WO2012176832A1 - 通信システム及び通信装置 - Google Patents

通信システム及び通信装置 Download PDF

Info

Publication number
WO2012176832A1
WO2012176832A1 PCT/JP2012/065845 JP2012065845W WO2012176832A1 WO 2012176832 A1 WO2012176832 A1 WO 2012176832A1 JP 2012065845 W JP2012065845 W JP 2012065845W WO 2012176832 A1 WO2012176832 A1 WO 2012176832A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
signal
low
output circuit
transformer
Prior art date
Application number
PCT/JP2012/065845
Other languages
English (en)
French (fr)
Inventor
遼 岡田
剛志 萩原
小松 裕
泉 達也
和彦 二井
陽介 高田
博哉 安藤
勇太 落合
隆市 釜賀
岩井 淳
宮下 之宏
信之 中川
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所, トヨタ自動車株式会社 filed Critical 住友電気工業株式会社
Priority to JP2013521612A priority Critical patent/JP5931863B2/ja
Priority to US14/128,517 priority patent/US20140254694A1/en
Priority to EP12801935.3A priority patent/EP2724894B1/en
Priority to CN201280031018.7A priority patent/CN103635360B/zh
Publication of WO2012176832A1 publication Critical patent/WO2012176832A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/21Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a set of bandfilters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/547Systems for power line communications via DC power distribution

