfate
  • TDS used in the present invention is reacted and crystallized by mixing thiamine hydrochloride (Sigma, St. Louis, MO, USA) and sodium lauryl sulfate (Sigma, St. Louis, MO, USA) It was prepared by.
  • thiamine hydrochloride 100 to 900 g was added to 1 L of distilled water and dissolved at room temperature.
  • 100-900 g of sodium lauryl sulfate (SLS) was added to 3 L of distilled water and dissolved at room temperature. Dissolved TH and SLS were filtered through 0.2-5 ⁇ m filter ACHEREY-NAGEL, Neumarn-Neander Str. Germany), and each solution was reacted by stirring at a reaction temperature of 30 to 50 ° C for 1 hour.
  • the centrifuged sample was vacuum dried at a temperature of 20 to 40 ° C. for 3 hours in a vacuum dryer, and then ground to prepare a TDS powder of 20 mesh.
  • FIG. 1 is a diagram showing the dissolution of the TDS aqueous solution after stirring for 1 hour. As shown in FIG. 1, a very transparent solution state can be seen, which means that thiamine hydrochloride and sodium lauryl sulfate are completely reacted and there is no remaining precipitate material.
  • the solubility of the aqueous solution diluted by simply adding the TDS powder to the TDS aqueous solution prepared in the present invention and distilled water at the same concentration was measured and compared.
  • FIG. 2 is the result of measuring the solubility of the TDS aqueous solution and TDS powder diluent.
  • the TDS aqueous solution of the present invention was similar to the absorbance of general distilled water, and all TDS powders were dissolved to show transparency similar to that of distilled water. The absorbance increased with, indicating that the TDS powder was suspended in solution and not suspended.
  • the pathogens causing the four crop diseases shown in Table 1 were used to measure the antifungal activity of the present experimental example, and PDA (Potato Dextrose Agar) medium was used as an antifungal activity evaluation medium. It was.
  • the phytopathogenic bacterium used in the present invention is an anthrax bacterium colletery dancing gloeosporioides ( Colletotrichum gloeosporioides ), Sclerotinia sclerotiorum Sclerotinia sclerotiorum ), A late blight phytophthora infestans ( Phytopthora infestans ) And, Botrytis cineraria, a gray mold Botrytis cinerea ) was obtained from KACC.
  • the control group used to measure antifungal activity was the untreated group (a), and the experimental group was prepared by simply dissolving thiamin di-lauryl sulfate (TDS) in 100 ppm of purified water (b) and thiamine di-lauryl sulfate ( TDS) 50 ppm sample (c) and 100 ppm sample (d) in aqueous solution.
  • TDS thiamin di-lauryl sulfate
  • TDS prepared for each concentration was added together in the preparation of PDA medium.
  • Each pathogen was cut into 0.5 cm in diameter on the medium containing TDS and placed in the middle of PDA medium. After inoculation, it was observed whether the mycelia continued to grow out of Petri dishes.
  • Figure 3 shows the growth of each mold on the PDA medium containing vitamin B 1 aqueous solution by concentration. In all four types of fungi, mycelial growth was suppressed in all samples compared to the control group. Especially, the samples prepared by the aqueous solution by the method of the present invention were much better than the samples prepared by simply diluting the TDS powder. Indicated.
  • the colony growth was measured by comparing the diameter of the colonies.
  • the mycelial growth inhibition rate was measured by the following formula, and the result was as shown in FIG. 4.
  • the inhibition rate of mycelial growth of Sclerotinia sclerotiorum was measured as 22.4%, the lowest inhibition rate in 100 ppm of TDS powder compared to the control, and the highest inhibition rate was 55.5%. It was measured with an aqueous solution of TDS at the concentration of 100 ppm indicated.
  • the inhibition rate of the 50 ppm TDS aqueous solution which is lower than the highest concentration of 100 ppm TDS powder, resulted in 16% higher inhibition. This means that the production of TDS aqueous solution than the use of TDS powder can inhibit the growth of Sclerotinia sclerotiorum more efficiently with less concentration.
  • the inhibition of mycelial growth against Colletotrichum gloeosporioides was also measured at 29.3%, the lowest inhibition rate in 100 ppm of TDS powder, compared with the control group. The highest inhibition rate was 74.0%. Measured with 100 ppm aqueous TDS solution.
  • the inhibition rate of the TDS aqueous solution at 50 ppm concentration which is lower than the highest concentration of 100 ppm TDS powder, was 65.7%, which was 30% higher than the TDS powder sample. This also means that it is possible to inhibit the growth of Colletotrichum gloeosporioides more efficiently with a small concentration of content.
  • mycelial growth inhibition rate of Phytopthora infestans was 19.6% in 100 ppm TDS powder, 33.8% in 50 ppm TDS solution and 62.7% in 100 ppm TDS solution.
  • the highest inhibition rate was shown in the TDS aqueous solution at ppm concentration.
  • the inhibition rate of the 50 ppm concentration TDS aqueous solution which is lower than the highest concentration of 100 ppm TDS powder, was more than doubled. This means that it is possible to more effectively inhibit the growth of Phytopthora infestans when the TDS aqueous solution is prepared and used than the TDS powder like other pathogens described above.
  • the mycelial growth inhibition rate of Botrytis cinerea was the lowest as 11.2% at 100 ppm of TDS powder, 33.4% at 50 ppm of TDS solution, and 100 ppm of TDS solution. Inhibition rate of 44.6% was shown.
  • aqueous thiamine di-lauryl sulfate (TDS) solution When the aqueous thiamine di-lauryl sulfate (TDS) solution has antifungal activity, the mycelial growth of pathogens does not grow, resulting in a smaller size of mycelial growth compared to the control. At this time, the hyphae and the rounded portion of the circular shape is taken to look at the microscope, the death form of the hyphae can be observed.
  • TDS thiamine di-lauryl sulfate
  • FIG. 5 is a photograph showing the hyphae of a common Sclerotinia sclerotiorum and Colletotrichum gloeosporioides and thiamine di-lauryl sulfate (TDS) aqueous solution. This is a picture of the hyphae which was inhibited by mycelial growth.
  • TDS thiamine di-lauryl sulfate
  • the general mycelia continue to grow without any interference, and the mycelia that have been inhibited from mycelial growth by aqueous thiamin di-lauryl sulfate (TDS) solution are thiamine di-lauryl sulfate (TDS). ) Adhered to the cell wall of the mycelia, inhibiting the growth of the mycelia.
  • TDS thiamin di-lauryl sulfate
  • the aqueous solution of TDS may increase the persistence of TDS remaining on the cell wall of the mycelium, increase the surface area acting on the mycelium, thereby exhibiting excellent antifungal activity even at a small concentration.
  • Pesticides in aqueous solution containing thiamine di-lauryl sulfate (TDS) according to the present invention solves the disadvantages of organic synthetic pesticides, which are a problem recently, and environmental pollution, such as groundwater and soil, in a nontoxic and safe state It has a direct growth inhibitory effect on pathogens causing plant diseases.
  • the pesticide of the present invention has the advantage that it can also express the autoimmune and defense mechanisms inherent in vitamin B 1 because the active ingredient is a vitamin B 1 derivative.
  • the present invention will ultimately be able to make a great contribution to the eco-friendly organic materials and pesticide industry necessary for eco-friendly agricultural production.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 에탄올에 용해한 후, 물에 희석되어 제조된 수용액 형태의 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS)를 함유하는 식물병 방제 및 예방용 농약에 관한 것으로, 수용액 상에서 안정된 상태로 유지되며, 다이-라우릴 설페이트(TDS) 분말을 물의 단순 희석시켜 사용하는 것보다 한층 증진된 항진균 활성을 나타낸다.

Description

수용액 형태의 티아민 다이-라우릴 설페이트를 함유하는 식물병 방제 및 예방용 농약
본 발명은 식물병 방제 및 예방용 농약에 관한 것으로, 더욱 상세하게는 에탄올에 용해한 후, 물에 희석하여 제조된 수용액 형태의 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS)를 함유하는 식물병 방제 및 예방용 농약에 관한 것이다.
현대사회에 접어들면서 비약적인 인구증가와 농업분야의 축소로 인해 전 세계적으로 식량 생산의 중요성이 가중되고 있으며, 농업 생산성을 향상시키기 위해 농업분야에 많은 투자와 개발이 이루어지고 있다. 이러한 노력 중 하나로 식물의 생산성을 높이기 위해 농약을 사용해 왔으나, 현재까지 사용되어 온 유기합성농약은 무분별한 남용으로 인해 농약중독 및 지하수, 토양 오염 등의 환경오염 문제를 야기하였다.
그런데, 더욱 문제되는 것은 이로 인해 발생하는 식물의 안정성에 대한 소비자들의 불안감과 거부감이다. 이러한 문제를 해소하기 위해 최근에는 안전하면서 효율적으로 식물병을 저해할 수 있는 생물농약의 개발이 많이 연구되고 있는 실정이다.
한편, 쌀겨로부터 추출된 비타민 B1은 가장 일찍부터 알려진 비타민 중 하나로 녹색식물이나 미생물에 의하여 합성되고, 쌀겨, 배아, 효모 등에 많이 함유되어 있다. 비타민 B1은 동물의 신경에서도 다량 발견되는데, 식물의 자가방어 유전자를 활성화하고, 성장에도 관여하는 것으로 알려져 대체 천연 농약 중 하나로 고려되어 왔다. 하지만, 비타민 B1은 열 안정성에 문제가 있어 열처리 공정에서 손실될 가능성이 높으며, 수중에서의 안정성이 낮은 문제가 있다.
따라서, 비타민 B1을 수용액 상태로 제조하여 농약으로 사용하기 어려운 측면이 있으며, 공정 처리로 인한 비타민 B1의 손실 및 변성 문제를 해결해야 하는 문제점 또한 있다.
이에 본 발명은 비타민 B1에 대한 상기의 문제점을 해결하기 위하여 높은 열 안정성과 수중에서의 안정성을 확보한 새로운 형태의 비타민 B1 함유 농약의 제조방법을 개발하여 제공하고자 한다.
상기 목적을 달성하기 위하여 본 발명은 본 발명의 제1형태로, 티아민 다이-라우릴 설페이트(thiamine di-lauryl slfate: TDS) 분말을 50~95%(v/v) 에탄올 수용액에 첨가한 후, 교반시켜 TDS 에탄올 용액을 제조하는 단계; 상기 TDS 에탄올 용액에 물을 첨가한 후, 교반시켜 TDS 수용액을 제조하는 단계; 및 상기 TDS 수용액을 유효성분으로 첨가하는 단계;를 포함하는 것을 특징으로 하는 식물병 방제 및 예방용 농약의 제조방법을 제공한다.
비타민 B1 유도체인 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS)는 식품에 감염하는 곰팡이, 세균 및 바이러스의 감염을 억제하는 것으로 알려져 있다. 하지만, 열 안정성이 낮은 문제와 수중에서의 안정성이 낮은 문제로 산업적 활용 측면에서 많은 문제점이 있다. 이러한 문제점을 해결하기 위해 높은 열 안정성과 수중 안정성을 확보한 비타민 B1 또는 그 유도체의 개발이 필요한 것이다.
본 발명에서는 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS)를 에탄올에 용해한 후, 물에 희석하여 수용액 형태로 제조함으로써, 수용액 상에서 안정된 상태를 확보하였으며, 기존 비타민 B1의 분말을 물에 단순 희석하여 사용하는 것보다 식물 병원균에 대한 방제 효과가 증진될 수 있음을 확인하였다.
한편, 본 발명의 식물병 방제 및 예방용 농약의 제조방법에 있어서, 상기 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS)는 일 예로, 티아민 하이드로클로라이드(thiamine hydrochloride) 수용액과 소디움 라우릴 설페이트(sodium lauryl sulfate) 수용액을 상온에서 혼합시켜 반응시킨 후, 결정화시킴으로써 제조한 것일 수 있다.
한편, 본 발명은 본 발명의 제2형태로, 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS) 분말을 50~95%(v/v) 에탄올 수용액에 첨가한 후, 교반시켜, TDS 에탄올 용액을 제조하는 단계; 및, 상기 TDS 에탄올 용액에 물을 첨가한 후, 교반시키는 단계;로부터 제조된 TDS 수용액을 유효성분으로 함유하는 것을 특징으로 하는 식물병 방제 및 예방용 농약을 제공한다.
본 발명의 농약은 고추, 오이, 인삼, 상추, 감자 및 토마토 등의 채소작물 및 벼를 포함한 단자엽, 쌍자엽 식물 모두에 적용가능하다.
본 발명의 농약은 통상의 다른 합성농약 또는 생물농약과 혼합하거나, 비료에 혼합하여 사용할 수도 있다.
한편, 본 발명의 식물병 방제 및 예방용 농약에 있어서, 상기 식물병 방제 및 예방용 농약은, 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS)를 1 ~ 1,000 ppm 함유하는 것이 좋다.
한편, 본 발명의 식물병 방제 및 예방용 농약에 있어서, 식물병은 예로서, 보트리티스 시네리아(Botrytis cinerea), 콜레토트리춤 글로에오스포리오이데스(Colletotrichum gloeosporioides), 스클레로티니아 스클레로티오룸(Sclerotinia sclerotiorum) 및 파이토프토라 인페스탄스(Phytopthora infestans) 중 선택되는 어느 하나의 병원균으로 말미암아 발생한 것일 수 있다.
한편, 본 발명은 본 발명의 제3형태로, 상기 본 발명의 제1형태로 기재된 방법에 의해 제조된 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS) 수용액 함유 농약을 식물에 살포하는 것을 특징으로 하는 식물병 방제방법을 제공한다.
본 발명에서의 농약 처리량은 기존의 처리량을 크게 벗어나지 않거나 더 적은 양의 범위로 처리한다. 또한, 식물의 종자로부터 성숙기에 이르기까지 어느 생장단계에 처리하여도 농도 범위 이하의 농도에서는 식물의 발아나 생장에 영향을 주지 않고, 처리 10 일후까지 육안으로 보이는 약해도 없는 것으로 확인되었다. 본 발명의 비타민 B1의 유도체인 TDS는 분무, 관주 또는 침지 등의 통상의 약제 처리방법에 의해 처리될 수 있다.
본 발명에 있어서, 적용 대상 식물은 예로서, 고추, 오이, 인삼, 상추, 감자 및 토마토 중 선택되는 어느 하나인 것일 수 있다.
본 발명의 방법에 의하여 제조된 티아민 다이-라우릴 설페이트(TDS) 수용액은 안정된 상태로 유지되었으며, 티아민 다이-라우릴 설페이트(TDS) 분말을 물에 단순 희석시켜 사용하는 것보다 한층 증진된 항진균 활성을 나타냈다.
본 발명에 따른 티아민 다이-라우릴 설페이트(TDS)를 함유하는 수용액 상의 농약은 최근 문제가 되고 있는 유기합성 농약의 단점인 농약중독과 지하수 및 토양 등의 환경오염을 해결하고, 무독하면서도 안전한 상태로 식물병을 일으키는 병원균에 대해 직접적 성장억제 효과를 보인다. 또한, 본 발명의 농약은 유효성분이 비타민 B1 유도체이기 때문에 비타민 B1 고유의 자가면역 및 방어기작도 발현시킬 수 있는 장점이 있다.
따라서, 본 발명은 궁극적으로 친환경 농산물 생산에 반드시 필요한 친환경 유기농자재와 농약산업에 큰 기여를 할 수 있을 것이다.
도 1은 본 발명을 통해 제조한 티아민 다이-라우릴 설페이트(TDS) 수용액의 사진이다.
도 2는 본 발명에서 제조한 티아민 다이-라우릴 설페이트(TDS) 수용액의 용해도 측정 결과이다. 도 2에서 'D.W' 샘플은 증류수로서 대조군 샘플이고, 'TDS 분말용액' 샘플은 증류수에 티아민 다이-라우릴 설페이트 분말을 단순 첨가하여 희석한 용액이며, 'TDS 수용액' 샘플은 본 발명에서 제조한 TDS 수용액 샘플이다.
도 3은 티아민 다이-라우릴 설페이트(TDS) 분말을 단순 희석한 샘플과 티아민 다이-라우릴 설페이트(TDS) 수용액 샘플의 항진균 활성 결과이다. 'a'는 대조군(무처리) 샘플, 'b'는 TDS 분말 100 ppm 샘플, 'c'는 TDS 수용액 50 ppm 샘플, 'd'는 TDS 수용액 100 ppm 샘플이다.
도 4는 티아민 다이-라우릴 설페이트(TDS) 분말을 단순 희석한 샘플과 티아민 다이-라우릴 설페이트(TDS) 수용액 샘플의 균사 생장 억제율 측정 결과이다. 'A'는 대조군(무처리) 샘플, 'B'는 TDS 분말 100 ppm 샘플, 'C'는 TDS 수용액 50 ppm 샘플, 'D'는 TDS 수용액 100 ppm 샘플이다.
도 5는 항진균 활성을 나타낸 티아민 다이-라우릴 설페이트(TDS) 수용액의 균사체를 현미경으로 관찰한 사진이다.
이하, 본 발명의 내용에 대해 하기 실시예 및 실험예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.
실시예 1: 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS) 분말 제조
본 발명에 사용된 TDS는 티아민 하이드로클로라이드(thiamine hydrochloride, Sigma, St. Louis, MO, USA) 와 소디움 라우릴 설페이트(sodium lauryl sulfate, Sigma, St. Louis, MO, USA)를 혼합하여 반응시키고 결정화시켜 제조하였다.
우선, 티아민 하이드로클로라이드(TH) 100 ~ 900 g을 1 L의 증류수에 넣고 상온에서 용해시켰다. 다음으로 소디움 라우릴 설페이트(SLS) 100 ~ 900 g을 증류수 3 L에 넣고 상온에서 용해시켰다. 용해된 TH와 SLS를 각각 0.2 ~ 5 μm의 필터ACHEREY-NAGEL, Neumarn-Neander Str. Germany)로 여과시키고, 각각의 용액을 반응온도 30 ~ 50℃에서 1시간 교반하여 반응시켰다.
반응이 끝난 용액의 결정화 반응을 위해 0 ~ 10℃의 저온에서 2시간 냉각반응을 진행한 후, 냉각반응이 끝난 시료를 2000 rpm, 0 ~ 10℃의 온도로 설정된 고속원심분리기에서 2회 원심분리를 진행하였다.
원심분리가 끝난 시료를 진공건조기에서 3시간 동안 20 ~ 40℃의 온도로 진공건조한 후 분쇄함으로써, 20 mesh의 TDS 분말을 최종 제조하였다.
실시예 2: 티아민 다이-라우릴 설페이트(TDS) 수용액 제조
상기에서 제조한 TDS 분말 100 ~ 900 g을 50 ~ 95%(v/v) 에탄올 수용액 1 L에 녹인 후 TDS 분말이 완전히 용해될 때까지 약 10 ~ 20분간 교반을 진행하였다. 이 후, 50 ~ 95%(v/v) 에탄올 수용액에 완전히 용해된 TDS 에탄올 용액 20 mL를 증류수 9,980 mL에 넣은 후 1시간 교반을 진행하여 본 발명의 TDS 수용액 1 L를 최종 제조하였다.
실험예 1: 티아민 다이-라우릴 설페이트(TDS) 수용액의 용해도 측정
상기 실시예에서 제조한 TDS 수용액으로부터 석출되는 물질이 없는지 관찰하고자 하였다.
마그네틱바를 이용하여 800 rpm의 교반속도로 1시간 교반을 진행하였다. 도 1은 1시간 교반시킨 후, TDS 수용액의 용해 결과를 나타낸 그림이다. 도 1에서 나타난 것처럼 매우 투명한 용액 상태를 볼 수 있는데, 이는 티아민 하이드로클로라이드와 소디움 라우릴 설페이트가 완벽히 반응하여 잔존하는 석출 물질이 없는 것을 의미한다.
한편, 더욱 자세한 용해 정도를 알아보기 위하여 본 발명에서 제조한 TDS 수용액과 증류수에 같은 농도로 TDS 분말을 단순 첨가하여 희석한 수용액의 용해도를 측정하여 비교하여 보았다.
각각의 샘플을 6시간 동안 거치하여 용액이 안정된 후 96 웰 플레이트에 각각 200 ㎕씩 첨가하여 특정 파장인 230 ㎚에서 ELISA 리더를 이용하여 흡광도를 측정하였다.
도 2는 TDS 수용액과 TDS 분말 희석액의 용해도를 측정한 결과이다. 측정 결과, 본 발명의 TDS 수용액은 일반 증류수의 흡광도와 비슷한 수치로 TDS 분말이 모두 용해되어 증류수와 비슷한 투명도를 나타내었음에 반해, 다른 실험군으로 설정한 TDS 분말을 증류수에 단순 첨가하여 녹인 샘플은 농도가 증가할수록 흡광도가 증가하였는데, 이는 용액 속에 TDS 분말이 용해되지 않고 부유해 있는 것을 의미한다.
실험예 2: 식물병 병원균에 대한 티아민 다이-라우릴 설페이트(TDS)의 항진균 활성 측정
1) 항진균 활성 측정에 사용된 작물 병원균
[표 1] 항진균 활성 측정에 사용된 작물병 및 병원균
Figure PCTKR2012003612-appb-I000001
상기 표 1에 나타낸 4가지 작물병의 원인이 되는 병원균을 본 실험예의 항진균 활성 측정에 사용하였고, 항진균 활성 평가용 배지로는 PDA(Potato Dextrose Agar) 배지를 사용하였으며, 30℃, 암 조건에서 배양하였다. 본 발명에서 사용된 식물병원균인 탄저병균인 콜레토트리춤 글로에오스포리오이데스(Colletotrichum gloeosporioides), 균핵병균인 스클레로티니아 스클레로티오룸(Sclerotinia sclerotiorum), 역병균인 파이토프토라 인페스탄스(Phytopthora infestans) 및, 잿빛곰팡이병균인 보트리티스 시네리아(Botrytis cinerea)은 농업과학기술원 (KACC)으로부터 분양받은 것이다.
2) 항진균 활성 측정 방법
항진균 활성 측정에 사용된 대조군은 무처리군(a)이며, 실험군은 티아민 다이-라우릴 설페이트(TDS)를 정제수에 100 ppm이 되도록 단순 녹여 제조한 샘플(b)과 티아민 다이-라우릴 설페이트(TDS) 수용액 50 ppm 샘플(c), 100 ppm 샘플(d)이었다.
각 농도별로 제조한 TDS를 PDA 배지 제조시 함께 첨가하였다. TDS가 함유된 배지 위에 각각의 병원균을 직경 0.5 cm 크기로 잘라 PDA 배지 한가운데에 위치시켰다. 접종한 후 균사가 페트리 디쉬 바깥쪽으로 계속해서 생장해 가는지 여부를 관찰하였다.
3) 항진균 활성 측정
도 3은 농도별로 비타민 B1 유도체 수용액이 함유된 PDA 배지 위에서 각각의 곰팡이가 생장한 모습이다. 4종류의 곰팡이 모두에서 대조군과 비교하여 모든 샘플에서 균사 생장 억제 효과가 나타났으며, 특히 TDS 분말을 단순 희석하여 제조한 샘플보다는 본 발명의 방법에 의해 수용액으로 제조한 샘플이 훨씬 더 좋은 억제 활성을 나타냈다.
더욱 자세한 항진균 활성을 측정하기 위해 콜로니의 직경을 측정하여 콜로니 성장을 억제를 비교하였는데, 아래 공식에 의하여 균사 생장 억제율을 측정하였고, 그 결과는 도 4와 같았다.
[수학식 1] 균사 생장 억제율
Figure PCTKR2012003612-appb-I000002
측정 결과, 먼저 스클레로티니아 스클레로티오룸(Sclerotinia sclerotiorum)의 균사 생장 억제율은 대조군과 비교하여 TDS 분말 100 ppm에서 가장 낮은 억제율인 22.4%로 측정되었으며, 가장 높은 억제율은 55.5%의 억제율을 나타낸 100 ppm 농도의 TDS 수용액으로 측정되었다.
또한, 최고 농도인 100 ppm의 TDS 분말보다 더 낮은 농도인 50 ppm 농도의 TDS 수용액의 억제율이 16% 더 높은 결과를 나타냈다. 이는 TDS 분말을 사용하는 것보다 TDS 수용액을 제조하여 사용할 경우 더 적은 농도의 함유량으로도 더 효율적으로 스클레로티니아 스클레로티오룸(Sclerotinia sclerotiorum)의 생장을 억제할 수 있음을 의미한다.
다음으로 콜레토트리춤 글로에오스포리오이데스(Colletotrichum gloeosporioides)에 대한 균사 생장 억제율 또한 대조군과 비교하여 TDS 분말 100 ppm에서 가장 낮은 억제율인 29.3%로 측정되었으며, 가장 높은 억제율은 74.0%의 억제율을 나타낸 100 ppm 농도의 TDS 수용액으로 측정되었다. 또한, 최고 농도인 100 ppm의 TDS 분말보다 더 낮은 농도인 50 ppm 농도의 TDS 수용액의 억제율이 65.7%로 TDS 분말 샘플보다 30% 이상의 높은 억제율을 나타냈다. 이 또한 적은 농도의 함유량으로도 더 효율적으로 콜레토트리춤 글로에오스포리오이데스(Colletotrichum gloeosporioides)의 생장을 억제할 수 있음을 의미한다.
다음으로 파이토프토라 인페스탄스(Phytopthora infestans)에 대한 균사 생장 억제율에서는 TDS 분말 100 ppm에서 19.6%, 50 ppm 농도의 TDS 수용액에서 33.8%, 100 ppm 농도의 TDS 수용액에서 62.7%로 나타났는데, 100 ppm 농도의 TDS 수용액에서 가장 높은 억제율을 나타내었다. 또한, 최고 농도인 100 ppm TDS 분말보다 더 낮은 농도인 50 ppm 농도 TDS 수용액의 억제율이 2 배 이상으로 나타났다. 이는 상기의 다른 병원균과 같이 TDS 분말을 사용하는 것보다 TDS 수용액을 제조하여 사용할 경우, 더 효율적으로 파이토프토라 인페스탄스(Phytopthora infestans)의 생장을 억제할 수 있음을 의미한다.
마지막으로 보트리티스 시네리아(Botrytis cinerea)에 대한 균사 생장 억제율을 측정한 결과, TDS 분말 100 ppm에서 11.2%로 가장 낮게 측정되었으며, 50 ppm 농도의 TDS 수용액에서 33.4%, 100 ppm 농도의 TDS 수용액에서 가장 높은 억제율인 44.6%의 억제율을 나타내었다. 이러한 결과는 다른 병원균과 마찬가지로 TDS 분말을 사용하는 것보다 TDS 수용액을 제조하여 사용하는 것이 보트리티스 시네리아(Botrytis cinerea)에 대해 더 뛰어난 억제 효과를 나타냄을 의미한다.
4) 병원균 사멸 관찰
티아민 다이-라우릴 설페이트(TDS) 수용액이 항진균 활성을 나타내면 병원균의 균사가 성장하지 못하기 때문에 대조군과 비교하여 균사 생장의 크기가 작게 된다. 이때, 균사와 동그란 원 형태의 접경 부분을 채취하여 현미경으로 살펴보면, 균사의 사멸 형태를 관찰할 수 있다.
도 5는 일반적인 스클레로티니아 스클레로티오룸(Sclerotinia sclerotiorum)와 콜레토트리춤 글로에오스포리오이데스(Colletotrichum gloeosporioides)의 균사모습을 촬영한 사진과 티아민 다이-라우릴 설페이트(TDS) 수용액에 의해 균사 생장에 저해를 받은 균사 모습을 촬영한 사진이다.
도 5에서 보는 것처럼 일반적인 균사는 아무런 방해를 받지 않고 계속해서 생장해 나가는 모습이고, 티아민 다이-라우릴 설페이트(TDS) 수용액에 의해 균사 생장의 저해를 받은 균사는, 티아민 다이-라우릴 설페이트(TDS)가 균사의 세포벽에 달라붙어 균사의 생장을 저해하는 것으로 관찰되었다.
이러한 결과는 TDS 수용액이 균사의 세포벽에 잔류하는 TDS의 잔류성을 증가시키고, 균사에 작용하는 표면적을 증가시키켜 적은 농도로도 우수한 항진균 활성을 나타낼 수 있음을 의미할 수 있다.
본 발명에 따른 티아민 다이-라우릴 설페이트(TDS)를 함유하는 수용액 상의 농약은 최근 문제가 되고 있는 유기합성 농약의 단점인 농약중독과 지하수 및 토양 등의 환경오염을 해결하고, 무독하면서도 안전한 상태로 식물병을 일으키는 병원균에 대해 직접적 성장억제 효과를 보인다. 또한, 본 발명의 농약은 유효성분이 비타민 B1 유도체이기 때문에 비타민 B1 고유의 자가면역 및 방어기작도 발현시킬 수 있는 장점이 있다.
따라서, 본 발명은 궁극적으로 친환경 농산물 생산에 반드시 필요한 친환경 유기농자재와 농약산업에 큰 기여를 할 수 있을 것이다.

Claims (7)

  1. 티아민 다이-라우릴 설페이트(thiamine di-lauryl slfate: TDS) 분말을 50~95%(v/v) 에탄올 수용액에 첨가한 후, 교반시켜 TDS 에탄올 용액을 제조하는 단계;
    상기 TDS 에탄올 용액에 물을 첨가한 후, 교반시켜 TDS 수용액을 제조하는 단계; 및
    상기 TDS 수용액을 유효성분으로 첨가하는 단계;를 포함하는 것을 특징으로 하는 식물병 방제 및 예방용 농약의 제조방법.
  2. 제1항에 있어서,
    상기 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS)는,
    티아민 하이드로클로라이드(thiamine hydrochloride) 수용액과 소디움 라우릴 설페이트(sodium lauryl sulfate) 수용액을 상온에서 혼합시켜 반응시킨 후, 결정화시킴으로써 제조한 것임을 특징으로 하는 식물병 방제 및 예방용 농약의 제조방법.
  3. 티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS) 분말을 50~95%(v/v) 에탄올 수용액에 첨가한 후 교반시켜 TDS 에탄올 용액을 제조한 후, 상기 TDS 에탄올 용액에 물을 첨가한 후 교반시켜 제조된 TDS 수용액을 유효성분으로 함유하는 것을 특징으로 하는 식물병 방제 및 예방용 농약.
  4. 제3항에 있어서,
    상기 식물병 방제 및 예방용 농약은,
    티아민 다이-라우릴 설페이트(thiamine di-lauryl sulfate: TDS)를 1~1,000 ppm 함유하는 것을 특징으로 하는 식물병 방제 및 예방용 농약.
  5. 제3항에 있어서,
    상기 식물병 방제 및 예방용 농약은,
    보트리티스 시네리아(Botrytis cinerea), 콜레토트리춤 글로에오스포리오이데스(Colletotrichum gloeosporioides), 스클레로티니아 스클레로티오룸(Sclerotinia sclerotiorum) 및 파이토프토라 인페스탄스(Phytopthora infestans) 중 선택되는 어느 하나 이상의 병원균에 대하여 항진균 효과가 있는 것을 특징으로 하는 식물병 방제 및 예방용 농약.
  6. 제3항에 기재된 식물병 방제 및 예방용 농약을 식물에 살포하는 것을 특징으로 하는 식물병 방제방법.
  7. 제6항에 있어서,
    상기 식물은,
    고추, 오이, 인삼, 상추, 감자 및 토마토 중 선택되는 어느 하나인 것을 특징으로 하는 식물병 방제방법.
PCT/KR2012/003612 2011-06-20 2012-05-09 수용액 형태의 티아민 다이-라우릴 설페이트를 함유하는 식물병 방제 및 예방용 농약 WO2012176984A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280039826.8A CN103732068A (zh) 2011-06-20 2012-05-09 含有水溶液状的硫胺素二月桂基硫酸盐的控制及预防植物病用农药

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110059790A KR101298112B1 (ko) 2011-06-20 2011-06-20 수용액 형태의 티아민 다이-라우릴 설페이트를 함유하는 식물병 방제 및 예방용 농약
KR10-2011-0059790 2011-06-20

Publications (2)

Publication Number Publication Date
WO2012176984A2 true WO2012176984A2 (ko) 2012-12-27
WO2012176984A3 WO2012176984A3 (ko) 2013-02-14

Family

ID=47423042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003612 WO2012176984A2 (ko) 2011-06-20 2012-05-09 수용액 형태의 티아민 다이-라우릴 설페이트를 함유하는 식물병 방제 및 예방용 농약

Country Status (3)

Country Link
KR (1) KR101298112B1 (ko)
CN (1) CN103732068A (ko)
WO (1) WO2012176984A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160057906A (ko) * 2014-11-14 2016-05-24 코오롱생명과학 주식회사 아연 피리치온을 포함하는 항균성 수분산 조성물
CN105010333B (zh) * 2015-07-21 2017-12-08 中国农业科学院蔬菜花卉研究所 杀菌剂及其应用
KR101753357B1 (ko) * 2016-12-30 2017-07-03 최태호 유기용매를 사용하지 않는 티아민 라우릴 황산염 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113435A (en) * 1978-02-21 1979-09-05 Nippon Nohyaku Co Ltd Pesticide for controlling blights of fruits during storage
JP2000178107A (ja) * 1998-12-17 2000-06-27 Yunifiido Engineering:Kk 安定化液状殺菌剤
KR100438393B1 (ko) * 2000-03-24 2004-07-02 이용환 식물병 방제제로서의 비타민 b1의 용도
KR20100136268A (ko) * 2009-06-18 2010-12-28 주식회사 두산에코비즈넷 고순도의 티아민 라우릴 황산염 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808086B1 (ja) * 2005-05-31 2006-08-09 株式会社シンコー・サイエンス・コーポレーション チアミンラウリル硫酸塩結晶及びその製造方法
CN101314599A (zh) * 2008-07-11 2008-12-03 天津天康源生物技术有限公司 硫胺素二月桂基硫酸盐的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113435A (en) * 1978-02-21 1979-09-05 Nippon Nohyaku Co Ltd Pesticide for controlling blights of fruits during storage
JP2000178107A (ja) * 1998-12-17 2000-06-27 Yunifiido Engineering:Kk 安定化液状殺菌剤
KR100438393B1 (ko) * 2000-03-24 2004-07-02 이용환 식물병 방제제로서의 비타민 b1의 용도
KR20100136268A (ko) * 2009-06-18 2010-12-28 주식회사 두산에코비즈넷 고순도의 티아민 라우릴 황산염 제조방법

Also Published As

Publication number Publication date
KR101298112B1 (ko) 2013-08-19
WO2012176984A3 (ko) 2013-02-14
CN103732068A (zh) 2014-04-16
KR20120140111A (ko) 2012-12-28

Similar Documents

Publication Publication Date Title
WO2021068555A1 (zh) 一种耐硼赖氨酸芽孢杆菌作为底盘细胞制备的槟榔根腐病杀菌剂
CN104630071B (zh) 一株多孢木霉及其应用
US11723360B2 (en) Application of methylmalonic acid in the preparation of nematode insecticides
CN113249242B (zh) 一株多粘类芽孢杆菌及其在防治多种土传病害中的应用
CN106591157B (zh) 一株防病促生的塔宾曲霉及其代谢产物的制备和应用
CN112079692B (zh) 一种防治植物病原细菌的化合物及其应用
WO2019208971A1 (ko) 질소 고정능 및 식물 생장 촉진 활성을 가지는 바실러스 벨레젠시스 균주 및 이의 용도
CN103053624B (zh) 一种木霉制剂与杀菌剂混用防治辣椒疫病的方法
WO2021217894A1 (en) Serratia marcescens mb21 and use thereof
WO2012176984A2 (ko) 수용액 형태의 티아민 다이-라우릴 설페이트를 함유하는 식물병 방제 및 예방용 농약
CN108299276A (zh) 一种吲哚类化合物及其在防治农业真菌性病害中的应用
CN102948424A (zh) 一种含有啶酰菌胺的杀菌组合物
KR100411185B1 (ko) 신균주 스트렙토마이세스 속 ag-p(kctc8965p)및 이를 이용한 식물병 방제제
CN106396836B (zh) 大豆疫霉根腐病防治生物种衣剂及其制备方法、使用方法
CN108396002B (zh) 一株地衣芽孢杆菌及其在防治甜瓜枯萎病中的应用
Shain Evidence for formae speciales in the poplar leaf rust fungus, Melampsora medusae
CN103667083B (zh) 一种枝顶孢霉、其培养方法及其在制备根结线虫杀虫剂孢子原粉中的应用
CN111011384B (zh) 8-羟基喹啉化合物在制备抗香蕉枯萎病和水稻稻曲病病原菌剂中的应用
CN112616850A (zh) 一种含丙硫菌唑与异硫氰酸烯丙酯的杀菌组合物
CN111149808B (zh) 一种呋喃环并吡喃环类化合物在制备杀线虫药物中的应用
Montes-Borrego et al. Local infection of opium poppy leaves by Peronospora somniferi sporangia can give rise to systemic infections and seed infection in resistant cultivars
CN107183025B (zh) 一种萘环型倍半萜化合物的应用
KR102397132B1 (ko) 항균력 및 식물생장촉진능을 가지는 트라이코더마 아스퍼레룸 nnibrfg4324 균주 및 이의 용도
Christiansen et al. Microscopic studies of the interaction between barley and the saprophytic fungus, Cladosporium macrocarpum
CN115633705A (zh) 醉马草内生真菌发酵液在防治小麦赤霉病中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803009

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803009

Country of ref document: EP

Kind code of ref document: A2