WO2012176660A1 - 集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置 - Google Patents

集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置 Download PDF

Info

Publication number
WO2012176660A1
WO2012176660A1 PCT/JP2012/065000 JP2012065000W WO2012176660A1 WO 2012176660 A1 WO2012176660 A1 WO 2012176660A1 JP 2012065000 W JP2012065000 W JP 2012065000W WO 2012176660 A1 WO2012176660 A1 WO 2012176660A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
glass material
power generation
solar power
concentrating solar
Prior art date
Application number
PCT/JP2012/065000
Other languages
English (en)
French (fr)
Inventor
俣野 高宏
政幸 池本
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2012176660A1 publication Critical patent/WO2012176660A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to an optical element of a concentrating solar power generation device, a manufacturing method thereof, and a concentrating solar power generation device.
  • a glass optical system is provided between a condensing lens and a solar battery cell.
  • the optical system made of glass transmits the light collected by the condensing lens to the solar battery cell with total reflection on the inner surface. Therefore, the optical characteristics of the optical system are affected by the surface state.
  • Patent Document 1 discloses that a fluororesin thin film is provided on the side surface of an optical system. In Patent Document 1, it is proposed that this prevents the surface of the optical system from becoming clouded by water droplets and the like, and preventing a part of light from leaking therefrom.
  • the main object of the present invention is to provide an optical element of a concentrating solar power generation device excellent in weather resistance, a manufacturing method thereof, and a concentrating solar power generation device.
  • the optical element of the concentrating solar power generation device of the present invention is made of a glass material having a flame-polished surface.
  • the glass material preferably has a pair of end surfaces and side surfaces facing each other, and at least a part of the side surfaces is subjected to flame polishing.
  • the surface roughness of the flame-polished part of the surface of the optical element is preferably 200 nm or less in terms of arithmetic average roughness (Ra).
  • the glass material may contain an alkali component.
  • the glass material may be made of silicate glass.
  • the concentrating solar power generation device of the present invention includes a solar cell and a condensing optical system that condenses the solar cell.
  • the condensing optical system has an optical element made of a glass material having a flame-polished surface.
  • an optical element is obtained by flame polishing at least a part of the surface of a glass material.
  • flame polishing may be performed by burner heating, high frequency induction heating, or resistance heating.
  • FIG. 1 is a schematic conceptual diagram of a concentrating solar power generation device according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of an optical element according to an embodiment of the present invention.
  • FIG. 1 is a schematic conceptual diagram of a concentrating solar power generation apparatus including an optical element according to this embodiment.
  • the concentrating solar power generation device 1 includes a solar cell 5 and a condensing optical system 2 that condenses sunlight on the solar cell 5.
  • the condensing optical system 2 includes a condensing member 3 and an optical element 4.
  • the condensing member 3 condenses light such as sunlight.
  • the condensing member 3 can be composed of, for example, a convex lens or a Fresnel lens having positive optical power.
  • the optical element 4 is disposed between the light collecting member 3 and the solar cell 5.
  • the light condensed by the condensing member 3 enters the optical element 4 from the end face 41 of the optical element 4 (see FIG. 2).
  • the optical element 4 homogenizes the light collected by the light collecting member 3 and guides it to the light receiving surface 50 of the solar cell 5. Specifically, the light incident on the optical element 4 propagates through the optical element 4 while being homogenized by being reflected by the side surfaces 43a to 43d of the optical element 4.
  • the light propagating through the optical element 4 is emitted from the end face 42 of the optical element 4 toward the light receiving surface 50 as a homogenized planar light.
  • the solar cell 5 is arranged on the end surface 42 of the optical element 4 so that the light receiving surface 50 faces the end surface 42.
  • the light emitted from the end face 42 of the optical element 4 enters the solar cell 5. And in the solar cell 5, light energy is converted into electrical energy.
  • the type of the solar cell 5 is not particularly limited.
  • the solar cell 5 can be composed of, for example, a single crystal silicon solar cell, a polycrystalline silicon solar cell, a thin film solar cell, an amorphous silicon solar cell, a dye-sensitized solar cell, an organic semiconductor solar cell, or the like.
  • FIG. 2 is a schematic perspective view of the optical element according to the present embodiment. Next, a specific configuration of the optical element 4 will be described with reference to FIG.
  • the optical element 4 is made of a glass material.
  • the glass material constituting the optical element 4 preferably contains an alkali component.
  • Examples of the alkali component include lithium, potassium, cesium and the like.
  • the glass material is preferably silicate glass.
  • the glass material is, for example, SiO 2 : 40 to 80% by mass, Al 2 O 3 : 0 to 30% by mass, B 2 O 3 : 0 to 30% by mass, CaO: 0 to 20% by mass, MgO: 0 to 20% by mass, ZnO: 0 to 20% by mass, BaO: 0 to 20% by mass, Na 2 O: 0 to 20% by mass, K 2 O: 0 to 20% by mass, Li 2 O: 0 to It preferably contains 20% by mass, TiO 2 : 0 to 10% by mass, ZrO 2 : 0 to 20% by mass, Sb 2 O 3 : 0 to 1% by mass, and SrO: 0 to 20% by mass.
  • the silicate glass includes borosilicate glass.
  • the glass material preferably has a thermal expansion coefficient within a temperature range of 30 ° C. to 300 ° C. of 120 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 100 ⁇ 10 ⁇ 7 / ° C. or less, and 80 ⁇ 10 More preferably, it is ⁇ 7 / ° C. or lower. This is because if the thermal expansion coefficient of the glass material is too large, cracks are likely to occur in the glass material due to thermal shock when flame polishing described in detail later is performed.
  • the internal transmittance of the glass material at a wavelength of 400 nm is preferably 80% / 10 mm or more, more preferably 85% / 10 mm or more, and further preferably 87.5% / 10 mm or more.
  • the glass material has a shape that tapers from the light collecting member 3 side toward the solar cell 5 side.
  • the surface 40 of the glass material has two end surfaces 41 and 42 constituting a light entrance / exit surface and side surfaces 43a to 43d constituting a light reflection surface.
  • the end surfaces 41 and 42 are opposed to each other.
  • the side surfaces 43a to 43d connect the end surfaces 41 and 42.
  • At least a part of the surface 40 of the glass material constituting the optical element 4 is flame polished. Specifically, at least a part of at least the side surfaces 43a to 43d of the surface 40 of the glass material is flame-polished. In the present embodiment, specifically, the entire surface 40 of the glass material is flame polished. For this reason, the corner
  • the surface roughness of the flame-polished portion of the surface 40 is usually 200 nm or less in terms of the arithmetic surface roughness (Ra) defined by JISB0601.
  • the surface roughness of the flame-polished portion of the surface 40 is preferably 100 nm or less in arithmetic surface roughness (Ra), more preferably 50 nm or less, further preferably 20 nm or less, and more preferably 10 nm or less. It is particularly preferred that
  • optical element manufacturing method The optical element 4 is obtained by flame polishing at least a part of the surface 40 of the glass material.
  • the method for flame polishing the surface 40 of the glass material is not particularly limited.
  • flame polishing can be performed by burner heating, high-frequency heating, resistance heating, or the like.
  • the temperature of flame polishing can be appropriately adjusted in consideration of the composition and physical properties of the glass material. Flame polishing is preferably performed at a temperature equal to or higher than the glass transition temperature (Tg) of the glass material, and more preferably performed at a temperature equal to or higher than the softening temperature (Ts) of the glass material.
  • Tg glass transition temperature
  • Ts softening temperature
  • the optical element 4 excellent in weather resistance can be obtained.
  • a protective layer is formed on the surface 40 of the optical element 4 by flame polishing.
  • the surface 40 of the optical element 4 has less alkali components than the inside due to flame polishing, and the weather resistance is significantly superior to the inside. Since the protective layer is formed, it is considered that the effect of improving the weather resistance by flame polishing can be obtained more remarkably.
  • the weather resistance of the side surfaces 43a to 43d can be improved by flame polishing the side surfaces 43a to 43d of the glass material. Therefore, the light reflectance of the side surfaces 43a to 43d is unlikely to deteriorate over time. Accordingly, it is possible to suppress deterioration with time of the power generation efficiency of the concentrating solar power generation device 1.
  • the surface roughness of the side surfaces 43a to 43d can be reduced by flame polishing the side surfaces 43a to 43d of the glass material. Therefore, the ratio of regular reflection of light is increased on the side surfaces 43a to 43d, light leakage to the outside of the optical element 4 can be suppressed, and the light reflectance can be increased. Therefore, the light collection efficiency to the solar cell 5 can be improved. As a result, the power generation efficiency of the concentrating solar power generation device 1 can be further improved. From the viewpoint of further improving the power generation efficiency of the concentrating solar power generation device 1, the surface roughness of the flame-polished portion of the surface 40 is 100 nm or less in terms of the arithmetic surface roughness (Ra) defined by JISB0601. It is preferably 50 nm or less, more preferably 20 nm or less, and particularly preferably 10 nm or less.
  • Ra arithmetic surface roughness
  • edge and corners of the glass material are rounded off by flame polishing. For this reason, the ridgeline part of a glass material, the chip
  • An antireflection film may be formed on the end surfaces 41 and 42. Thereby, when the sunlight condensed by the condensing member 3 enters the optical element 4 or when the sunlight transmitted through the optical element 4 enters the solar cell 5, the reflection loss of light is reduced. Can do.
  • An example of the antireflection film is a dielectric multilayer film.
  • a reflective film such as Ag, Al, Ni, or Cr may be provided on the side surfaces 43a to 43d. Thereby, the reflectance of light on the side surfaces 43a to 43d can be further increased.
  • the glass material which comprises the optical element 4 was a truncated pyramid shape was demonstrated.
  • the present invention is not limited to this configuration.
  • the optical element is not particularly limited as long as it has a shape capable of condensing light onto a solar cell.
  • the end face does not have to be planar, and may be convex or concave. According to the present invention, even when the optical element 4 has a complicated shape, the surface roughness can be reduced and the light reflection efficiency can be increased.
  • Example 1 As glass raw materials, a SiO 2 71 parts by weight, 2 parts by weight of Al 2 O 3, 9 parts by weight of CaO, 4 parts by weight of MgO, 13 parts by weight of Na 2 O, K 2 O 1 part by weight, Sb 2 0.1 part by weight of O 3 was prepared. These glass materials were put in a platinum crucible so that the glass melt had a depth of 50 mm and melted at 1000 ° C. to 1500 ° C. for 3 hours to obtain molten glass. By pouring molten glass into a heat-resistant mold and press-molding, one end surface is a square with a side of about 10 mm, the other end surface is a square with a side of about 5 mm, and the height is about 20 mm. A certain frustum-shaped glass material was obtained.
  • Table 1 shows the arithmetic surface roughness (Ra) of the side surface of the glass material before and after flame polishing.
  • the arithmetic surface roughness (Ra) was measured as follows.
  • the weather resistance of the glass material was evaluated as follows. The results are shown in Table 1.
  • Example 2 Using the same glass raw material as in Example 1, a glass material was obtained in the same manner as in Example 1. Furthermore, the obtained glass material was reheat press molded. Next, the entire surface of the glass material was flame-polished using an oxygen burner. In the same manner as in Example 1, the arithmetic surface roughness (Ra) of the side surface portion of the glass material before and after flame polishing was measured. Moreover, the weather resistance evaluation of the glass material after flame polishing was performed. These results are shown in Table 1.
  • Example 3 A glass material was obtained in the same manner as in Example 2. Next, the entire surface of the glass material was flame polished by resistance heating with a heater. The arithmetic surface roughness (Ra) of the side surface of the glass material before and after flame polishing was measured. Moreover, the weather resistance evaluation of the glass material after flame polishing was performed. These results are shown in Table 1.
  • Example 1 A glass material was obtained in the same manner as in Example 1. Next, the entire surface of the glass material was mechanically polished. In the same manner as in Example 1, the arithmetic surface roughness (Ra) of the side surface portion of the glass material before and after polishing was measured. Moreover, the weather resistance evaluation of the glass material after grinding
  • Example 2 A glass material was obtained in the same manner as in Example 1. Next, the ridge line portion and the corner portion of the glass material were mechanically polished, and the two end surfaces opposed to the side surface portion were not polished. In the same manner as in Example 1, the arithmetic surface roughness (Ra) of the side surface portion of the glass material was measured. Moreover, the weather resistance evaluation of the glass material after grinding
  • Example 4 As glass materials, 50 parts by weight of SiO 2 , 1 part by weight of Al 2 O 3 , 14 parts by weight of B 2 O 3 , 1 part by weight of CaO, 12 parts by weight of ZnO, 6 parts by weight of Na 2 O, K A platinum crucible was prepared by preparing 9 parts by weight of 2 O, 2 parts by weight of Li 2 O, 5 parts by weight of TiO 2 and 0.1 parts by weight of Sb 2 O 3 so that the glass melt has a depth of 50 mm. And melted at 1000 ° C. to 1500 ° C. for 3 hours. Next, by pressing the molten glass, one end face is a square having a side of about 10 mm, the other end face is a square having a side of about 5 mm, and the height is about 20 mm. A glass material was obtained.
  • the entire surface of the obtained glass material was flame polished using an oxygen burner.
  • Example 5 A glass material was obtained in the same manner as in Example 4. Next, two end surfaces of the glass material facing each other were mechanically polished, and the side surfaces were flame-polished using an oxygen burner. In the same manner as in Example 1, the arithmetic surface roughness (Ra) of the side surface portion of the glass material before and after flame polishing was measured. Moreover, the weather resistance evaluation of the glass material after flame polishing was performed. These results are shown in Table 2.
  • Example 3 A glass material was obtained in the same manner as in Example 4. Next, the entire surface of the glass material was mechanically polished. In the same manner as in Example 1, the arithmetic surface roughness (Ra) of the side surface portion of the glass material before and after mechanical polishing was measured. Moreover, the weather resistance evaluation of the glass material after grinding
  • Example 4 A glass material was obtained in the same manner as in Example 4. Next, the ridge line portion and the corner portion of the glass material were mechanically polished, and the two end surfaces opposed to the side surface portion were not polished. In the same manner as in Example 1, the arithmetic surface roughness (Ra) of the side surface portion of the glass material was measured. Moreover, the weather resistance evaluation of the glass material after grinding

Abstract

 耐候性に優れた集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置を提供する。 集光型太陽光発電装置1の光学素子4は、火炎研磨された表面40を有するガラス材からなる。

Description

集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置
 本発明は、集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置に関する。
 従来、集光型太陽光発電装置において、集光レンズと太陽電池セルとの間にガラス製の光学系が設けられている。ガラス製の光学系は、集光レンズによって集光された光を、内表面で全反射して太陽電池セルに伝える。よって、光学系の光学特性は、その表面状態によって影響を受ける。
 集光型太陽光発電装置は、主に屋外で使用される。よって、光学系には、耐候性が求められる。例えば、特許文献1には、光学系の側面にフッ素樹脂製の薄膜を設けることが開示されている。特許文献1では、これにより、光学系の表面が水滴などにより白濁して、そこから光の一部が漏れ出ることを防ぐことが提案されている。
特開2006-278581号公報
 集光型太陽光発電装置において、耐候性に優れたさらなる有力な光学素子が求められている。本発明は、耐候性に優れた集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置を提供することを主な目的とする。
 本発明の集光型太陽光発電装置の光学素子は、火炎研磨された表面を有するガラス材からなる。
 本発明の集光型太陽光発電装置の光学素子において、ガラス材は、互いに対向する一対の端面と、側面とを有し、側面の少なくとも一部が火炎研磨されてなることが好ましい。
 本発明の集光型太陽光発電装置の光学素子において、光学素子の表面の火炎研磨された部分の表面粗さは、算術平均粗さ(Ra)で200nm以下であることが好ましい。
 本発明の集光型太陽光発電装置の光学素子において、ガラス材は、アルカリ成分を含んでいてもよい。
 本発明の集光型太陽光発電装置の光学素子において、ガラス材は、ケイ酸塩系ガラスからなってもよい。
 本発明の集光型太陽光発電装置は、太陽電池と、太陽電池に集光する集光光学系とを備える。集光光学系は、火炎研磨された表面を有するガラス材からなる光学素子を有する。
 本発明の集光型太陽光発電装置の光学素子の製造方法では、ガラス材の表面の少なくとも一部を火炎研磨することにより光学素子を得る。
 本発明の集光型太陽光発電装置の光学素子の製造方法において、バーナー加熱、高周波誘導加熱または抵抗加熱により火炎研磨を行ってもよい。
 本発明によれば、耐候性に優れた集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置を提供することができる。
図1は、本発明の一実施形態に係る集光型太陽光発電装置の模式的概念図である。 図2は、本発明の一実施形態に係る光学素子の模式的斜視図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態などにおいて参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態などにおいて参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (集光型太陽光発電装置)
 図1は、本実施形態に係る光学素子を備えた集光型太陽光発電装置の模式的概念図である。
 集光型太陽光発電装置1は、太陽電池5と、太陽電池5に太陽光を集光する集光光学系2とを備える。集光光学系2は、集光部材3と光学素子4とを有する。集光部材3は、太陽光等の光を集光する。集光部材3は、例えば凸レンズや正の光学的パワーを有するフレネルレンズ等により構成することができる。
 光学素子4は、集光部材3と太陽電池5との間に配されている。集光部材3により集光された光は、光学素子4の端面41(図2を参照)から光学素子4内に入射する。光学素子4は、集光部材3により集光された光を均質化し、太陽電池5の受光面50に導く。具体的には、光学素子4に入射した光は、光学素子4の側面43a~43dにおいて反射されることにより均質化されながら光学素子4内を伝搬する。そして、光学素子4内を伝搬した光は、光学素子4の端面42から均質化された面状光として受光面50に向けて出射される。
 光学素子4の端面42には、受光面50が端面42に対向するように太陽電池5が配されている。光学素子4の端面42から出射した光は太陽電池5に入射する。そして、太陽電池5において、光エネルギーが電気エネルギーに変換される。
 なお、太陽電池5の種類は特に限定されない。太陽電池5は、例えば、単結晶シリコン太陽電池、多結晶シリコン太陽電池、薄膜太陽電池、アモルファスシリコン太陽電池、色素増感型太陽電池、有機半導体太陽電池などにより構成することができる。
 (光学素子)
 図2は、本実施形態に係る光学素子の模式的斜視図である。次に、図2を参照しながら、光学素子4の具体的構成について説明する。
 光学素子4は、ガラス材からなる。光学素子4を構成しているガラス材は、アルカリ成分を含むことが好ましい。アルカリ成分としては、リチウム、カリウム、セシウムなどが挙げられる。
 ガラス材は、ケイ酸塩系ガラスであることが好ましい。具体的には、ガラス材は、例えば、SiO:40~80質量%、Al:0~30質量%、B:0~30質量%、CaO:0~20質量%、MgO:0~20質量%、ZnO:0~20質量%、BaO:0~20質量%、NaO:0~20質量%、KO:0~20質量%、LiO:0~20質量%、TiO:0~10質量%、ZrO:0~20質量%、Sb:0~1質量%及びSrO:0~20質量%を含むものであることが好ましい。
 なお、本発明において、ケイ酸塩系ガラスには、硼ケイ酸塩系ガラスが含まれるものとする。
 ガラス材は、30℃~300℃の温度範囲内における熱膨張係数が120×10-7/℃以下であることが好ましく、100×10-7/℃以下であることがより好ましく、80×10-7/℃以下であることがさらに好ましい。ガラス材の熱膨張係数が大きすぎると、後に詳述する火炎研磨を行った際に、サーマルショックによりガラス材にクラックが生じやすくなるためである。
 ガラス材の波長400nmにおける内部透過率が80%/10mm以上であることが好ましく、85%/10mm以上であることがより好ましく、87.5%/10mm以上であることがさらに好ましい。
 ガラス材は、集光部材3側から太陽電池5側に向かって先細る形状を有する。ガラス材の表面40は、光入出面を構成している2つの端面41,42と、光反射面を構成している側面43a~43dとを有する。端面41,42は、互いに対向している。側面43a~43dは、端面41,42を接続している。
 光学素子4を構成しているガラス材の表面40の少なくとも一部は、火炎研磨されている。詳細には、ガラス材の表面40のうち、少なくとも側面43a~43dのうちの少なくとも一部が火炎研磨されている。本実施形態では、具体的には、ガラス材の表面40の全体が火炎研磨されている。このため、ガラス材の角部や稜線部も火炎研磨されており、R面取り状となっている。
 表面40の火炎研磨された部分の表面粗さは、JISB0601で規定される算術表面粗さ(Ra)で通常200nm以下である。表面40の火炎研磨された部分の表面粗さは、算術表面粗さ(Ra)で100nm以下であることが好ましく、50nm以下であることがより好ましく、20nm以下であることがさらに好ましく、10nm以下であることが特に好ましい。
 以下、光学素子4の製造方法の一例について説明する。
 (光学素子の製造方法)
 光学素子4は、ガラス材の表面40の少なくとも一部を火炎研磨することにより得られる。
 ガラス材の表面40を火炎研磨する方法は、特に限定されない。例えば、バーナー加熱、高周波加熱、抵抗加熱などにより火炎研磨を行うことができる。
 火炎研磨の温度は、ガラス材の組成や物性などを考慮して、適宜調整することができる。火炎研磨は、ガラス材のガラス転移温度(Tg)以上の温度で行うことが好ましく、ガラス材の軟化温度(Ts)以上の温度で行うことがより好ましい。
 以上説明したように、本実施形態では、ガラス材の表面40の少なくとも一部を火炎研磨して光学素子4を作製する。このため、耐候性に優れた光学素子4を得ることができる。この理由は定かではないが、火炎研磨により、光学素子4の表面40に保護層が形成されるためであると考えられる。特に、光学素子4を構成しているガラス材がアルカリ成分を含む場合は、火炎研磨により、光学素子4の表面40は内部よりもアルカリ成分が少なく、内部に対して大幅に優れた耐候性を有する保護層が形成されるため、火炎研磨による耐候性の向上効果がより顕著に得られるものと考えられる。
 また、ガラス材の側面43a~43dを火炎研磨することにより、側面43a~43dの耐候性を向上することができる。よって、側面43a~43dの光反射率の経時的劣化が生じ難い。従って、集光型太陽光発電装置1の発電効率の経時的劣化を抑制することができる。
 また、ガラス材の側面43a~43dを火炎研磨することにより、側面43a~43dの表面粗さを小さくすることができる。よって、側面43a~43dにおいて、光の正反射の割合が高くなり、光学素子4外部への光の漏洩を抑制し、光反射率を高めることができる。従って、太陽電池5への集光効率を向上させることができる。その結果、集光型太陽光発電装置1の発電効率をさらに向上させることができる。集光型太陽光発電装置1の発電効率をさらに向上する観点からは、表面40の火炎研磨された部分の表面粗さは、JISB0601で規定される算術表面粗さ(Ra)で100nm以下であることが好ましく、50nm以下であることがより好ましく、20nm以下であることがさらに好ましく、10nm以下であることが特に好ましい。
 また、火炎研磨によりガラス材の稜線部や角部がR面取り状となる。このため、ガラス材の稜線部や角部の欠け等を効果的に抑制することができる。
 端面41、42には反射防止膜が形成されていてもよい。これにより、集光部材3により集光された太陽光が光学素子4に入射する際や、光学素子4を透過した太陽光が太陽電池5に入射する際に、光の反射ロスを低減することができる。反射防止膜としては、例えば誘電体多層膜が挙げられる。
 また、側面43a~43dにAg、Al、Ni、Cr等の反射膜を設けてもよい。これにより、側面43a~43dにおける光の反射率をさらに高めることができる。
 なお、本実施形態では、光学素子4を構成するガラス材が角錐台形状である場合について説明した。ただし、本発明は、この構成に限定されない。本発明において、光学素子は、太陽電池への集光が可能な形状を有するものであれば特に限定されない。端面は、平面状でなくてもよく、凸状や凹状であってもよい。本発明によれば、光学素子4が複雑な形状を有している場合であっても、表面粗さを小さくすることができ、光反射効率を高めることができる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではない。本発明の要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1)
 ガラス原料として、SiOを71重量部、Alを2重量部、CaOを9重量部、MgOを4重量部、NaOを13重量部、KOを1重量部、Sbを0.1重量部準備した。これらのガラス原料をガラス融液の深さが50mmになるよう白金ルツボに入れ、1000℃~1500℃で3時間溶融して溶融ガラスを得た。溶融ガラスを、耐熱金型に流し入れ、プレス成形することにより、一方の端面の一方が1辺10mm程度の正方形であり、他方の端面の1辺5mm程度の正方形であり、高さが20mm程度である角錐台形状のガラス材を得た。
 得られたガラス材の側面を、酸素バーナーを用いて火炎研磨した。互いに対向する2つの端面は、機械的に研磨した。火炎研磨前後における、ガラス材の側面部の算術表面粗さ(Ra)を表1に示す。なお、算術表面粗さ(Ra)は、以下のようにして測定した。また、ガラス材の耐候性を、以下のようにして評価した。結果を表1に示す。
 [算術表面粗さ(Ra)]
 ガラス材の側面部の算術表面粗さ(Ra)は、小坂研究所製 ET4000AKによって測定した。
 [耐候性]
 ガラス材を85℃、相対湿度85%の恒温恒湿槽に2000時間放置した後、ガラス材の側面の白濁の有無を顕微鏡で観察した。なお、表面に白濁や析出物の無いものを○、白濁や表面析出物があるものを×として評価した。
 (実施例2)
 実施例1と同じガラス原料を用い、実施例1と同様にしてガラス材を得た。さらに、得られたガラス材を、リヒートプレス成形した。次に、ガラス材の表面全体を、酸素バーナーを用いて火炎研磨した。実施例1と同様にして、火炎研磨前後における、ガラス材の側面部の算術表面粗さ(Ra)を測定した。また、火炎研磨後のガラス材の耐候性評価を行った。これらの結果を表1に示す。
 (実施例3)
 実施例2と同様にしてガラス材を得た。次に、ガラス材の表面全体をヒーターによる抵抗加熱で火炎研磨した。火炎研磨前後における、ガラス材の側面部の算術表面粗さ(Ra)を測定した。また、火炎研磨後のガラス材の耐候性評価を行った。これらの結果を表1に示す。
 (比較例1)
 実施例1と同様にしてガラス材を得た。次に、ガラス材の表面全体に対し機械的に研磨加工を施した。実施例1と同様にして、研磨前後における、ガラス材の側面部の算術表面粗さ(Ra)を測定した。また、研磨後のガラス材の耐候性評価を行った。これらの結果を表1に示す。
 (比較例2)
 実施例1と同様にしてガラス材を得た。次に、ガラス材の稜線部と角部に対し機械的に研磨加工を施し、側面部と互いに対向する2つの端面は研磨しなかった。実施例1と同様にして、ガラス材の側面部の算術表面粗さ(Ra)を測定した。また、研磨後のガラス材の耐候性評価を行った。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例4)
 ガラス原料として、SiOを50重量部、Alを1重量部、Bを14重量部、CaOを1重量部、ZnOを12重量部、NaOを6重量部、KOを9重量部、LiOを2重量部、TiOを5重量部、Sbを0.1重量部準備し、これらをガラス融液の深さが50mmになるよう白金ルツボに入れ、1000℃~1500℃で3時間溶融した。次に、溶融ガラスを、プレス成形することにより、一方の端面が1辺10mm程度の正方形であり、他方の端面が1辺5mm程度の正方形であり、高さが20mm程度である角錐台形状のガラス材を得た。
 得られたガラス材の表面全体を、酸素バーナーを用いて火炎研磨した。
 実施例1と同様にして、火炎研磨前後における、ガラス材の側面部の算術表面粗さ(Ra)を測定した。また、火炎研磨後のガラス材の耐候性評価を行った。これらの結果を表2に示す。
 (実施例5)
 実施例4と同様にしてガラス材を得た。次に、ガラス材の互いに対向する2つの端面は、機械的に研磨加工を施し、側面は酸素バーナーを用いて火炎研磨した。実施例1と同様にして、火炎研磨前後における、ガラス材の側面部の算術表面粗さ(Ra)を測定した。また、火炎研磨後のガラス材の耐候性評価を行った。これらの結果を表2に示す。
 (比較例3)
 実施例4と同様にしてガラス材を得た。次に、ガラス材の表面全体を機械的に研磨した。実施例1と同様にして、機械研加工磨前後における、ガラス材の側面部の算術表面粗さ(Ra)を測定した。また、研磨後のガラス材の耐候性評価を行った。これらの結果を表2に示す。
 (比較例4)
 実施例4と同様にしてガラス材を得た。次に、ガラス材の稜線部と角部に対し機械的に研磨加工を施し、側面部と互いに対向する2つの端面は研磨しなかった。実施例1と同様にして、ガラス材の側面部の算術表面粗さ(Ra)を測定した。また、研磨後のガラス材の耐候性評価を行った。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
1…集光型太陽光発電装置
2…集光光学系
3…集光部材
4…光学素子
40…表面
41、42…端面
43a、43b、43c、43d…側面
5…太陽電池
50…受光面

Claims (8)

  1.  火炎研磨された表面を有するガラス材からなる、集光型太陽光発電装置の光学素子。
  2.  前記ガラス材は、互いに対向する一対の端面と、側面とを有し、前記側面の少なくとも一部が火炎研磨されてなる、請求項1に記載の光学素子。
  3.  前記光学素子の表面の火炎研磨された部分の表面粗さは、算術平均粗さ(Ra)で200nm以下である、請求項1または2に記載の光学素子。
  4.  前記ガラス材は、アルカリ成分を含む、請求項1~3のいずれか一項に記載の光学素子。
  5.  前記ガラス材は、ケイ酸塩系ガラスからなる、請求項1~4のいずれか一項に記載の光学素子。
  6.  太陽電池と、前記太陽電池に集光する集光光学系と、
    を備え、
     前記集光光学系は、火炎研磨された表面を有するガラス材からなる光学素子を有する、集光型太陽光発電装置。
  7.  ガラス材の表面の少なくとも一部を火炎研磨することにより光学素子を得る、集光型太陽光発電装置の光学素子の製造方法。
  8.  バーナー加熱、高周波誘導加熱または抵抗加熱により火炎研磨を行う、請求項7に記載の光学素子の製造方法。
PCT/JP2012/065000 2011-06-24 2012-06-12 集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置 WO2012176660A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-140383 2011-06-24
JP2011140383A JP5838608B2 (ja) 2011-06-24 2011-06-24 集光型太陽光発電装置の製造方法

Publications (1)

Publication Number Publication Date
WO2012176660A1 true WO2012176660A1 (ja) 2012-12-27

Family

ID=47422500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065000 WO2012176660A1 (ja) 2011-06-24 2012-06-12 集光型太陽光発電装置の光学素子、その製造方法及び集光型太陽光発電装置

Country Status (3)

Country Link
JP (1) JP5838608B2 (ja)
TW (1) TW201308619A (ja)
WO (1) WO2012176660A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910969A1 (de) * 2014-02-25 2015-08-26 Sick Ag Optoelektronischer Sensor und Verfahren zur Objekterfassung in einem Überwachungsbereich

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020930A (ja) * 2013-07-19 2015-02-02 日本電気硝子株式会社 医療用治療器具のカバーガラス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948625A (ja) * 1995-08-03 1997-02-18 Koa Glass Kk ガラス表面の研磨方法
JP2002154837A (ja) * 2000-11-10 2002-05-28 Nippon Electric Glass Co Ltd 結晶化ガラス製リフレクター基体の製造方法
JP2007201109A (ja) * 2006-01-25 2007-08-09 Daido Steel Co Ltd 集光型太陽光発電ユニットおよびその柱状光学ガラス部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948625A (ja) * 1995-08-03 1997-02-18 Koa Glass Kk ガラス表面の研磨方法
JP2002154837A (ja) * 2000-11-10 2002-05-28 Nippon Electric Glass Co Ltd 結晶化ガラス製リフレクター基体の製造方法
JP2007201109A (ja) * 2006-01-25 2007-08-09 Daido Steel Co Ltd 集光型太陽光発電ユニットおよびその柱状光学ガラス部材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910969A1 (de) * 2014-02-25 2015-08-26 Sick Ag Optoelektronischer Sensor und Verfahren zur Objekterfassung in einem Überwachungsbereich

Also Published As

Publication number Publication date
JP2013008830A (ja) 2013-01-10
JP5838608B2 (ja) 2016-01-06
TW201308619A (zh) 2013-02-16

Similar Documents

Publication Publication Date Title
JP5910851B2 (ja) 集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置
US20030087746A1 (en) Alkali-containing aluminum borosilicate glass and utilization thereof
CN101814864B (zh) 带有聚光器的光伏器件
WO2013061905A1 (ja) 集光型太陽光発電装置用光学素子、その製造方法および集光型太陽光発電装置
US20110073182A1 (en) Glass plate for a solar unit, and glass composition
CN104024170A (zh) 玻璃
TW200842116A (en) Cover glass for solid state imaging device and method for manufacturing the cover glass
JP2017032673A (ja) 導光板及びこれを用いた積層導光板
JP2014108908A (ja) 集光型太陽光発電装置用フレネルレンズに用いられるガラス
KR20180132597A (ko) 적외선 흡수 유리판 및 그 제조 방법, 그리고 고체 촬상 소자 디바이스
JP5838608B2 (ja) 集光型太陽光発電装置の製造方法
WO2008096876A1 (ja) 太陽電池モジュール、結晶シリコン系太陽電池用カバーガラスおよび薄膜系太陽電池用ガラス基板
JP2013503500A (ja) 光起電装置のための表面に核が生成されたガラス
JP2013103846A (ja) 集光型太陽光発電装置用光学素子に用いられるガラス、それを用いた集光型太陽光発電装置用光学素子および集光型太陽光発電装置
US11629089B2 (en) Plate glass
CN105008301A (zh) 具有直线式图案的纹理化玻璃片
JP5866873B2 (ja) 集光型太陽光発電装置
WO2012005506A2 (ko) 창호 어셈블리
JP6406263B2 (ja) 光学ガラス
JP2018002553A (ja) 光学素子の製造方法
JP7001999B2 (ja) 光学素子の製造方法
CN113241293B (zh) 具有超高阴极灵敏度的防光晕玻璃组件及其制备方法和应用
CN102408194A (zh) 一种新型硼硅酸盐聚光玻璃及其制造方法
TWI703354B (zh) 鏡頭模組及其近紅外線濾光片
JP2011079696A (ja) フレネルレンズ用ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802370

Country of ref document: EP

Kind code of ref document: A1