Definitions

  • the present invention relates to a communication system that performs communication between a vehicle such as an electric vehicle or a hybrid vehicle and a power supply device that supplies power to the vehicle, and a communication device that constitutes the communication system.
  • a vehicle such as an electric vehicle or a hybrid vehicle can charge a secondary battery from the outside of the vehicle by connecting a charging plug connected to an external power feeding device to a connector of a power feeding port provided in the vehicle. It can be configured.
  • a signal line called a control pilot line is provided between an output circuit provided on the power supply device side and an input circuit provided on the vehicle side, and a rectangular with a predetermined frequency is provided from the output circuit to the input circuit.
  • a wave signal control pilot signal
  • a capacitor for removing noise and the like is connected to the output circuit and the input terminal of the input circuit and the input circuit for transmitting and receiving the control pilot signal. For this reason, even if the communication signal is superimposed on the control pilot line, the communication signal is attenuated by the capacitors provided in the output circuit and the input circuit, and there is a concern that the communication speed is lowered or the noise resistance is lowered. Further, when a communication circuit for superimposing a communication signal is connected to the control pilot line, there is a concern that the control pilot signal cannot be reliably transmitted and received due to the influence of the communication circuit.
  • This invention is made in view of such a situation, and provides the communication apparatus which can suppress that the communication signal superimposed on the control pilot line can attenuate, and the communication apparatus which comprises this communication system. With the goal.
  • a communication system is provided in a power feeding device that supplies power to a vehicle, and is provided with an output circuit that outputs a rectangular wave signal having a predetermined frequency, and is provided in the vehicle, and is connected to the output circuit through a plurality of signal lines.
  • a first communication unit that transmits and receives communication signals via a first transformer connected between the signal lines; and a second transformer that is provided in the vehicle and connected between the signal lines.
  • a second communication unit for transmitting and receiving communication signals, a first low-pass filter interposed between the output circuit and the first transformer, and between the input circuit and the second transformer. And a second low-pass filter interposed in the And wherein the door.
  • a communication system is characterized in that, in the first invention, the first and second low-pass filters include an inductor connected in series to the signal line.
  • the communication system according to a third invention is characterized in that, in the second invention, the first and second low-pass filters include a resistor connected in parallel to the inductor.
  • a communication system is characterized in that, in the second invention, the first and second low-pass filters comprise a resistor connected in series to the inductor.
  • a communication system is characterized in that, in the second invention, the first and second low-pass filters comprise a series circuit of a capacitor and a resistor between signal lines on the output side of the inductor.
  • a communication system is the communication system according to any one of the first to fifth aspects, wherein the output circuit outputs a 1 kHz rectangular wave signal, and the input circuit has an input side on the input side.
  • the rising time and the falling time of the rectangular wave signal are 10 ⁇ s or less.
  • a communication apparatus comprising: an output circuit that outputs a rectangular wave signal having a predetermined frequency via a plurality of signal lines; the signal line via a transformer connected between the signal lines. And a communication unit that transmits and receives communication signals by superimposing communication signals on the communication circuit, and a low-pass filter that is interposed between the output circuit and the transformer.
  • the communication device wherein the generation unit that generates the rectangular wave signal, the voltage detection unit that detects the output voltage of the output circuit, and the voltage detected by the voltage detection unit And an adjustment unit that adjusts the rectangular wave signal generated by the generation unit.
  • a communication apparatus including an input circuit to which a rectangular wave signal having a predetermined frequency is input via a plurality of signal lines, the signal being transmitted via a transformer connected between the signal lines.
  • a communication unit that transmits and receives a communication signal by superimposing a communication signal on a line, and a low-pass filter interposed between the input circuit and the transformer are provided.
  • a communication device is the communication device according to the ninth invention, wherein the resistance portion has a plurality of resistors and the resistance value can be adjusted, and the resistance value of the resistance portion is adjusted in order to change the voltage of the resistance portion. And an adjustment unit.
  • the first communication unit is provided in the power feeding device, and includes a plurality of signal lines (for example, a control pilot line and a ground line) between the output circuit and the input circuit. )
  • the communication signal is superimposed on the signal line via the first transformer connected between them, and the communication signal is transmitted and received.
  • the second communication unit is provided in the vehicle and superimposes a communication signal on the signal line via a second transformer connected between a plurality of signal lines between the output circuit and the input circuit.
  • the communication band used by the first and second communication units is, for example, 2 to 30 MHz, but is not limited thereto, and a signal band having a frequency of 1.0 MHz or more may be used.
  • a signal line between the output circuit and the first transformer is provided with a first low-pass filter
  • a signal line between the input circuit and the second transformer is provided with a second low-pass filter.
  • the first and second low-pass filters pass a rectangular wave signal of a predetermined frequency (for example, 1 kHz) output from the output circuit, and communicate communication signals (for example, 2 to 2) transmitted and received by the first and second communication units. 30 MHz).
  • the communication signal transmitted by the second communication unit is not attenuated by the capacitors of the input circuit and the output circuit. Therefore, the attenuation of the communication signal superimposed on the control pilot line can be suppressed.
  • the first and second low-pass filters include an inductor connected in series with the signal line.
  • the inductor has a low impedance for a predetermined frequency (for example, 1 kHz) output from the output circuit, and a high impedance for a communication signal (for example, 2 to 30 MHz) transmitted and received by the first and second communication units.
  • a predetermined frequency for example, 1 kHz
  • a communication signal for example, 2 to 30 MHz
  • the first and second low-pass filters include a resistor connected in parallel to the inductor.
  • a resistor for example, the Q value (Quality factor) representing the sharpness of the resonance peak of the resonance circuit configured between the inductor and the capacitor existing in the output circuit or the input circuit can be reduced, which is unnecessary. Resonance can be suppressed.
  • the first and second low-pass filters include a resistor connected in series to the inductor.
  • a resistor for example, the Q value (Quality factor) representing the sharpness of the resonance peak of the resonance circuit configured between the inductor and the capacitor existing in the output circuit or the input circuit can be reduced, which is unnecessary. Resonance can be suppressed.
  • the first and second low-pass filters include a series circuit of a capacitor and a resistor between the signal lines on the output side of the inductor.
  • the output circuit outputs a 1 kHz rectangular wave signal.
  • the rise time and fall time of the rectangular wave signal on the input side of the input circuit are 10 ⁇ s or less.
  • the rise time is the time until the rectangular wave signal reaches 10% to 90%.
  • the fall time is the time until the rectangular wave signal reaches 90% to 10%.
  • the values of the first and second low-pass filters for example, the values of inductors or resistors
  • the rise time and fall time exceed 10 ⁇ s, the rectangular wave signal received by the input circuit is distorted, so that the control pilot signal cannot be correctly received.
  • the rise time and the fall time By setting the rise time and the fall time to 10 ⁇ s or less, the distortion of the rectangular wave signal can be reduced and the control pilot signal can be received correctly.
  • the generator generates the rectangular wave signal (control pilot signal), the voltage detector that detects the output voltage of the output circuit, and the generator detects the voltage detected by the voltage detector.
  • An adjustment unit that adjusts the rectangular wave signal to be generated.
  • the rectangular wave signal is a signal whose duty ratio can be changed from 0 to 100%, and includes a constant voltage of ⁇ 12 V, for example.
  • the output circuit can output a desired control pilot signal.
  • a resistance unit having a plurality of resistors and capable of adjusting the resistance value, and an adjustment unit for adjusting the resistance value of the resistance unit to change the voltage of the resistance unit are provided. Accordingly, for example, the resistance value of the resistance unit can be adjusted according to the state of the vehicle, and the voltage of the resistance unit can be changed to a desired value.
  • communication can be reliably performed by superimposing a communication signal on the control pilot line.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a communication system according to a first embodiment. It is explanatory drawing which shows an example of the transmission line attenuation
  • FIG. 6 is a block diagram illustrating an example of a configuration of a communication system according to a second embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of the communication system according to the first embodiment.
  • a vehicle such as an electric vehicle or a hybrid vehicle and a power feeding device are electrically connected via an inlet 5 (also referred to as “power feeding port” or “connector”).
  • the power supply apparatus includes an AC power source 6.
  • the AC power supply 6 is electrically connected to the vehicle charger 7 through the power supply line 1 (ACL) and the power supply line 2 (ACN).
  • a battery (secondary battery) 8 is connected to the charger 7.
  • AC power can be supplied to the vehicle by connecting a plug (not shown) connected to the charging cable from the power supply device to the inlet 5, and the battery 8 mounted on the vehicle can be charged. it can.
  • the communication system includes a communication device 10 provided in a power supply device, a communication device 50 provided in a vehicle, and the like.
  • the communication apparatus 10 includes an output circuit 20 that outputs a rectangular wave signal having a predetermined frequency (also referred to as a “control pilot signal”), a communication unit 30 as a first communication unit, a transformer 31, a coupling capacitor 32, a first A low-pass filter 33 is provided.
  • the communication device 50 includes an input circuit 60 to which a control pilot signal is input, a communication unit 70 as a second communication unit, a transformer 71, a coupling capacitor 72, a second low-pass filter 73, and the like.
  • the output circuit 20 includes a voltage generation source 21, a resistor 22, a capacitor 23, a microcomputer 24, a buffer 25, and the like as a generation unit that generates a rectangular wave signal (control pilot signal).
  • the voltage source 21 generates a rectangular wave signal (control pilot signal) having a frequency of 1 kHz and a peak value of ⁇ 12V.
  • the duty ratio of the control pilot signal is 20%, for example, but is not limited to this.
  • the rectangular wave signal is a signal whose duty ratio can be changed from 0 to 100%, and includes a constant voltage of ⁇ 12 V, for example.
  • the output circuit 20 sends a control pilot signal to the input circuit 60 provided in the vehicle via the resistor 22.
  • the capacitor 23 is provided to reduce noise generated in the output circuit 20, for example.
  • the value of the resistor 22 is, for example, 1.0 k ⁇ , and the capacitance of the capacitor 23 is, for example, 2.2 nF, but the numerical value is not limited thereto.
  • the buffer 25 has a function as a voltage detection unit that detects the output voltage of the output circuit 20, detects the voltage across the capacitor 23, and outputs the detection result to the microcomputer 24.
  • the microcomputer 24 has a function as an adjustment unit that adjusts a rectangular wave signal generated by the voltage generation source 21.
  • the output circuit 20 can output a rectangular wave signal (control pilot signal) having a constant voltage of ⁇ 12 V and an arbitrary duty ratio (greater than 0 and smaller than 100) and a peak value of ⁇ 12 V. it can.
  • the input circuit 60 includes a capacitor 61, a diode 62, a buffer 63, a microcomputer 64, a resistance unit 65, and the like.
  • the buffer 63 detects the voltage Vout across the resistance unit 65 and outputs it to the microcomputer 64. Note that the voltage across the capacitor 61 may be detected instead of the voltage across the resistor 65.
  • the resistance unit 65 includes a plurality of resistors and an open / close switch, and can change (adjust) the resistance value by opening / closing the open / close switch by a signal from the microcomputer 64.
  • the microcomputer 64 has a function as an adjustment unit that adjusts the resistance value of the resistance unit 65 in order to change the voltage Vout of the resistance unit 65. That is, the microcomputer 64 changes the resistance value of the resistance unit 65 in order to change the voltage Vout according to the state of the vehicle (for example, a state related to charging). Depending on the value of the voltage Vout, the power supply device and the vehicle can detect a state related to charging.
  • the vehicle charging plug is not connected.
  • the resistance value of the resistance portion 65 is set to 2.74 k ⁇ , and the charging plug of the vehicle is connected to indicate a state of waiting for charging.
  • the resistance value of the resistance unit 65 is set to 882 ⁇ , indicating a state during charging.
  • the resistance value of the resistance unit 65 is set to 246 ⁇ , indicating that charging is in progress and the charging place needs to be ventilated.
  • the capacitor 61 is provided, for example, to reduce noise entering the input circuit 60.
  • the resistance value of the resistor unit 65 is, for example, about 2.74 k ⁇ , 882 ⁇ , and 246 ⁇ , and the capacitance of the capacitor 61 is, for example, 1.8 nF, but the numerical value is not limited to these.
  • the output circuit 20 and the input circuit 60 are electrically connected via a plurality of signal lines (control pilot line 4 and ground line 3).
  • the ground wire 3 can also be regarded as a control pilot line.
  • the communication unit 30 and the communication unit 70 perform communication by superimposing predetermined communication signals on a plurality of signal lines (the control pilot line 4 and the ground line 3) provided between the output circuit 20 and the input circuit 60.
  • Information transmitted / received between the communication unit 30 and the communication unit 70 includes, for example, information related to a vehicle ID, information related to charge control (start or end of charge, etc.), charge amount management (rapid charge, charge amount notification, etc.) Related to the control pilot signal, such as information related to charging, management of charging, information related to updating of navigation, and the like.
  • the communication unit 30 and the communication unit 70 include, for example, a modulation circuit and a demodulation circuit using a modulation scheme such as orthogonal frequency multiplexing (OFDM) and spread spectrum (SS).
  • a modulation scheme such as orthogonal frequency multiplexing (OFDM) and spread spectrum (SS).
  • the communication band of communication performed by the communication unit 30 and the communication unit 70 is, for example, 2 to 30 MHz (for example, Home, Plug, Green, and PHY). However, the communication band is not limited to this, and a communication band higher than 1.0 MHz is used. It may be used.
  • a series circuit of coupling capacitors 32 and 32 and a transformer 31 is connected between the control pilot line 4 on the output side of the output circuit 20 and the ground line 3, and the communication unit 30 is connected via the transformer 31.
  • a communication signal is superimposed on the control pilot line 4 and a communication signal on the control pilot line 4 is received.
  • a series circuit of coupling capacitors 72, 72 and a transformer 71 is connected between the control pilot line 4 on the input side of the input circuit 60 and the ground line 3, and the communication unit 70 is connected via the transformer 71.
  • a communication signal is superimposed on the control pilot line 4 and a communication signal on the control pilot line 4 is received.
  • the communication unit 30 and the communication unit 70 perform communication by connecting the transformers 31 and 71 between the signal lines and superimposing a voltage on the signal lines.
  • Such a method can be referred to as a line-to-line communication method.
  • the control pilot line 4 between the output circuit 20 and the connection point where the transformer 31 is connected via the coupling capacitor 32 is provided with a low-pass filter 33.
  • a low-pass filter 73 is interposed in the control pilot line 4 between the input circuit 60 and a connection point where the transformer 71 is connected via the coupling capacitor 72.
  • the capacitance of the coupling capacitors 32 and 72 is, for example, 500 pF, but is not limited thereto.
  • the low-pass filters 33 and 73 each pass a rectangular wave signal (control pilot signal) having a predetermined frequency (for example, 1 kHz) output from the output circuit 20 and a communication signal (for example, transmitted and received by the communication units 30 and 70). 2 to 30 MHz).
  • the communication signal transmitted by the communication unit 30 is propagated to the communication unit 70 without being attenuated by the capacitor 23 of the output circuit 20.
  • the communication signal transmitted by the communication unit 70 is propagated to the communication unit 30 without being attenuated by the capacitor 23 of the output circuit 20.
  • the communication signal transmitted by the communication unit 70 is propagated to the communication unit 30 without being attenuated by the capacitor 61 of the input circuit 60.
  • the communication signal transmitted by the communication unit 30 is propagated to the communication unit 70 without being attenuated by the capacitor 61 of the input circuit 60, the communication signal is superimposed on the control pilot line 4 to reliably communicate. Can do. Further, it is possible to prevent an error in reading the control pilot signal due to the communication signal without increasing the distortion of the control pilot signal.
  • the low-pass filter 33 includes an inductor 331 connected in series with the control pilot line 4.
  • the inductance of the inductor 331 is, for example, 1.5 mH, but the inductance is not limited to this.
  • the inductor 331 For the predetermined frequency (for example, 1 kHz) output from the output circuit 20, the inductor 331 has a low impedance. Further, the inductor 331 has a high impedance for a communication signal (for example, 2 to 30 MHz) transmitted and received by the communication units 30 and 70. As a result, communication signals transmitted and received by the communication units 30 and 70 can be blocked with a simple configuration, and a control pilot signal can be passed.
  • a communication signal for example, 2 to 30 MHz
  • the low-pass filter 73 includes an inductor 731 connected in series with the control pilot line 4.
  • the inductance of the inductor 731 is, for example, 1.5 mH, but the inductance is not limited to this.
  • the inductor 731 has a low impedance for a predetermined frequency (for example, 1 kHz) output from the output circuit 20. Further, the inductor 731 has a high impedance with respect to a communication signal (for example, 2 to 30 MHz) transmitted and received by the communication units 30 and 70. As a result, communication signals transmitted and received by the communication units 30 and 70 can be blocked with a simple configuration, and a control pilot signal can be passed.
  • a predetermined frequency for example, 1 kHz
  • a communication signal for example, 2 to 30 MHz
  • the low pass filter 33 includes a resistor 332 connected in parallel to the inductor 331.
  • the resistance value of the resistor 332 is, for example, 1 k ⁇ , but is not limited to this.
  • a Q value representing the sharpness of the resonance peak of the resonance circuit formed between the inductor 331 and the capacitor 23 or the like existing in the output circuit 20 can be reduced. Unnecessary resonance can be suppressed.
  • the low-pass filter 73 includes a resistor 732 connected in parallel to the inductor 731.
  • the resistance value of the resistor 732 is, for example, 1 k ⁇ , but is not limited thereto.
  • FIG. 2 is an explanatory diagram showing an example of transmission path attenuation characteristics of communication by the communication units 30 and 70.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the transmission path attenuation (voltage drop) in the control pilot line 4 between the communication units 30 and 70.
  • the curve indicated by the symbol A indicates a case where the low-pass filters 33 and 73 are provided
  • the curve indicated by the symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the attenuation amount of the communication signal by the communication units 30 and 70 is 150 kHz or more compared to the case where the low-pass filters 33 and 73 are not provided. It is improved in the 50MHz range. Specifically, the improvement is about 20 dB at 2 MHz and about 25 dB at 30 MHz, and the improvement is about 20 to 25 dB at 2 to 30 MHz which is the communication band of the communication units 30 and 70.
  • FIG. 3 is an explanatory diagram showing an example of the attenuation characteristic of the control pilot signal output from the output circuit 20.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the frequency component (spectrum) of the voltage Vout.
  • a curve indicated by a symbol A indicates a case where the low-pass filters 33 and 73 are provided
  • a curve indicated by a symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the attenuation characteristics are the same regardless of whether or not the low-pass filters 33 and 73 are provided. That is, even when the low-pass filters 33 and 73 are provided, similarly to the case where the low-pass filters 33 and 73 are not provided, the 10th harmonic having a frequency of 1 kHz can be passed without being attenuated at all. .
  • the low-pass filters 33 and 73 are provided, if the frequency is approximately 100 kHz or less, the amount of attenuation of the control pilot signal is less than that when the low-pass filters 33 and 73 are not provided.
  • the cutoff frequency of the low-pass filters 33 and 73 is, for example, the ninth harmonic (9 kHz) or higher, the eleventh harmonic (11 kHz) or higher, or the fifteenth
  • the harmonics 15 kHz
  • the cut-off frequency is increased, the control pilot signal waveform distortion or voltage fluctuation is more effectively suppressed.
  • FIG. 4 is an explanatory diagram showing an example of the rising characteristics of the control pilot signal in the input circuit 60.
  • the horizontal axis indicates time, and the vertical axis indicates voltage Vout.
  • the voltage Vout is the voltage across the capacitor 61.
  • a curve indicated by a symbol A indicates a case where the low-pass filters 33 and 73 are provided, and a curve indicated by a symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the control pilot signal in the input circuit 60 Due to the resistance voltage division between the output circuit 20 and the input circuit 60, the control pilot signal in the input circuit 60 has a rectangular waveform of 1 kHz and becomes + 9V and ⁇ 12V.
  • the rise time is the time until the voltage reaches 10% to 90%.
  • the rise time is about 7.7 ⁇ s, whereas when the low-pass filters 33 and 73 are provided, the rise time. Is about 5.6 ⁇ s. That is, the rise time of the control pilot signal on the input side of the input circuit 60 is 10 ⁇ s or less.
  • the values of the low-pass filters 33 and 73 may be set.
  • the rise time exceeds 10 ⁇ s, the distortion of the voltage waveform received by the input circuit 60 becomes too large, so that the control pilot signal cannot be received correctly.
  • the rise time exceeds 10 ⁇ s, the distortion of the voltage waveform can be reduced and the control pilot signal can be received correctly. That is, the rectangular pilot pilot signal output from the output circuit 20 is transmitted to the input circuit 60 without distortion.
  • the rise time has been described, but the same applies to the fall time.
  • FIG. 5 is an explanatory diagram showing an example of transmission characteristics on the input circuit side.
  • the horizontal axis indicates the frequency.
  • the vertical axis represents the frequency component of the control pilot signal from the output circuit 20 and the communication signal from the communication units 30 and 70 observed at the voltage Vout on the input circuit 60 side.
  • a curve indicated by a symbol A indicates a case where the low-pass filters 33 and 73 are provided
  • a curve indicated by a symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the low-pass filters 33 and 73 when the low-pass filters 33 and 73 are not provided, the communication signals from the communication units 30 and 70 directly enter the input circuit 60 side without being attenuated.
  • the voltage is detected at 64 (for example, 12V, 9V, 6V, 3V, etc.)
  • the communication signal acts as a disturbance noise, and there is a possibility that the voltage determination is wrong.
  • the low-pass filters 33 and 73 when the low-pass filters 33 and 73 are provided, for example, a communication signal of 2 to 30 MHz is attenuated to tens to hundreds, but the control pilot signal is input with almost no attenuation or distortion. Since the signal can be received by the circuit 60, the voltage determination or duty ratio determination of the control pilot signal is not affected.
  • the self-inductances of the transformers on the coupling capacitors 32 and 72 side and the communication units 30 and 70 side are both 9.9 ⁇ H, and the inductors 331 of the low-pass filters 33 and 73 are used.
  • 731 has an inductance of 1.5 mH
  • resistors 332 and 732 have a resistance value of 1 k ⁇
  • coupling capacitors 32 and 72 have a capacitance of 500 pF, but the numerical values are not limited thereto.
  • the self-inductance of the transformer on the coupling capacitors 32 and 72 side is 130 ⁇ H
  • the self-inductance of the transformer on the communication units 30 and 70 side is 6 ⁇ H
  • the inductors 331 and 731 of the low-pass filters 33 and 73 are used.
  • the inductance is 470 ⁇ H
  • the resistance values of the resistors 332 and 732 are 470 ⁇
  • the capacitance of the coupling capacitors 32 and 72 is 100 pF.
  • FIG. 6 is an explanatory diagram illustrating another example of transmission path attenuation characteristics of communication by the communication units 30 and 70.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the transmission path attenuation (voltage drop) in the control pilot line 4 between the communication units 30 and 70.
  • the curve indicated by the symbol A indicates a case where the low-pass filters 33 and 73 are provided
  • the curve indicated by the symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the attenuation amount of the communication signal by the communication units 30 and 70 is 250 kHz or more compared to the case where the low-pass filters 33 and 73 are not provided. It is improved in the 50MHz range. Specifically, the improvement is about 20 dB at 2 MHz and about 40 dB at 30 MHz, and the improvement is about 20 dB to 40 dB at 2 to 30 MHz which is the communication band of the communication units 30 and 70.
  • FIG. 7 is an explanatory diagram showing another example of the attenuation characteristic of the control pilot signal output from the output circuit 20.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the frequency component (spectrum) of the voltage Vout.
  • a curve indicated by a symbol A indicates a case where the low-pass filters 33 and 73 are provided
  • a curve indicated by a symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the attenuation characteristics are the same regardless of whether or not the low-pass filters 33 and 73 are provided. That is, even when the low-pass filters 33 and 73 are provided, as in the case where the low-pass filters 33 and 73 are not provided, the 20th harmonic having a frequency of 1 kHz can be passed without being attenuated at all. .
  • the cutoff frequency of the low-pass filters 33 and 73 is, for example, the ninth harmonic (9 kHz) or higher, the eleventh harmonic (11 kHz) or higher, or the fifteenth
  • the harmonics 15 kHz
  • the cut-off frequency is increased, the control pilot signal waveform distortion or voltage fluctuation is more effectively suppressed.
  • FIG. 8 is an explanatory diagram showing another example of the rising characteristics of the control pilot signal in the input circuit 60.
  • the horizontal axis indicates time, and the vertical axis indicates voltage Vout.
  • the voltage Vout is the voltage across the capacitor 61.
  • a curve indicated by a symbol A indicates a case where the low-pass filters 33 and 73 are provided, and a curve indicated by a symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the control pilot signal in the input circuit 60 Due to the resistance voltage division between the output circuit 20 and the input circuit 60, the control pilot signal in the input circuit 60 has a rectangular waveform of 1 kHz and becomes + 9V and ⁇ 12V.
  • the rise time is the time until the voltage reaches 10% to 90%.
  • the rise time is about 7.7 ⁇ s
  • the rise time is. Is about 7.2 ⁇ s. That is, the rise time of the control pilot signal on the input side of the input circuit 60 is 10 ⁇ s or less.
  • the values of the low-pass filters 33 and 73 may be set.
  • the rise time exceeds 10 ⁇ s, the distortion of the voltage waveform received by the input circuit 60 becomes too large, so that the control pilot signal cannot be received correctly.
  • the rise time exceeds 10 ⁇ s, the distortion of the voltage waveform can be reduced and the control pilot signal can be received correctly. That is, the rectangular pilot pilot signal output from the output circuit 20 is transmitted to the input circuit 60 without distortion.
  • the rise time has been described, but the same applies to the fall time.
  • FIG. 9 is an explanatory diagram showing another example of transmission characteristics on the input circuit side.
  • the horizontal axis indicates the frequency.
  • the vertical axis represents the frequency component of the control pilot signal from the output circuit 20 and the communication signal from the communication units 30 and 70 observed at the voltage Vout on the input circuit 60 side.
  • a curve indicated by a symbol A indicates a case where the low-pass filters 33 and 73 are provided
  • a curve indicated by a symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the communication signals from the communication units 30 and 70 directly enter the input circuit 60 side without being attenuated.
  • the voltage is detected at 64 (for example, 12V, 9V, 6V, 3V, etc.)
  • the communication signal acts as a disturbance noise, and there is a possibility that the voltage determination is wrong.
  • the low-pass filters 33 and 73 are provided, for example, a communication signal of 2 to 30 MHz is attenuated to tens to hundreds, but the control pilot signal is input with almost no attenuation or distortion. Since the signal can be received by the circuit 60, the voltage determination or duty ratio determination of the control pilot signal is not affected.
  • the low-pass filters 33 and 73 are provided, communication signals transmitted and received by the communication units 30 and 70 are not attenuated by the output circuit 20 or the input circuit 60, and thus are superimposed on the control pilot line. Attenuation of the communication signal can be suppressed. Further, it is possible to prevent a decrease in communication speed of communication by the communication units 30 and 70 or a decrease in noise resistance.
  • the impedance of the communication units 30 and 70 viewed from the output circuit 20 does not change. That is, when the capacitance of the coupling capacitors 32 and 72 is increased, the voltage drop of the coupling capacitors 32 and 72 in the communication band (2 to 30 MHz in the case of a high-speed PLC) is reduced, so that the attenuation characteristic can be improved. Although possible, large distortion occurs in the control pilot signal. Since the capacitances of the coupling capacitors 32 and 72 are not changed, it is possible to prevent the control pilot signal output from the output circuit 20 from being distorted.
  • the low-pass filter is configured by a parallel circuit of an inductor and a resistor.
  • the circuit configuration is not limited to this, and may be only an inductor or a series circuit of an inductor and a resistor. But you can.
  • the control pilot line and the signal line of the ground line are used for the communication path of the rectangular wave signal or the communication signal, one or both of them may be a conductor such as a vehicle body or a casing of the power feeding device.
  • the low-pass filter may have the following configuration.
  • FIG. 10 is a block diagram showing an example of the configuration of the communication system according to the second embodiment.
  • the low-pass filter 33 includes an inductor 331 and a series circuit of a capacitor 333 and a resistor 334 connected between the control pilot line 4 and the ground line 3.
  • the low-pass filter 73 includes an inductor 731 and a series circuit of a capacitor 733 and a resistor 734 connected between the control pilot line 4 and the ground line 3.
  • symbol is attached
  • the Q value (QualityQualfactor) representing the sharpness of the resonance peak of the resonance circuit formed between the inductor and the capacitor existing in the output circuit or the input circuit can be reduced, and unnecessary resonance is suppressed. be able to.
  • the present embodiment can be applied to communication with a communication band of 2 to 30 MHz, but is not limited to this, and can be applied to a communication band with a frequency higher than 1.0 MHz.
  • the control pilot line and the signal line of the ground line are used for the communication path of the rectangular wave signal or the communication signal, one or both of them may be a conductor such as a vehicle body or a casing of the power feeding device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Filters And Equalizers (AREA)

Abstract

 コントロールパイロット線に重畳させた通信信号が減衰することを抑制することができる通信システム及び通信装置を提供する。 出力回路20は、電圧発生源21で生成したコントロールパイロット信号を入力回路60へ送出する。出力回路20の出力側のコントロールパイロット線4と接地線3との間には、変圧器31を介して通信部30を接続してある。入力回路60の入力側のコントロールパイロット線4と接地線3との間には、変圧器71を介して通信部70を接続してある。出力回路20と変圧器31との間に低域通過フィルタ33を介装してある。入力回路60と変圧器71との間に低域通過フィルタ73を介装してある。

Description

通信システム及び通信装置
 本発明は、電気自動車又はハイブリッド自動車などの車両と、該車両に給電するための給電装置との間の通信を行う通信システム及び該通信システムを構成する通信装置に関する。
 近年、地球温暖化に対応する技術として環境技術に注目が集まっている。このような環境技術としては、例えば、二次電池を搭載し、従来のようなガソリンを消費するエンジンに代えて駆動装置としてモータを採用した電気自動車や、ハイブリッド自動車などに関するものが実用化されている。
 このような電気自動車やハイブリッド自動車などの車両は、外部の給電装置に接続された充電プラグを車両に設けられた給電口のコネクタに接続して、車両の外部から二次電池を充電することができる構成となっている。
 車両に給電する際の車両と給電装置(充電スタンド)との間のインタフェースは、すでに規格化されている。例えば、給電装置側に設けられた出力回路と、車両側に設けられた入力回路との間でコントロールパイロット線と称される信号線を設け、出力回路から入力回路に対して所定の周波数の矩形波信号(コントロールパイロット信号)を出力することにより、給電装置と車両との間で車両の充電状態などの情報を確認することができる(非特許文献1参照)。
 一方で、コントロールパイロット線に通信信号を重畳させて給電装置と車両との間で、さらに種々の情報の送受信を行うことができる通信システムも検討されている。
SAE International(Society of Automotive EngineersInternational)、SURFACE VEHICLE RECOMMENDED PRACTICE、2010-01(ソサエティ・オブ・オートモーティブ・エンジニアズ・インターナショナル、サーフェイス ビークル リコメンディッド プラクティス、2010年1月)
 しかし、コントロールパイロット信号を送受信する出力回路及び入力回路の出力端及び入力端には、ノイズなどを除去するためのキャパシタを接続している。このため、コントロールパイロット線に通信信号を重畳させても、出力回路及び入力回路に設けられたキャパシタで通信信号が減衰してしまい、通信速度の低下又はノイズ耐性の低下が懸念される。また、通信信号を重畳させるための通信回路をコントロールパイロット線に接続した場合、当該通信回路の影響によりコントロールパイロット信号の送受信を確実に行うことができないという懸念も生ずる。
 本発明は、斯かる事情に鑑みてなされたものであり、コントロールパイロット線に重畳させた通信信号が減衰することを抑制することができる通信システム及び該通信システムを構成する通信装置を提供することを目的とする。
 第1発明に係る通信システムは、車両に給電する給電装置に設けられ、所定の周波数の矩形波信号を出力する出力回路と、前記車両に設けられ、前記出力回路と複数の信号線で接続され、該出力回路が出力する矩形波信号が入力される入力回路とを備え、前記信号線に通信信号を重畳させて前記車両と給電装置との間で通信を行う通信システムにおいて、前記給電装置に設けられ、前記信号線間に接続された第1変圧器を介して通信信号の送受信を行う第1通信部と、前記車両に設けられ、前記信号線間に接続された第2変圧器を介して通信信号の送受信を行う第2通信部と、前記出力回路と前記第1変圧器との間に介装された第1低域通過フィルタと、前記入力回路と前記第2変圧器との間に介装された第2低域通過フィルタとを備えることを特徴とする。
 第2発明に係る通信システムは、第1発明において、前記第1及び第2低域通過フィルタは、前記信号線に対して直列に接続されるインダクタを備えることを特徴とする。
 第3発明に係る通信システムは、第2発明において、前記第1及び第2低域通過フィルタは、前記インダクタに並列接続した抵抗を備えることを特徴とする。
 第4発明に係る通信システムは、第2発明において、前記第1及び第2低域通過フィルタは、前記インダクタに直列接続した抵抗を備えることを特徴とする。
 第5発明に係る通信システムは、第2発明において、前記第1及び第2低域通過フィルタは、前記インダクタの出力側の信号線間にキャパシタ及び抵抗の直列回路を備えることを特徴とする。
 第6発明に係る通信システムは、第1発明乃至第5発明のいずれか1つにおいて、前記出力回路は、1kHzの矩形波信号を出力するようにしてあり、前記入力回路の入力側での前記矩形波信号の立ち上がり時間及び立ち下がり時間が10μs以下であることを特徴とする。
 第7発明に係る通信装置は、所定の周波数の矩形波信号を複数の信号線を介して出力する出力回路を備える通信装置において、前記信号線間に接続された変圧器を介して該信号線に通信信号を重畳させて通信信号の送受信を行う通信部と、前記出力回路と前記変圧器との間に介装された低域通過フィルタとを備えることを特徴とする。
 第8発明に係る通信装置は、第7発明において、前記矩形波信号を生成する生成部と、前記出力回路の出力電圧を検出する電圧検出部と、該電圧検出部で検出した電圧に応じて、前記生成部で生成する矩形波信号を調整する調整部とを備えることを特徴とする。
 第9発明に係る通信装置は、複数の信号線を介して所定の周波数の矩形波信号が入力される入力回路を備える通信装置において、前記信号線間に接続された変圧器を介して該信号線に通信信号を重畳させて通信信号の送受信を行う通信部と、前記入力回路と前記変圧器との間に介装された低域通過フィルタとを備えることを特徴とする。
 第10発明に係る通信装置は、第9発明において、複数の抵抗を有し、抵抗値を調整可能な抵抗部と、該抵抗部の電圧を変化させるため、該抵抗部の抵抗値を調整する調整部とを備えることを特徴とする。
 第1発明、第7発明及び第9発明にあっては、第1通信部は、給電装置に設けられ、出力回路と入力回路との間の複数の信号線(例えば、コントロールパイロット線と接地線)間に接続された第1変圧器を介して通信信号を信号線に重畳させて通信信号の送受信を行う。また、第2通信部は、車両に設けられ、出力回路と入力回路との間の複数の信号線間に接続された第2変圧器を介して通信信号を信号線に重畳させて通信信号の送受信を行う。すなわち、第1及び第2通信部は、信号線間に変圧器を接続して信号線に電圧を重畳させることにより通信を行う。第1及び第2通信部が用いる通信帯域は、例えば、2~30MHzであるが、これに限定されるものではなく、1.0MHz以上の周波数の信号帯域を用いてもよい。
 出力回路と第1変圧器との間の信号線には第1低域通過フィルタを介装し、入力回路と第2変圧器との間の信号線には第2低域通過フィルタを介装してある。第1及び第2低域通過フィルタは、出力回路が出力する所定の周波数(例えば、1kHz)の矩形波信号を通過させるとともに、第1及び第2通信部が送受信する通信信号(例えば、2~30MHz)を通過させないフィルタである。第1通信部と出力回路との間に第1低域通過フィルタを設けることにより、第1通信部が送信した通信信号は入力回路及び出力回路のキャパシタにより減衰されることなく第2通信部へ伝搬される。また、第2通信部と入力回路との間に第2低域通過フィルタを設けることにより、第2通信部が送信した通信信号は入力回路及び出力回路のキャパシタにより減衰されることなく第1通信部へ伝搬されるので、コントロールパイロット線に重畳させた通信信号が減衰することを抑制することができる。
 第2発明にあっては、第1及び第2低域通過フィルタは、信号線に対して直列に接続されるインダクタを備える。出力回路が出力する所定の周波数(例えば、1kHz)に対しては、インダクタは低インピーダンスとなり、第1及び第2通信部が送受信する通信信号(例えば、2~30MHz)に対しては高インピーダンスとなる。これにより、簡単な構成で第1及び第2通信部が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 第3発明にあっては、第1及び第2低域通過フィルタは、インダクタに並列接続した抵抗を備える。抵抗を備えることにより、例えば、インダクタと出力回路又は入力回路に存在するキャパシタとの間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 第4発明にあっては、第1及び第2低域通過フィルタは、インダクタに直列接続した抵抗を備える。抵抗を備えることにより、例えば、インダクタと出力回路又は入力回路に存在するキャパシタとの間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 第5発明にあっては、第1及び第2低域通過フィルタは、インダクタの出力側の信号線間にキャパシタ及び抵抗の直列回路を備える。これにより、インダクタと出力回路又は入力回路に存在するキャパシタとの間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 第6発明にあっては、出力回路は、1kHzの矩形波信号を出力する。入力回路の入力側での矩形波信号の立ち上がり時間及び立ち下がり時間が10μs以下である。立ち上がり時間は、矩形波信号が10%から90%に到達するまでの時間である。また、立ち下がり時間は、矩形波信号が90%から10%に到達するまでの時間である。立ち上がり時間及び立ち下がり時間を10μs以下にするためには、第1及び第2低域通過フィルタの値(例えば、インダクタ又は抵抗の値)を設定すればよい。立ち上がり時間及び立ち下がり時間が、10μsを超えた場合、入力回路で受信する矩形波信号が歪むためコントロールパイロット信号を正しく受信することができなくなる。立ち上がり時間及び立ち下がり時間を10μs以下にすることにより、矩形波信号の歪みを低減しコントロールパイロット信号を正しく受信することができる。
 第8発明にあっては、矩形波信号(コントロールパイロット信号)を生成する生成部と、出力回路の出力電圧を検出する電圧検出部と、電圧検出部で検出した電圧に応じて、生成部で生成する矩形波信号を調整する調整部とを備える。矩形波信号は、デューティ比が0から100%まで変更可能な信号であり、例えば、±12Vの一定電圧も含む。これにより、出力回路は、所望のコントロールパイロット信号を出力することができる。
 第10発明にあっては、複数の抵抗を有し、抵抗値を調整可能な抵抗部と、抵抗部の電圧を変化させるため、抵抗部の抵抗値を調整する調整部とを備える。これにより、例えば、車両の状態に応じて、抵抗部の抵抗値を調整して、抵抗部の電圧を所望の値に変化させることができる。
 本発明によれば、コントロールパイロット線に通信信号を重畳させて確実に通信を行うことができる。
実施の形態1の通信システムの構成の一例を示すブロック図である。 通信部による通信の伝送路減衰特性の一例を示す説明図である。 出力回路が出力するコントロールパイロット信号の減衰特性の一例を示す説明図である。 入力回路でのコントロールパイロット信号の立ち上がり特性の一例を示す説明図である。 入力回路側での伝送特性の一例を示す説明図である。 通信部による通信の伝送路減衰特性の他の例を示す説明図である。 出力回路が出力するコントロールパイロット信号の減衰特性の他の例を示す説明図である。 入力回路でのコントロールパイロット信号の立ち上がり特性の他の例を示す説明図である。 入力回路側での伝送特性の他の例を示す説明図である。 実施の形態2の通信システムの構成の一例を示すブロック図である。
(実施の形態1)
 以下、本発明に係る通信システムの実施の形態を示す図面に基づいて説明する。図1は実施の形態1の通信システムの構成の一例を示すブロック図である。図1に示すように、電気自動車又はハイブリッド自動車などの車両と給電装置とは、インレット5(「給電口」、「コネクタ」とも称する)を介して電気的に接続される。給電装置はAC電源6を備える。AC電源6は、電源線1(ACL)、電源線2(ACN)を通じて車両の充電器7に電気的に接続される。充電器7には、バッテリ(二次電池)8を接続してある。
 これにより、給電装置からの充電ケーブルに接続されたプラグ(不図示)をインレット5に接続することにより、AC電力を車両へ供給することができ、車両に搭載されたバッテリ8を充電することができる。
 本実施の形態の通信システムは、給電装置に設けられた通信装置10、車両に設けられた通信装置50などを備える。
 通信装置10は、所定の周波数の矩形波信号(「コントロールパイロット信号」とも称する)を出力する出力回路20、第1通信部としての通信部30、変圧器31、カップリングキャパシタ32、第1の低域通過フィルタ33などを備える。
 通信装置50は、コントロールパイロット信号が入力される入力回路60、第2通信部としての通信部70、変圧器71、カップリングキャパシタ72、第2の低域通過フィルタ73などを備える。
 出力回路20は、矩形波信号(コントロールパイロット信号)を生成する生成部としての電圧発生源21、抵抗22、キャパシタ23、マイコン24、バッファ25などを備える。電圧発生源21は、例えば、周波数が1kHzであって、ピーク値が±12Vの矩形波信号(コントロールパイロット信号)を生成する。コントロールパイロット信号のデューティ比は、例えば、20%であるが、これに限定されるものではない。矩形波信号は、デューティ比が0から100%まで変更可能な信号であり、例えば、±12Vの一定電圧も含む。
 出力回路20は、抵抗22を介して車両に設けられた入力回路60へコントロールパイロット信号を送出する。
 キャパシタ23は、例えば、出力回路20で発生するノイズを低減するために設けられている。抵抗22の値は、例えば、1.0kΩ、キャパシタ23のキャパシタンスは、例えば、2.2nFであるが、数値はこれらに限定されるものではない。
 バッファ25は、出力回路20の出力電圧を検出する電圧検出部としての機能を有し、キャパシタ23の両端電圧を検出し、検出結果をマイコン24へ出力する。
 マイコン24は、電圧発生源21で生成する矩形波信号を調整する調整部としての機能を有する。これにより、出力回路20は、±12Vの一定電圧、及び任意のデューティ比(0より大きく、100より小さい)であって波高値が±12Vの矩形波信号(コントロールパイロット信号)を出力することができる。
 入力回路60は、キャパシタ61、ダイオード62、バッファ63、マイコン64、抵抗部65などを備える。バッファ63は、抵抗部65の両端電圧Voutを検出してマイコン64へ出力する。なお、抵抗部65の両端電圧に代えて、キャパシタ61の両端の電圧を検出してもよい。
 抵抗部65は、複数の抵抗及び開閉スイッチなどを備え、マイコン64からの信号により開閉スイッチを開閉することにより、抵抗値を変化させる(調整する)ことができる。
 マイコン64は、抵抗部65の電圧Voutを変化させるため、抵抗部65の抵抗値を調整する調整部としての機能を有する。すなわち、マイコン64は、車両の状態(例えば、充電に関連する状態)に応じて電圧Voutを変化させるため、抵抗部65の抵抗値を変化させる。電圧Voutの値に応じて、給電装置と車両とは、充電に関連する状態を検出することができる。
 例えば、電圧Voutが12Vである場合は、車両の充電プラグが未接続である状態を示す。また、電圧Voutが9Vである場合は、抵抗部65の抵抗値は2.74kΩに設定され、車両の充電プラグが接続され、充電待ちの状態を示す。また、電圧Voutが6Vである場合は、抵抗部65の抵抗値は882Ωに設定され、充電中の状態を示す。また、電圧Voutが3Vである場合は、抵抗部65の抵抗値は246Ωに設定され、充電中であって充電場所を換気する必要がある状態であることを示す。
 キャパシタ61は、例えば、入力回路60に侵入するノイズを低減するために設けられている。抵抗部65の抵抗値は、例えば、2.74kΩ、882Ω、246Ω程度であり、キャパシタ61のキャパシタンスは、例えば、1.8nFであるが、数値はこれらに限定されるものではない。
 出力回路20と入力回路60とは、複数の信号線(コントロールパイロット線4、接地線3)を介して電気的に接続されている。なお、接地線3もコントロールパイロット線であるとみなすことができる。
 通信部30及び通信部70は、出力回路20と入力回路60との間に設けられた複数の信号線(コントロールパイロット線4、接地線3)に所定の通信信号を重畳させることにより通信を行う。通信部30及び通信部70の間で送受信される情報は、例えば、車両IDに関するもの、充電制御(充電の開始または終了など)に関するもの、充電量の管理(急速充電、充電量の通知など)に関するもの、課金の管理などに関するもの、ナビゲーションの更新に関するもの等、コントロールパイロット信号による情報より多様性に富んでいる。
 通信部30及び通信部70は、例えば、直交化周波数多重(OFDM:Orthogonal Frequency Domain Multiplex)、周波数拡散(SS:Spread Spectrum)などの変調方式を利用した変調回路、復調回路などを備える。
 通信部30及び通信部70が行う通信の通信帯域は、例えば、2~30MHz(例えば、Home Plug Green PHY)であるが、これに限定されるものではなく、1.0MHzより高周波の通信帯域を用いてもよい。
 出力回路20の出力側のコントロールパイロット線4と接地線3との間に、カップリングキャパシタ32、32及び変圧器31の直列回路を接続してあり、通信部30は、変圧器31を介して通信信号をコントロールパイロット線4に重畳させるとともに、コントロールパイロット線4上の通信信号を受信する。
 入力回路60の入力側のコントロールパイロット線4と接地線3との間に、カップリングキャパシタ72、72及び変圧器71の直列回路を接続してあり、通信部70は、変圧器71を介して通信信号をコントロールパイロット線4に重畳させるとともに、コントロールパイロット線4上の通信信号を受信する。
 すなわち、通信部30及び通信部70は、信号線間に変圧器31、71を接続して信号線に電圧を重畳させることにより通信を行う。このような方式を線間通信方式と称することができる。
 出力回路20と変圧器31がカップリングキャパシタ32を介して接続される接続点との間のコントロールパイロット線4には、低域通過フィルタ33を介装してある。
 また、入力回路60と変圧器71がカップリングキャパシタ72を介して接続される接続点との間のコントロールパイロット線4には、低域通過フィルタ73を介装してある。カップリングキャパシタ32、72のキャパシタンスは、例えば、500pFであるが、これに限定されるものではない。
 低域通過フィルタ33、73は、それぞれ出力回路20が出力する所定の周波数(例えば、1kHz)の矩形波信号(コントロールパイロット信号)を通過させるとともに、通信部30、70が送受信する通信信号(例えば、2~30MHz)を通過させないフィルタである。
 通信部30と出力回路20との間に低域通過フィルタ33を設けることにより、通信部30が送信した通信信号は出力回路20のキャパシタ23により減衰されることなく通信部70へ伝搬される。また、通信部70が送信した通信信号は出力回路20のキャパシタ23により減衰されることなく通信部30へ伝搬される。
 また、通信部70と入力回路60との間に低域通過フィルタ73を設けることにより、通信部70が送信した通信信号は入力回路60のキャパシタ61により減衰されることなく通信部30へ伝搬され、また、通信部30が送信した通信信号は入力回路60のキャパシタ61により減衰されることなく通信部70へ伝搬されるので、コントロールパイロット線4に通信信号を重畳させて確実に通信を行うことができる。また、コントロールパイロット信号の歪を大きくすることなく、通信信号によるコントロールパイロット信号の読み取り誤差を防止することができる。
 低域通過フィルタ33は、コントロールパイロット線4に対して直列に接続されるインダクタ331を備える。インダクタ331のインダクタンスは、例えば、1.5mHであるが、インダクタンスはこれに限定されるものではない。
 出力回路20が出力する所定の周波数(例えば、1kHz)に対しては、インダクタ331は低インピーダンスとなる。また、インダクタ331は、通信部30、70が送受信する通信信号(例えば、2~30MHz)に対しては高インピーダンスとなる。これにより、簡単な構成で通信部30、70が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 低域通過フィルタ73は、コントロールパイロット線4に対して直列に接続されるインダクタ731を備える。インダクタ731のインダクタンスは、例えば、1.5mHであるが、インダクタンスはこれに限定されるものではない。
 出力回路20が出力する所定の周波数(例えば、1kHz)に対しては、インダクタ731は低インピーダンスとなる。また、インダクタ731は、通信部30、70が送受信する通信信号(例えば、2~30MHz)に対しては高インピーダンスとなる。これにより、簡単な構成で通信部30、70が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 また、低域通過フィルタ33は、インダクタ331に並列接続した抵抗332を備える。抵抗332の抵抗値は、例えば、1kΩであるが、これに限定されるものではない。抵抗332を備えることにより、例えば、インダクタ331と出力回路20に存在するキャパシタ23等との間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 同様に、低域通過フィルタ73は、インダクタ731に並列接続した抵抗732を備える。抵抗732の抵抗値は、例えば、1kΩであるが、これに限定されるものではない。抵抗732を備えることにより、例えば、インダクタ731と入力回路60に存在するキャパシタ61等との間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 図2は通信部30、70による通信の伝送路減衰特性の一例を示す説明図である。図2において、横軸は周波数を示し、縦軸は通信部30、70の間のコントロールパイロット線4における伝送路減衰量(電圧低下)を示す。また、図2中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。
 図2から分かるように、低域通過フィルタ33、73を具備することにより、通信部30、70による通信信号の減衰量が、低域通過フィルタ33、73を具備しない場合に比べて、150kHz~50MHzの範囲で改善している。具体的には、2MHzで20dB程度、30MHzで25dB程度改善しており、通信部30、70の通信帯域である2~30MHzで20dB~25dB程度改善している。
 図3は出力回路20が出力するコントロールパイロット信号の減衰特性の一例を示す説明図である。図3において、横軸は周波数を示し、縦軸は電圧Voutの周波数成分(スペクトラム)を示す。また、図3中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。
 図3から分かるように、周波数が10kHz以下では、低域通過フィルタ33、73を具備するか否かに関わらず、両者の減衰特性は同一である。すなわち、低域通過フィルタ33、73を設けた場合でも、低域通過フィルタ33、73を具備しない場合と同様に、周波数が1kHzの第10高調波までは全く減衰させることなく通過させることができる。また、低域通過フィルタ33、73を具備した場合には、周波数が略100kHz以下であれば、低域通過フィルタ33、73を具備しない場合に比べて、コントロールパイロット信号の減衰量が少ない。
 別言すれば、コントロールパイロット信号の周波数を基本波として、低域通過フィルタ33、73の遮断周波数を、例えば、第9高調波(9kHz)以上、第11高調波(11kHz)以上、あるいは第15高調波(15kHz)以上のようにすることにより、コントロールパイロット信号の波形の歪あるいは電圧変動を抑制することができる。遮断周波数は大きくするほど、コントロールパイロット信号の波形の歪あるいは電圧変動の抑制に一層効果がある。
 図4は入力回路60でのコントロールパイロット信号の立ち上がり特性の一例を示す説明図である。図4において、横軸は時間を示し、縦軸は電圧Voutを示す。なお、図4では、電圧Voutは、キャパシタ61の両端電圧である。図4中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。出力回路20と入力回路60との抵抗分圧により、入力回路60でのコントロールパイロット信号は、1kHzの矩形波形であって+9V、-12Vとなる。また、立ち上がり時間は、電圧が10%から90%に到達するまでの時間である。
 図4から分かるように、低域通過フィルタ33、73を具備しない場合には、立ち上がり時間が約7.7μsであるのに対し、低域通過フィルタ33、73を具備する場合には、立ち上がり時間は約5.6μsである。すなわち、入力回路60の入力側でのコントロールパイロット信号の立ち上がり時間が10μs以下である。
 立ち上がり時間を10μs以下にするためには、低域通過フィルタ33、73の値(例えば、インダクタ331、731又は抵抗332、732の値)を設定すればよい。立ち上がり時間が、10μsを超えた場合、入力回路60で受信する電圧波形の歪が大きくなりすぎるためコントロールパイロット信号を正しく受信することができなくなる。立ち上がり時間を10μs以下にすることにより、電圧波形の歪みを低減しコントロールパイロット信号を正しく受信することができる。すなわち、出力回路20が出力する矩形波形のコントロールパイロット信号が歪むことなく入力回路60へ伝送される。なお、図4の例では立ち上がり時間について説明したが、立ち下がり時間についても同様である。
 図5は入力回路側での伝送特性の一例を示す説明図である。図5において、横軸は周波数を示す。縦軸は、入力回路60側の電圧Voutで観測される出力回路20からのコントロールパイロット信号及び通信部30、70からの通信信号の周波数成分を示す。図5中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。
 図5からわかるように、低域通過フィルタ33、73を具備しない場合には、通信部30、70からの通信信号が減衰されることなくそのまま入力回路60側へ侵入するため、バッファ63、マイコン64で電圧検知(例えば、12V、9V、6V、3Vなど)を行うときに通信信号が外乱のノイズとして作用し、電圧判定を間違える可能性が出てくる。これに対し、低域通過フィルタ33、73を具備する場合には、例えば2~30MHzの通信信号は数十~数百分の一に減衰するが、コントロールパイロット信号はほとんど減衰や歪むことなく入力回路60で受け取ることができるため、コントロールパイロット信号の電圧判定又はデューティ比判定に影響を与えることがなくなる。
 上述の図2~図5の例では、カップリングキャパシタ32、72側と、通信部30、70側の変圧器の自己インダクタンスが共に9.9μHであり、低域通過フィルタ33、73のインダクタ331、731のインダクタンスが1.5mHであり、抵抗332、732の抵抗値が1kΩであり、カップリングキャパシタ32、72のキャパシタンスが500pFであったが、数値はこれらに限定されない。以下では、カップリングキャパシタ32、72側の変圧器の自己インダクタンスが130μHであり、通信部30、70側の変圧器の自己インダクタンスが6μHであり、低域通過フィルタ33、73のインダクタ331、731のインダクタンスが470μH、抵抗332、732の抵抗値が470Ω、カップリングキャパシタ32、72のキャパシタンスが100pFである場合について説明する。
 図6は通信部30、70による通信の伝送路減衰特性の他の例を示す説明図である。図2において、横軸は周波数を示し、縦軸は通信部30、70の間のコントロールパイロット線4における伝送路減衰量(電圧低下)を示す。また、図2中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。
 図6から分かるように、低域通過フィルタ33、73を具備することにより、通信部30、70による通信信号の減衰量が、低域通過フィルタ33、73を具備しない場合に比べて、250kHz~50MHzの範囲で改善している。具体的には、2MHzで20dB程度、30MHzで40dB程度改善しており、通信部30、70の通信帯域である2~30MHzで20dB~40dB程度改善している。
 図7は出力回路20が出力するコントロールパイロット信号の減衰特性の他の例を示す説明図である。図7において、横軸は周波数を示し、縦軸は電圧Voutの周波数成分(スペクトラム)を示す。また、図7中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。
 図7から分かるように、周波数が20kHz以下では、低域通過フィルタ33、73を具備するか否かに関わらず、両者の減衰特性は同一である。すなわち、低域通過フィルタ33、73を設けた場合でも、低域通過フィルタ33、73を具備しない場合と同様に、周波数が1kHzの第20高調波までは全く減衰させることなく通過させることができる。
 別言すれば、コントロールパイロット信号の周波数を基本波として、低域通過フィルタ33、73の遮断周波数を、例えば、第9高調波(9kHz)以上、第11高調波(11kHz)以上、あるいは第15高調波(15kHz)以上のようにすることにより、コントロールパイロット信号の波形の歪あるいは電圧変動を抑制することができる。遮断周波数は大きくするほど、コントロールパイロット信号の波形の歪あるいは電圧変動の抑制に一層効果がある。
 図8は入力回路60でのコントロールパイロット信号の立ち上がり特性の他の例を示す説明図である。図8において、横軸は時間を示し、縦軸は電圧Voutを示す。なお、図8では、電圧Voutは、キャパシタ61の両端電圧である。図8中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。出力回路20と入力回路60との抵抗分圧により、入力回路60でのコントロールパイロット信号は、1kHzの矩形波形であって+9V、-12Vとなる。また、立ち上がり時間は、電圧が10%から90%に到達するまでの時間である。
 図8から分かるように、低域通過フィルタ33、73を具備しない場合には、立ち上がり時間が約7.7μsであるのに対し、低域通過フィルタ33、73を具備する場合には、立ち上がり時間は約7.2μsである。すなわち、入力回路60の入力側でのコントロールパイロット信号の立ち上がり時間が10μs以下である。
 立ち上がり時間を10μs以下にするためには、低域通過フィルタ33、73の値(例えば、インダクタ331、731又は抵抗332、732の値)を設定すればよい。立ち上がり時間が、10μsを超えた場合、入力回路60で受信する電圧波形の歪が大きくなりすぎるためコントロールパイロット信号を正しく受信することができなくなる。立ち上がり時間を10μs以下にすることにより、電圧波形の歪みを低減しコントロールパイロット信号を正しく受信することができる。すなわち、出力回路20が出力する矩形波形のコントロールパイロット信号が歪むことなく入力回路60へ伝送される。なお、図8の例では立ち上がり時間について説明したが、立ち下がり時間についても同様である。
 図9は入力回路側での伝送特性の他の例を示す説明図である。図9において、横軸は周波数を示す。縦軸は、入力回路60側の電圧Voutで観測される出力回路20からのコントロールパイロット信号及び通信部30、70からの通信信号の周波数成分を示す。図9中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。
 図9からわかるように、低域通過フィルタ33、73を具備しない場合には、通信部30、70からの通信信号が減衰されることなくそのまま入力回路60側へ侵入するため、バッファ63、マイコン64で電圧検知(例えば、12V、9V、6V、3Vなど)を行うときに通信信号が外乱のノイズとして作用し、電圧判定を間違える可能性が出てくる。これに対し、低域通過フィルタ33、73を具備する場合には、例えば2~30MHzの通信信号は数十~数百分の一に減衰するが、コントロールパイロット信号はほとんど減衰や歪むことなく入力回路60で受け取ることができるため、コントロールパイロット信号の電圧判定又はデューティ比判定に影響を与えることがなくなる。
 本実施の形態によれば、低域通過フィルタ33、73を備えることにより、通信部30、70で送受信する通信信号が出力回路20又は入力回路60で減衰されないので、コントロールパイロット線に重畳させた通信信号が減衰することを抑制することができる。また、通信部30、70による通信の通信速度の低下、あるいはノイズ耐性の低下を防止することができる。
 また、カップリングキャパシタ32、72のキャパシタンスを変更する必要がないので、出力回路20から見た通信部30、70のインピーダンスは変化しない。すなわち、カップリングキャパシタ32、72のキャパシタンスを増加させた場合、通信帯域(高速PLCの場合2~30MHz)でのカップリングキャパシタ32、72の電圧降下が減少するので、減衰特性を向上させることができるものの、コントロールパイロット信号に大きな歪が生ずる。カップリングキャパシタ32、72のキャパシタンスを変更しないので、出力回路20が出力するコントロールパイロット信号が歪むことを防止することができる。
 上述の実施の形態では、低域通過フィルタは、インダクタと抵抗の並列回路で構成されていたが、回路構成はこれに限定されるものではなく、インダクタのみでもよく、あるいはインダクタと抵抗の直列回路でもよい。また、コントロールパイロット線と接地線の信号線を矩形波信号又は通信信号の通信経路に用いたが、一方もしくは双方を車体又は給電装置の筐体などの導体を用いてもよい。また、低域通過フィルタは、以下の構成でもよい。
(実施の形態2)
 図10は実施の形態2の通信システムの構成の一例を示すブロック図である。実施の形態1との違いは、低域通過フィルタ33が、インダクタ331、及びコントロールパイロット線4と接地線3との間に接続されたキャパシタ333及び抵抗334の直列回路を備える点である。低域通過フィルタ73も同様に、インダクタ731、及びコントロールパイロット線4と接地線3との間に接続されたキャパシタ733及び抵抗734の直列回路を備える。なお、実施の形態1と同様の箇所は同一符号を付して説明を省略する。
 これにより、インダクタと出力回路又は入力回路に存在するキャパシタとの間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 本実施の形態は、通信帯域が2~30MHzの通信に適用することができるが、これに限定されるものではなく、1.0MHzより高周波の通信帯域にも適用することができる。また、コントロールパイロット線と接地線の信号線を矩形波信号又は通信信号の通信経路に用いたが、一方もしくは双方を車体又は給電装置の筐体などの導体を用いてもよい。
 開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 3 接地線(コントロールパイロット線)
 4 コントロールパイロット線
 10、50 通信装置
 20 出力回路
 21 電圧発生源
 22 抵抗
 23 キャパシタ
 30、70 通信部
 31、71 変圧器
 32、72 カップリングキャパシタ
 33、73 低域通過フィルタ
 331、731 インダクタ
 332、334、732、734 抵抗
 333、733 キャパシタ
 60 入力回路
 61 キャパシタ
 62 ダイオード
 63 バッファ
 64 マイコン
 65 抵抗部

Claims (10)

  1.  車両に給電する給電装置に設けられ、所定の周波数の矩形波信号を出力する出力回路と、前記車両に設けられ、前記出力回路と複数の信号線で接続され、該出力回路が出力する矩形波信号が入力される入力回路とを備え、前記信号線に通信信号を重畳させて前記車両と給電装置との間で通信を行う通信システムにおいて、
     前記給電装置に設けられ、前記信号線間に接続された第1変圧器を介して通信信号の送受信を行う第1通信部と、
     前記車両に設けられ、前記信号線間に接続された第2変圧器を介して通信信号の送受信を行う第2通信部と、
     前記出力回路と前記第1変圧器との間に介装された第1低域通過フィルタと、
     前記入力回路と前記第2変圧器との間に介装された第2低域通過フィルタと
     を備えることを特徴とする通信システム。
  2.  前記第1及び第2低域通過フィルタは、
     前記信号線に対して直列に接続されるインダクタを備えることを特徴とする請求項1に記載の通信システム。
  3.  前記第1及び第2低域通過フィルタは、
     前記インダクタに並列接続した抵抗を備えることを特徴とする請求項2に記載の通信システム。
  4.  前記第1及び第2低域通過フィルタは、
     前記インダクタに直列接続した抵抗を備えることを特徴とする請求項2に記載の通信システム。
  5.  前記第1及び第2低域通過フィルタは、
     前記インダクタの出力側の信号線間にキャパシタ及び抵抗の直列回路を備えることを特徴とする請求項2に記載の通信システム。
  6.  前記出力回路は、
     1kHzの矩形波信号を出力するようにしてあり、
     前記入力回路の入力側での前記矩形波信号の立ち上がり時間及び立ち下がり時間が10μs以下であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の通信システム。
  7.  所定の周波数の矩形波信号を複数の信号線を介して出力する出力回路を備える通信装置において、
     前記信号線間に接続された変圧器を介して該信号線に通信信号を重畳させて通信信号の送受信を行う通信部と、
     前記出力回路と前記変圧器との間に介装された低域通過フィルタと
     を備えることを特徴とする通信装置。
  8.  前記矩形波信号を生成する生成部と、
     前記出力回路の出力電圧を検出する電圧検出部と、
     該電圧検出部で検出した電圧に応じて、前記生成部で生成する矩形波信号を調整する調整部と
     を備えることを特徴とする請求項7に記載の通信装置。
  9.  複数の信号線を介して所定の周波数の矩形波信号が入力される入力回路を備える通信装置において、
     前記信号線間に接続された変圧器を介して該信号線に通信信号を重畳させて通信信号の送受信を行う通信部と、
     前記入力回路と前記変圧器との間に介装された低域通過フィルタと
     を備えることを特徴とする通信装置。
  10.  複数の抵抗を有し、抵抗値を調整可能な抵抗部と、
     該抵抗部の電圧を変化させるため、該抵抗部の抵抗値を調整する調整部と
     を備えることを特徴とする請求項9に記載の通信装置。
PCT/JP2012/065845 2011-06-21 2012-06-21 通信システム及び通信装置 WO2012176832A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013521612A JP5931863B2 (ja) 2011-06-21 2012-06-21 通信システム及び通信装置
US14/128,517 US20140254694A1 (en) 2011-06-21 2012-06-21 Communication system and communication device
EP12801935.3A EP2724894B1 (en) 2011-06-21 2012-06-21 Communication system and communication device
CN201280031018.7A CN103635360B (zh) 2011-06-21 2012-06-21 通信系统和通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011137599 2011-06-21
JP2011-137599 2011-06-21

Publications (1)

Publication Number Publication Date
WO2012176832A1 true WO2012176832A1 (ja) 2012-12-27

Family

ID=47422663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065845 WO2012176832A1 (ja) 2011-06-21 2012-06-21 通信システム及び通信装置

Country Status (5)

Country Link
US (1) US20140254694A1 (ja)
EP (1) EP2724894B1 (ja)
JP (1) JP5931863B2 (ja)
CN (1) CN103635360B (ja)
WO (1) WO2012176832A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197290B2 (en) 2011-06-21 2015-11-24 Sumitomo Electric Industries, Ltd. Communication system and communication device
US9240821B2 (en) 2011-07-13 2016-01-19 Sumitomo Electric Industries, Ltd. Communication system
US9577709B2 (en) 2011-07-13 2017-02-21 Sumitomo Electric Industries, Ltd. Communication system and communication device
US9735832B2 (en) 2011-07-13 2017-08-15 Sumitomo Electric Industries, Ltd. Communication system and communication device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688439B (zh) * 2011-07-14 2016-06-15 松下电器产业株式会社 充电装置和车辆
KR101509752B1 (ko) * 2013-12-23 2015-04-07 현대자동차 주식회사 차량용 충전 장치 및 충전 방법
CN106602850B (zh) * 2015-10-16 2019-11-15 得能创科有限公司 一种自耦合的电源纹波抑制电路和方法
DE102017223682A1 (de) * 2017-12-22 2019-06-27 Siemens Aktiengesellschaft Steuervorrichtung für eine Ladeeinrichtung und Verfahren zum Steuern der Ladeeinrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123284A (ja) * 2008-11-17 2010-06-03 Toyota Motor Corp 充電コネクタおよび充電ケーブルユニット
JP2011109821A (ja) * 2009-11-18 2011-06-02 Fujitsu Ten Ltd プラグイン充電車両の制御装置及び制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916322A (en) * 1974-03-13 1975-10-28 Austin W Nelson Tone synthesizer for electronic musical instruments
JPS5758864B2 (ja) * 1974-03-28 1982-12-11 Sony Corp
JPS61136327A (ja) * 1984-12-06 1986-06-24 Nec Corp 低圧配電線通信装置の信号結合方式
US5686806A (en) * 1994-12-19 1997-11-11 Trans-Coil, Inc. Low-pass filter and electronic speed control system for electric motors
JPH11327262A (ja) * 1998-05-15 1999-11-26 Canon Inc 帯電装置及び画像形成装置
US6278357B1 (en) * 1999-02-04 2001-08-21 Electric Power Research Institute, Inc. Apparatus and method for implementing digital communications on a power line
WO2006075767A2 (en) * 2005-01-13 2006-07-20 Matsushita Electric Industrial Co., Ltd. Various data transmission systems and data transmission methods for transporting vehicles
US7205749B2 (en) * 2005-02-28 2007-04-17 Texas Instruments Incorporated Power line communication using power factor correction circuits
US8831077B2 (en) * 2010-07-01 2014-09-09 Texas Instruments Incorporated Communication on a pilot wire
JP2012034484A (ja) * 2010-07-30 2012-02-16 Toyota Industries Corp 給電装置及び車両

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123284A (ja) * 2008-11-17 2010-06-03 Toyota Motor Corp 充電コネクタおよび充電ケーブルユニット
JP2011109821A (ja) * 2009-11-18 2011-06-02 Fujitsu Ten Ltd プラグイン充電車両の制御装置及び制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CYRIACUS BLEIJS: "Low-cost charging systems with full communication capability.", EVS24 INTERNATIONAL BATTERY, HYBRID AND FUEL CELL ELECTRIC VEHICLE SYMPOSIUM, 13 May 2009 (2009-05-13), NORWAY, pages 1 - 9, XP055136618, Retrieved from the Internet <URL:http://www.ecs-five.ch/parkcharge/documents/low_cost.pdf> [retrieved on 20120713] *
M.A.MANNAH ET AL.: "Power Line communication over feeder cables in an Industrial environment", IEEE INTERNATIONAL SYMPOSIUM ON POWER LINE COMMUNICATIONS AND ITS APPLICATIONS, 2009. ISPLC 2009., 29 March 2009 (2009-03-29), pages 255 - 260, XP031453696 *
PETER VAN DEN BOSSCHE ET AL.: "Trends and Development Status of IEC Global Electric Vehicle Standards", JOURNAL OF ASIAN ELECTRIC VEHICLE, vol. 8, no. 2, December 2010 (2010-12-01), pages 1409 - 1414, XP055127022, Retrieved from the Internet <URL:http://www.union-services.com/aevs/1409-1414.pdf> [retrieved on 20120713] *
SURFACE VEHICLE RECOMMENDED PRACTICE, SAE INTERNATIONAL, January 2010 (2010-01-01)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197290B2 (en) 2011-06-21 2015-11-24 Sumitomo Electric Industries, Ltd. Communication system and communication device
US9240821B2 (en) 2011-07-13 2016-01-19 Sumitomo Electric Industries, Ltd. Communication system
US9577709B2 (en) 2011-07-13 2017-02-21 Sumitomo Electric Industries, Ltd. Communication system and communication device
US9735832B2 (en) 2011-07-13 2017-08-15 Sumitomo Electric Industries, Ltd. Communication system and communication device

Also Published As

Publication number Publication date
US20140254694A1 (en) 2014-09-11
CN103635360B (zh) 2016-04-20
JP5931863B2 (ja) 2016-06-08
EP2724894B1 (en) 2019-07-24
CN103635360A (zh) 2014-03-12
EP2724894A4 (en) 2014-12-24
EP2724894A1 (en) 2014-04-30
JPWO2012176832A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5931863B2 (ja) 通信システム及び通信装置
JP5876483B2 (ja) 通信システム及び通信装置
JP5931864B2 (ja) 通信システム及び通信装置
JP5868976B2 (ja) 通信システム及び通信装置
JP5924284B2 (ja) 通信装置及び通信システム
WO2015159684A1 (ja) 通信装置
JP5903993B2 (ja) 通信システム
JP2013038760A (ja) 通信システム及び通信装置
WO2013136901A1 (ja) 通信装置及び通信システム
JP5796468B2 (ja) 充電システム、給電装置及び車載システム
JP2013115724A (ja) 充電システム及び車載システム
JP2013219432A (ja) 通信装置及び通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280031018.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14128517

Country of ref document: US