WO2012176510A1 - 希土類永久磁石及び希土類永久磁石の製造方法 - Google Patents

希土類永久磁石及び希土類永久磁石の製造方法 Download PDF

Info

Publication number
WO2012176510A1
WO2012176510A1 PCT/JP2012/056705 JP2012056705W WO2012176510A1 WO 2012176510 A1 WO2012176510 A1 WO 2012176510A1 JP 2012056705 W JP2012056705 W JP 2012056705W WO 2012176510 A1 WO2012176510 A1 WO 2012176510A1
Authority
WO
WIPO (PCT)
Prior art keywords
green sheet
magnetic field
permanent magnet
sintering
rare earth
Prior art date
Application number
PCT/JP2012/056705
Other languages
English (en)
French (fr)
Inventor
出光 尾関
克也 久米
利昭 奥野
孝志 尾崎
智弘 大牟礼
啓介 太白
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020137003372A priority Critical patent/KR20140036997A/ko
Priority to CN2012800027446A priority patent/CN103081040A/zh
Priority to US13/816,357 priority patent/US20130141196A1/en
Priority to EP12802643.2A priority patent/EP2685471A4/en
Publication of WO2012176510A1 publication Critical patent/WO2012176510A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • H01F7/0215Flexible forms, sheets

Definitions

  • the present invention relates to a rare earth permanent magnet and a method for producing a rare earth permanent magnet.
  • a powder sintering method is generally used conventionally.
  • the powder sintering method first, magnet powder obtained by pulverizing raw materials by a jet mill (dry pulverization) or the like is manufactured. Thereafter, the magnet powder is put into a mold and press-molded into a desired shape. Then, it is manufactured by sintering the solid magnet powder formed into a desired shape at a predetermined temperature (for example, 1100 ° C. for Nd—Fe—B magnets) (for example, Japanese Patent Laid-Open No. 2-266503).
  • a predetermined temperature for example, 1100 ° C. for Nd—Fe—B magnets
  • permanent magnets are magnetically oriented by applying a magnetic field from the outside in order to improve magnetic characteristics.
  • a magnet powder is filled into a mold at the time of press molding, and a magnetic field is applied to orient the magnetic field, and then pressure is applied to form a compacted compact.
  • a magnet was molded by applying pressure in an atmosphere to which a magnetic field was applied. Thereby, it becomes possible to form a molded body in which the easy magnetization axis direction of the magnet powder is aligned with the application direction of the magnetic field.
  • the permanent magnet is manufactured by the above-described powder sintering method, there are the following problems. That is, in the powder sintering method, it is necessary to ensure a certain porosity in the press-molded magnet powder for magnetic field orientation. When magnet powder having a certain porosity is sintered, it is difficult to uniformly contract during the sintering, and deformation such as warpage and dent occurs after sintering. In addition, since pressure unevenness occurs when the magnet powder is pressed, the sintered magnet can be dense and dense, and distortion occurs on the magnet surface. Therefore, conventionally, it was necessary to compress the magnet powder in a size larger than the desired shape, assuming that the magnet surface can be distorted in advance. Then, after sintering, a diamond cutting and polishing operation is performed to correct the shape into a desired shape. As a result, the number of manufacturing steps increases, and the quality of the manufactured permanent magnet may decrease.
  • the present invention has been made in order to solve the above-described problems in the prior art.
  • the magnet powder is made into a green sheet, and the in-plane direction and the width direction or the in-plane direction and the length direction of the long green sheet are used.
  • By applying a magnetic field to the magnet it is possible to prevent deformation such as warping and dents in the sintered magnet, and to appropriately perform the magnetic field orientation.
  • An object of the present invention is to provide a rare earth permanent magnet having improved magnetic properties and a method for producing the rare earth permanent magnet.
  • a rare earth permanent magnet includes a step of pulverizing a magnet raw material into magnet powder, a step of producing a mixture by mixing the pulverized magnet powder and a binder, and the mixture.
  • the rare earth permanent magnet according to the present invention includes the step of producing the green sheet by applying the mixture to a continuously conveyed base material, and producing the green sheet and performing the magnetic field orientation. A magnetic field is applied to the green sheet continuously conveyed with the base material.
  • the green sheet continuously conveyed together with the base material is passed through a solenoid to which an electric current is applied, whereby an in-plane direction of the green sheet is obtained.
  • a magnetic field is applied in the length direction.
  • the rare earth permanent magnet according to the present invention is characterized by being sintered by pressure sintering in the step of sintering the green sheet.
  • the rare earth permanent magnet according to the present invention may be removed by scattering the binder by holding the green sheet at a binder decomposition temperature in a non-oxidizing atmosphere for a predetermined time before sintering the green sheet. It is characterized by.
  • the green sheet in the step of removing the binder by scattering, is held at 200 ° C. to 900 ° C. for a certain time in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. It is characterized by doing.
  • the mixture is a slurry in which the magnet powder, the binder, and an organic solvent are mixed, and the magnetic field orientation step is performed before the green sheet is dried. A magnetic field is applied to the green sheet.
  • the method for producing a rare earth permanent magnet includes a step of pulverizing a magnet raw material into magnet powder, a step of generating a mixture by mixing the pulverized magnet powder and a binder, and A step of forming a green sheet to form a green sheet, a step of magnetic field orientation by applying a magnetic field to the in-plane direction and width direction or in-plane direction and length direction of the green sheet, and magnetic field orientation And a step of sintering the formed green sheet.
  • the green sheet in the step of producing the green sheet, is produced by applying the mixture to a continuously conveyed substrate, and the magnetic field orientation is performed.
  • the step of performing is characterized in that a magnetic field is applied to the green sheet continuously conveyed with the base material.
  • the green sheet continuously conveyed together with the base material is passed through a solenoid to which an electric current is applied.
  • a magnetic field is applied in the in-plane direction and the length direction.
  • the rare earth permanent magnet manufacturing method according to the present invention is characterized in that the green sheet is sintered by pressure sintering in the step of sintering.
  • the method for producing a rare earth permanent magnet according to the present invention is to scatter the binder by holding the green sheet at a binder decomposition temperature for a certain time in a non-oxidizing atmosphere before sintering the green sheet. It is characterized by removing.
  • the green sheet in the step of removing the binder by scattering, is heated at 200 ° C. to 900 ° C. in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. It is characterized by holding for a certain time.
  • the mixture is a slurry in which the magnet powder, the binder, and an organic solvent are mixed, and the green sheet is dried in the magnetic field orientation step. Before, a magnetic field is applied to the green sheet.
  • the permanent magnet is composed of a magnet obtained by sintering a green sheet formed by mixing magnet powder and a binder into a sheet shape.
  • deformation such as warping and dent after sintering does not occur, and pressure unevenness at the time of pressing is eliminated.
  • a permanent magnet can be formed with high dimensional accuracy. Further, even when the permanent magnet is thinned, it is possible to prevent the processing man-hours from increasing without reducing the material yield.
  • the magnetic field orientation is performed by applying a magnetic field to the in-plane direction and the width direction or the in-plane direction and the length direction of the long sheet-like green sheet, the magnetic field orientation can be appropriately performed. It becomes possible to improve the magnetic characteristics of the permanent magnet. In addition, there is no possibility that the surface of the green sheet stands upside down when a magnetic field is applied.
  • a green sheet is produced by applying a mixture to a continuously conveyed substrate, and a magnetic field is applied to the green sheet continuously conveyed with the substrate.
  • the magnetic field orientation is performed, so that the production from the green sheet to the magnetic field orientation can be performed in a continuous process, and the manufacturing process can be simplified and the productivity can be improved.
  • the green sheet continuously conveyed together with the base material is passed through a solenoid to which a current is applied, whereby a magnetic field is generated in the in-plane direction and the length direction of the green sheet. Is applied, it is possible to apply a uniform magnetic field to the green sheet, and the magnetic field orientation can be uniformly and appropriately performed.
  • the rare earth permanent magnet according to the present invention in the step of sintering the green sheet, since sintering is performed by pressure sintering, it is possible to reduce the sintering temperature and suppress grain growth during sintering. It becomes possible. Thereby, the magnetic performance can be improved.
  • the rare earth permanent magnet according to the present invention before the green sheet is sintered, the binder is scattered and removed by holding the green sheet at a binder decomposition temperature in a non-oxidizing atmosphere for a certain period of time.
  • the amount of carbon contained in the magnet can be reduced in advance. As a result, it is possible to suppress the precipitation of ⁇ Fe in the main phase of the magnet after sintering, to densely sinter the entire magnet, and to prevent the coercive force from being lowered.
  • the carbon sheet contained in the magnet is obtained by calcining the green sheet kneaded with the binder in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. It can reduce more reliably.
  • magnetic field orientation is performed by applying a magnetic field to the green sheet before the molded green sheet is dried.
  • the magnetic characteristics of the permanent magnet can be improved.
  • a permanent magnet is produced by sintering a green sheet formed by mixing magnet powder and a binder into a sheet shape. Since deformation due to sintering is uniform, deformation such as warping and dent after sintering does not occur, and pressure unevenness during pressing is eliminated, so correction processing after sintering that has been performed conventionally is performed There is no need, and the manufacturing process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy. Further, even when the permanent magnet is thinned, it is possible to prevent the processing man-hours from increasing without reducing the material yield.
  • the magnetic field orientation is performed by applying a magnetic field to the in-plane direction and the width direction or the in-plane direction and the length direction of the long sheet-like green sheet, the magnetic field orientation can be appropriately performed. It becomes possible to improve the magnetic characteristics of the permanent magnet. In addition, there is no possibility that the surface of the green sheet stands upside down when a magnetic field is applied.
  • a green sheet is produced by applying a mixture to a continuously conveyed substrate, and the green sheet continuously conveyed with the substrate. Since the magnetic field orientation is performed by applying the magnetic field, the production from the green sheet to the magnetic field orientation can be performed in a continuous process, and the manufacturing process can be simplified and the productivity can be improved.
  • the green sheet continuously conveyed with the base material is applied to the green sheet by passing the green sheet through a solenoid to which an electric current is applied.
  • a uniform magnetic field can be applied to the green sheet, and the magnetic field orientation of the manufactured permanent magnet can be uniformly and appropriately performed.
  • the sintering temperature is lowered to suppress grain growth during sintering. It becomes possible to do. Thereby, the magnetic performance can be improved.
  • the green sheet before the green sheet is sintered, the green sheet is held at a binder decomposition temperature in a non-oxidizing atmosphere for a certain period of time to scatter and remove the binder. Therefore, the amount of carbon contained in the magnet can be reduced in advance. As a result, it is possible to suppress the precipitation of ⁇ Fe in the main phase of the magnet after sintering, to densely sinter the entire magnet, and to prevent the coercive force from being lowered.
  • the green sheet in which the binder is kneaded is calcined in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas to be contained in the magnet.
  • the amount of carbon can be reduced more reliably.
  • magnetic field orientation is performed by applying a magnetic field to the green sheet before the molded green sheet is dried. It is possible to improve the magnetic properties of the permanent magnet.
  • FIG. 1 is an overall view showing a permanent magnet according to the present invention.
  • FIG. 2 is a diagram for explaining the effect at the time of sintering based on the improvement of the thickness accuracy of the green sheet according to the present invention.
  • FIG. 3 is a diagram showing problems when the thickness accuracy of the green sheet according to the present invention is low.
  • FIG. 4 is an explanatory view showing a first manufacturing process of the permanent magnet according to the present invention.
  • FIG. 5 is an explanatory view showing a green sheet forming process, in particular, in the first manufacturing process of the permanent magnet according to the present invention.
  • FIG. 6 is an explanatory view showing the step of magnetic field orientation of the green sheet, in particular, in the first manufacturing process of the permanent magnet according to the present invention.
  • FIG. 1 is an overall view showing a permanent magnet according to the present invention.
  • FIG. 2 is a diagram for explaining the effect at the time of sintering based on the improvement of the thickness accuracy of the green sheet according to the present invention.
  • FIG. 7 is an explanatory view showing the pressure-sintering step of the green sheet in the first manufacturing process of the permanent magnet according to the present invention.
  • FIG. 8 is an explanatory view showing a second manufacturing process of the permanent magnet according to the present invention.
  • FIG. 9 is an explanatory view showing the step of magnetic field orientation of the green sheet, among the second manufacturing steps of the permanent magnet according to the present invention.
  • FIG. 10 is a view showing the external shapes of the green sheets of the example and the comparative example 1.
  • FIG. 11 is an SEM photograph showing an enlarged green sheet of the example.
  • FIG. 12 is a reverse pole figure showing the crystal orientation distribution of the green sheet of the example.
  • FIG. 13 is an SEM photograph of a part of the molded body before sintering.
  • FIG. 14 is a SEM photograph of a part of the permanent magnet manufactured according to the example.
  • FIG. 15 is an SEM photograph of a part of the permanent magnet manufactured according to Comparative Example 2.
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention.
  • the permanent magnet 1 shown in FIG. 1 has a fan shape, but the shape of the permanent magnet 1 varies depending on the punched shape.
  • the permanent magnet 1 according to the present invention is an Nd—Fe—B based magnet.
  • the content of each component is Nd: 27 to 40 wt%, B: 1 to 2 wt%, and Fe (electrolytic iron): 60 to 70 wt%.
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present embodiment.
  • the permanent magnet 1 is a thin-film permanent magnet having a thickness of, for example, 0.05 mm to 10 mm (for example, 1 mm). And it is produced by pressure-sintering the molded object (green sheet) shape
  • the pressure sintering for sintering the green sheet for example, hot press sintering, hot isostatic pressing (HIP) sintering, ultrahigh pressure synthetic sintering, gas pressure sintering, discharge plasma ( SPS) sintering and the like.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • a sintering method in which sintering is performed in a shorter time and at a lower temperature.
  • SPS sintering is a sintering method in which a graphite sintering mold having a sintering object disposed therein is heated while being pressed in a uniaxial direction. Further, in SPS sintering, in addition to thermal and mechanical energy used for general sintering, electromagnetic energy by pulse energization and self-heating of the work piece are obtained by pulse current heating and mechanical pressure. The discharge plasma energy generated between the particles is used as a driving force for the sintering. Therefore, rapid heating / cooling is possible compared to atmosphere heating in an electric furnace or the like, and sintering can be performed in a lower temperature range.
  • a green body obtained by punching a green sheet into a desired product shape (for example, a fan shape shown in FIG. 1) is placed in a sintering mold of an SPS sintering apparatus.
  • a desired product shape for example, a fan shape shown in FIG. 1
  • a plurality (for example, ten pieces) of the molded bodies 2 are arranged in the sintering mold 3 at the same time.
  • the thickness accuracy of the green sheet is within ⁇ 5%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% of the design value.
  • the sintering temperature there is a variation in the sintering temperature, and it cannot be sintered properly.
  • a resin, a long-chain hydrocarbon, a fatty acid methyl ester, a mixture thereof, or the like is used as the binder mixed with the magnet powder when the green sheet is produced.
  • a resin for example, polyisobutylene (PIB), butyl rubber (IIR), polyisoprene (IR), polybutadiene, polystyrene, styrene-isoprene block copolymer (SIS), styrene-butadiene block copolymer Polymer (SBS), 2-methyl-1-pentene polymer resin, 2-methyl-1-butene polymer resin, ⁇ -methyl styrene polymer resin, polybutyl methacrylate, polymethyl methacrylate and the like are used.
  • PIB polyisobutylene
  • IIR butyl rubber
  • IR polyisoprene
  • SIS styrene-isoprene block copolymer
  • SBS styren
  • the resin used for the binder in order to reduce the amount of oxygen contained in the magnet, it is desirable to use a polymer (for example, polyisobutylene) that does not contain an oxygen atom in the structure and has a depolymerization property.
  • a polymer for example, polyisobutylene
  • a green sheet is formed by hot melt molding, it is desirable to use a thermoplastic resin in order to perform magnetic field orientation in a state where the formed green sheet is heated and softened.
  • a long chain hydrocarbon when used for the binder, it is preferable to use a long chain saturated hydrocarbon (long chain alkane) that is solid at room temperature and liquid at room temperature or higher. Specifically, it is preferable to use a long-chain saturated hydrocarbon having 18 or more carbon atoms.
  • a green sheet is formed by hot melt molding, when the green sheet is magnetically aligned, the green sheet is heated and softened at a temperature equal to or higher than the melting point of the long-chain hydrocarbon, and magnetic field alignment is performed.
  • fatty acid methyl ester when used as the binder, it is preferable to use methyl stearate or methyl docosanoate which is solid at room temperature and liquid at room temperature or higher.
  • molding when carrying out magnetic field orientation of a green sheet, a green sheet is heated above the melting
  • the amount of binder added is an amount that appropriately fills the gaps between the magnet particles in order to improve the sheet thickness accuracy when the mixture of the magnet powder and the binder is formed into a sheet shape.
  • the ratio of the binder to the total amount of the magnet powder and the binder in the mixture after addition of the binder is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, and even more preferably 3 wt% to 20 wt%.
  • FIG. 4 is an explanatory view showing a first manufacturing process of the permanent magnet 1 according to the present embodiment.
  • an ingot made of a predetermined fraction of Nd—Fe—B (eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 ⁇ m by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing.
  • the coarsely pulverized magnet powder is either (a) in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas having substantially 0% oxygen content, or (b) having an oxygen content of 0.0001.
  • the oxygen concentration of substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but may contain oxygen in such an amount that a very small amount of oxide film is formed on the surface of the fine powder. Means good.
  • wet pulverization may be used as a method for pulverizing the magnet raw material.
  • the coarsely pulverized magnet powder is finely pulverized to an average particle size of not more than a predetermined size (for example, 0.1 ⁇ m to 5.0 ⁇ m) using toluene as a solvent.
  • a predetermined size for example, 0.1 ⁇ m to 5.0 ⁇ m
  • the magnet powder contained in the organic solvent after the wet pulverization is dried by vacuum drying or the like, and the dried magnet powder is taken out.
  • a binder solution to be added to the fine powder finely pulverized by the jet mill 11 or the like is prepared.
  • the binder resin, long chain hydrocarbon, fatty acid methyl ester, a mixture thereof, or the like is used as described above.
  • a binder solution is produced by diluting a binder in a solvent.
  • the solvent used for dilution is not particularly limited, and alcohols such as isopropyl alcohol, ethanol and methanol, lower hydrocarbons such as pentane and hexane, aromatics such as benzene, toluene and xylene, and esters such as ethyl acetate. , Ketones, mixtures thereof and the like can be used, but toluene or ethyl acetate is used.
  • the binder solution is added to the fine powder classified by the jet mill 11 or the like.
  • the slurry 12 in which the fine powder of the magnet raw material, the binder, and the organic solvent are mixed is generated.
  • the amount of the binder solution added is such that the ratio of the binder to the total amount of the magnet powder and the binder in the slurry after the addition is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, still more preferably 3 wt% to The amount is preferably 20 wt%.
  • the slurry 12 is produced by adding 100 g of a 20 wt% binder solution to 100 g of magnet powder.
  • the binder solution is added in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • the produced slurry 12 can be applied by an appropriate method on a support substrate 14 such as a separator and dried as necessary.
  • the coating method is preferably a method having excellent layer thickness controllability such as a doctor blade method, a die method, or a comma coating method.
  • a die method or a comma coating method that is particularly excellent in layer thickness controllability (that is, a method capable of high accuracy on the base material).
  • a die method is used.
  • the support base material 14 for example, a silicone-treated polyester film is used.
  • a magnetic field is applied to the green sheet 13 coated on the support base 14 by applying a magnetic field to the in-plane direction and the width direction or the in-plane direction and the length direction of the green sheet 13 in a transported state before drying. Alignment is performed.
  • the intensity of the applied magnetic field is 5000 [Oe] to 150,000 [Oe], preferably 10,000 [Oe] to 120,000 [Oe].
  • the magnetically oriented green sheet 13 is held at 90 ° C. for 10 minutes, and further dried at 130 ° C. for 30 minutes.
  • FIG. 5 is a schematic view showing a process of forming the green sheet 13 by a die method.
  • the die 15 used in the die system is formed by overlapping the blocks 16 and 17 with each other, and a slit 18 and a cavity (liquid reservoir) 19 are formed by a gap between the blocks 16 and 17.
  • the cavity 19 communicates with a supply port 20 provided in the block 17.
  • the supply port 20 is connected to a slurry supply system constituted by a metering pump (not shown) or the like, and the measured slurry 12 is supplied to the cavity 19 via the supply port 20 by a metering pump or the like. Is done.
  • the slurry 12 supplied to the cavity 19 is fed to the slit 18 and is discharged from the discharge port 21 of the slit 18 with a predetermined application width with a uniform amount in the width direction by a constant amount per unit time.
  • the support base material 14 is continuously conveyed at a preset speed with the rotation of the coating roll 22. As a result, the discharged slurry 12 is applied to the support base material 14 with a predetermined thickness, and a long sheet-like green sheet 13 is formed.
  • the thickness accuracy of the green sheet 13 to be formed is within ⁇ 5%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% with respect to the design value (for example, 1 mm).
  • the set thickness of the green sheet 13 is desirably set in the range of 0.05 mm to 10 mm.
  • the productivity must be reduced because multiple layers must be stacked.
  • the thickness is greater than 10 mm, it is necessary to reduce the drying speed in order to suppress foaming during drying, and productivity is significantly reduced.
  • the mixture may not be the slurry 12, but may be a powdery mixture (hereinafter referred to as a compound) composed of the magnetic powder and the binder without adding an organic solvent.
  • a compound a powdery mixture
  • you may perform the hot melt coating which melts a compound by heating a compound, makes it a fluid state, and coats it on the support base materials 14, such as a separator.
  • a long sheet-like green sheet 13 can be formed on a supporting base material by solidifying the compound coated by hot melt coating by releasing heat.
  • the temperature at which the compound is heated and melted is 50 to 300 ° C., although it varies depending on the type and amount of the binder used. However, the temperature needs to be higher than the melting point of the binder to be used.
  • the mixing of the magnet powder and the binder is performed, for example, by putting the magnet powder and the binder in an organic solvent and stirring with a stirrer. Then, after stirring, the compound is extracted by heating the organic solvent containing the magnet powder and the binder to vaporize the organic solvent.
  • the binder is added to the organic solvent and kneaded without taking out the magnet powder from the organic solvent used for pulverization, and then the compound is prepared by volatilizing the organic solvent. It is good also as a structure to obtain.
  • FIG. 6 is a schematic diagram showing a magnetic field orientation process of the green sheet 13.
  • the magnetic sheet orientation with respect to the green sheet 13 coated by the above-described die method dries the green sheet 13 with respect to the long green sheet 13 continuously conveyed by the roll.
  • an apparatus for performing magnetic field orientation is arranged on the downstream side of a coating apparatus (such as a die), and is performed by a process continuous with the above-described coating process.
  • a pair of magnetic field coils 25 and 26 are arranged on the left and right sides of the green sheet 13 and the support substrate 14 to be transported on the downstream side of the die 15 and the coating roll 22. Then, by applying a current to each of the magnetic field coils 25 and 26, a magnetic field is generated in the in-plane direction of the long sheet-like green sheet 13 (that is, the direction parallel to the sheet surface of the green sheet 13) and in the width direction. . Thereby, a magnetic field is applied to the green sheet 13 that is continuously conveyed in the in-plane direction and the width direction of the green sheet 13 (in the direction of the arrow 27 in FIG. 5), and the green sheet 13 is appropriately uniform. It becomes possible to orient the magnetic field.
  • the surface of the green sheet 13 can be prevented from standing upright by setting the direction in which the magnetic field is applied to the in-plane direction. Further, when the green sheet 13 is carried into a place where a magnetic field gradient is generated, the powder contained in the green sheet 13 is attracted toward the stronger magnetic field, that is, near the liquid of the slurry forming the green sheet 13, that is, The thickness of the green sheet 13 may be uneven. Therefore, in order to make the thickness of the sheet uniform, the alignment process may be an intermittent operation. Moreover, it is preferable that the drying of the green sheet 13 performed after the magnetic field orientation is performed in a transported state. Thereby, the manufacturing process can be made more efficient. When a green sheet is formed by hot melt molding, magnetic field orientation is performed in a state where the green sheet is heated and softened above the glass transition point or melting point of the binder. Further, magnetic field orientation may be performed before the molded green sheet is solidified.
  • the green sheet 13 subjected to the magnetic field orientation is punched into a desired product shape (for example, a fan shape shown in FIG. 1), and the formed body 30 is formed.
  • the molded body 30 is temporarily maintained in hydrogen by holding it for several hours (for example, 5 hours) at a binder decomposition temperature in a non-oxidizing atmosphere (in particular, a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas in the present invention).
  • a binder decomposition temperature in particular, a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas in the present invention.
  • Perform baking In the case of performing in a hydrogen atmosphere, for example, the supply amount of hydrogen during calcination is set to 5 L / min.
  • the binder can be decomposed into monomers by a depolymerization reaction or the like and scattered to be removed. That is, so-called decarbonization that reduces the amount of carbon in the molded body 30 is performed.
  • the calcination treatment in hydrogen is performed under the condition that the carbon content in the molded body 30 is 1500 ppm or less, more preferably 1000 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.
  • the binder decomposition temperature is determined based on the analysis results of the binder decomposition product and decomposition residue. Specifically, a temperature range is selected in which decomposition products of the binder are collected, decomposition products other than the monomers are not generated, and products due to side reactions of the remaining binder components are not detected even in the analysis of the residues. Although it varies depending on the type of the binder, it is set to 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. (eg 600 ° C.).
  • the calcining treatment is performed at the thermal decomposition temperature and binder decomposition temperature of the organic compound constituting the organic solvent. Thereby, the remaining organic solvent can be removed.
  • the thermal decomposition temperature of the organic compound is determined depending on the type of the organic solvent to be used, but basically the thermal decomposition of the organic compound can be performed at the binder decomposition temperature.
  • sintering is performed by pressure sintering.
  • pressure sintering include hot press sintering, hot isostatic pressing (HIP) sintering, ultra-high pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • FIG. 7 is a schematic view showing a pressure sintering process of the compact 30 by SPS sintering.
  • SPS sintering When performing SPS sintering as shown in FIG. 7, first, the compact 30 is placed in a graphite sintering die 31. Note that the above-described calcination treatment in hydrogen may be performed in a state where the molded body 30 is installed in the sintering die 31. Then, the compact 30 placed in the sintering die 31 is held in the vacuum champ 32, and an upper punch 33 and a lower punch 34 made of graphite are set.
  • FIG. 8 is an explanatory view showing a second manufacturing process of the permanent magnet 1 according to the present embodiment.
  • the second manufacturing process of the permanent magnet 1 is different from the above-described first manufacturing process in terms of magnetic field orientation. That is, in the first manufacturing process, the magnetic field orientation is performed by applying a magnetic field to the in-plane direction and the width direction of the green sheet 13, but in the second manufacturing process, the in-plane direction and the length of the green sheet 13 are long. Magnetic field orientation is performed by applying a magnetic field in the vertical direction.
  • the magnetic sheet is applied to the green sheet 13 coated on the support base material 14 in the in-plane direction and the length direction of the green sheet 13 in the transported state before drying.
  • the intensity of the applied magnetic field is 5000 [Oe] to 150,000 [Oe], preferably 10,000 [Oe] to 120,000 [Oe].
  • FIG. 9 is a schematic diagram showing a magnetic field orientation process of the green sheet 13 in the second manufacturing process.
  • the magnetic field orientation with respect to the green sheet 13 coated by the above-described die method is such that the green sheet 13 is dried with respect to the long green sheet 13 continuously conveyed by the roll.
  • an apparatus for performing magnetic field orientation is arranged on the downstream side of a coating apparatus (such as a die), and is performed by a process continuous with the above-described coating process.
  • the solenoid 38 is arranged on the downstream side of the die 15 and the coating roll 22 so that the conveyed green sheet 13 and the support base material 14 pass through the solenoid 38. Then, by applying a current to the solenoid 38, a magnetic field is generated in the longitudinal direction of the long sheet-like green sheet 13 (that is, the direction parallel to the sheet surface of the green sheet 13) and in the length direction. Accordingly, a magnetic field is applied to the green sheet 13 that is continuously conveyed in the in-plane direction and the length direction of the green sheet 13 (in the direction of the arrow 39 in FIG. 9), and the green sheet 13 is appropriately uniform. It becomes possible to orient an appropriate magnetic field.
  • the surface of the green sheet 13 can be prevented from standing upright by setting the direction in which the magnetic field is applied to the in-plane direction. Further, when the green sheet 13 is carried into a place where a magnetic field gradient is generated, the powder contained in the green sheet 13 is attracted toward the stronger magnetic field, that is, near the liquid of the slurry forming the green sheet 13, that is, The thickness of the green sheet 13 may be uneven. Therefore, in order to make the thickness of the sheet uniform, the alignment process may be an intermittent operation. Moreover, it is preferable that the drying of the green sheet 13 performed after the magnetic field orientation is performed in a transported state. Thereby, the manufacturing process can be made more efficient. When a green sheet is formed by hot melt molding, magnetic field orientation is performed in a state where the green sheet is heated and softened above the glass transition point or melting point of the binder. Further, magnetic field orientation may be performed before the molded green sheet is solidified.
  • the magnetically oriented green sheet 13 is held at 90 ° C. for 10 minutes, and further dried at 130 ° C. for 30 minutes.
  • the green sheet 13 subjected to the magnetic field orientation is punched into a desired product shape (for example, a fan shape shown in FIG. 1), and calcined and sintered. And the permanent magnet 1 is manufactured as a result of sintering.
  • polyisobutylene was used as the binder
  • toluene was used as the solvent
  • the magnetic field orientation was performed by applying a 1.1 T magnetic field to the green sheet 13 in the in-plane direction and the width direction or in-plane direction and the length direction. Thereafter, the green sheet was calcined and then sintered by SPS sintering (pressurization value: 30 MPa, sintering temperature: increased to 940 ° C. at 10 ° C./min and held for 5 minutes).
  • SPS sintering pressurization value: 30 MPa, sintering temperature: increased to 940 ° C. at 10 ° C./min and held for 5 minutes.
  • the other steps are the same as those described in the above [First manufacturing method of permanent magnet] or [Second manufacturing method of permanent magnet].
  • the magnetic field orientation was performed by applying a 1.1 T magnetic field in a direction perpendicular to the green sheet 13 (direction perpendicular to the sheet surface of the green sheet 13). Other conditions are the same as in the example.
  • the green sheet was sintered by an electric furnace in a He atmosphere without using SPS sintering. Specifically, the temperature was raised to about 800 ° C. to 1200 ° C. (for example, 1000 ° C.) at a predetermined temperature increase rate, and held for about 2 hours. Other conditions are the same as in the example.
  • FIG. 10 is a view showing the external shape of the green sheet after the magnetic field orientation of the example and the comparative example 1, respectively.
  • the permanent magnet of the comparative example 1 was found to stand upside down on the magnet surface.
  • the permanent magnet of the example did not show a handstand on the magnet surface as in Comparative Example 1. Therefore, in the permanent magnet of the embodiment, it is not necessary to perform a correction process after sintering, and the manufacturing process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy.
  • FIG. 11 shows the green sheet after orientation of the magnetic field of the example in the direction perpendicular to the C axis (that is, the in-plane direction and the width direction or the in-plane direction and the length direction of the green sheet, which is the direction in which the magnetic field is applied
  • FIG. 12 is a reverse pole figure showing the crystal orientation distribution analyzed using EBSP analysis for the range enclosed by the frame in FIG. Referring to FIG. 12, it can be seen that in the green sheet of the example, the magnet particles are oriented in the ⁇ 001> direction as compared with the other directions. That is, in the embodiment, the magnetic field orientation is appropriately performed, and the magnetic characteristics of the permanent magnet can be improved. If the green sheet is then sintered, the orientation direction of the magnet particles can be further improved.
  • FIG. 13 is an SEM photograph of a part of the green body before sintering
  • FIG. 14 is an SEM photograph of a part of the permanent magnet produced according to the above example
  • FIG. 15 is produced according to Comparative Example 2 above. It is the SEM photograph which image
  • the permanent magnet of the example is less warped in the magnet than the permanent magnet of the comparative example 2. That is, in pressure sintering such as SPS sintering, it is possible to suppress warping generated in the magnet as compared with vacuum sintering.
  • the magnet raw material is pulverized into magnet powder, and the pulverized magnet powder and the binder are mixed to obtain a mixture (slurry or compound). Etc.). And the produced
  • the permanent magnet 1 is manufactured by pressure sintering.
  • the manufacturing process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy. Further, even when the permanent magnet is thinned, it is possible to prevent the processing man-hours from increasing without reducing the material yield.
  • the magnetic field orientation is performed by applying a magnetic field to the in-plane direction and the width direction or the in-plane direction and the length direction of the green sheet 13, so that the magnetic field orientation is appropriately set. It is possible to improve the magnetic properties of the permanent magnet.
  • the green sheet 13 is produced by applying the slurry 12 to the substrate that is continuously conveyed, and the magnetic field orientation is performed by applying a magnetic field to the green sheet 13 that is continuously conveyed with the substrate. Therefore, the production from the green sheet 13 to the magnetic field orientation can be performed in a continuous process, and the manufacturing process can be simplified and the productivity can be improved.
  • a magnetic field is applied to the green sheet 13 by passing the green sheet 13 continuously conveyed with the base material into the solenoid 38 to which an electric current is applied.
  • a uniform magnetic field can be applied, and the magnetic field orientation can be uniformly and appropriately performed.
  • the permanent magnet 1 is sintered using pressure sintering, it becomes possible to lower the sintering temperature and suppress grain growth during sintering. Therefore, the magnetic performance of the manufactured permanent magnet can be improved.
  • the permanent magnets that are manufactured do not undergo deformation such as warping or dents after sintering due to uniform shrinkage due to sintering, and there is no need to perform post-sintering correction processing that has been performed conventionally. The process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy. Further, even when the permanent magnet is thinned, it is possible to prevent the processing man-hours from increasing without reducing the material yield.
  • the sintering is performed by uniaxial pressure sintering such as SPS sintering. It is possible to prevent the permanent magnet from being deformed such as warpage or dent.
  • it is sintered by electric current sintering such as SPS sintering, so rapid heating / cooling is possible, and it is possible to sinter at a low temperature range. It becomes possible. As a result, it is possible to shorten the temperature rise and holding time in the sintering process, and it is possible to produce a dense sintered body that suppresses the grain growth of the magnet particles.
  • the binder is scattered and removed by performing a calcining process in which the green sheet 13 is held at a binder decomposition temperature for a certain period of time in a non-oxidizing atmosphere.
  • the amount of carbon to be reduced can be reduced in advance.
  • the green sheet 13 kneaded with the binder is held at 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. for a certain time in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. Therefore, the amount of carbon contained in the magnet can be more reliably reduced.
  • the pulverization conditions, kneading conditions, calcination conditions, sintering conditions, etc. of the magnet powder are not limited to the conditions described in the above examples.
  • the magnet raw material is pulverized by dry pulverization using a jet mill, but may be pulverized by wet pulverization using a bead mill.
  • the green sheet is formed by the slot die method, but other methods (for example, calendar roll method, comma coating method, extrusion molding, injection molding, mold molding, doctor blade method, etc.) can be used. It may be used to form a green sheet. However, it is desirable to use a method capable of forming a slurry or fluid compound on a substrate with high accuracy.
  • the magnet was sintered by SPS sintering, you may sinter a magnet using other pressure sintering methods (for example, hot press sintering etc.).
  • the coating process by the die method and the magnetic field orientation process are performed by a series of continuous processes, but may be configured not to be performed by the continuous processes.
  • the coated green sheet 13 can be cut to a predetermined length, and a magnetic field orientation can be performed by applying a magnetic field to the stationary green sheet 13.
  • the calcination treatment may be omitted. Even in that case, the binder is thermally decomposed during the sintering, and a certain decarburizing effect can be expected. Further, the calcination treatment may be performed in an atmosphere other than hydrogen.
  • resin long chain hydrocarbon or fatty acid methyl ester is used as the binder, but other materials may be used.
  • the Nd—Fe—B type magnet is described as an example, but other magnets (for example, a cobalt magnet, an alnico magnet, a ferrite magnet, etc.) may be used. Further, in the present invention, the Nd component is larger than the stoichiometric composition in the present invention, but it may be stoichiometric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

 磁場配向を適切に行わせることによって永久磁石の磁気特性を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供する。 磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する。そして、生成した混合物を長尺シート状に成形し、グリーンシート13を作製する。その後、成形したグリーンシート13が乾燥する前に、グリーンシート13の面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行い、グリーンシート13を焼結することにより永久磁石1を製造するように構成する。

Description

希土類永久磁石及び希土類永久磁石の製造方法
 本発明は、希土類永久磁石及び希土類永久磁石の製造方法に関する。
 近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そこで、上記永久磁石モータの小型軽量化、高出力化、高効率化を実現するに当たって、モータに埋設される永久磁石について、薄膜化と更なる磁気特性の向上が求められている。
 ここで、永久磁石モータに用いられる永久磁石の製造方法としては、従来より粉末焼結法が一般的に用いられる。ここで、粉末焼結法は、先ず原材料をジェットミル(乾式粉砕)等により粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd-Fe-B系磁石では1100℃)で焼結することにより製造する(例えば、特開平2-266503号公報)。また、一般的に永久磁石では磁気特性を向上させる為に、外部から磁場を印加することによる磁場配向が行われている。そして、従来の粉末焼結法による永久磁石の製造方法では、プレス成形時において型に磁石粉末を充填し、磁場を印加させて磁場配向させた後に圧力をかけ、圧粉された成形体を成形していた。また、他の押出成形法、射出成形法、圧延成形法等による永久磁石の製造方法では、磁場を印加させた雰囲気で圧力をかけて磁石を成形していた。それによって、磁石粉末の磁化容易軸方向が磁場の印加方向に揃った成形体を形成することが可能となる。
特開平2-266503号公報(第5頁)
 しかしながら上記した粉末焼結法により永久磁石を製造することとすると、以下の問題点があった。即ち、粉末焼結法では磁場配向させる為にプレス成形した磁石粉末に一定の空隙率を確保する必要がある。そして、一定の空隙率を有する磁石粉末を焼結すると、焼結の際に生じる収縮を均一に行わせることが難しく、焼結後に反りや凹みなどの変形が生じる。また、磁石粉末のプレス時に圧力むらが生じることから、焼結後の磁石の疎密ができて磁石表面に歪みが発生する。従って、従来では予め磁石表面に歪みができることを想定し、所望する形状より大きめのサイズで磁石粉末を圧縮成形する必要があった。そして、焼結後にダイヤモンド切削研磨作業を行い、所望の形状へと修正する加工を行っていた。その結果、製造工程が増加するとともに、製造される永久磁石の品質が低下する虞もあった。
 また、特に薄膜磁石を上述したように大きめのサイズのバルク体から切り出すことにより製造することとすると、著しい材料歩留まりの低下が生じていた。また、加工工数が大きく増加する問題も生じていた。
 本発明は前記従来における問題点を解消するためになされたものであり、磁石粉末をグリーンシート化するとともに、長尺シート状のグリーンシートの面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行うことによって、焼結後の磁石において反りや凹みなどの変形が生じることを防止するとともに、磁場配向を適切に行わせることができ、永久磁石の磁気特性を向上させた希土類永久磁石及び希土類永久磁石の製造方法を提供することを目的とする。
 前記目的を達成するため本発明に係る希土類永久磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する工程と、前記混合物を長尺シート状に成形し、グリーンシートを作製する工程と、前記グリーンシートの面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向する工程と、磁場配向された前記グリーンシートを焼結する工程と、により製造されることを特徴とする。
 また、本発明に係る希土類永久磁石は、前記グリーンシートを作製する工程では、連続搬送される基材に対して前記混合物を塗工することにより前記グリーンシートを作製し、前記磁場配向する工程は、前記基材とともに連続搬送される前記グリーンシートに対して磁場を印加することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記磁場配向する工程は、前記基材とともに連続搬送される前記グリーンシートを、電流を加えたソレノイド内へ通過させることにより、前記グリーンシートの面内方向且つ長さ方向に対して磁場を印加することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記グリーンシートを焼結する工程では、加圧焼結により焼結することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記グリーンシートを焼結する前に、前記グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記混合物は、前記磁石粉末と前記バインダーと有機溶媒とが混合されたスラリーであって、前記磁場配向する工程は、前記グリーンシートが乾燥する前に、前記グリーンシートに対して磁場を印加することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する工程と、前記混合物を長尺シート状に成形し、グリーンシートを作製する工程と、前記グリーンシートの面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向する工程と、磁場配向された前記グリーンシートを焼結する工程と、を有することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記グリーンシートを作製する工程では、連続搬送される基材に対して前記混合物を塗工することにより前記グリーンシートを作製し、前記磁場配向する工程は、前記基材とともに連続搬送される前記グリーンシートに対して磁場を印加することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記磁場配向する工程は、前記基材とともに連続搬送される前記グリーンシートを、電流を加えたソレノイド内へ通過させることにより、前記グリーンシートの面内方向且つ長さ方向に対して磁場を印加することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記グリーンシートを焼結する工程では、加圧焼結により焼結することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記グリーンシートを焼結する前に、前記グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記混合物は、前記磁石粉末と前記バインダーと有機溶媒とが混合されたスラリーであって、前記磁場配向する工程は、前記グリーンシートが乾燥する前に、前記グリーンシートに対して磁場を印加することを特徴とする。
 前記構成を有する本発明に係る希土類永久磁石によれば、磁石粉末とバインダーとを混合してシート状に成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。また、長尺シート状のグリーンシートの面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行うので、磁場配向を適切に行わせることができ、永久磁石の磁気特性を向上させることが可能となる。また、磁場を印加する際に、グリーンシートの表面が逆立つ虞もない。
 また、本発明に係る希土類永久磁石によれば、連続搬送される基材に対して混合物を塗工することによりグリーンシートを作製し、基材とともに連続搬送されるグリーンシートに対して磁場を印加することにより磁場配向が行われるので、グリーンシートの作製から磁場配向までを連続した工程で行うことができ、製造工程の簡略化及び生産性の向上を実現することが可能となる。
 また、本発明に係る希土類永久磁石によれば、基材とともに連続搬送されるグリーンシートを、電流を加えたソレノイド内へ通過させることにより、グリーンシートの面内方向且つ長さ方向に対して磁場を印加するので、グリーンシートに対して均一な磁場を印加することが可能となり、磁場配向を均一且つ適切に行うことが可能となる。
 また、本発明に係る希土類永久磁石によれば、グリーンシートを焼結する工程では、加圧焼結により焼結するので、焼結温度を下げて、焼結時の粒成長を抑制することが可能となる。それにより、磁気性能を向上させることが可能となる。
 また、本発明に係る希土類永久磁石によれば、グリーンシートを焼結する前に、グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
 また、本発明に係る希土類永久磁石によれば、バインダーが混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で仮焼することにより、磁石内に含有する炭素量をより確実に低減させることができる。
 また、本発明に係る希土類永久磁石によれば、成形したグリーンシートが乾燥する前に、グリーンシートに対して磁場を印加することにより磁場配向を行うので、磁場配向を適切に行わせることができ、永久磁石の磁気特性を向上させることが可能となる。
 また、本発明に係る希土類永久磁石の製造方法によれば、磁石粉末とバインダーとを混合してシート状に成形したグリーンシートを焼結することにより永久磁石を製造するので、製造される永久磁石は、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。また、長尺シート状のグリーンシートの面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行うので、磁場配向を適切に行わせることができ、永久磁石の磁気特性を向上させることが可能となる。また、磁場を印加する際に、グリーンシートの表面が逆立つ虞もない。
 また、本発明に係る希土類永久磁石の製造方法によれば、連続搬送される基材に対して混合物を塗工することによりグリーンシートを作製し、基材とともに連続搬送されるグリーンシートに対して磁場を印加することにより磁場配向が行われるので、グリーンシートの作製から磁場配向までを連続した工程で行うことができ、製造工程の簡略化及び生産性の向上を実現することが可能となる。
 また、本発明に係る希土類永久磁石の製造方法によれば、基材とともに連続搬送されるグリーンシートを、電流を加えたソレノイド内へ通過させることにより、グリーンシートに対して磁場を印加するので、グリーンシートに対して均一な磁場を印加することが可能となり、製造される永久磁石の磁場配向を均一且つ適切に行うことが可能となる。
 また、本発明に係る希土類永久磁石の製造方法によれば、グリーンシートを焼結する工程では、加圧焼結により焼結するので、焼結温度を下げて、焼結時の粒成長を抑制することが可能となる。それにより、磁気性能を向上させることが可能となる。
 また、本発明に係る希土類永久磁石の製造方法によれば、グリーンシートを焼結する前に、グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
 また、本発明に係る希土類永久磁石の製造方法によれば、バインダーが混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で仮焼することにより、磁石内に含有する炭素量をより確実に低減させることができる。
 また、本発明に係る希土類永久磁石の製造方法によれば、成形したグリーンシートが乾燥する前に、グリーンシートに対して磁場を印加することにより磁場配向を行うので、磁場配向を適切に行わせることができ、永久磁石の磁気特性を向上させることが可能となる。
図1は、本発明に係る永久磁石を示した全体図である。 図2は、本発明に係るグリーンシートの厚み精度の向上に基づく焼結時の効果を説明した図である。 図3は、本発明に係るグリーンシートの厚み精度が低い場合の問題点を示した図である。 図4は、本発明に係る永久磁石の第1の製造工程を示した説明図である。 図5は、本発明に係る永久磁石の第1の製造工程の内、特にグリーンシートの成形工程を示した説明図である。 図6は、本発明に係る永久磁石の第1の製造工程の内、特にグリーンシートの磁場配向の工程を示した説明図である。 図7は、本発明に係る永久磁石の第1の製造工程の内、特にグリーンシートの加圧焼結工程を示した説明図である。 図8は、本発明に係る永久磁石の第2の製造工程を示した説明図である。 図9は、本発明に係る永久磁石の第2の製造工程の内、特にグリーンシートの磁場配向の工程を示した説明図である。 図10は、実施例と比較例1のグリーンシートの外観形状をそれぞれ示した図である。 図11は、実施例のグリーンシートを拡大して示したSEM写真である。 図12は、実施例のグリーンシートの結晶方位分布を示した逆極点図である。 図13は、焼結前の成形体の一部を撮影したSEM写真である。 図14は、実施例により製造された永久磁石の一部を撮影したSEM写真である。 図15は、比較例2により製造された永久磁石の一部を撮影したSEM写真である。
 以下、本発明に係る希土類永久磁石及び希土類永久磁石の製造方法について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。
[永久磁石の構成]
 先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は扇型形状を備えるが、永久磁石1の形状は打ち抜き形状によって変化する。
 本発明に係る永久磁石1はNd-Fe-B系磁石である。尚、各成分の含有量はNd:27~40wt%、B:1~2wt%、Fe(電解鉄):60~70wt%とする。また、磁気特性向上の為、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等の他元素を少量含んでも良い。図1は本実施形態に係る永久磁石1を示した全体図である。
 ここで、永久磁石1は例えば0.05mm~10mm(例えば1mm)の厚さを備えた薄膜状の永久磁石である。そして、後述のように磁石粉末とバインダーとが混合された混合物(スラリーやコンパウンド)からシート状に成形された成形体(グリーンシート)を加圧焼結することによって作製される。
 ここで、グリーンシートを焼結する加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制する為に、より短時間且つ低温で焼結する焼結方法を用いることが望ましい。また、焼結後の磁石に生じる反りを減少させることが可能な焼結方法を用いることが望ましい。従って、特に本発明では、上記焼結方法の内、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが望ましい。
 ここで、SPS焼結は、焼結対象物を内部に配置したグラファイト製の焼結型を、一軸方向に加圧しながら加熱する焼結方法である。また、SPS焼結では、パルス通電加熱と機械的な加圧により、一般的な焼結に用いられる熱的および機械的エネルギーに加えて、パルス通電による電磁的エネルギーや被加工物の自己発熱および粒子間に発生する放電プラズマエネルギーなどを複合的に焼結の駆動力としている。従って、電気炉等の雰囲気加熱よりも急速昇温・冷却が可能となり、また、低い温度域で焼結することが可能となる。その結果、焼結工程での昇温・保持時間を短縮でき、磁石粒子の粒成長を抑制した緻密な焼結体の作製が可能となる。また、焼結対象物は一軸方向に加圧された状態で焼結されるので、焼結後に生じる反りを減少させることが可能となる。
 また、SPS焼結を行う際には、グリーンシートを所望の製品形状(例えば、図1に示す扇形形状)に打ち抜いた成形体をSPS焼結装置の焼結型内に配置して行う。そして、本発明では、生産性を向上させる為に、図2に示すように複数(例えば10個)の成形体2を同時に焼結型3内に配置して行う。ここで、本発明では、後述のようにグリーンシートの厚み精度を設計値に対して±5%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。その結果、本発明では図2に示すように、複数(例えば10個)の成形体2を同時に焼結型3内に配置して焼結を行った場合であっても、各成形体2の厚みdが均一である為に、各成形体2について加圧値や焼結温度のバラつきが生じず、適切に焼結することが可能となる。一方、グリーンシートの厚み精度が低い(例えば設計値に対して±5%以上)と、図3に示すように、複数(例えば10個)の成形体2を同時に焼結型3内に配置して焼結を行った場合において、各成形体2の厚みdにバラつきがある為に、成形体2毎のパルス電流の通電の不均衡が生じ、また、各成形体2について加圧値や焼結温度のバラつきが生じ、適切に焼結することができない。尚、複数の成形体2を同時に焼結する場合には、複数個の焼結型を備えたSPS焼結装置を用いても良い。そして、SPS焼結装置が備える複数個の焼結型に対して成形体をそれぞれ配置し、同時に焼結するように構成しても良い。
 また、本発明ではグリーンシートを作製する際に磁石粉末に混合されるバインダーは、樹脂や長鎖炭化水素や脂肪酸メチルエステルやそれらの混合物等が用いられる。
 更に、バインダーに樹脂を用いる場合には、例えばポリイソブチレン(PIB)、ブチルゴム(IIR)、ポリイソプレン(IR)、ポリブタジエン、ポリスチレン、スチレン-イソプレンブロック共重合体(SIS)、スチレン-ブタジエンブロック共重合体(SBS)、2-メチル-1-ペンテン重合樹脂、2-メチル-1-ブテン重合樹脂、α-メチルスチレン重合樹脂、ポリブチルメタクリレート、ポリメチルメタクリレート等を用いる。尚、α-メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダーに用いる樹脂としては、磁石内に含有する酸素量を低減させる為に、構造中に酸素原子を含まず、且つ解重合性のあるポリマー(例えば、ポリイソブチレン等)を用いることが望ましい。
 尚、スラリー成形によりグリーンシートを成形する場合には、バインダーをトルエン等の汎用溶媒に対して適切に溶解させる為に、バインダーに用いる樹脂としてはポリエチレン、ポリプロピレン以外の樹脂を用いることが望ましい。一方、ホットメルト成形によりグリーンシートを成形する場合には、成形されたグリーンシートを加熱して軟化した状態で磁場配向を行う為に、熱可塑性樹脂を用いるのが望ましい。
 一方、バインダーに長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。具体的には炭素数が18以上である長鎖飽和炭化水素を用いるのが好ましい。そして、ホットメルト成形によりグリーンシートを成形する場合には、グリーンシートを磁場配向する際にグリーンシートを長鎖炭化水素の融点以上で加熱して軟化した状態で磁場配向を行う。
 また、バインダーに脂肪酸メチルエステルを用いる場合においても同様に、室温で固体、室温以上で液体であるステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。そして、ホットメルト成形によりグリーンシートを成形する場合には、グリーンシートを磁場配向する際にグリーンシートを脂肪酸メチルエステルの融点以上で加熱して軟化した状態で磁場配向を行う。
 また、バインダーの添加量は、磁石粉末とバインダーとの混合物をシート状に成形する際にシートの厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、バインダー添加後の混合物中における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%~40wt%、より好ましくは2wt%~30wt%、更に好ましくは3wt%~20wt%とする。
[永久磁石の第1の製造方法]
 次に、本発明に係る永久磁石1の第1の製造方法について図4を用いて説明する。図4は本実施形態に係る永久磁石1の第1の製造工程を示した説明図である。
 先ず、所定分率のNd-Fe-B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。
 次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001~0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル11により微粉砕し、所定サイズ以下(例えば1.0μm~5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。尚、磁石原料の粉砕方法としては湿式粉砕を用いても良い。例えばビーズミルによる湿式粉砕では、粗粉砕した磁石粉末に対してトルエンを溶媒として用い、所定サイズ以下(例えば0.1μm~5.0μm)の平均粒径まで微粉砕を行う。その後、湿式粉砕後の有機溶媒に含まれる磁石粉末を真空乾燥などで乾燥させ、乾燥した磁石粉末を取り出す。また、有機溶媒から磁石粉末を取り出すことなくバインダーを有機溶媒中に更に添加して混練し、後述のスラリー12を得る構成としても良い。
 上記湿式粉砕を用いることによって、乾式粉砕と比べて磁石原料をより微小な粒径まで粉砕することが可能となる。但し、湿式粉砕を行うこととすれば、後に真空乾燥等を行うことによって有機溶媒を揮発させたとしても有機溶媒等の有機化合物が磁石内に残留する問題が有る。しかしながら、後述の仮焼処理を行うことによって、バインダーとともに残留した有機化合物を熱分解し、磁石内から炭素を除去することが可能となる。
 次に、ジェットミル11等で微粉砕された微粉末に添加するバインダー溶液を作製する。ここで、バインダーとしては、上述したように樹脂や長鎖炭化水素や脂肪酸メチルエステルやそれらの混合物等が用いられる。そして、バインダーを溶媒に希釈させることによりバインダー溶液を作製する。希釈に用いる溶媒としては、特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族類、酢酸エチルなどのエステル類、ケトン類、それらの混合物等が使用できるが、トルエン又は酢酸エチルを用いることとする。
 続いて、ジェットミル11等にて分級された微粉末に対して上記バインダー溶液を添加する。それによって、磁石原料の微粉末とバインダーと有機溶媒とが混合されたスラリー12を生成する。ここで、バインダー溶液の添加量は、添加後のスラリー中における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%~40wt%、より好ましくは2wt%~30wt%、更に好ましくは3wt%~20wt%となる量とするのが好ましい。例えば、100gの磁石粉末に対して20wt%のバインダー溶液を100g添加することによりスラリー12を生成する。尚、バインダー溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。
 続いて、生成したスラリー12から長尺シート状のグリーンシート13を形成する。グリーンシート13の形成する方法としては、例えば、生成したスラリー12を適宜な方式で必要に応じセパレータ等の支持基材14上に塗工して乾燥させる方法などにより行うことができる。尚、塗工方式は、ドクターブレード方式やダイ方式やコンマ塗工方式等の層厚制御性に優れる方式が好ましい。また、高い厚み精度を実現する為には、特に層厚制御性に優れた(即ち、基材に高精度することが可能な方式)であるダイ方式やコンマ塗工方式を用いることが望ましい。例えば、以下の実施例では、ダイ方式を用いる。また、支持基材14としては、例えばシリコーン処理ポリエステルフィルムを用いる。更に、消泡剤を併用するなどして展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。
 また、支持基材14に塗工したグリーンシート13には、乾燥前に搬送状態のグリーンシート13の面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行う。印加する磁場の強さは5000[Oe]~150000[Oe]、好ましくは、10000[Oe]~120000[Oe]とする。
 その後、磁場配向されたグリーンシート13を90℃×10分で保持した後、更に130℃×30分で保持することにより乾燥させる。
 以下に、図5を用いてダイ方式によるグリーンシート13の形成工程についてより詳細に説明する。図5はダイ方式によるグリーンシート13の形成工程を示した模式図である。
 図5に示すようにダイ方式に用いられるダイ15は、ブロック16、17を互いに重ね合わせることにより形成されており、ブロック16、17との間の間隙によってスリット18やキャビティ(液溜まり)19を形成する。キャビティ19はブロック17に設けられた供給口20に連通される。そして、供給口20は定量ポンプ(図示せず)等によって構成されるスラリー供給系へと接続されており、キャビティ19には供給口20を介して、計量されたスラリー12が定量ポンプ等により供給される。更に、キャビティ19に供給されたスラリー12はスリット18へ送液されて単位時間一定量で幅方向に均一な圧力でスリット18の吐出口21から予め設定された塗布幅により吐出される。一方で、支持基材14はコーティングロール22の回転に伴って予め設定された速度で連続搬送される。その結果、吐出したスラリー12が支持基材14に対して所定厚さで塗布され、長尺シート状のグリーンシート13が成形される。
 また、ダイ方式によるグリーンシート13の形成工程では、塗工後のグリーンシート13のシート厚みを実測し、実測値に基づいてダイ15と支持基材14間のギャップDをフィードバック制御することが望ましい。また、ダイ15に供給するスラリー量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート13の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート13の厚み精度は、設計値(例えば1mm)に対して±5%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。
 尚、グリーンシート13の設定厚みは、0.05mm~10mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。一方で、厚みを10mmより厚くすると、乾燥時の発泡を抑制する為に乾燥速度を低下する必要があり、生産性が著しく低下する。
 また、磁石粉末とバインダーとを混合する際には、混合物をスラリー12とするのではなく、有機溶媒を加えずに磁石粉末とバインダーからなる粉末状の混合物(以下、コンパウンドという)としても良い。そして、コンパウンドを加熱することによりコンパウンドを溶融し、流体状にしてからセパレータ等の支持基材14上に塗工するホットメルト塗工を行っても良い。ホットメルト塗工により塗工されたコンパウンドを、放熱して凝固させることにより、支持基材上に長尺シート状のグリーンシート13を形成することが可能となる。尚、コンパウンドを加熱溶融する際の温度は、用いるバインダーの種類や量によって異なるが50~300℃とする。但し、用いるバインダーの融点よりも高い温度とする必要がある。尚、磁石粉末とバインダーとの混合は、例えば有機溶媒に磁石粉末とバインダーとをそれぞれ投入し、攪拌機で攪拌することにより行う。そして、攪拌後に磁石粉末とバインダーとを含む有機溶媒を加熱して有機溶媒を気化させることにより、コンパウンドを抽出する。また、特に磁石粉末を湿式法で粉砕した場合においては、粉砕に用いた有機溶媒から磁石粉末を取り出すことなくバインダーを有機溶媒中に添加して混練し、その後に有機溶媒を揮発させてコンパウンドを得る構成としても良い。
 次に、図6を用いてグリーンシート13の磁場配向工程についてより詳細に説明する。図6はグリーンシート13の磁場配向工程を示した模式図である。
 図6に示すように、上述したダイ方式により塗工されたグリーンシート13に対する磁場配向は、ロールによって連続搬送された状態の長尺シート状のグリーンシート13に対して、グリーンシート13が乾燥する前に行う。即ち、磁場配向を行う為の装置を塗工装置(ダイ等)の下流側に配置し、上述した塗工工程と連続した工程により行う。
 具体的には、ダイ15やコーティングロール22の下流側において、搬送されるグリーンシート13及び支持基材14の左右に一対の磁場コイル25、26を配置する。そして、各磁場コイル25、26に電流を流すことによって、長尺シート状のグリーンシート13の面内方向(即ち、グリーンシート13のシート面に平行な方向)で且つ幅方向に磁場を生じさせる。それによって、連続搬送されるグリーンシート13に対して、グリーンシート13の面内方向且つ幅方向(図5の矢印27方向)に対して磁場を印加し、グリーンシート13に対して適切に均一な磁場を配向させることが可能となる。特に、磁場を印加する方向を面内方向とすることによって、グリーンシート13の表面が逆立つことを防止できる。また、磁場の勾配が生じているところにグリーンシート13が搬入されると、磁場が強い方にグリーンシート13に含まれる粉末が引き寄せられることとなり、グリーンシート13を形成するスラリーの液寄り、即ち、グリーンシート13の厚みの偏りが生じる虞がある。従って、シートの厚さを均一にする為に配向処理を間欠動作としても良い。
 また、磁場配向した後に行うグリーンシート13の乾燥は、搬送状態で行うことが好ましい。それによって、製造工程をより効率化することが可能となる。
 尚、ホットメルト成形によりグリーンシートを成形した場合には、グリーンシートをバインダーのガラス転移点又は融点以上に加熱して軟化した状態で磁場配向を行う。また、成形されたグリーンシートが凝固する前に磁場配向を行うようにしても良い。
 その後、磁場配向を行ったグリーンシート13を所望の製品形状(例えば、図1に示す扇形形状)に打ち抜きし、成形体30を成形する。
 その後、成形された成形体30を非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)においてバインダー分解温度で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。水素中仮焼処理を行うことによって、バインダーを解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。即ち、成形体30中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、水素中仮焼処理は、成形体30中の炭素量が1500ppm以下、より好ましくは1000ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
 尚、バインダー分解温度は、バインダー分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダーの種類により異なるが200℃~900℃、より好ましくは400℃~600℃(例えば600℃)とする。
 また、特に磁石原料を有機溶媒中で湿式粉砕により粉砕した場合には、有機溶媒を構成する有機化合物の熱分解温度且つバインダー分解温度で仮焼処理を行う。それによって、残留した有機溶媒についても除去することが可能となる。有機化合物の熱分解温度については、用いる有機溶媒の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機化合物の熱分解についても行うことが可能となる。
 続いて、水素中仮焼処理によって仮焼された成形体30を焼結する焼結処理を行う。本発明では、加圧焼結により焼結を行う。加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、本発明では上述したように焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが望ましい。
 以下に、図7を用いてSPS焼結による成形体30の加圧焼結工程についてより詳細に説明する。図7はSPS焼結による成形体30の加圧焼結工程を示した模式図である。
 図7に示すようにSPS焼結を行う場合には、先ず、グラファイト製の焼結型31に成形体30を設置する。尚、上述した水素中仮焼処理についても成形体30を焼結型31に設置した状態で行っても良い。そして、焼結型31に設置された成形体30を真空チャンパー32内に保持し、同じくグラファイト製の上部パンチ33と下部パンチ34をセットする。そして、上部パンチ33に接続された上部パンチ電極35と下部パンチ34に接続された下部パンチ電極36とを用いて、低電圧且つ高電流の直流パルス電圧・電流を印加する。それと同時に、上部パンチ33及び下部パンチ34に対して加圧機構(図示せず)を用いて夫々上下方向から荷重を付加する。その結果、焼結型31内に設置された成形体30は、加圧されつつ焼結が行われる。また、生産性を向上させる為に、複数(例えば10個)の成形体に対して同時にSPS焼結を行うことが好ましい。尚、複数の成形体30に対して同時にSPS焼結を行う場合には、一の焼結型31に複数の成形体30を配置しても良いし、成形体30毎に異なる焼結型31に配置するようにしても良い。尚、成形体30毎に異なる焼結型31に配置する場合には、複数の焼結型31を備えたSPS焼結装置を用いて焼結を行う。そして、成形体30を加圧する上部パンチ33や下部パンチ34は複数の焼結型31の間で一体とする(即ち同時に加圧ができる)ように構成する。
 尚、具体的な焼結条件を以下に示す。
   加圧値:30MPa
   焼結温度:940℃まで10℃/分で上昇させ、5分保持
   雰囲気:数Pa以下の真空雰囲気
 上記SPS焼結を行った後冷却し、再び600℃~1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
[永久磁石の第2の製造方法]
 次に、本発明に係る永久磁石1の第2の製造方法について図8を用いて説明する。図8は本実施形態に係る永久磁石1の第2の製造工程を示した説明図である。
 永久磁石1の第2の製造工程は、上述した第1の製造工程と磁場配向に係る工程が異なる。即ち、第1の製造工程ではグリーンシート13の面内方向且つ幅方向に対して磁場を印加することにより磁場配向を行っていたが、第2の製造工程ではグリーンシート13の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行う。
 尚、グリーンシート13を支持基材14に塗工するまでの工程については第1の製造工程と同様であるので、説明は省略する。
 そして、永久磁石1の第2の製造工程では、支持基材14に塗工したグリーンシート13を、乾燥前に搬送状態のグリーンシート13の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行う。印加する磁場の強さは5000[Oe]~150000[Oe]、好ましくは、10000[Oe]~120000[Oe]とする。
 次に、図9を用いて第2の製造工程におけるグリーンシート13の磁場配向工程についてより詳細に説明する。図9は第2の製造工程におけるグリーンシート13の磁場配向工程を示した模式図である。
 図9に示すように、上述したダイ方式により塗工されたグリーンシート13に対する磁場配向は、ロールによって連続搬送された状態の長尺シート状のグリーンシート13に対して、グリーンシート13が乾燥する前に行う。即ち、磁場配向を行う為の装置を塗工装置(ダイ等)の下流側に配置し、上述した塗工工程と連続した工程により行う。
 具体的には、ダイ15やコーティングロール22の下流側において、搬送されるグリーンシート13及び支持基材14がソレノイド38内を通過するようにソレノイド38を配置する。そして、ソレノイド38に電流を流すことによって、長尺シート状のグリーンシート13の面内方向(即ち、グリーンシート13のシート面に平行な方向)で且つ長さ方向に磁場を生じさせる。それによって、連続搬送されるグリーンシート13に対して、グリーンシート13の面内方向且つ長さ方向(図9の矢印39方向)に対して磁場を印加し、グリーンシート13に対して適切に均一な磁場を配向させることが可能となる。特に、磁場を印加する方向を面内方向とすることによって、グリーンシート13の表面が逆立つことを防止できる。また、磁場の勾配が生じているところにグリーンシート13が搬入されると、磁場が強い方にグリーンシート13に含まれる粉末が引き寄せられることとなり、グリーンシート13を形成するスラリーの液寄り、即ち、グリーンシート13の厚みの偏りが生じる虞がある。従って、シートの厚さを均一にする為に配向処理を間欠動作としても良い。
 また、磁場配向した後に行うグリーンシート13の乾燥は、搬送状態で行うことが好ましい。それによって、製造工程をより効率化することが可能となる。
 尚、ホットメルト成形によりグリーンシートを成形した場合には、グリーンシートをバインダーのガラス転移点又は融点以上に加熱して軟化した状態で磁場配向を行う。また、成形されたグリーンシートが凝固する前に磁場配向を行うようにしても良い。
 その後、磁場配向されたグリーンシート13を90℃×10分で保持した後、更に130℃×30分で保持することにより乾燥させる。
 その後、第1の製造方法と同様にして、磁場配向を行ったグリーンシート13を所望の製品形状(例えば、図1に示す扇形形状)に打ち抜きし、仮焼処理及び焼結を行う。そして、焼結の結果、永久磁石1が製造される。
 以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例)
 実施例はNd-Fe-B系磁石であり、合金組成はwt%でNd/Fe/B=32.7/65.96/1.34とする。また、バインダーとしてはポリイソブチレンを用い、溶媒としてはトルエンを用い、添加後のスラリー中における磁石粉末とバインダーの合計量に対するバインダーの比率が18wt%となるスラリーを生成した。その後、スラリーをダイ方式により基材に塗工してグリーンシートを成形した。また、磁場配向は、グリーンシート13に対して面内方向且つ幅方向又は面内方向且つ長さ方向に1.1Tの磁場を印加することにより行った。その後、グリーンシートに対して仮焼処理を行った後に、SPS焼結(加圧値:30MPa、焼結温度:940℃まで10℃/分で上昇させ、5分保持)により焼結した。尚、他の工程は上述した[永久磁石の第1の製造方法]又は[永久磁石の第2の製造方法]と同様の工程とする。
(比較例1)
 磁場配向を、グリーンシート13に対して面直方向(グリーンシート13のシート面に対して垂直な方向)に1.1Tの磁場を印加することにより行った。他の条件は実施例と同様である。
(比較例2)
 グリーンシートの焼結を、SPS焼結を用いずにHe雰囲気で電気炉により行った。具体的には、所定の昇温速度で800℃~1200℃程度(例えば1000℃)まで昇温し、2時間程度保持することにより行った。他の条件は実施例と同様である。
(実施例と比較例1との比較)
 ここで、図10は実施例及び比較例1の磁場配向後のグリーンシートの外観形状をそれぞれ示した図である。図10において実施例及び比較例1の永久磁石の形状を比較すると、比較例1の永久磁石は、磁石表面に逆立ちが見られた。一方、実施例の永久磁石は比較例1のような磁石表面に逆立ちは見られなかった。従って、実施例の永久磁石では、焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。
 一方、図11は実施例の磁場配向後のグリーンシートについて、C軸に対して垂直方向(即ち、磁場を印加した方向であるグリーンシートの面内方向且つ幅方向又は面内方向且つ長さ方向)から観察したSEM写真である。また、図12は、図11の枠で囲まれた範囲についてEBSP解析を用いて解析した結晶方位分布を逆極点図に示した図である。図12を参照すると、実施例のグリーンシートでは、他の方向に比べて〈001〉方向に偏って磁石粒子が配向していることが分かる。即ち、実施例では、磁場配向が適切に行われており、永久磁石の磁気特性を向上させることが可能となる。尚、その後にグリーンシートを焼結すると、磁石粒子の配向方向を更に改善することが可能である。
(実施例と比較例2との比較)
 図13は焼結前の成形体の一部を撮影したSEM写真、図14は上記実施例により製造された永久磁石の一部を撮影したSEM写真、図15は上記比較例2により製造された永久磁石の一部を撮影したSEM写真である。各SEM写真を比較すると、実施例の永久磁石は、比較例2の永久磁石のように粒径が焼結前と比べて著しく大きくなる粒成長が生じていないことが分かる。実施例の永久磁石は、焼結前と比較して粒径が大きく変化しておらず、焼結時の磁石粒子の粒成長を抑制できていることが分かる。即ち、SPS焼結等の加圧焼結では、真空焼結と比べて、低い温度域で焼結することが可能であり、その結果、焼結工程での昇温・保持時間を短縮でき、磁石粒子の粒成長を抑制した緻密な焼結体の作製が可能となる。
 また、実施例及び比較例2の永久磁石の形状を比較すると、実施例の永久磁石は、比較例2の永久磁石と比べて磁石に生じる反りが小さくなる。即ち、SPS焼結等の加圧焼結では、真空焼結と比べて、磁石に生じる反りを抑えることが可能である。
 以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することにより混合物(スラリーやコンパウンド等)を生成する。そして、生成した混合物を長尺シート状に成形し、グリーンシート13を作製する。その後、成形したグリーンシート13が乾燥する前に、グリーンシート13の面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行い、グリーンシート13を加圧焼結することにより永久磁石1を製造する。その結果、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
 また、成形したグリーンシート13が乾燥する前に、グリーンシート13の面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行うので、磁場配向を適切に行わせることができ、永久磁石の磁気特性を向上させることが可能となる。また、磁場を印加する際に、グリーンシート13の表面が逆立つ虞もない。
 また、連続搬送される基材に対してスラリー12を塗工することによりグリーンシート13を作製し、基材とともに連続搬送されるグリーンシート13に対して磁場を印加することにより磁場配向が行われるので、グリーンシート13の作製から磁場配向までを連続した工程で行うことができ、製造工程の簡略化及び生産性の向上を実現することが可能となる。
 また、第2の製造方法では、基材とともに連続搬送されるグリーンシート13を、電流を加えたソレノイド38内へ通過させることにより、グリーンシート13に対して磁場を印加するので、グリーンシート13に対して均一な磁場を印加することが可能となり、磁場配向を均一且つ適切に行うことが可能となる。
 また、加圧焼結を用いて永久磁石1を焼結するので、焼結温度を下げて、焼結時の粒成長を抑制することが可能となる。従って、製造される永久磁石の磁気性能を向上させることが可能となる。また、製造される永久磁石は、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
 また、グリーンシートを加圧焼結により焼結する工程では、SPS焼結等の一軸加圧焼結により焼結するので、焼結による永久磁石の収縮が均一となることにより、焼結後の永久磁石において反りや凹みなどの変形が生じることを防止できる。
 また、グリーンシートを加圧焼結により焼結する工程では、SPS焼結等の通電焼結により焼結するので、急速昇温・冷却が可能となり、また、低い温度域で焼結することが可能となる。その結果、焼結工程での昇温・保持時間を短縮でき、磁石粒子の粒成長を抑制した緻密な焼結体の作製が可能となる。
 また、グリーンシート13を焼結する前に、グリーンシート13を非酸化性雰囲気下でバインダー分解温度に一定時間保持する仮焼処理を行うことによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
 更に、仮焼処理では、バインダーが混練されたグリーンシート13を水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で200℃~900℃、より好ましくは400℃~600℃に一定時間保持するので、磁石内に含有する炭素量をより確実に低減させることができる。
 尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
 例えば、磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例ではジェットミルを用いた乾式粉砕により磁石原料を粉砕しているが、ビーズミルによる湿式粉砕により粉砕することとしても良い。また、上記実施例では、スロットダイ方式によりグリーンシートを形成しているが、他の方式(例えばカレンダーロール方式、コンマ塗工方式、押出成型、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。但し、スラリーや流体状のコンパウンドを基材上に高精度に成形することが可能な方式を用いることが望ましい。また、上記実施例では、SPS焼結により磁石を焼結しているが、他の加圧焼結方法(例えばホットプレス焼結等)を用いて磁石を焼結しても良い。
 また、上記実施例では、ダイ方式による塗工工程と磁場配向工程を連続した一連の工程により行っているが、連続した工程により行わないように構成しても良い。その場合には、塗工されたグリーンシート13を所定長さに切断し、静止した状態のグリーンシート13に対して磁場を印加することにより磁場配向を行うように構成することが可能である。
 また、仮焼処理は省略しても良い。その場合であっても焼結中にバインダーが熱分解し、一定の脱炭効果を期待することができる。また、仮焼処理は水素以外の雰囲気で行っても良い。
 また、上記実施例では、バインダーとして樹脂や長鎖炭化水素や脂肪酸メチルエステルを用いることとしているが、他の材料を用いても良い。
 また、本発明ではNd-Fe-B系磁石を例に挙げて説明したが、他の磁石(例えばコバルト磁石、アルニコ磁石、フェライト磁石等)を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。
  1     永久磁石
  11    ジェットミル
  12    スラリー
  13    グリーンシート
  14    支持基材
  15    ダイ
  25、26 磁場コイル
  30    成形体

Claims (14)

  1.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する工程と、
     前記混合物を長尺シート状に成形し、グリーンシートを作製する工程と、
     前記グリーンシートの面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向する工程と、
     磁場配向された前記グリーンシートを焼結する工程と、により製造されることを特徴とする希土類永久磁石。
  2.  前記グリーンシートを作製する工程では、連続搬送される基材に対して前記混合物を塗工することにより前記グリーンシートを作製し、
     前記磁場配向する工程は、前記基材とともに連続搬送される前記グリーンシートに対して磁場を印加することを特徴とする請求項1に記載の希土類永久磁石。
  3.  前記磁場配向する工程は、前記基材とともに連続搬送される前記グリーンシートを、電流を加えたソレノイド内へ通過させることにより、前記グリーンシートの面内方向且つ長さ方向に対して磁場を印加することを特徴とする請求項2に記載の希土類永久磁石。
  4.  前記グリーンシートを焼結する工程では、加圧焼結により焼結することを特徴とする請求項1に記載の希土類永久磁石。
  5.  前記グリーンシートを焼結する前に、前記グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする請求項1に記載の希土類永久磁石。
  6.  前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする請求項5に記載の希土類永久磁石。
  7.  前記混合物は、前記磁石粉末と前記バインダーと有機溶媒とが混合されたスラリーであって、
     前記磁場配向する工程は、前記グリーンシートが乾燥する前に、前記グリーンシートに対して磁場を印加することを特徴とする請求項1乃至請求項6のいずれかに記載の希土類永久磁石。
  8.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末とバインダーとを混合することにより混合物を生成する工程と、
     前記混合物を長尺シート状に成形し、グリーンシートを作製する工程と、
     前記グリーンシートの面内方向且つ幅方向又は面内方向且つ長さ方向に対して磁場を印加することにより磁場配向する工程と、
     磁場配向された前記グリーンシートを焼結する工程と、を有することを特徴とする希土類永久磁石の製造方法。
  9.  前記グリーンシートを作製する工程では、連続搬送される基材に対して前記混合物を塗工することにより前記グリーンシートを作製し、
     前記磁場配向する工程は、前記基材とともに連続搬送される前記グリーンシートに対して磁場を印加することを特徴とする請求項8に記載の希土類永久磁石の製造方法。
  10.  前記磁場配向する工程は、前記基材とともに連続搬送される前記グリーンシートを、電流を加えたソレノイド内へ通過させることにより、前記グリーンシートの面内方向且つ長さ方向に対して磁場を印加することを特徴とする請求項9に記載の希土類永久磁石の製造方法。
  11.  前記グリーンシートを焼結する工程では、加圧焼結により焼結することを特徴とする請求項8に記載の希土類永久磁石の製造方法。
  12.  前記グリーンシートを焼結する前に、前記グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする請求項8に記載の希土類永久磁石の製造方法。
  13.  前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする請求項12に記載の希土類永久磁石の製造方法。
  14.  前記混合物は、前記磁石粉末と前記バインダーと有機溶媒とが混合されたスラリーであって、
     前記磁場配向する工程は、前記グリーンシートが乾燥する前に、前記グリーンシートに対して磁場を印加することを特徴とする請求項8乃至請求項13のいずれかに記載の希土類永久磁石の製造方法。
PCT/JP2012/056705 2011-06-24 2012-03-15 希土類永久磁石及び希土類永久磁石の製造方法 WO2012176510A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137003372A KR20140036997A (ko) 2011-06-24 2012-03-15 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
CN2012800027446A CN103081040A (zh) 2011-06-24 2012-03-15 稀土类永久磁铁及稀土类永久磁铁的制造方法
US13/816,357 US20130141196A1 (en) 2011-06-24 2012-03-15 Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
EP12802643.2A EP2685471A4 (en) 2011-06-24 2012-03-15 Rare-term permanent magnet and method for producing the rare-earth permanent magnet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011140915 2011-06-24
JP2011-140916 2011-06-24
JP2011-140915 2011-06-24
JP2011140916 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176510A1 true WO2012176510A1 (ja) 2012-12-27

Family

ID=47422360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056705 WO2012176510A1 (ja) 2011-06-24 2012-03-15 希土類永久磁石及び希土類永久磁石の製造方法

Country Status (6)

Country Link
US (1) US20130141196A1 (ja)
EP (1) EP2685471A4 (ja)
KR (1) KR20140036997A (ja)
CN (1) CN103081040A (ja)
TW (1) TWI462130B (ja)
WO (1) WO2012176510A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140197911A1 (en) * 2012-03-12 2014-07-17 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150303A (ja) * 1987-12-08 1989-06-13 Mitsubishi Steel Mfg Co Ltd 磁気異方性焼結磁石及びその製造方法
JPH02266503A (ja) 1989-04-07 1990-10-31 Kawasaki Steel Corp 希土類永久滋石の製造方法
JPH088111A (ja) * 1994-06-23 1996-01-12 Murata Mfg Co Ltd 異方性永久磁石及びその製造方法
JPH09312229A (ja) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd 希土類系焼結磁石の製造方法
JP2005203555A (ja) * 2004-01-15 2005-07-28 Neomax Co Ltd 焼結磁石の製造方法
JP2009087466A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 磁気記録媒体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132080A (en) * 1944-11-28 1992-07-21 Inco Limited Production of articles from powdered metals
US5034243A (en) * 1988-11-04 1991-07-23 Hitachi, Ltd. Method for magnetic orientation of magnetic recording medium using Meissner effect of high Tc superconductor
US5405574A (en) * 1992-02-10 1995-04-11 Iap Research, Inc. Method for compaction of powder-like materials
JPH09283358A (ja) * 1996-04-09 1997-10-31 Hitachi Metals Ltd R−Fe−B系焼結磁石の製造方法
US20020036367A1 (en) * 2000-02-22 2002-03-28 Marlin Walmer Method for producing & manufacturing density enhanced, DMC, bonded permanent magnets
EP1360071B1 (en) * 2000-11-26 2006-01-11 Magnetnotes, Ltd. Magnetic substrates, composition and method for making the same
US6740287B2 (en) * 2001-02-22 2004-05-25 Romain Louis Billiet Method for making articles from nanoparticulate materials
US6663827B2 (en) * 2001-04-13 2003-12-16 Romain L. Billiet Rare earth magnet rotors for watch movements and method of fabrication thereof
JP3983999B2 (ja) * 2001-05-17 2007-09-26 日産自動車株式会社 異方性交換スプリング磁石の製造方法とこれを備えてなるモータ
JP3917539B2 (ja) * 2003-02-27 2007-05-23 株式会社神戸製鋼所 粉末冶金用バインダー、粉末冶金用混合粉末およびその製造方法
JP4872109B2 (ja) * 2008-03-18 2012-02-08 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5266522B2 (ja) * 2008-04-15 2013-08-21 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP2009267221A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp 磁石の製造方法およびモータの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150303A (ja) * 1987-12-08 1989-06-13 Mitsubishi Steel Mfg Co Ltd 磁気異方性焼結磁石及びその製造方法
JPH02266503A (ja) 1989-04-07 1990-10-31 Kawasaki Steel Corp 希土類永久滋石の製造方法
JPH088111A (ja) * 1994-06-23 1996-01-12 Murata Mfg Co Ltd 異方性永久磁石及びその製造方法
JPH09312229A (ja) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd 希土類系焼結磁石の製造方法
JP2005203555A (ja) * 2004-01-15 2005-07-28 Neomax Co Ltd 焼結磁石の製造方法
JP2009087466A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 磁気記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685471A4

Also Published As

Publication number Publication date
CN103081040A (zh) 2013-05-01
US20130141196A1 (en) 2013-06-06
TW201301319A (zh) 2013-01-01
TWI462130B (zh) 2014-11-21
KR20140036997A (ko) 2014-03-26
EP2685471A1 (en) 2014-01-15
EP2685471A4 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP5103553B1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5411956B2 (ja) 希土類永久磁石、希土類永久磁石の製造方法及び希土類永久磁石の製造装置
WO2013137134A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969781B2 (ja) 希土類永久磁石の製造方法
WO2013137132A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013030742A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5411957B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203520B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2015121915A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203522B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203521B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969782B2 (ja) 希土類永久磁石の製造方法
WO2012176510A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191609A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191610A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5420699B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5307912B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191608A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969783B2 (ja) 希土類永久磁石の製造方法
JP2013191614A (ja) 希土類永久磁石及び希土類永久磁石の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002744.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20137003372

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13816357

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012802643

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE