WO2012176702A1 - Tft基板およびその製造方法ならびに表示装置 - Google Patents
Tft基板およびその製造方法ならびに表示装置 Download PDFInfo
- Publication number
- WO2012176702A1 WO2012176702A1 PCT/JP2012/065341 JP2012065341W WO2012176702A1 WO 2012176702 A1 WO2012176702 A1 WO 2012176702A1 JP 2012065341 W JP2012065341 W JP 2012065341W WO 2012176702 A1 WO2012176702 A1 WO 2012176702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact hole
- transparent electrode
- tft
- layer
- insulating layer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 98
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 230000000149 penetrating effect Effects 0.000 claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims description 48
- 229920002120 photoresistant polymer Polymers 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 27
- 230000002093 peripheral effect Effects 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 9
- 239000003990 capacitor Substances 0.000 abstract description 11
- 239000010409 thin film Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 144
- 238000005530 etching Methods 0.000 description 16
- 238000002161 passivation Methods 0.000 description 16
- 239000010936 titanium Substances 0.000 description 15
- 238000001312 dry etching Methods 0.000 description 14
- 239000004973 liquid crystal related substance Substances 0.000 description 13
- 239000011229 interlayer Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229910021417 amorphous silicon Inorganic materials 0.000 description 9
- 238000000059 patterning Methods 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136213—Storage capacitors associated with the pixel electrode
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136227—Through-hole connection of the pixel electrode to the active element through an insulation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1222—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
- H01L27/1225—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/124—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
Definitions
- the present invention relates to a TFT substrate, a manufacturing method thereof, and a display device including the TFT substrate.
- liquid crystal display devices are expanding and its performance is increasing.
- display modes such as MVA (Multi-domain Vertical Alignment) and IPS (In-Plane-Switching) having a wide viewing angle characteristic have been developed, and further improvements are in progress.
- MVA Multi-domain Vertical Alignment
- IPS In-Plane-Switching
- the liquid crystal display device operates to hold a voltage applied to the liquid crystal layer for a predetermined period (for example, one frame period) after applying a signal voltage to the pixel electrode when displaying an image or video.
- a general liquid crystal display device is provided with an auxiliary capacitor (storage capacitor) in parallel with the liquid crystal capacitor.
- the auxiliary capacitance is formed by, for example, an auxiliary capacitance electrode provided in the same layer as the gate bus line, and an auxiliary capacitance counter electrode arranged to face the auxiliary capacitance electrode through the gate insulating layer.
- a technique for forming an auxiliary capacitor using a pixel electrode and a transparent electrode (hereinafter referred to as a lower transparent electrode) disposed under the pixel electrode via an insulating film is known. 1 is disclosed.
- the auxiliary capacitance is formed by the pair of transparent electrodes, and there is no need to separately provide an auxiliary capacitance electrode made of a metal layer. Therefore, the light shielding area can be reduced and the pixel aperture ratio can be improved.
- the process of forming a contact hole is often performed by dry etching that can achieve high processing accuracy.
- the dry etching is typically performed by plasma etching, and the cross-sectional processing shape and the like are easier to control than the wet etching.
- it is a method that makes it difficult to increase the etching selectivity (etching rate of the film to be removed / etching rate of the base film (film existing under the film to be removed)) compared to wet etching, There is concern about the damage.
- Patent Document 2 discloses a configuration in which a ZnO film is provided on the surface of a drain wiring serving as a base when a contact hole is provided on a drain wiring or the like in a bottom gate type (reverse stagger type) TFT.
- the ZnO film is difficult to be etched even in dry etching using an etching gas such as CF 4, and the metal film constituting the drain wiring can be appropriately protected.
- the drain wiring has a structure in which a molybdenum film (or a titanium film or the like) is laminated on an aluminum film
- the molybdenum film is removed by etching and the aluminum film is removed by providing the ZnO film. Exposure can be prevented. If the aluminum film is exposed, there is a high possibility that electrical contact will occur between the aluminum film and the ITO film serving as the pixel electrode.
- the contact hole provided in the upper insulating film is provided in a location different from the contact hole provided on the drain of the TFT (drain electrode or drain region of the semiconductor layer). Can be considered.
- a conventional form of connection between a TFT and a pixel electrode in a TFT substrate provided with a top gate type TFT will be described with reference to FIG.
- FIG. 12 shows a TFT substrate 900 of a conventional liquid crystal display device in which an auxiliary capacitor is formed using a pixel electrode and a transparent electrode.
- the TFT substrate 900 is provided with a top gate type (stagger type) TFT (not shown).
- the substrate 2 is covered with the base coat layer 4, and a semiconductor layer (for example, an amorphous silicon layer) 6 forming a TFT channel is formed thereon.
- the semiconductor layer 6 is connected to the drain electrode 99, and the drain electrode 99 is connected to the pixel electrode 10.
- an interlayer insulating film 22, a passivation film 24, and an organic insulating film 26 are provided on the semiconductor layer 6, an interlayer insulating film 22, a passivation film 24, and an organic insulating film 26 are provided.
- a lower transparent electrode 12 for forming an auxiliary capacitance is provided on the organic insulating film 26, and the pixel electrode 10 is disposed on the upper insulating film 28 covering the lower transparent electrode 12, and the auxiliary capacitance is formed by the lower transparent electrode 12, the upper insulating film 28 and the pixel electrode 10.
- the lower transparent electrode 12 is connected to, for example, the ground via a wiring (not shown).
- the contact hole 30 ′ (contact hole formed in the interlayer insulating film 22) for connecting the semiconductor layer 6 and the drain electrode 99 and the drain electrode 99 and the pixel electrode 10 are connected.
- the contact hole 32 ′ (contact hole formed in the upper insulating film 28) is arranged so as to shift its position in the substrate surface. Thereby, in the step of providing the contact hole 32 ′, damage to the semiconductor layer 6 and the like is unlikely to occur.
- the present invention has been made to solve the above-described problems, and in a configuration in which an auxiliary capacitor is formed using a pixel electrode, excellent TFT characteristics can be realized while suppressing an increase in a manufacturing process, and a pixel It is an object of the present invention to provide a TFT substrate that improves the aperture ratio and a manufacturing method thereof. Another object is to provide a display device using such a TFT substrate.
- a TFT substrate includes a substrate, a TFT provided on the substrate, a first insulating layer provided above the TFT, and a lower transparent layer provided above the first insulating layer.
- An electrode, a second insulating layer covering the lower transparent electrode, and a pixel electrode provided on the second insulating layer, and an auxiliary capacitance is provided by the lower transparent electrode, the second insulating layer, and the pixel electrode.
- the TFT and the pixel electrode are electrically connected in a contact hole penetrating the first insulating layer and the second insulating layer, and the contact hole is formed in the contact hole.
- a transparent electrode for connection formed so as to be separated from the lower transparent electrode is further provided, and the TFT and the pixel electrode are electrically connected via the transparent electrode for connection.
- the connecting transparent electrode is made of the same material as the lower transparent electrode.
- the TFT includes a semiconductor layer constituting a channel, and the semiconductor layer and the contact hole are arranged so as to overlap when viewed from the normal direction of the substrate.
- the contact hole includes a first contact hole formed in the first insulating layer and a second contact hole formed in the second insulating layer, and the first contact hole And the second contact hole are arranged so as to overlap when viewed from the normal direction of the substrate.
- the transparent electrode for connection is formed over the entire bottom of the first contact hole.
- connection transparent electrode covers a part of a side surface of the first contact hole.
- the semiconductor layer and the transparent electrode for connection are in direct contact.
- the TFT substrate is provided with a display region in which a plurality of the pixel electrodes are arranged, and a peripheral connection region located outside the display region.
- a gate wiring and a source wiring provided below the first insulating layer and the second insulating layer, wherein the first insulating layer and the second insulation are respectively disposed on the gate wiring and the source wiring;
- a gate contact hole and a source contact hole penetrating the layer are respectively formed, and formed so as to be separated from the lower transparent electrode inside at least one of the gate contact hole and the source contact hole
- the peripheral transparent electrode is further provided.
- the semiconductor device further includes a conductive layer formed of the same material as the pixel electrode and connecting the gate wiring and the source wiring via the gate contact hole and the source contact hole.
- a display device includes any one of the TFT substrates described above and a display medium layer disposed on the TFT substrate.
- a method of manufacturing a TFT substrate includes a step of preparing a substrate, a step of forming a TFT on the substrate, a step of providing a first insulating layer above the TFT, and the first insulating layer. Providing a first transparent contact hole, a lower transparent electrode provided above the first insulating layer, and a transparent electrode for connection made of the same material as the lower transparent electrode in the first contact hole.
- a step of providing the second insulating layer separately from the transparent electrode, a step of providing a second insulating layer covering the lower transparent electrode and the connecting transparent electrode, a step of providing a second contact hole in the second insulating layer, and the second insulation A step of providing a pixel electrode on the layer, and the drain of the TFT and the pixel electrode are connected through the transparent electrode for connection.
- the step of providing the connection transparent electrode includes the step of forming a transparent conductive layer that integrally covers the inside of the first contact hole and the region outside the first contact hole, and the first Disposing a photoresist in the contact hole; forming a resist mask that selectively covers only the vicinity of the bottom of the contact hole by partially removing the photoresist in the first contact hole; Forming the transparent electrode for connection by partially removing the transparent conductive layer using a resist mask.
- the photoresist is a positive type photoresist
- the step of disposing the photoresist in the first contact hole is performed inside the first contact hole and outside the first contact hole.
- a step of disposing a photoresist layer integrally covering the region, wherein the step of forming the resist mask includes a mask having an opening at least partially overlapping the first contact hole above the photoresist layer.
- Photoresist only near the bottom of the first contact hole among the photoresists performs exposure at a selected exposure to remain after development.
- the pixel aperture ratio can be improved in the configuration in which the auxiliary capacitance is formed using the transparent electrode disposed under the pixel electrode through the insulating film. Further, in the step of forming a contact hole for connecting the pixel electrode and the drain of the TFT, damage to the base film can be reduced, so that the connection reliability can be improved.
- (A) is a cross-sectional view showing a drain contact portion of the TFT substrate of Embodiment 1
- (b) is a cross-sectional view showing a gate-source contact portion. It is sectional drawing for demonstrating the manufacturing method of the TFT substrate which concerns on Embodiment 1, (a) and (b) show another process, respectively.
- FIG. 7 is a cross-sectional view for explaining the manufacturing method of the TFT substrate according to Embodiment 1, and (a) to (c) show different processes, respectively.
- (A) is a sectional view showing a drain contact portion of the TFT substrate of Embodiment 2
- (b) is a sectional view showing a gate-source contact portion.
- FIG. 9 is a cross-sectional view for explaining a manufacturing method of a TFT substrate according to Embodiment 2, and (a) to (c) show different steps, respectively. It is a figure explaining the process of providing a transparent electrode in a contact hole, (a) is a photoresist exposure process, (b) is a state after development, (c) is a sectional view showing a state after etching. It is a figure which shows the relationship between a resist exposure amount and the contact hole diameter of the limit which can form a transparent electrode by self-alignment.
- FIG. 1 is sectional drawing which shows a mode that the lower layer / upper layer contact hole was formed
- (b) is the elements on larger scale of (a).
- (A) And (b) is a figure which shows the contact hole in the conventional stagger type TFT structure
- (c) And (d) is a figure which shows the contact hole in the stagger type TFT structure concerning embodiment of this invention. is there.
- (A) And (b) is a figure which shows the contact hole in the conventional reverse stagger type TFT structure
- (c) And (d) shows the contact hole in the reverse stagger type TFT structure concerning embodiment of this invention.
- FIG. It is sectional drawing which shows the drain contact part of the conventional TFT substrate.
- TFT substrate used in a liquid crystal display device will be described as an embodiment of the present invention with reference to the drawings, but the present invention is not limited thereto.
- FIG. 1A and 1B are cross-sectional views showing a TFT substrate 100 according to Embodiment 1 of the present invention, in which a top gate type (stagger type) TFT is provided.
- FIG. 1A shows a connection portion between a TFT and a pixel electrode in the vicinity of the TFT
- FIG. 1B shows a peripheral connection region located outside a region (display region) where pixels are arranged. A connection portion between the gate wiring and the source wiring is shown.
- a semiconductor layer 6 for forming a TFT channel is provided on the substrate 2 covered with the base coat layer 4.
- a gate insulating film 20 is provided on the semiconductor layer 6, and a gate bus line and a gate electrode (both not shown) are provided on the gate insulating film 20. Further, as shown in FIG. 1B, a gate wiring 8 arranged in the peripheral connection region is also provided. In this specification, these may be collectively referred to as a gate layer. In the TFT substrate 100, no auxiliary capacitance wiring is provided in this layer (gate layer).
- An interlayer insulating film 22 is provided on the gate insulating film 20, and a source electrode, a source bus line (both not shown), and a source wiring 9 in the peripheral connection region are provided via the interlayer insulating film 22. It is done. In this specification, these may be collectively referred to as a source layer.
- the source electrode (or source bus line) and the semiconductor layer 6 are typically electrically connected in a contact hole (not shown) formed in the interlayer insulating film 22. Yes.
- a contact hole not shown
- the drain electrode is not provided in the source layer.
- a TFT channel is formed at a portion facing the gate electrode with the gate insulating film 20 interposed therebetween.
- the source and drain of the TFT (for example, an n + -type impurity region formed by impurity implantation) may be formed in the semiconductor layer 6 so as to sandwich this channel.
- a passivation film 24 is formed as a TFT protective film so as to cover the source layer formed on the interlayer insulating film 22.
- An organic insulating film 26 is formed on the passivation film 24.
- the organic insulating film 26 is provided as a planarizing film for forming the pixel electrode 10 formed thereon on a flat surface.
- the TFT substrate 100 is formed to have a lower transparent electrode 12 disposed on the organic insulating film 26, an upper insulating film 28 covering the lower transparent electrode 12, and a portion overlapping the lower transparent electrode 12 on the upper insulating film 28.
- the transparent pixel electrode 10 is provided.
- An auxiliary capacitor (storage capacitor) Cs is formed by a pair of transparent electrodes (the pixel electrode 10 and the lower transparent electrode 12) facing each other with the upper insulating film 28 interposed therebetween.
- the lower transparent electrode 12 is connected to, for example, the ground using a wiring (not shown). Further, when the TFT substrate 100 is used in a liquid crystal display device, wiring may be connected to the lower transparent electrode 12 so as to have the same potential as the counter electrode on the counter substrate disposed to face the TFT substrate 100. good.
- the drain of the TFT and the pixel electrode 10 are connected by connecting a lower layer contact hole (first contact hole) 30 provided so as to penetrate the gate insulating film 20, the interlayer insulating film 22, and the passivation film 24, and an upper layer insulating film 28. This is performed through an upper layer contact hole (second contact hole) 32 provided so as to penetrate therethrough. As can be seen from the figure, the upper contact hole 32 is formed inside the lower contact hole 30. These are arranged so as to overlap when viewed from the normal direction of the substrate, and the lower layer contact hole 30 and the upper layer contact hole 32 form each insulating film between the pixel electrode and the drain of the TFT (passivation film 24, upper layer insulating layer). A common contact hole 34 is formed through the film 28 and the like.
- connection transparent electrode 14 formed of the same material in the same process as the lower layer transparent electrode 12 is provided inside the lower layer contact hole 30, as will be described later.
- the connecting transparent electrode 14 is formed separately from the lower transparent electrode 12 and does not form an auxiliary capacitor.
- the connecting transparent electrode 14 is provided so as to be in contact with the contact portion (TFT drain) of the semiconductor layer 6 and in contact with the pixel electrode 10, and is used for connecting the semiconductor layer 6 and the pixel electrode 10. .
- the drain of the TFT and the pixel electrode 10 are connected through a contact hole 34 gathered in one place.
- the area occupied by the contact hole can be reduced, so that the aperture ratio of the pixel can be improved.
- the connecting transparent electrode 14 is formed at the bottom of the contact hole 34, and the semiconductor layer 6 is prevented from being damaged in the step of providing the upper contact hole 32 in the upper insulating film 28, as will be described later.
- the light-shielding metal layer (drain electrode) is not provided in the contact hole 34, the TFT substrate 100 having high translucency of the pixel and suitable for display with high luminance can be obtained.
- the gate wiring 8 and the source wiring 9 are connected to each other by a gate contact hole 38 and a source contact hole 39 provided in the upper part thereof.
- the gate and source contact holes 38 and 39 can be obtained by overlapping the contact holes in the same manner as the configuration shown in FIG.
- An upper transparent electrode 16 formed in the same process as the pixel electrode 10 is provided so as to be connected to the gate wiring 8 and the source wiring 9 exposed in the gate and source contact holes 38 and 39. And the source wiring 9 are electrically connected.
- a transparent electrode for connection (peripheral transparent electrode) 14 is arranged as in the display area (pixel array area). Thereby, it is possible to appropriately connect the gate wiring 8 and the source wiring 9 while preventing damage to the surfaces of the gate wiring 8 and the source wiring 9.
- the connection between the gate wiring 8 and the source wiring 9 in the peripheral connection region is performed in the following case.
- the gate wiring and the source wiring are used to input the source signal from the driver to the source bus line. Bus line).
- an oxide semiconductor such as IGZO (oxide composed of indium, gallium, and zinc) is used as the semiconductor layer 6, a gate wiring and a source wiring are used together with the oxide semiconductor so that the driver circuit is integrated on the substrate.
- IGZO oxide composed of indium, gallium, and zinc
- the manufacturing process of the TFT substrate 100 will be described with reference to FIGS. 2 and 3, the left side in the drawing shows a connection portion between the drain of the TFT and the pixel electrode 10, and the right side in the drawing shows a connection portion between the gate wiring 8 and the source wiring 9 in the peripheral connection region.
- a base coat layer 4 is formed on a transparent substrate 2 made of glass or the like, and a semiconductor layer 6 is formed thereon.
- the base coat layer 4 is, for example, a SiN film having a thickness of 100 nm or a SiO 2 film having a thickness of 100 nm.
- the semiconductor layer 6 is formed of, for example, a-Si (amorphous silicon) or p-Si (polysilicon). Further, an oxide semiconductor such as IGZO may be used. In the case of p-Si or IGZO, the thickness of the semiconductor layer 6 may be about 50 nm, and in the case of a-Si, it may be about 50 to 200 nm, for example.
- patterning can be performed by dry etching, and in the case of IGZO, patterning can be performed by wet etching using oxalic acid.
- the semiconductor layer 6 is typically formed in an island shape in a predetermined region.
- a gate insulating film 20 is formed on the semiconductor layer 6, and a gate layer (gate bus line, gate electrode, gate wiring 8, etc.) is formed on the gate insulating film 20.
- the gate insulating film 20 is formed of, for example, SiO 2 having a thickness of 100 nm, and the gate layer is formed to have a laminated structure of, for example, Ti (50 nm) / Al (100 nm) / Ti (30 nm).
- an interlayer insulating film 22 (for example, a 300 nm thick SiO 2 film or a 150 nm thick SiN x film) is formed so as to cover them, and a source layer (a source bus line, a source electrode, Source wiring 9 and the like) are formed.
- the source layer is formed to have a laminated structure of Ti (50 nm) / Al (100 nm) / Ti (30 nm), for example, and can be patterned by dry etching using a chlorine-based gas. If necessary, a contact hole may be provided in the interlayer insulating film 22 before forming the source layer, and contact may be made between the source region of the semiconductor layer 6 and the source bus line or source electrode.
- a passivation film 24 as a protective film is formed so as to cover the source layer.
- the passivation film 24 is formed of, for example, a 200 nm thick SiO 2 film.
- an organic insulating film 26 is formed so as to cover the passivation film 24.
- the organic insulating film 26 can be formed with a thickness of 2.5 ⁇ m by patterning using a predetermined mask by, for example, photolithography.
- the passivation film 24, the interlayer insulating film 22, and the gate insulating film 20 are partially removed by dry etching, and the lower contact hole 30 is formed.
- the insulating film on the gate wiring 8 and the insulating film on the source wiring 9 are etched to form the lower gate contact hole 36 and the lower source contact hole 37.
- the passivation film 24, the interlayer insulating film 22, and the gate insulating film 20 are dry-etched using the organic insulating film 26 as a mask.
- CF 4 + O 2 can be used as an etching gas at that time.
- the semiconductor layer 6 is made of a-Si
- the etching selectivity can be ensured by switching the type of etching gas and using CHF 3 or C 4 F 8 gas at a depth close to the semiconductor layer 6. That's fine.
- the semiconductor layer 6 is made of an oxide semiconductor, the selectivity is ensured with the CF 4 + O 2 gas as it is.
- the gate / source wirings 8 and 9 are damaged in the film thickness direction in the dry etching process.
- the gate / source wirings 8 and 9 have a laminated structure in which the surface of the aluminum film is covered with a titanium film or molybdenum film, the surface of the aluminum film is exposed during etching by the surface titanium film or molybdenum film. Can be prevented.
- a lower transparent electrode 12 is formed by forming a transparent conductive film made of, for example, ITO or IZO and patterning it by a photolithography method.
- the transparent electrode for connection 14 is formed in the lower layer contact hole 30 formed in the previous step.
- the connection transparent electrode 14 is formed on the gate line 8 and the source line 9 inside the lower gate / source contact holes 36 and 37, respectively.
- the lower transparent electrode 12 and the connecting transparent electrode 14 are formed of, for example, an a-ITO film (amorphous ITO film) or an IZO film having a thickness of 50 nm.
- connection transparent electrode 14 can be formed in the lower layer contact hole 30 in a self-aligning manner.
- the connecting transparent electrode 14 may be intentionally formed in the lower contact hole 30 by patterning using a photoresist.
- an upper insulating film 28 is formed so as to cover the lower transparent electrode 12 and the connecting transparent electrode 14.
- the upper insulating film 28 is formed of, for example, a 200 nm thick SiO 2 film or SiN x film.
- the upper insulating film 28 in the lower contact hole 30 is removed by etching, and the upper contact hole 32 is formed.
- the upper insulating film 28 is removed in the lower gate / source contact holes 36, 37, and upper gate / source contact holes 40, 41 are formed.
- a resist opening is formed in the lower contact hole 30 by photolithography, and the upper insulating film 28 is dry etched.
- the underlying semiconductor layer 6 a-Si, p-Si, oxide semiconductor
- the connection transparent electrode 14 functions as an etch stopper also in the peripheral connection region, the upper gate / source contact hole 40 that exposes the connection transparent electrode 14 without damaging the gate wiring 8 and the source wiring 9. 41 are formed.
- an upper transparent conductive film (specifically, a transparent conductive film (ITO, IZO, etc.)) is formed and patterned by a photolithography method to thereby form the pixel electrode 10 and the like.
- the upper transparent conductive film is formed of, for example, an a-ITO film or an IZO film having a thickness of 50 nm.
- the pixel electrode 10 (upper transparent conductive film) connected to the drain of the TFT is used to apply a voltage to a display medium layer such as a liquid crystal layer, and is disposed so as to oppose the upper insulating film 28.
- An auxiliary capacitance is formed between the lower transparent electrode 12 and the lower transparent electrode 12.
- the upper transparent electrode 16 (upper transparent conductive film) connected to the gate / source wirings 8 and 9 electrically connects the gate / source wirings and continues to the gate layer and the source layer. It can also be used as a third layer wiring.
- the lower layer contact hole 30 and the upper layer contact hole 32 are arranged so as to overlap in the configuration in which the auxiliary capacitance is formed using the pixel electrode 10 and the lower layer transparent electrode 12. By doing so, the pixel aperture ratio can be improved. Further, since the connecting transparent electrode 14 functioning as an etch stopper is formed in the lower layer contact hole 30 with the same material in the same process as the lower layer transparent electrode 12, the semiconductor layer 6 when the upper layer contact hole 32 is formed is formed. Can be suppressed without increasing the number of steps.
- the drain connection portion in the contact hole 34 is not provided with the metal drain electrode (light-shielding portion) which has been conventionally provided, so that the light transmittance in the pixel can be improved.
- the upper transparent electrode 16 is formed of ITO in the peripheral connection region, and the surface of the source layer Even when the aluminum film is exposed, by forming the connection transparent electrode 14 from IZO or the like, it is possible to prevent the occurrence of electrical contact due to the connection between ITO and Al.
- FIG. 4A and 4B are cross-sectional views showing a TFT substrate 200 according to Embodiment 2 of the present invention.
- a bottom gate type (reverse stagger type) TFT is provided.
- FIG. 4A shows a connection portion between the TFT and the pixel electrode 10 in the vicinity of the TFT
- FIG. 4B shows source wiring in a peripheral connection region located outside the region where the pixels are arranged.
- a connection form with the gate wiring is shown. Note that components having the same functions as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
- the TFT substrate 200 is provided with a gate layer including a gate bus line (not shown) and a gate wiring 8 on the substrate 2 covered with the base coat layer 4.
- a gate insulating film 20 is provided so as to cover them.
- a semiconductor layer 6 for forming a TFT channel is provided on the gate insulating film 20.
- a source layer including a source bus line (not shown) and a source wiring 9 is provided on the semiconductor layer 6, a source layer including a source bus line (not shown) and a source wiring 9 is provided.
- a drain electrode 19 is provided on the semiconductor layer 6 in the drain connection portion (FIG. 4A).
- the drain electrode 19 may have a laminated structure of Ti (50 nm) / Al (100 nm) / Ti (30 nm), for example.
- a passivation film 24 as a protective film and an organic insulating film 26 as a planarizing film are formed on the source layer.
- the TFT substrate 200 is also provided with the lower transparent electrode 12 disposed on the organic insulating film 26, the upper insulating film 28 covering the lower transparent electrode 12, and the transparent pixel electrode 10, and thereby the auxiliary capacitance (storage capacitance) Cs is provided. Is formed.
- a connecting transparent electrode 14 made of the same material as the lower transparent electrode 12 is disposed at the bottom of the lower contact hole 30 formed in the passivation film 24 and the organic insulating film 26.
- the connecting transparent electrode 14 is provided on the drain electrode 19 so as to be in contact therewith.
- the upper layer contact hole 32 provided in the upper layer insulating film 28 is disposed inside the lower layer contact hole 30, so that the contact hole 34 penetrating the insulating film between the pixel electrode and the drain of the TFT is formed. Is formed.
- the pixel electrode 10 is connected to the drain electrode 19 via the connection transparent electrode 14.
- the peripheral connection region is configured such that the gate wiring 8 is located below the gate insulating film 20 and the gate contact hole 38 penetrates the gate insulating film 20. Except for this, the configuration is the same as that shown in FIG.
- a gate layer (a gate bus line, a gate electrode, a gate wiring 8 or the like) is formed on a substrate 2 on which a base coat layer 4 is formed.
- the gate layer is formed to have a laminated structure of Ti (50 nm) / Al (100 nm) / Ti (30 nm), for example.
- a gate insulating film 20 is formed so as to cover the gate layer.
- the gate insulating film 20 is formed of, for example, a 50 nm thick SiO 2 film or a 300 nm thick SiN x film.
- the semiconductor layer 6 is formed on the gate insulating film 20. Similar to the first embodiment, the semiconductor layer 6 may be formed of an oxide semiconductor such as a-Si (amorphous silicon) or IGZO, and is typically formed in an island shape in a predetermined region.
- oxide semiconductor such as a-Si (amorphous silicon) or IGZO
- a source layer is formed.
- a drain electrode 19 is formed together with a source bus line, a source electrode, a source wiring 9, and the like. These are formed so as to have a laminated structure of Ti (50 nm) / Al (100 nm) / Ti (30 nm), for example, and can be obtained by patterning by dry etching using a chlorine-based gas. Further, a passivation film 24 as a protective film is formed so as to cover the source layer.
- an organic insulating film 26 is formed so as to cover the passivation film 24.
- the organic insulating film 26 can be formed with a thickness of 2.5 ⁇ m by patterning using a predetermined mask by, for example, photolithography.
- the passivation film 24 is partially removed by dry etching using the organic insulating film 26 as a mask, and a lower contact hole 30 is formed.
- the insulating film on the gate wiring 8 and the insulating film on the source wiring 9 are etched to form the lower gate contact hole 36 and the lower source contact hole 37.
- etching gas for forming the lower contact hole 30 and the lower gate / source contact holes 36 and 37 CF 4 + O 2 can be used.
- the drain electrode 19 and the gate / source wirings 8 and 9 are damaged in the film thickness direction, they have a laminated structure in which a titanium film or a molybdenum film is provided so as to sandwich an aluminum film as described above.
- the surface titanium film or molybdenum film prevents the surface of the aluminum film from being exposed during etching.
- the transparent electrode for connection 14 is formed thereon as described later.
- the connection transparent electrode 14 is made of IZO
- the connection transparent electrode made of IZO even when the pixel electrode 10 is made of ITO, the contact between the pixel electrode 10 and the drain electrode 19 is prevented, and the connection transparent electrode made of IZO. 14, an appropriate electrical connection between the pixel electrode 10 (ITO) and the drain electrode 19 (Al) can be obtained.
- a transparent conductive film made of ITO, IZO or the like is formed and patterned by a photolithography method, whereby the lower transparent electrode 12 is formed.
- the transparent electrode for connection 14 is formed in the lower layer contact hole 30 formed in the previous step.
- the connection transparent electrode 14 is formed on the gate line 8 and the source line 9 inside the lower gate / source contact holes 36 and 37, respectively.
- the lower transparent electrode 12 and the connecting transparent electrode 14 are formed of, for example, an a-ITO film or an IZO film having a thickness of 50 nm.
- an upper insulating film 28 is formed so as to cover the lower transparent electrode 12 and the connecting transparent electrode 14.
- the upper insulating film 28 is formed of, for example, a 200 nm thick SiO 2 film or SiN x film.
- the upper insulating film 28 in the lower contact hole 30 is removed by etching, and the upper contact hole 32 is formed.
- the upper insulating film 28 is removed in the lower gate / source contact holes 36, 37, and upper gate / source contact holes 40, 41 are formed.
- a resist opening is formed in the lower contact hole 30 previously formed by photolithography, and dry etching is performed.
- the previously formed transparent electrode for connection 14 serves as an etch stopper, damage to the drain electrode 19 and the like is prevented even if dry etching is performed with CF 4 + O 2 .
- the connection transparent electrode 14 functions as an etch stopper also in the peripheral connection region, the upper gate contact hole 40 and the upper layer source that expose the connection transparent electrode 14 without damaging the gate wiring 8 and the source wiring 9. Contact holes 41 are respectively formed.
- an upper transparent conductive film (specifically, a transparent conductive film (ITO, IZO, etc.)) is formed and patterned by photolithography to form the pixel electrode 10.
- the upper transparent conductive film is formed of, for example, an a-ITO film or an IZO film having a thickness of 50 nm.
- the pixel electrode 10 connected to the drain of the TFT forms an auxiliary capacitance with the lower transparent electrode 12 disposed so as to face each other with the upper insulating film 28 interposed therebetween.
- the upper transparent electrode 16 formed so as to be connected to the gate / source wirings 8 and 9 in the peripheral connection region electrically connects the gate / source wirings and is also used as a third layer wiring. it can.
- connection transparent electrode 14 is formed of IZO, so that the pixel electrode 10 made of ITO and Proper contact can be obtained.
- FIG. 11D shows a TFT substrate 202 according to a modification of the second embodiment.
- the drain electrode is not provided in the contact hole 34 at the drain connection portion of the inverted stagger type TFT.
- the semiconductor layer 6 and the connecting transparent electrode 14 are directly connected in the contact hole 34.
- FIG. 7A shows a process for forming a resist mask used for patterning the lower transparent electrode 12 and the connecting transparent electrode 14, and specifically shows an exposure process for a photoresist to be a resist mask.
- the lower transparent electrode 12 and the connecting transparent electrode 14 are formed by forming a transparent conductive film 13 made of ITO, IZO, or the like and then patterning using a resist mask. It can be obtained by exposing a photoresist (photosensitive resin).
- the positive photoresist is irradiated with light L in a state where the mask M is arranged.
- An exposed region R1 is formed in the photoresist so as to correspond to the opening of the mask M, and an unexposed region R2 is formed in the photoresist corresponding to a portion covered with the mask M.
- the depth of the lower contact hole 30 formed using the organic insulating film 26 as a mask is as deep as about 3 ⁇ m, for example. For this reason, if the irradiation amount (exposure amount) of the light L is appropriately selected, the unexposed region R3 can be formed in the photoresist located near the bottom surface of the lower contact hole 30.
- FIG. 7B shows the result of development.
- Photoresist 44 remains corresponding to unexposed region R2 covered by mask M
- photoresist 46 also remains in lower contact hole 30 in a self-aligned manner corresponding to unexposed region R3.
- the photoresist 46 is also provided near the bottom of the lower contact hole 30 by appropriately adjusting the exposure amount using the mask M having the opening disposed so as to surround the lower contact hole 30. Can be provided.
- FIG. 7C shows a state after dry etching is performed using the photoresist (resist mask) 44 and 46 shown in FIG. 7B.
- the transparent conductive film 13 covered with the resist masks 44 and 46 remains without being etched, and as a result, covers the lower transparent electrode 12 for forming the auxiliary capacitance and part of the bottom and side surfaces of the lower contact hole 30.
- the connecting transparent electrode 14 formed as described above is obtained.
- FIG. 8 is a graph showing the relationship between the exposure amount of the photoresist and the diameter of the contact hole at which the resist pattern can be formed in a self-aligned manner in the contact hole.
- the exposure amount is preferably about 40 mJ or more.
- the exposure amount of the photoresist is increased, the positive resist in the contact hole is easily removed, so that it is difficult for the resist to remain in the contact hole after development.
- the exposure amount is large, it has been experimentally found that if the diameter of the contact hole is too large, it becomes impossible to leave the resist in the contact hole in a self-aligning manner.
- the graph shows the limit contact diameter in relation to the exposure amount.
- the resist exposure amount is set to about 40 mJ or more and to set the diameter at the bottom surface of the lower layer contact hole 30 (the diameter of the opening of the organic insulating film 26) to about 4 ⁇ m or less. This is preferable for stably leaving a resist mask (unexposed photoresist) in the hole 30 in a self-aligning manner.
- FIGS. 9A and 9B show the connection transparent electrode 14 and the lower transparent electrode 12 formed in this manner in a self-aligning manner, and FIG. 9B shows the state shown in FIG. It is the elements on larger scale of the area
- FIGS. 9A and 9B show a state in which the upper layer contact hole 32 reaching the transparent electrode for connection 14 is formed as a result of etching the upper layer insulating film 28 using the photoresist 29. Yes.
- the connection transparent electrode 14 can be formed in a self-aligned manner using a photoresist remaining in the contact hole by appropriately selecting a resist exposure amount and a contact hole diameter when forming a resist mask. did it.
- FIGS. 10A and 10B show contact holes in a pixel of a TFT substrate having a conventional top gate type TFT
- FIGS. 10C and 10D show a top gate according to an embodiment of the present invention. A contact hole in a pixel of a TFT substrate having a type TFT is shown.
- the contact hole 30 ′ connecting the semiconductor layer 6 and the drain electrode 99, and the drain electrode 99 and the pixel electrode 10 are connected.
- the contact hole 32 ′ is provided at different positions. For this reason, the light shielding area in the pixel increases, and the pixel aperture ratio decreases. For example, when applied to a 249 ppi full high definition (FHD) medium and small panel, the pixel aperture ratio was about 74%.
- the connecting transparent electrode 14 provided in the same process as the lower transparent electrode 12 is formed in the contact hole 34. Since a single contact hole 34 is sufficient, the pixel aperture ratio is improved. For example, when applied to a 249 ppi FHD medium-to-small panel, the pixel aperture ratio was about 77%.
- FIGS. 11A and 11B show the arrangement of contact holes in a pixel of a TFT substrate having a conventional bottom gate type TFT
- FIGS. 11C and 11D show the implementation of the present invention.
- the arrangement of contact holes in a pixel of a TFT substrate having a bottom gate type TFT according to the form is shown.
- the drain electrode 99 provided so as to be connected to the semiconductor layer 6 is provided at a position different from these connection locations.
- the contact hole 34 ′ is connected to the pixel electrode 10.
- the pixel aperture ratio was about 76%.
- the connecting transparent electrode 14 provided in the same process as the lower transparent electrode 12 is connected to the contact hole 34. Since the drain connection portion and the contact hole 34 overlap each other, the pixel aperture ratio is improved. For example, when applied to a 249 ppi FHD medium-to-small panel, the pixel aperture ratio was about 81%.
- the TFT substrate of the present invention is used in various display devices, and drives a display medium layer (for example, a liquid crystal layer) disposed on the TFT substrate.
- the TFT substrate of the present invention is suitably used not only as a VA (Vertical Alignment) mode liquid crystal display device but also as an active matrix substrate of a horizontal electric field mode liquid crystal display device such as IPS or FFS (Fringe Field Switching).
- the present invention is widely used as a TFT substrate for various display devices such as liquid crystal display devices.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Liquid Crystal (AREA)
Abstract
TFT基板(100)は、基板(2)上に設けられたTFTと、TFTの上方に設けられた第1絶縁層(24、26)と、第1絶縁層(24、26)の上方に設けられた下層透明電極(12)と、下層透明電極(12)を覆う第2絶縁層(28)と、第2絶縁層(28)上に設けられた画素電極(10)とを備え、下層透明電極(12)と第2絶縁層(28)と画素電極(10)とによって補助容量Csが形成されている。TFTと画素電極(10)とは、第1絶縁層(24、26)と第2絶縁層(28)とを貫通するコンタクトホール34を介して電気的に接続されており、コンタクトホール(34)内には接続用透明電極(14)が配置される。
Description
本発明は、TFT基板およびその製造方法ならびにTFT基板を備える表示装置に関する。
液晶表示装置の用途が拡大するとともに、その高性能化が進んでいる。特に、広視野角特性を有するMVA(Multi-domain Vertical Alignment)やIPS(In-Plane-Switching)などの表示モードが開発され、更なる改良が進んでいる。
液晶表示装置は、画像や映像の表示を行うとき、画素電極に信号電圧を印加した後の所定の期間(例えば1フレーム期間)、液晶層に印加される電圧を保持するように動作する。この電圧の保持をより適切に行うために、一般的な液晶表示装置では、液晶容量と並列に補助容量(蓄積容量)が設けられている。補助容量は、例えば、ゲートバスラインと同層に設けられた補助容量電極と、ゲート絶縁層を介して補助容量電極に対向するように配置された補助容量対向電極とによって形成される。
また、画素電極と、画素電極の下に絶縁膜を介して配置された透明電極(以下、下層透明電極と呼ぶ)とを用いて補助容量を形成する技術が知られており、例えば、特許文献1に開示されている。この技術によれば、一対の透明電極によって補助容量が形成されており、金属層からなる補助容量電極を別途設ける必要がない。したがって、遮光領域を減らすことができ、画素開口率を向上させることができる。
しかしながら、このような構成を採用する場合、TFTと画素電極とを接続するためには、下層透明電極と画素電極との間に介在する絶縁膜(以下、上層絶縁膜と呼ぶ)にコンタクトホールを設ける必要がある。このため、コンタクトホールを形成する工程の数が従来よりも増加することになる。
ところで、近年では、コンタクトホールを形成する工程は、高い加工精度を実現できるドライエッチングによって行われることが多い。ドライエッチングは、典型的には、プラズマエッチングによって行われ、ウェットエッチングよりも断面加工形状などを制御しやすい。しかし、ウェットエッチングに比べて、エッチング選択比(除去すべき膜のエッチングレート/下地膜(除去すべき膜の下に存在する膜)のエッチングレート)を大きくしにくい方法であるため、下地膜へのダメージが懸念される。
特許文献2には、ボトムゲート型(逆スタガ型)のTFTにおいて、ドレイン配線などの上にコンタクトホールを設ける場合に、下地となるドレイン配線の表面にZnO膜を設ける構成が示されている。ZnO膜は、CF4などのエッチングガスを用いたドライエッチングにおいてもエッチングされにくく、ドレイン配線を構成する金属膜を適切に保護することができる。例えば、アルミニウム膜の上にモリブデン膜(あるいはチタン膜など)が積層された構造をドレイン配線が有している場合、ZnO膜が設けられていることで、モリブデン膜がエッチングによって除去されアルミニウム膜が露出することを防止できる。アルミニウム膜が露出していると、このアルミニウム膜と、画素電極となるITO膜との間で電触が生じる可能性が高くなるため好ましくない。
上述のように、画素電極を用いて補助容量を形成する場合、上層絶縁膜に対してコンタクトホールを設ける工程が必要になるが、ドライエッチングが主流となっている近年では、下地膜へのダメージを特に考慮する必要がある。下地膜への影響を低減するためには、例えば、上層絶縁膜に設けるコンタクトホールを、TFTのドレイン(ドレイン電極や半導体層のドレイン領域)上に設けられるコンタクトホールとは別の場所に設けることが考えられる。以下、図12を参照しながら、トップゲート型のTFTが設けられたTFT基板における、TFTと画素電極との従来の接続の形態を説明する。
図12は、補助容量を画素電極と透明電極とを用いて形成する従来の液晶表示装置のTFT基板900を示す。TFT基板900には、トップゲート型(スタガ型)のTFT(図示せず)が設けられている。
TFT基板900では、基板2がベースコート層4によって覆われており、この上に、TFTのチャネルを形成する半導体層(例えばアモルファスシリコン層)6が形成されている。半導体層6はドレイン電極99と接続されており、ドレイン電極99は画素電極10と接続されている。
半導体層6上には層間絶縁膜22、パッシベーション膜24、有機絶縁膜26が設けられ、有機絶縁膜26上には補助容量を形成するための下層透明電極12が設けられている。さらに、下層透明電極12を覆う上層絶縁膜28上に画素電極10が配置されており、下層透明電極12と上層絶縁膜28と画素電極10とによって補助容量が形成されている。下層透明電極12は、図示しない配線を介して例えばグランドに接続される。
このような構成において、半導体層6とドレイン電極99とを接続するためのコンタクトホール30’(層間絶縁膜22に形成されるコンタクトホール)と、ドレイン電極99と画素電極10とを接続するためのコンタクトホール32’(上層絶縁膜28に形成されるコンタクトホール)とは、基板面内での位置をずらすように配置されている。これにより、コンタクトホール32’を設ける工程において、半導体層6などへのダメージが生じにくい。
しかし、各コンタクトホール30’、32’の位置をずらして設けると、表示に寄与しない領域が画素中に増えるので、画素開口率の低下が生じる。また、コンタクトホール30’、32’を同じ場所に形成する場合、ドレイン電極99への損傷を低減するためには、別途、余分な工程でドレイン電極99を被覆するZnO膜などを設けることが好ましい。このため、画素電極10との安定した接続を得ようとすると製造工程数が増加する。
本発明は、上記課題を解決するためになされたものであり、画素電極を用いて補助容量を形成する構成において、製造プロセスの増加を抑制しながら優れたTFT特性を実現し得、かつ、画素開口率を向上させるTFT基板およびその製造方法を提供することをその目的とする。また、このようなTFT基板を用いた表示装置を提供することをその目的とする。
本発明の実施形態によるTFT基板は、基板と、前記基板上に設けられたTFTと、前記TFTの上方に設けられた第1絶縁層と、前記第1絶縁層の上方に設けられた下層透明電極と、前記下層透明電極を覆う第2絶縁層と、前記第2絶縁層上に設けられた画素電極とを備え、前記下層透明電極と前記第2絶縁層と前記画素電極とによって補助容量が形成されているTFT基板であって、前記TFTと前記画素電極とは、前記第1絶縁層と前記第2絶縁層とを貫通するコンタクトホールにおいて電気的に接続されており、前記コンタクトホール内に配置され、前記下層透明電極と分離するように形成された接続用透明電極を更に備え、前記接続用透明電極を介して前記TFTと前記画素電極とが電気的に接続される。
ある実施形態において、前記接続用透明電極は前記下層透明電極と同じ材料からなる。
ある実施形態において、前記TFTは、チャネルを構成する半導体層を備えており、前記半導体層と、前記コンタクトホールとが基板法線方向から見たときに重なるように配置されている。
ある実施形態において、前記コンタクトホールは、前記第1絶縁層に形成された第1コンタクトホールと、前記第2絶縁層に形成された第2コンタクトホールとによって構成されており、前記第1コンタクトホールと前記第2コンタクトホールとは、基板法線方向から見たときに重なるように配置されている。
ある実施形態において、前記接続用透明電極は、前記第1コンタクトホールの底部全体にわたって形成されている。
ある実施形態において、前記接続用透明電極は、前記第1コンタクトホールの側面の一部を覆う。
ある実施形態において、前記半導体層と、前記接続用透明電極とが直接接している。
ある実施形態において、上記TFT基板には、複数の前記画素電極が配列された表示領域と、前記表示領域の外側に位置する周辺接続領域とが設けられており、前記周辺接続領域において、前記第1絶縁層と前記第2絶縁層との下方に設けられたゲート配線およびソース配線を有し、前記ゲート配線と前記ソース配線とのそれぞれの上部には、前記第1絶縁層と前記第2絶縁層とを貫通するゲートコンタクトホールとソースコンタクトホールとがそれぞれ形成されており、前記ゲートコンタクトホールおよび前記ソースコンタクトホールのうちの少なくともいずれか一方の内部において、前記下層透明電極と分離するように形成された周辺透明電極をさらに有する。
ある実施形態において、前記画素電極と同材料から形成され、前記ゲートコンタクトホールおよび前記ソースコンタクトホールを介して前記ゲート配線と前記ソース配線とを接続する導電層をさらに有する。
本発明の実施形態による表示装置は、上記のいずれかのTFT基板と、前記TFT基板上に配置される表示媒体層とを備える。
本発明の実施形態によるTFT基板の製造方法は、基板を用意する工程と、前記基板上にTFTを形成する工程と、前記TFTの上方に第1絶縁層を設ける工程と、前記第1絶縁層に第1コンタクトホールを設ける工程と、前記第1絶縁層の上方に下層透明電極を設け、かつ、前記第1コンタクトホール内に、前記下層透明電極と同じ材料からなる接続用透明電極を前記下層透明電極と分離して設ける工程と、前記下層透明電極および前記接続用透明電極を覆う第2絶縁層を設ける工程と、前記第2絶縁層に第2コンタクトホールを設ける工程と、前記第2絶縁層上に画素電極を設ける工程とを包含し、前記接続用透明電極を介して、前記TFTのドレインと前記画素電極とが接続される。
ある実施形態において、前記接続用透明電極を設ける工程は、前記第1コンタクトホールの内部と前記第1コンタクトホールの外側の領域とを一体的に覆う透明導電層を形成する工程と、前記第1コンタクトホール内にフォトレジストを配置する工程と、前記第1コンタクトホール内のフォトレジストを部分的に除去することによって前記コンタクトホールの底部近傍のみを選択的に覆うレジストマスクを形成する工程と、前記レジストマスクを用いて前記透明導電層を部分的に除去することによって、前記接続用透明電極を形成する工程とを包含する。
ある実施形態において、前記フォトレジストは、ポジ型のフォトレジストであり、前記第1コンタクトホール内にフォトレジストを配置する工程は、前記第1コンタクトホールの内部と、前記第1コンタクトホールの外側の領域とを一体的に覆うフォトレジスト層を配置する工程を含み、前記レジストマスクを形成する工程は、前記フォトレジスト層の上方において、前記第1コンタクトホールと少なくとも部分的に重なる開口部を有するマスクを配置する工程と、前記マスクの前記開口部を通して、前記フォトレジスト層における前記第1コンタクトホール内のフォトレジストを部分的に露光し、かつ、露光されたフォトレジストを現像により除去する露光現像工程とを含み、前記露光現像工程において、前記第1コンタクトホール内のフォトレジストのうちの前記第1コンタクトホールの底部近傍のみのフォトレジストが現像後に残るように選択された露光量で露光を行う。
本発明の実施形態によれば、画素電極の下に絶縁膜を介して配置された透明電極を用いて補助容量を形成する構成において、画素開口率を向上させることができる。また、画素電極とTFTのドレインとの接続を行うためのコンタクトホールを形成する工程において、下地膜へのダメージを低減することができるので、接続の信頼性を向上させることができる。
以下、図面を参照しながら、本発明の実施形態として、液晶表示装置に用いられるTFT基板を説明するが、本発明はこれらに限られない。
(実施形態1)
図1(a)および(b)は、本発明の実施形態1に係るTFT基板100を示す断面図であり、ここでは、トップゲート型(スタガ型)のTFTが設けられている。図1(a)には、TFT近傍におけるTFTと画素電極との接続部が示され、図1(b)には、画素が配列された領域(表示領域)の外側に位置する周辺接続領域におけるゲート配線とソース配線との接続部が示されている。
図1(a)および(b)は、本発明の実施形態1に係るTFT基板100を示す断面図であり、ここでは、トップゲート型(スタガ型)のTFTが設けられている。図1(a)には、TFT近傍におけるTFTと画素電極との接続部が示され、図1(b)には、画素が配列された領域(表示領域)の外側に位置する周辺接続領域におけるゲート配線とソース配線との接続部が示されている。
図1(a)に示すように、TFT基板100では、ベースコート層4によって覆われた基板2上に、TFTのチャネルを形成するための半導体層6が設けられている。
半導体層6上には、ゲート絶縁膜20が設けられ、ゲート絶縁膜20上には、ゲートバスライン、ゲート電極(ともに図示せず)が設けられている。また、図1(b)に示すように周辺接続領域に配置されるゲート配線8も設けられている。本明細書では、これらをまとめてゲート層と呼ぶことがある。TFT基板100では、この層(ゲート層)において補助容量配線は設けられていない。
ゲート絶縁膜20上には、層間絶縁膜22が設けられており、層間絶縁膜22を介してソース電極や、ソースバスライン(共に図示せず)、また、周辺接続領域におけるソース配線9が設けられる。なお、本明細書では、これらをまとめてソース層と呼ぶことがある。
なお、図示していないが、ソース電極(またはソースバスライン)と半導体層6とは、典型的には、層間絶縁膜22に形成されたコンタクトホール(図示せず)において電気的に接続されている。このような構成は、例えば、特許文献1に記載されている。ただし、本実施形態のTFT基板100では、ソース層においてドレイン電極が設けられていない。
また、半導体層6において、ゲート絶縁膜20を介してゲート電極と対向する部分に、TFTのチャネルが形成されている。このチャネルを挟むように、TFTのソースおよびドレイン(例えば、不純物注入により形成されたn+型不純物領域)が、半導体層6に形成されていてもよい。
また、TFT基板100では、層間絶縁膜22上に形成されたソース層を覆うように、TFTの保護膜としてのパッシベーション膜24が形成されている。また、パッシベーション膜24上には、有機絶縁膜26が形成されている。有機絶縁膜26は、その上に形成される画素電極10を平坦な面上に形成するための平坦化膜として設けられる。
TFT基板100には、有機絶縁膜26上に配置された下層透明電極12と、これを覆う上層絶縁膜28と、この上層絶縁膜28上において、下層透明電極12と重なる部分を有するように形成された透明な画素電極10とが設けられている。上層絶縁膜28を介して対向する一対の透明電極(画素電極10および下層透明電極12)によって、補助容量(蓄積容量)Csが形成されている。
なお、下層透明電極12は、図示しない配線を用いて例えばグランドに接続されている。また、TFT基板100を液晶表示装置に用いる場合には、TFT基板100に対向して配置される対向基板上の対向電極と同電位になるように、下層透明電極12に配線を接続しても良い。
TFTのドレインと画素電極10との接続は、ゲート絶縁膜20、層間絶縁膜22、パッシベーション膜24を貫通するように設けられた下層コンタクトホール(第1コンタクトホール)30と、上層絶縁膜28を貫通するように設けられた上層コンタクトホール(第2コンタクトホール)32とを介して行われる。図からわかるように、上層コンタクトホール32は、下層コンタクトホール30の内部に形成されている。これらは、基板法線方向から見たときに重なるように配置されており、下層コンタクトホール30と上層コンタクトホール32とによって、画素電極-TFTのドレイン間の各絶縁膜(パッシベーション膜24、上層絶縁膜28など)を貫通する共通のコンタクトホール34が構成されている。
また、下層コンタクトホール30の内部には、後述するように下層透明電極12と同工程において同材料で形成される接続用透明電極14が設けられている。接続用透明電極14は、下層透明電極12とは分離して形成されており、補助容量を形成するものではない。接続用透明電極14は、半導体層6のコンタクト部(TFTのドレイン)と接し、かつ、画素電極10と接するように設けられており、半導体層6と画素電極10とを接続するために用いられる。
このような構成において、TFTのドレインと画素電極10とは、一箇所にまとめられたコンタクトホール34を介して接続される。このようにすれば、コンタクトホールの占有面積を小さくできるため、画素の開口率を向上させることができる。また、コンタクトホール34の底部に接続用透明電極14が形成されており、後述するように、上層絶縁膜28に上層コンタクトホール32を設ける工程で、半導体層6が損傷することが防止される。また、コンタクトホール34内に遮光性を有する金属層(ドレイン電極)が設けられていないので、画素の透光性が高く、高輝度での表示を行うのに適したTFT基板100が得られる。
次に、図1(b)を参照しながら、周辺接続領域におけるゲート配線とソース配線との接続形態を説明する。
周辺接続領域において、ゲート配線8とソース配線9とは、それぞれの上部に設けられたゲートコンタクトホール38とソースコンタクトホール39とによって接続される。ゲートおよびソースコンタクトホール38、39は、図1(a)に示した構成と同様に、コンタクトホールを重ねて配置することで得られる。ゲートおよびソースコンタクトホール38、39内において露出したゲート配線8とソース配線9とに接続するように、画素電極10と同工程で形成される上層透明電極16が設けられ、これにより、ゲート配線8とソース配線9とが導通している。
また、ゲートおよびソースコンタクトホール38、39の内部においても、表示領域(画素配列領域)と同様に、接続用透明電極(周辺透明電極)14が配置されている。これにより、ゲート配線8およびソース配線9の表面の損傷を防止しながら、ゲート配線8とソース配線9との接続を適切に行うことができる。
なお、周辺接続領域におけるゲート配線8とソース配線9との接続は、次のような場合に行われる。例えば、額縁領域に配置されたソースドライバからソースバスラインの端部までの配線をゲート配線を用いて行う場合、ドライバからのソース信号をソースバスラインに入力するためにゲート配線とソース配線(ソースバスライン)とを接続する必要がある。また、半導体層6としてIGZO(インジウム、ガリウム、亜鉛から構成される酸化物)などの酸化物半導体を用いる場合、酸化物半導体とともにゲート配線やソース配線を用いて、駆動回路を基板上に一体的に作製することが考えられるが、この場合にも、所定の回路を形成するためには、ゲート配線とソース配線とを接続する必要がある。
以下、図2および図3を参照しながら、TFT基板100の製造工程を説明する。図2および図3において、図中左側にはTFTのドレインと画素電極10との接続部を示し、図中右側には周辺接続領域におけるゲート配線8とソース配線9との接続部を示す。
図2(a)に示すように、まず、ガラスなどからなる透明の基板2上に、ベースコート層4が形成され、その上に、半導体層6が形成される。ベースコート層4は、例えば、厚さ100nmのSiN膜や、厚さ100nmのSiO2膜である。また、半導体層6は、例えば、a-Si(アモルファスシリコン)やp-Si(ポリシリコン)により形成される。また、IGZOなどの酸化物半導体であっても良い。p-SiやIGZOの場合、半導体層6の厚さは50nm程度であってよく、a-Siの場合は、例えば50~200nm程度であってよい。なお、a-Siやp-Siの場合はドライエッチングによりパターニングすることができ、IGZOの場合はシュウ酸を用いたウェットエッチングによりパターニングすることができる。半導体層6は、所定の領域において典型的には島状に形成される。
また、半導体層6上にはゲート絶縁膜20が形成され、このゲート絶縁膜20上にゲート層(ゲートバスライン、ゲート電極やゲート配線8など)が形成される。ゲート絶縁膜20は、例えば、厚さ100nmのSiO2から形成され、ゲート層は、例えば、Ti(50nm)/Al(100nm)/Ti(30nm)の積層構造を有するように形成される。
次に、これらを覆うように層間絶縁膜22(例えば、厚さ300nmのSiO2膜や、厚さ150nmのSiNx膜)が形成され、その上に、ソース層(ソースバスライン、ソース電極やソース配線9など)が形成される。ソース層は、例えば、Ti(50nm)/Al(100nm)/Ti(30nm)の積層構造を有するように形成され、塩素系のガスを用いたドライエッチングによりパターニングすることができる。なお、必要に応じて、ソース層を形成する前に層間絶縁膜22にコンタクトホールを設けておき、半導体層6のソース領域とソースバスラインやソース電極とのコンタクトを取るようにしてもよい。
さらに、ソース層を覆うように、保護膜としてのパッシベーション膜24が形成される。パッシベーション膜24は、例えば、厚さ200nmのSiO2膜から形成される。
その後、図2(b)に示すように、パッシベーション膜24を覆うように有機絶縁膜26が形成される。有機絶縁膜26は、例えば、フォトリソグラフィ法によって、所定のマスクを用いてパターニングを行い、厚さ2.5μmで形成することができる。
次に、ドレイン接続部(図中左側)では、パッシベーション膜24、層間絶縁膜22、ゲート絶縁膜20がドライエッチングにより部分的に除去され、下層コンタクトホール30が形成される。また、周辺接続領域(図中右側)では、ゲート配線8上の絶縁膜、および、ソース配線9上の絶縁膜がエッチングされ、下層ゲートコンタクトホール36および下層ソースコンタクトホール37が形成される。
この工程では、有機絶縁膜26をマスクにして、パッシベーション膜24、層間絶縁膜22、ゲート絶縁膜20がドライエッチングされる。その際のエッチングガスとしては、CF4+O2を用いることができる。ただし、半導体層6がa-Siからなる場合は、半導体層6に近接する深さではエッチングガスの種類を切り替えてCHF3やC4F8ガスを使用することによって、エッチング選択比を確保すればよい。半導体層6が酸化物半導体からなる場合は、CF4+O2ガスのままで選択比は確保される。
また、周辺接続領域において、ゲート/ソース配線8、9は、ドライエッチング工程で膜厚方向にダメージを受けることになる。ただし、ゲート/ソース配線8、9に、アルミニウム膜の表面がチタン膜やモリブデン膜で覆われる積層構造を採用すれば、表層のチタン膜やモリブデン膜によって、エッチング時にアルミニウム膜の表面が露出することを防止することができる。
その後、図3(a)に示すように、例えばITOまたはIZO等からなる透明導電膜を成膜し、フォトリソグラフィ法によりパターニングすることによって、下層透明電極12が形成される。このとき、前工程で形成された下層コンタクトホール30内に、接続用透明電極14が形成される。また、周辺接続領域では、下層ゲート/ソースコンタクトホール36、37のそれぞれの内部において、ゲート配線8、ソース配線9上に接続用透明電極14がそれぞれ形成される。下層透明電極12および接続用透明電極14は、例えば、厚さ50nmのa-ITO膜(アモルファスITO膜)やIZO膜から形成される。
なお、下層透明電極12および接続用透明電極14の形成方法については後述するが、下層コンタクトホール30内に、接続用透明電極14を自己整合的に形成することが可能である。もちろん、フォトレジストを用いたパターニングによって下層コンタクトホール30内に接続用透明電極14を意図的に形成してもよい。
その後、図3(b)に示すように、下層透明電極12や接続用透明電極14を覆うように上層絶縁膜28が形成される。上層絶縁膜28は、例えば厚さ200nmのSiO2膜やSiNx膜から形成される。その後、下層コンタクトホール30内の上層絶縁膜28がエッチングにより除去され、上層コンタクトホール32が形成される。また、周辺接続領域では、下層ゲート/ソースコンタクトホール36、37内において上層絶縁膜28が除去され、上層ゲート/ソースコンタクトホール40、41が形成される。
この工程で、フォトリソグラフィ法を用いて、下層コンタクトホール30内にレジストの開口部を形成し、上層絶縁膜28のドライエッチングを行う。この際に、先に形成された接続用透明電極14がエッチストッパとなるために、CF4+O2でドライエッチングを行っても下地の半導体層6(a-Si、p-Si、酸化物半導体)にダメージが及ぶことが防止されながら、下層コンタクトホール30内に、接続用透明電極14の一部を露出させる上層コンタクトホール32が形成される。また、周辺接続領域においても接続用透明電極14がエッチストッパとして機能するため、ゲート配線8およびソース配線9にダメージを与えることなく、接続用透明電極14を露出させる上層ゲート/ソースコンタクトホール40、41がそれぞれ形成される。
その後、図3(c)に示すように、上層透明導電膜(具体的には、透明導電膜(ITO、IZO等))を成膜し、フォトリソグラフィ法でパターニングを行うことによって画素電極10などを形成する。上層透明導電膜は、例えば、厚さ50nmのa-ITO膜やIZO膜から形成される。
TFTのドレインと接続された画素電極10(上層透明導電膜)は、液晶層などの表示媒体層に電圧を印加するために用いられるとともに、上層絶縁膜28を介して対向するように配置された下層透明電極12との間で補助容量を形成する。また、周辺接続領域において、ゲート/ソース配線8、9と接続された上層透明電極16(上層透明導電膜)は、ゲート/ソース配線同士を電気的に接続すると共に、ゲート層、ソース層に続く第3層目の配線としても利用できる。
以上に説明したように、本実施形態のTFT基板100では、画素電極10と下層透明電極12とを用いて補助容量を形成する構成において、下層コンタクトホール30と上層コンタクトホール32とを重ねて配置することで、画素開口率を向上させることができる。また、下層コンタクトホール30内に、エッチストッパとして機能する接続用透明電極14を下層透明電極12と同工程で同材料により形成しているので、上層コンタクトホール32を形成する際の半導体層6へのダメージを、工程数の増加を伴わずに抑制することができる。
また、TFT基板100では、コンタクトホール34内のドレイン接続部において、従来設けられていた金属のドレイン電極(遮光部)が設けられていないので、画素における光透過率を向上させることができる。
さらに、ソース層と上層透明導電膜とが直接接続されず、接続用透明電極14が介在する形態であるので、周辺接続領域において、上層透明電極16がITOから形成され、かつ、ソース層の表面にアルミニウム膜が露出している場合にも、接続用透明電極14をIZOなどから形成することによって、ITOとAlとの接続による電触の発生を防止することができる。
(実施形態2)
図4(a)および(b)は、本発明の実施形態2に係るTFT基板200を示す断面図である。ここでは、ボトムゲート型(逆スタガ型)のTFTが設けられている。図4(a)には、TFT近傍におけるTFTと画素電極10との接続部が示され、図4(b)には、画素が配列された領域の外側に位置する周辺接続領域におけるソース配線とゲート配線との接続形態が示されている。なお、実施形態1と同様の機能を有する構成部材には、同様の参照符号を付し説明を省略する。
図4(a)および(b)は、本発明の実施形態2に係るTFT基板200を示す断面図である。ここでは、ボトムゲート型(逆スタガ型)のTFTが設けられている。図4(a)には、TFT近傍におけるTFTと画素電極10との接続部が示され、図4(b)には、画素が配列された領域の外側に位置する周辺接続領域におけるソース配線とゲート配線との接続形態が示されている。なお、実施形態1と同様の機能を有する構成部材には、同様の参照符号を付し説明を省略する。
図4(a)および(b)に示すように、TFT基板200では、ベースコート層4によって覆われた基板2上において、ゲートバスライン(図示せず)やゲート配線8などを含むゲート層が設けられ、これらを覆うようにゲート絶縁膜20が設けられている。
ゲート絶縁膜20上には、TFTのチャネルを形成するための半導体層6が設けられている。半導体層6上には、ソースバスライン(図示せず)やソース配線9などを含むソース層が設けられている。また、ドレイン接続部(図4(a))において半導体層6上にはドレイン電極19が設けられている。ドレイン電極19は、例えば、Ti(50nm)/Al(100nm)/Ti(30nm)の積層構造を有していても良い。
また、ソース層の上には、保護膜としてのパッシベーション膜24と、平坦化膜としての有機絶縁膜26とが形成されている。TFT基板200においても、有機絶縁膜26上に配置された下層透明電極12と、これを覆う上層絶縁膜28と、透明な画素電極10とが設けられ、これらによって補助容量(蓄積容量)Csが形成されている。
また、パッシベーション膜24および有機絶縁膜26に形成された下層コンタクトホール30の底部には、下層透明電極12と同材料から形成される接続用透明電極14が配置されている。接続用透明電極14は、ドレイン電極19上に、これに接するように設けられている。
本実施形態においても、上層絶縁膜28に設けられる上層コンタクトホール32は下層コンタクトホール30の内側に配置されており、これらによって、画素電極-TFTのドレイン間の絶縁膜を貫通するコンタクトホール34が形成されている。コンタクトホール34において、画素電極10は、接続用透明電極14を介してドレイン電極19に接続されている。なお、図4(b)に示すように、周辺接続領域の構成は、ゲート配線8がゲート絶縁膜20の下側に位置し、かつ、ゲートコンタクトホール38がゲート絶縁膜20を貫通していることを除いて、図1(b)に示した形態と同様である。
以下、図5および図6を参照しながら、TFT基板200の製造方法を説明する。
図5(a)に示すように、まず、表面にベースコート層4が形成された基板2上に、ゲート層(ゲートバスライン、ゲート電極やゲート配線8など)が形成される。ゲート層は、例えば、Ti(50nm)/Al(100nm)/Ti(30nm)の積層構造を有するように形成される。また、ゲート層を覆うようにゲート絶縁膜20が形成される。ゲート絶縁膜20は、例えば、厚さ50nmのSiO2膜や、厚さ300nmのSiNx膜から形成される。
ゲート絶縁膜20上には、半導体層6が形成される。半導体層6は、実施形態1と同様に、a-Si(アモルファスシリコン)やIGZOなどの酸化物半導体から形成されていてよく、所定の領域において典型的には島状に形成される。
次に、ソース層が形成されるが、本実施形態では、この工程において、ソースバスライン、ソース電極、ソース配線9などとともに、ドレイン電極19が形成される。これらは、例えば、Ti(50nm)/Al(100nm)/Ti(30nm)の積層構造を有するように形成され、塩素系のガスを用いたドライエッチングによりパターニングすることで得られる。さらに、ソース層を覆うようにして、保護膜としてのパッシベーション膜24が形成される。
その後、図5(b)に示すように、パッシベーション膜24を覆うように有機絶縁膜26が形成される。有機絶縁膜26は、例えば、フォトリソグラフィ法によって、所定のマスクを用いてパターニングを行い、厚さ2.5μmで形成することができる。
次に、ドレイン接続部(図中左側)では、有機絶縁膜26をマスクとして、パッシベーション膜24がドライエッチングにより部分的に除去され、下層コンタクトホール30が形成される。また、周辺接続領域(図中右側)では、ゲート配線8上の絶縁膜、および、ソース配線9上の絶縁膜がエッチングされ、下層ゲートコンタクトホール36および下層ソースコンタクトホール37が形成される。
下層コンタクトホール30および下層ゲート/ソースコンタクトホール36、37を設ける際のエッチングガスとしては、CF4+O2を用いることができる。ドレイン電極19や、ゲート/ソース配線8、9は膜厚方向にダメージを受けるものの、上記のように、アルミニウム膜を挟むようにチタン膜やモリブデン膜が設けられた積層構造を有していれば、表層のチタン膜やモリブデン膜によって、エッチング時にアルミニウム膜の表面が露出することが抑制される。
また、TFT基板200では、このエッチング工程において、ドレイン電極19の表面にアルミニウム膜が露出している場合にも、後述するように、接続用透明電極14がその上に形成されている。この場合、接続用透明電極14をIZOから形成しておけば、画素電極10がITOからなる場合にも、画素電極10とドレイン電極19との電触を防止し、IZOからなる接続用透明電極14を介して画素電極10(ITO)とドレイン電極19(Al)との適切な電気的接続を得ることができる。
その後、図6(a)に示すように、ITOまたはIZO等からなる透明導電膜を成膜し、フォトリソグラフィ法によりパターニングすることによって、下層透明電極12が形成される。このとき、前工程で形成された下層コンタクトホール30内に、接続用透明電極14が形成される。また、周辺接続領域では、下層ゲート/ソースコンタクトホール36、37のそれぞれの内部において、ゲート配線8、ソース配線9上に接続用透明電極14がそれぞれ形成される。下層透明電極12および接続用透明電極14は、例えば、厚さ50nmのa-ITO膜やIZO膜から形成される。
その後、図6(b)に示すように、下層透明電極12や接続用透明電極14を覆うように上層絶縁膜28が形成される。上層絶縁膜28は、例えば厚さ200nmのSiO2膜やSiNx膜から形成される。その後、下層コンタクトホール30内の上層絶縁膜28がエッチングにより除去され、上層コンタクトホール32が形成される。また、周辺接続領域では、下層ゲート/ソースコンタクトホール36、37内において上層絶縁膜28が除去され、上層ゲート/ソースコンタクトホール40、41が形成される。
この工程で、フォトリソグラフィ法を用いて、先に形成しておいた下層コンタクトホール30内にレジストの開口部を形成し、ドライエッチングを行う。この際に、先に形成された接続用透明電極14がエッチストッパとなるために、CF4+O2でドライエッチングを行ってもドレイン電極19などにダメージが及ぶことが防止される。また、周辺接続領域においても接続用透明電極14がエッチストッパとして機能するため、ゲート配線8およびソース配線9にダメージを与えることなく、接続用透明電極14を露出させる上層ゲートコンタクトホール40および上層ソースコンタクトホール41がそれぞれ形成される。
その後、図6(c)に示すように、上層透明導電膜(具体的には、透明導電膜(ITO、IZO等))を成膜し、フォトリソグラフィ法でパターニングを行うことによって画素電極10を形成する。上層透明導電膜は、例えば、厚さ50nmのa-ITO膜やIZO膜から形成される。
TFTのドレインと接続された画素電極10は、上層絶縁膜28を介して対向するように配置された下層透明電極12との間で補助容量を形成する。また、周辺接続領域において、ゲート/ソース配線8、9と接続されるように形成された上層透明電極16は、ゲート/ソース配線同士を電気的に接続すると共に第3層目の配線としても利用できる。
本実施形態では、コンタクトホール34において、ドレイン電極19の表面にアルミニウムが露出している場合であっても、接続用透明電極14をIZOから形成しておくことで、ITOからなる画素電極10と適切にコンタクトを得ることができる。
次に、逆スタガ型のTFT構造を有する実施形態2のTFT基板200の変形例を説明する。
図11(d)は、実施形態2の変形例のTFT基板202を示す。TFT基板202では、逆スタガ型のTFTのドレイン接続部において、上記TFT基板200とは異なり、コンタクトホール34内にドレイン電極が設けられていない。TFT基板202では、コンタクトホール34において、半導体層6と接続用透明電極14とが直接接続されている。このようにすることで、逆スタガ型のTFT構造を有する場合であっても、遮光部となる金属層の存在を極力少なくし、光透過率の高い画素構成を実現し得る。
(下層電極形成工程)
以下、図7~9を参照しながら、下層透明電極12を形成する工程(図3(a)および図6(a)参照)において、下層コンタクトホール30内に接続用透明電極14を自己整合的に形成する工程を説明する。
以下、図7~9を参照しながら、下層透明電極12を形成する工程(図3(a)および図6(a)参照)において、下層コンタクトホール30内に接続用透明電極14を自己整合的に形成する工程を説明する。
図7(a)は、下層透明電極12や接続用透明電極14のパターニングに用いられるレジストマスクの形成工程を示し、具体的には、レジストマスクとなるフォトレジストの露光プロセスを示す。下層透明電極12や接続用透明電極14は、ITOやIZOなどからなる透明導電膜13を成膜した後、レジストマスクを用いてパターニングを行うことによって形成されるが、このレジストマスクは、ポジ型フォトレジスト(感光性樹脂)を露光することで得られる。
図示するように、レジストマスクを形成するために、ポジ型フォトレジストに対して、マスクMを配置した状態で光Lの照射が行われる。マスクMの開口部に対応するようにフォトレジストに露光領域R1が形成されるとともに、マスクMによって覆われる部分に対応してフォトレジストに未露光領域R2が形成される。
このとき、有機絶縁膜26をマスクとして形成された下層コンタクトホール30の深さは例えば約3μmと深い。このため、光Lの照射量(露光量)を適切に選択すれば、下層コンタクトホール30の底面近傍に位置するフォトレジストに未露光領域R3を形成することができる。
図7(b)は、現像の結果を示す。マスクMによって覆われていた未露光領域R2に対応してフォトレジスト44が残るとともに、未露光領域R3に対応して自己整合的に下層コンタクトホール30内にもフォトレジスト46が残る。このようにして、下層コンタクトホール30の周囲を囲むように配置される開口部を有するマスクMを用いて、露光量を適切に調節することで、下層コンタクトホール30の底部近傍にもフォトレジスト46を設けることが可能である。
図7(c)は、図7(b)に示したフォトレジスト(レジストマスク)44、46を用いてドライエッチングを行った後の様子を示す。レジストマスク44、46によって覆われていた透明導電膜13はエッチングされずに残り、その結果、補助容量を形成するための下層透明電極12と、下層コンタクトホール30の底部と側面の一部を覆うように形成された接続用透明電極14とが得られる。
図8は、フォトレジストの露光量と、コンタクトホール内に自己整合的にレジストパターンを形成することが可能な限界のコンタクトホールの径との関係を示すグラフである。
露光量が少なすぎると、フォトレジストの残部が多すぎるため、下層透明電極12および接続用透明電極14を形成するためのマスクパターンを形成することが困難である。したがって、露光量としては、約40mJ以上であることが好ましい。
ただし、この場合において、フォトレジストの露光量が増加すると、コンタクトホール内のポジ型レジストが除去されやすくなるので、現像後にコンタクトホール内にレジストが残りにくくなる。特に、露光量が大きい場合において、コンタクトホールの径が大きすぎると、自己整合的にコンタクトホール内にレジストを残すことが不可能になることが実験によりわかった。グラフには、その限界のコンタクト径が露光量に関連付けて示されている。
このグラフからわかるように、レジスト露光量を約40mJ以上に設定し、下層コンタクトホール30の底面での直径(有機絶縁膜26の開口部の直径)を約4μm以下に設定することが、下層コンタクトホール30内にレジストマスク(未露光のフォトレジスト)を自己整合的に安定して残すためには好ましい。
図9(a)および(b)は、このようにして自己整合的に形成された接続用透明電極14と下層透明電極12とを示しており、図9(b)は図9(a)の破線で囲む領域の部分拡大図である。また、図9(a)および(b)には、上層絶縁膜28をフォトレジスト29を用いてエッチングした結果、接続用透明電極14に到達する上層コンタクトホール32が形成された様子が示されている。接続用透明電極14は、レジストマスク作製の際のレジスト露光量とコンタクトホールの径とを適切に選択することで、コンタクトホール内に残存させたフォトレジストを用い、自己整合的に形成することができた。
(画素開口率)
以下、図10および図11を参照しながら、本発明の実施形態による画素開口率と、従来の構成による画素開口率とを比較して説明する。
以下、図10および図11を参照しながら、本発明の実施形態による画素開口率と、従来の構成による画素開口率とを比較して説明する。
図10(a)および(b)は、従来のトップゲート型のTFTを有するTFT基板の画素でのコンタクトホールを示し、図10(c)および(d)は、本発明の実施形態によるトップゲート型のTFTを有するTFT基板の画素でのコンタクトホールを示す。
図10(a)および(b)からわかるように、従来のトップゲート型TFT基板では、半導体層6とドレイン電極99とを接続するコンタクトホール30’と、ドレイン電極99と画素電極10とを接続するコンタクトホール32’とが別々の位置に設けられている。このため、画素中の遮光領域が増加し、画素開口率が低下する。例えば、249ppiのフルハイデフィニション(FHD)中小型パネルに適用した場合で、画素開口率は約74%であった。
これに対して、図10(c)および(d)からわかるように、本発明の実施形態に係るTFT基板では、下層透明電極12と同工程で設けられた接続用透明電極14がコンタクトホール34内に設けられており、一箇所のコンタクトホール34で足りるので、画素開口率が向上する。例えば、249ppiのFHD中小型パネルに適用した場合で、画素開口率は約77%であった。
また、図11(a)および(b)は、従来のボトムゲート型のTFTを有するTFT基板の画素でのコンタクトホールの配置を示し、図11(c)および(d)は、本発明の実施形態によるボトムゲート型のTFTを有するTFT基板の画素でのコンタクトホールの配置を示す。
図11(a)および(b)からわかるように、従来のボトムゲート型TFT基板では、半導体層6と接続するように設けられたドレイン電極99を、これらの接続箇所とは異なる位置に設けられたコンタクトホール34’において画素電極10と接続する。このような構成において、例えば、249ppiのFHD中小型パネルに適用した場合で、画素開口率は約76%であった。
これに対して、図11(c)および(d)からわかるように、本発明の実施形態にかかるTFT基板では、下層透明電極12と同工程で設けられた接続用透明電極14がコンタクトホール34内に設けられており、ドレイン接続部とコンタクトホール34とが重なるように配置されているので、画素開口率が向上する。例えば、249ppiのFHD中小型パネルに適用した場合で、画素開口率は約81%であった。
以上、本発明の実施形態を説明したが、種々の改変を行い得ることは言うまでもない。また、本発明のTFT基板は、種々の表示装置において用いられ、TFT基板上に配置される表示媒体層(例えば液晶層)を駆動する。本発明のTFT基板は、VA(Vertical Alignment)モードの液晶表示装置だけでなく、IPSやFFS(Fringe Field Switching)などの横電界モードの液晶表示装置のアクティブマトリクス基板としても好適に用いられる。
本発明は、液晶表示装置等の種々の表示装置のTFT基板として広く用いられる。
100 TFT基板
2 基板
4 ベースコート層
6 半導体層
8 ゲート配線
9 ソース配線
10 画素電極
12 下層透明電極
14 接続用透明電極
16 上層透明電極
20 ゲート絶縁膜
22 層間絶縁膜
24 パッシベーション膜
26 有機絶縁膜
28 上層絶縁膜
30 下層コンタクトホール(第1コンタクトホール)
32 上層コンタクトホール(第2コンタクトホール)
34 コンタクトホール
2 基板
4 ベースコート層
6 半導体層
8 ゲート配線
9 ソース配線
10 画素電極
12 下層透明電極
14 接続用透明電極
16 上層透明電極
20 ゲート絶縁膜
22 層間絶縁膜
24 パッシベーション膜
26 有機絶縁膜
28 上層絶縁膜
30 下層コンタクトホール(第1コンタクトホール)
32 上層コンタクトホール(第2コンタクトホール)
34 コンタクトホール
Claims (13)
- 基板と、
前記基板上に設けられたTFTと、
前記TFTの上方に設けられた第1絶縁層と、
前記第1絶縁層の上方に設けられた下層透明電極と、
前記下層透明電極を覆う第2絶縁層と、
前記第2絶縁層上に設けられた画素電極とを備え、
前記下層透明電極と前記第2絶縁層と前記画素電極とによって補助容量が形成されているTFT基板であって、
前記TFTと前記画素電極とは、前記第1絶縁層と前記第2絶縁層とを貫通するコンタクトホールにおいて電気的に接続されており、
前記コンタクトホール内に配置され、前記下層透明電極と分離するように形成された接続用透明電極を更に備え、
前記接続用透明電極を介して前記TFTと前記画素電極とが電気的に接続されるTFT基板。 - 前記接続用透明電極は、前記下層透明電極と同じ材料からなる請求項1に記載のTFT基板。
- 前記TFTは、チャネルを構成する半導体層を備えており、前記半導体層と、前記コンタクトホールとが基板法線方向から見たときに重なるように配置されている請求項1または2に記載のTFT基板。
- 前記コンタクトホールは、前記第1絶縁層に形成された第1コンタクトホールと、前記第2絶縁層に形成された第2コンタクトホールとによって構成されており、前記第1コンタクトホールと前記第2コンタクトホールとは、基板法線方向から見たときに重なるように配置されている請求項1から3のいずれかに記載のTFT基板。
- 前記接続用透明電極は、前記第1コンタクトホールの底部全体にわたって形成されている請求項4に記載のTFT基板。
- 前記接続用透明電極は、前記第1コンタクトホールの側面の一部を覆う請求項5に記載のTFT基板。
- 前記半導体層と、前記接続用透明電極とが直接接している請求項3に記載のTFT基板。
- 複数の前記画素電極が配列された表示領域と、前記表示領域の外側に位置する周辺接続領域とが設けられており、
前記周辺接続領域において、前記第1絶縁層と前記第2絶縁層との下方に設けられたゲート配線およびソース配線を有し、
前記ゲート配線と前記ソース配線とのそれぞれの上部には、前記第1絶縁層と前記第2絶縁層とを貫通するゲートコンタクトホールとソースコンタクトホールとがそれぞれ形成されており、
前記ゲートコンタクトホールおよび前記ソースコンタクトホールのうちの少なくともいずれか一方の内部において、前記下層透明電極と分離するように形成された周辺透明電極をさらに有する請求項1から7のいずれかに記載のTFT基板。 - 前記画素電極と同材料から形成され、前記ゲートコンタクトホールおよび前記ソースコンタクトホールを介して前記ゲート配線と前記ソース配線とを接続する導電層をさらに有する請求項8に記載のTFT基板。
- 請求項1から9のいずれかに記載のTFT基板と、
前記TFT基板上に配置される表示媒体層と
を備える表示装置。 - 基板を用意する工程と、
前記基板上にTFTを形成する工程と、
前記TFTの上方に第1絶縁層を設ける工程と、
前記第1絶縁層に第1コンタクトホールを設ける工程と、
前記第1絶縁層の上方に下層透明電極を設け、かつ、前記第1コンタクトホール内に、前記下層透明電極と同じ材料からなる接続用透明電極を前記下層透明電極と分離して設ける工程と、
前記下層透明電極および前記接続用透明電極を覆う第2絶縁層を設ける工程と、
前記第2絶縁層に第2コンタクトホールを設ける工程と、
前記第2絶縁層上に画素電極を設ける工程と
を包含し、
前記接続用透明電極を介して、前記TFTのドレインと前記画素電極とが接続されるTFT基板の製造方法。 - 前記接続用透明電極を設ける工程は、
前記第1コンタクトホールの内部と前記第1コンタクトホールの外側の領域とを一体的に覆う透明導電層を形成する工程と、
前記第1コンタクトホール内にフォトレジストを配置する工程と、
前記第1コンタクトホール内のフォトレジストを部分的に除去することによって前記第1コンタクトホールの底部近傍のみを選択的に覆うレジストマスクを形成する工程と、
前記レジストマスクを用いて前記透明導電層を部分的に除去することによって、前記接続用透明電極を形成する工程と
を包含する請求項11に記載のTFT基板の製造方法。 - 前記フォトレジストは、ポジ型のフォトレジストであり、
前記第1コンタクトホール内にフォトレジストを配置する工程は、前記第1コンタクトホールの内部と、前記第1コンタクトホールの外側の領域とを一体的に覆うフォトレジスト層を配置する工程を含み、
前記レジストマスクを形成する工程は、
前記フォトレジスト層の上方において、前記第1コンタクトホールと少なくとも部分的に重なる開口部を有するマスクを配置する工程と、
前記マスクの前記開口部を通して、前記フォトレジスト層における前記第1コンタクトホール内のフォトレジストを部分的に露光し、かつ、露光されたフォトレジストを現像により除去する露光現像工程とを含み、
前記露光現像工程において、前記第1コンタクトホール内のフォトレジストのうちの前記コンタクトホールの底部近傍のみのフォトレジストが現像後に残るように選択された露光量で露光を行う請求項12に記載のTFT基板の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/127,844 US9081243B2 (en) | 2011-06-22 | 2012-06-15 | TFT substrate, method for producing same, and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011138638 | 2011-06-22 | ||
JP2011-138638 | 2011-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012176702A1 true WO2012176702A1 (ja) | 2012-12-27 |
Family
ID=47422540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/065341 WO2012176702A1 (ja) | 2011-06-22 | 2012-06-15 | Tft基板およびその製造方法ならびに表示装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9081243B2 (ja) |
WO (1) | WO2012176702A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI469360B (zh) * | 2012-09-06 | 2015-01-11 | Innocom Tech Shenzhen Co Ltd | 顯示面板及顯示裝置 |
CN104091807B (zh) * | 2014-06-19 | 2016-09-07 | 京东方科技集团股份有限公司 | 一种阵列基板及其制作方法、显示装置 |
CN104183607A (zh) * | 2014-08-14 | 2014-12-03 | 深圳市华星光电技术有限公司 | 阵列基板及其制造方法、显示装置 |
CN106886107B (zh) | 2015-12-15 | 2020-02-14 | 群创光电股份有限公司 | 显示面板 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009133954A (ja) * | 2007-11-29 | 2009-06-18 | Epson Imaging Devices Corp | 液晶表示装置及びその製造方法 |
JP2010282125A (ja) * | 2009-06-08 | 2010-12-16 | Sharp Corp | アクティブマトリクス基板およびその製造方法 |
WO2011033817A1 (ja) * | 2009-09-17 | 2011-03-24 | シャープ株式会社 | 配線基板の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000165747A (ja) * | 1998-11-27 | 2000-06-16 | Sharp Corp | X線撮像装置 |
KR100630880B1 (ko) * | 1999-12-31 | 2006-10-02 | 엘지.필립스 엘시디 주식회사 | 엑스레이 영상 감지소자 및 그 제조방법 |
JP4817718B2 (ja) | 2005-05-27 | 2011-11-16 | シャープ株式会社 | 表示装置用基板及びそれを備えた液晶表示装置 |
JP2008180807A (ja) | 2007-01-23 | 2008-08-07 | Epson Imaging Devices Corp | 電気光学装置およびその電気光学装置を備えた電子機器 |
KR20100035318A (ko) * | 2008-09-26 | 2010-04-05 | 삼성전자주식회사 | 액정 표시 장치 |
-
2012
- 2012-06-15 WO PCT/JP2012/065341 patent/WO2012176702A1/ja active Application Filing
- 2012-06-15 US US14/127,844 patent/US9081243B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009133954A (ja) * | 2007-11-29 | 2009-06-18 | Epson Imaging Devices Corp | 液晶表示装置及びその製造方法 |
JP2010282125A (ja) * | 2009-06-08 | 2010-12-16 | Sharp Corp | アクティブマトリクス基板およびその製造方法 |
WO2011033817A1 (ja) * | 2009-09-17 | 2011-03-24 | シャープ株式会社 | 配線基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US9081243B2 (en) | 2015-07-14 |
US20140125907A1 (en) | 2014-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4417072B2 (ja) | 液晶表示装置用基板及びそれを用いた液晶表示装置 | |
JP4658514B2 (ja) | 薄膜トランジスタ・アレイ基板及びその製造方法 | |
JP6230253B2 (ja) | Tftアレイ基板およびその製造方法 | |
JP4107662B2 (ja) | 薄膜トランジスタアレイ基板の製造方法 | |
US20130222726A1 (en) | Liquid crystal display device and method of fabricating the same | |
JP5120828B2 (ja) | 薄膜トランジスタ基板とその製造方法、及びこれを有する液晶表示パネルとその製造方法 | |
US20060023138A1 (en) | Array substrate for LCD and fabrication method thereof | |
JP2005122182A (ja) | 表示素子用の薄膜トランジスタ基板及び製造方法 | |
US9733530B2 (en) | Liquid crystal display panel and method of manufacturing the same | |
JP2009211009A (ja) | 液晶表示装置 | |
JP4578402B2 (ja) | 薄膜トランジスタ基板及びその製造方法 | |
JP2007164197A (ja) | 液晶表示装置及びその製造方法 | |
WO2018212100A1 (ja) | アクティブマトリクス基板およびその製造方法 | |
JP2005123610A (ja) | 薄膜トランジスタアレイ基板の製造方法 | |
WO2012176702A1 (ja) | Tft基板およびその製造方法ならびに表示装置 | |
JP6188473B2 (ja) | 薄膜トランジスタアレイ基板およびその製造方法 | |
US9690154B2 (en) | Liquid crystal display panel and method of manufacturing the same | |
KR100558714B1 (ko) | 액정표시패널 및 그 제조 방법 | |
US20080174708A1 (en) | Liquid crystal display device | |
JP5243310B2 (ja) | 液晶表示パネル及びその製造方法 | |
JP5329019B2 (ja) | 薄膜トランジスタアレイ基板及びその製造方法 | |
TWI490615B (zh) | 用於邊緣電場切換模式液晶顯示裝置的陣列基板及其製造方法 | |
JP5707725B2 (ja) | 薄膜のパターニング方法及び表示パネルの製造方法 | |
JP2014235353A (ja) | 表示パネル及びその製造方法、並びに、液晶表示パネル | |
KR20050105422A (ko) | 액정표시패널 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12802169 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14127844 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12802169 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |