WO2012176477A1 - パワーコンディショナ、制御方法および発電システム - Google Patents

パワーコンディショナ、制御方法および発電システム Download PDF

Info

Publication number
WO2012176477A1
WO2012176477A1 PCT/JP2012/004082 JP2012004082W WO2012176477A1 WO 2012176477 A1 WO2012176477 A1 WO 2012176477A1 JP 2012004082 W JP2012004082 W JP 2012004082W WO 2012176477 A1 WO2012176477 A1 WO 2012176477A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
power
converter
direct current
commercial power
Prior art date
Application number
PCT/JP2012/004082
Other languages
English (en)
French (fr)
Inventor
正臣 佐竹
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/128,503 priority Critical patent/US20140132073A1/en
Priority to JP2013521478A priority patent/JP5646751B2/ja
Priority to EP20120802907 priority patent/EP2725676A4/en
Priority to CN201280030937.2A priority patent/CN103688437B/zh
Publication of WO2012176477A1 publication Critical patent/WO2012176477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators

Definitions

  • the present invention relates to a power conditioner, a control method, and a power generation system that link a power generation facility and a commercial power supply system (system).
  • a power conditioner for connecting the power generation equipment and the system is provided.
  • a power conditioner it is equipped with a direct current output unit for the storage battery, and the storage battery is charged by the power from the power generation facility and the system. What is maintained is known (for example, refer to Patent Document 1).
  • an object of the present invention made in view of such a point is to provide a power conditioner, a control method, and a power generation system capable of stably obtaining a direct current output even when disconnection occurs.
  • the invention of the power conditioner according to the first aspect of achieving the above object is as follows: A DC / DC converter for inputting a direct current output from a power generation facility; A direct current output unit for outputting the direct current output of the DC / DC converter to the outside; A grid interconnection switch connected to the commercial power system; An inverter that is connected to the commercial power system via the grid interconnection switch, and that performs DC / AC conversion for converting the direct current output of the DC / DC converter into alternating current and outputting it to the commercial power system; An AC switch connected to the commercial power system side of the grid interconnection switch; A rectifier connected to the commercial power system via the AC switch, rectifying alternating current from the commercial power system and outputting the rectified current to the DC / DC converter; When disconnecting the grid connection switch under a predetermined disconnection condition, a control unit that parallels the AC switch before disconnecting the grid connection switch; A power conditioner comprising:
  • the invention according to the second aspect is the power conditioner according to the first aspect,
  • the control unit aligns the DC voltage output from the power generation facility with the rectified voltage from the rectification unit when the power generation facility is generating power when the AC switches are arranged in parallel. It is characterized by this.
  • the invention according to the third aspect is the power conditioner according to the second aspect,
  • the DC / DC converter has a DC maximum power point tracking function output from the power generation facility,
  • the control unit stops the operation of the maximum power point tracking function and aligns the DC voltage output from the power generation equipment with the rectified voltage from the rectifying unit, It is characterized by this.
  • the invention according to the fourth aspect is the power conditioner according to the third aspect, As the power generation equipment, connected to equipment including solar panels, It is characterized by this.
  • the invention according to the fifth aspect is the power conditioner according to the first aspect,
  • the control unit controls the disconnection of the grid interconnection switch and the parallel of the AC switch, with the predetermined disconnection condition being a case where the system voltage or system frequency of the commercial power system is out of a predetermined range. It is characterized by this.
  • the invention according to a sixth aspect is the power conditioner according to the fifth aspect,
  • the control unit controls the disconnection of the grid interconnection switch and the parallelism of the AC switch within a first time after detecting the predetermined disconnection condition. It is characterized by this.
  • the invention according to a seventh aspect is the power conditioner according to the fifth aspect,
  • the first time is 2 seconds; It is characterized by this.
  • the invention according to the eighth aspect is the power conditioner according to the first aspect,
  • the control unit performs a grid connection return process after a second time has elapsed from the disconnection of the grid connection switch when the grid switch and the AC switch are paralleled. It is characterized by this.
  • the invention according to a ninth aspect is the power conditioner according to the eighth aspect,
  • the second time is 10 seconds; It is characterized by this.
  • the invention according to the tenth aspect is the power conditioner according to the eighth aspect,
  • the control unit executes parallel connection of the grid interconnection switch and disconnection of the AC switch when the predetermined disconnection condition is deviated as the grid interconnection return processing. It is characterized by this.
  • the invention according to the eleventh aspect is the power conditioner according to the tenth aspect,
  • the control unit when paralleling the grid interconnection switch, executes the parallel of the grid interconnection switch before disconnecting the AC switch, It is characterized by this.
  • the invention according to the twelfth aspect is the power conditioner according to the eighth aspect,
  • the DC / DC converter has a DC maximum power point tracking function output from the power generation facility,
  • the control unit starts the operation of the maximum power point tracking function during the grid connection return process, It is characterized by this.
  • the invention according to a thirteenth aspect is the power conditioner according to the first aspect,
  • the inverter is a bidirectional inverter that can also perform AC / DC conversion for converting AC from the commercial power supply system into DC and outputting to the DC output unit,
  • the bidirectional inverter selectively performs the DC / AC conversion and the AC / DC conversion. It is characterized by this.
  • the invention of the control method according to the fourteenth aspect for achieving the above object is as follows: A DC / DC converter for inputting a direct current output from a power generation facility; A direct current output unit for outputting the direct current output of the DC / DC converter to the outside; A grid interconnection switch connected to the commercial power system; A power conditioner comprising: an inverter that is connected to the commercial power supply system via the grid interconnection switch, and that performs a DC / AC conversion for converting the direct current output of the DC / DC converter into an alternating current and outputting it to the commercial power supply system Control method, An AC switch connected to the commercial power system side of the grid interconnection switch; A rectifier connected to the commercial power system via the AC switch, rectifying alternating current from the commercial power system and outputting the rectified current to the DC / DC converter; When disconnecting the grid connection switch under a predetermined disconnection condition, a control unit that parallels the AC switch before disconnecting the grid connection switch; It is characterized by providing.
  • a power generation system having a power generation facility and a power conditioner The inverter is A DC / DC converter for inputting a direct current output from a power generation facility; A direct current output unit for outputting the direct current output of the DC / DC converter to the outside; A grid interconnection switch connected to the commercial power system; An inverter that is connected to the commercial power system via the grid interconnection switch, and that performs DC / AC conversion for converting the direct current output of the DC / DC converter into alternating current and outputting it to the commercial power system; An AC switch connected to the commercial power system side of the grid interconnection switch; A rectifier connected to the commercial power system via the AC switch, rectifying alternating current from the commercial power system and outputting the rectified current to the DC / DC converter; When disconnecting the grid connection switch under a predetermined disconnection condition, a control unit that parallels the AC switch before disconnecting the grid connection switch; It is characterized by providing.
  • FIG. 1 It is a block diagram which shows the structure of the principal part of the power conditioner which concerns on one embodiment of this invention. It is a flowchart which shows operation
  • FIG. 1 is a block diagram showing a configuration of a main part of a power conditioner according to an embodiment of the present invention.
  • the power conditioner 10 includes a DC input unit 11, a DC / DC converter 12, a bidirectional inverter 13, a grid interconnection switch 14, an AC input / output unit 15, an AC switch 16, a rectifier unit 17, a DC output unit 18, and a control.
  • the unit 19 is provided.
  • the DC input unit 11 includes a connection terminal and a voltage / current detection circuit, and receives a direct current (DC) output from a power generation facility 21 such as a solar panel, a wind power generator, a fuel cell, or a private power generator.
  • the direct current output of the direct current input unit 11 is input to the DC / DC converter 12. Further, the detection output of the voltage / current detection circuit of the DC input unit 11 is input to the control unit 19.
  • the DC / DC converter 12 has an MPPT (Maximum Power Point Tracking) function under the control of the control unit 19, controls the input DC voltage, and outputs to the bidirectional inverter 13 and the DC output unit 18. Enter each.
  • MPPT Maximum Power Point Tracking
  • the bidirectional inverter 13 selectively DC / AC converts the DC input from the DC / DC converter 12 under the control of the control unit 19, passes through the grid interconnection switch 14 and the AC input / output unit 15, and enters the commercial power system ( Reverse flow to system 22). Further, the bidirectional inverter 13 selectively AC / DC converts alternating current (AC) input from the system 22 via the AC input / output unit 15 and the system interconnection switch 14 under the control of the control unit 19 to generate a direct current. Input to the output unit 18.
  • AC alternating current
  • the grid interconnection switch 14 is configured by a relay switch that is ON (parallel) / OFF (disconnection) controlled by the control unit 19, and selectively disconnects the power generation equipment 21 from the system 22. That is, in the case of FIG. 1, the bidirectional inverter 13 is selectively disconnected from the system 22.
  • This grid connection switch 14 becomes a disconnection point of the power generation facility 21.
  • the AC input / output unit 15 includes a connection terminal, a voltage / current detection circuit, and a frequency detection circuit, and inputs / outputs AC from the system 22 or AC from the bidirectional inverter 13.
  • the detection output of the voltage / current detection circuit and frequency detection circuit of the AC input / output unit 15 is input to the control unit 19.
  • the AC switch 16 is configured by a relay switch that is ON / OFF controlled by the control unit 19, and inputs an AC input input from the system 22 via the AC input / output unit 15 to the rectifying unit 17 when ON.
  • the rectification unit 17 rectifies alternating current from the system 22 into direct current.
  • the rectified direct current output is input to the DC / DC converter 12.
  • the DC output unit 18 includes a connection terminal, and a DC load 23 that requires a DC power source, such as a storage battery, an LED lighting device, a personal computer, or an inverter device, is connected to the connection terminal. Then, DC power from the DC / DC converter 12 or the bidirectional inverter 13 is supplied to the DC load 23.
  • the DC output unit 18 includes a voltage / current detection circuit, and the detection outputs thereof are input to the control unit 19.
  • the control unit 19 includes an operation program, various setting ranges, a memory for storing setting values, a timer function, and the like. Based on the voltage / current detection output from the DC input unit 11, the voltage / current detection output and frequency detection output from the AC input / output unit 15, and the voltage / current detection output from the DC output unit 18. The MPPT function of the DC / DC converter 12 and the opening / closing of the grid interconnection switch 14 and the AC switch 16 are controlled.
  • control unit 19 determines whether or not a predetermined disconnection condition is satisfied (step S201).
  • a predetermined disconnection condition is satisfied based on the voltage / current detection output and the frequency detection output from the AC input / output unit 15 as the predetermined disconnection condition, it is determined whether or not the system voltage or system frequency of the system 22 is out of the settling range.
  • power is supplied from the power generation facility 21 or the system 22 to the DC load 23 according to the magnitude relationship between the generated power of the power generation facility 21 and the power consumption of the DC load 23 (DC load power). Is supplied. For example, when the generated power> the DC load power, the generated power is supplied to the DC load 23 via the DC / DC converter 12. Further, the generated power flows backward to the system 22 through the DC / DC converter 12 and the bidirectional inverter 13. In the case of generated power ⁇ DC load power, the AC from the system 22 is converted into DC by the bidirectional inverter 13 together with the generated power and is supplied to the DC load 23. When the generated power is equal to the DC load power, the generated power is supplied to the DC load 23 via the DC / DC converter 12 without causing reverse flow of the generated power and without obtaining power from the grid 22.
  • step S201 when it is determined in step S201 that the system voltage or system frequency of the system 22 is outside the settling range, the control unit 19 turns on the AC switch 16 (step S202). As a result, the AC of the system 22 is rectified and supplied to the DC / DC converter 12 by the rectifier 17. Further, the control unit 19 determines whether or not the power generation facility 21 is generating power based on the voltage / current detection output from the DC input unit 11 (step S203).
  • step S204 when the power generation facility 21 is generating power, the control unit 19 stops the operation of the MPPT function if the DC / DC converter 12 is in the MPPT operation (step S204), and the DC / DC converter 12 generates power.
  • the power generation voltage of the equipment 21 is aligned with the rectified voltage from the rectifying unit 17 (step S205).
  • step S206 the control unit 19 turns off the grid connection switch 14 and turns on the gate block of the bidirectional inverter 13, that is, shuts off the gate signal (step S206).
  • step S206 the power generation equipment 21 and the bidirectional inverter 13 are disconnected from the system 22. This disconnection is performed within 2 seconds as described above after it is determined in step S201 that the system voltage or system frequency of the system 22 is out of the settling range.
  • step S203 when the power generation facility 21 is not generating power, the process proceeds to step S206.
  • control unit 19 activates a timer set to a settling value (for example, 10 seconds) of the return time after disengagement and executes system return processing (step S207).
  • a timer set to a settling value for example, 10 seconds
  • FIG. 3 is a flowchart showing the return processing in step S207 of FIG.
  • the control unit 19 determines whether or not the timer has reached a set value (step S301). When the set value is reached, the control unit 19 determines whether or not the system 22 has recovered based on the voltage / current detection output and the frequency detection output from the AC input / output unit 15, that is, the system voltage or system frequency is set. It is determined whether or not the range has been recovered (step S302).
  • control unit 19 turns on the system interconnection switch 14 and turns off the gate block of the bidirectional inverter 13, that is, supplies a gate signal (step S303). Thereby, the power generation equipment 21 and the bidirectional inverter 13 are linked to the system 22.
  • control unit 19 turns off the AC switch 16 (step S304), starts the operation of the MPPT function of the DC / DC converter 12 (step S305), and ends the return process.
  • the AC of the system 22 is converted by the rectifying unit 17 prior to disconnection. It is rectified to a direct current and supplied to the DC / DC converter 12. Therefore, even if the bidirectional inverter 13 is subsequently disconnected, the DC load 23 can be continuously fed without being affected by the generated power of the power generation facility 21. As a result, the DC load 23 can be stably operated.
  • the rectifier 17 can be easily configured by a half-wave rectifier circuit having one diode or a full-wave rectifier circuit having a diode bridge.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.
  • the DC / DC converter 12 can have the function of the DC input unit 11 of FIG.
  • the function of the AC input / output unit 15 can be given to the bidirectional inverter 13.
  • the MPPT function of the DC / DC converter 12 may be controlled to always stop the operation when the AC switch 16 is turned on.
  • two grid interconnection switches 14 may be provided in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 解列が発生しても直流出力を安定して得ることが可能なパワーコンディショナを提供する。 発電設備から出力される直流を入力するDC/DCコンバータ12と、その直流出力を外部に出力するための直流出力部18と、系統22に接続される系統連系スイッチ14と、系統連系スイッチ14を介して系統22に接続され、DC/DCコンバータ12の直流出力を交流変換して系統22に出力するDC/AC変換を実行するインバータ13と、系統連系スイッチ14の系統22側に接続されたACスイッチ16と、ACスイッチ16を介して系統22に接続され、系統22からの交流を整流してDC/DCコンバータ12に出力する整流部17と、所定の解列条件で系統連系スイッチ14を解列する際に、系統連系スイッチ14の解列の前にACスイッチ16を並列する制御部19と、を備える。

Description

パワーコンディショナ、制御方法および発電システム 関連出願の相互参照
 本出願は、2011年6月22日に日本国に出願された特願2011-138793の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
 本発明は、発電設備と商用電源系統(系統)とを連系させるパワーコンディショナ、制御方法および発電システムに関するものである。
 太陽光パネル等の発電設備を備えた発電システムにおいては、発電設備と系統とを連系させるためのパワーコンディショナを備えている。このようなパワーコンディショナとして、蓄電池用の直流出力部を備え、発電設備や系統からの電力によって蓄電池を充電し、停電や系統電圧の低下等の系統異常発生時に、蓄電池から放電して電力を維持するようにしたものが知られている(例えば、特許文献1参照)。
 ここで、系統の電圧低下があった場合、「電力品質確保に係る系統連系技術要件ガイドライン」(平成16年10月1日 資源エネルギー庁)によると、「瞬時電圧低下対策を適用する時間は2秒程度まで」とある。そのため、系統に電圧低下があった場合は、2秒以内に発電設備61を解列させる必要がある。そして、解列した後は、通常、解列状態を一定時間保持し、系統に異常が無いことが確認できれば自動復帰(並列)させるようになっている。
特開2003-189477号公報
 ところで、直流出力部に蓄電池に代えて直流負荷を接続し、発電設備から得られる直流出力をDC/DCコンバータにより昇圧して、直流負荷を稼動することが想定される。しかも、双方向インバータにより系統から直流出力を得ることができるので、発電設備が例えば太陽光パネルの場合であっても、夜間にも直流出力を得ることが可能となる。
 しかしながら、このような構成においては、解列が発生すると、直流負荷の電源が発電設備のみとなって、直流負荷に十分な電力が供給されなくなる場合がある。特に、発電設備が太陽光パネルの場合は、夜間に解列が生じると、直流出力が得られなくなって、直流負荷を稼動できなくなる。なお、このような問題は、発電設備が太陽光パネルの場合に限らず、風力発電機や自家発電機等の種々の発電設備からの直流出力が変動する場合にも同様に生じるものである。
 したがって、かかる点に鑑みてなされた本発明の目的は、解列が発生しても直流出力を安定して得ることが可能なパワーコンディショナ、制御方法および発電システムを提供することにある。
 上記目的を達成する第1の観点に係るパワーコンディショナの発明は、
 発電設備から出力される直流を入力するDC/DCコンバータと、
 該DC/DCコンバータの直流出力を外部に出力するための直流出力部と、
 商用電源系統に接続される系統連系スイッチと、
 該系統連系スイッチを介して前記商用電源系統に接続され、前記DC/DCコンバータの直流出力を交流変換して前記商用電源系統に出力するDC/AC変換を実行するインバータと、
 前記系統連系スイッチの前記商用電源系統側に接続されたACスイッチと、
 該ACスイッチを介して前記商用電源系統に接続され、前記商用電源系統からの交流を整流して前記DC/DCコンバータに出力する整流部と、
 所定の解列条件で前記系統連系スイッチを解列する際に、該系統連系スイッチの解列の前に前記ACスイッチを並列する制御部と、
 を備えることを特徴とするパワーコンディショナ。
 第2の観点に係る発明は、第1の観点に係るパワーコンディショナにおいて、
 前記制御部は、前記ACスイッチを並列する際、前記発電設備が発電中の場合には、前記発電設備から出力される直流の電圧を前記整流部からの整流電圧に揃える、
 ことを特徴とするものである。
 第3の観点に係る発明は、第2の観点に係るパワーコンディショナにおいて、
 前記DC/DCコンバータは、前記発電設備から出力される直流の最大電力点追従機能を有し、
 前記制御部は、前記最大電力点追従機能の動作を停止させて前記発電設備から出力される直流の電圧を前記整流部からの整流電圧に揃える、
 ことを特徴とするものである。
 第4の観点に係る発明は、第3の観点に係るパワーコンディショナにおいて、
 前記発電設備として、太陽光パネルを含む設備に対して接続される、
 ことを特徴とするものである。
 第5の観点に係る発明は、第1の観点に係るパワーコンディショナにおいて、
 前記制御部は、前記商用電源系統の系統電圧または系統周波数が所定範囲から外れた場合を前記所定の解列条件として、前記系統連系スイッチの解列および前記ACスイッチの並列を制御する、
 ことを特徴とするものである。
 第6の観点に係る発明は、第5の観点に係るパワーコンディショナにおいて、
 前記制御部は、前記所定の解列条件を検知してから、第1の時間内に前記系統連系スイッチの解列および前記ACスイッチの並列を制御する、
 ことを特徴とするものである。
 第7の観点に係る発明は、第5の観点に係るパワーコンディショナにおいて、
 前記第1の時間は2秒である、
 ことを特徴とするものである。
 第8の観点に係る発明は、第1の観点に係るパワーコンディショナにおいて、
 前記制御部は、前記系統連系スイッチの解列および前記ACスイッチの並列を実行した場合に、前記系統連系スイッチの解列から第2の時間経過した後に系統連系復帰処理を実行する、
 ことを特徴とするものである。
 第9の観点に係る発明は、第8の観点に係るパワーコンディショナにおいて、
 前記第2の時間は10秒である、
 ことを特徴とするものである。
 第10の観点に係る発明は、第8の観点に係るパワーコンディショナにおいて、
 前記制御部は、前記系統連系復帰処理として、前記所定の解列条件から外れた場合に前記系統連系スイッチの並列および前記ACスイッチの解列を実行する、
 ことを特徴とするものである。
 第11の観点に係る発明は、第10の観点に係るパワーコンディショナにおいて、
 前記制御部は、前記系統連系スイッチを並列する際に、前記ACスイッチの解列の前に前記系統連系スイッチの並列を実行する、
 ことを特徴とするものである。
 第12の観点に係る発明は、第8の観点に係るパワーコンディショナにおいて、
 前記DC/DCコンバータは、前記発電設備から出力される直流の最大電力点追従機能を有し、
 前記制御部は、前記系統連系復帰処理の際に、前記最大電力点追従機能の動作を開始させる、
 ことを特徴とするものである。
 第13の観点に係る発明は、第1の観点に係るパワーコンディショナにおいて、
 前記インバータは、前記商用電源系統からの交流を直流変換して前記直流出力部に出力するAC/DC変換も実行可能な双方向インバータであって、
 前記双方向インバータは、前記DC/AC変換および前記AC/DC変換を選択的に実行する、
 ことを特徴とするものである。
 さらに、上記目的を達成する第14の観点に係る制御方法の発明は、
 発電設備から出力される直流を入力するDC/DCコンバータと、
 該DC/DCコンバータの直流出力を外部に出力するための直流出力部と、
 商用電源系統に接続される系統連系スイッチと、
 該系統連系スイッチを介して前記商用電源系統に接続され、前記DC/DCコンバータの直流出力を交流変換して前記商用電源系統に出力するDC/AC変換を実行するインバータとを備えるパワーコンディショナの制御方法であって、
 前記系統連系スイッチの前記商用電源系統側に接続されたACスイッチと、
 該ACスイッチを介して前記商用電源系統に接続され、前記商用電源系統からの交流を整流して前記DC/DCコンバータに出力する整流部と、
 所定の解列条件で前記系統連系スイッチを解列する際に、該系統連系スイッチの解列の前に前記ACスイッチを並列する制御部と、
 を備えることを特徴とするものである。
 さらに、上記目的を達成する第15の観点に係る発電システムの発明は、
 発電設備とパワーコンディショナとを有する発電システムであって、
 前記パワーコンディショナが、
 発電設備から出力される直流を入力するDC/DCコンバータと、
 該DC/DCコンバータの直流出力を外部に出力するための直流出力部と、
 商用電源系統に接続される系統連系スイッチと、
 該系統連系スイッチを介して前記商用電源系統に接続され、前記DC/DCコンバータの直流出力を交流変換して前記商用電源系統に出力するDC/AC変換を実行するインバータと、
 前記系統連系スイッチの前記商用電源系統側に接続されたACスイッチと、
 該ACスイッチを介して前記商用電源系統に接続され、前記商用電源系統からの交流を整流して前記DC/DCコンバータに出力する整流部と、
 所定の解列条件で前記系統連系スイッチを解列する際に、該系統連系スイッチの解列の前に前記ACスイッチを並列する制御部と、
 を備えることを特徴とするものである。
 本発明によると、解列が発生しても直流出力を安定して得ることが可能となる。
本発明の一実施の形態に係るパワーコンディショナの要部の構成を示すブロック図である。 図1のパワーコンディショナの動作を示すフローチャートである。 図2の復帰処理を示すフローチャートである。
 以下、本発明の実施の形態について、図を参照して説明する。
 図1は、本発明の一実施の形態に係るパワーコンディショナの要部の構成を示すブロック図である。このパワーコンディショナ10は、直流入力部11、DC/DCコンバータ12、双方向インバータ13、系統連系スイッチ14、交流入出力部15、ACスイッチ16、整流部17、直流出力部18、および制御部19を備える。
 直流入力部11は、接続端子および電圧/電流検出回路を含み、太陽光パネル、風力発電機、燃料電池や自家発電機等の発電設備21から出力される直流(DC)が入力される。この直流入力部11の直流出力は、DC/DCコンバータ12に入力される。また、直流入力部11の電圧/電流検出回路の検出出力は、制御部19に入力される。
 DC/DCコンバータ12は、制御部19の制御によるMPPT(Maximum Power Point Tracking:最大電力点追従)機能を有し、入力される直流電圧を制御して、双方向インバータ13および直流出力部18にそれぞれ入力する。
 双方向インバータ13は、制御部19の制御により、DC/DCコンバータ12からの直流入力を選択的にDC/AC変換して、系統連系スイッチ14および交流入出力部15を経て商用電源系統(系統)22へ逆潮流する。また、双方向インバータ13は、制御部19の制御により、系統22から交流入出力部15および系統連系スイッチ14を経て入力される交流(AC)を選択的にAC/DC変換して、直流出力部18に入力する。
 系統連系スイッチ14は、制御部19によりON(並列)/OFF(解列)制御されるリレースイッチで構成され、系統22から発電設備21を選択的に解列する。つまり、図1の場合、双方向インバータ13を系統22から選択的に解列する。この系統連系スイッチ14が、発電設備21の解列点となる。
 交流入出力部15は、接続端子、電圧/電流検出回路、周波数検出回路を含み、系統22からの交流または双方向インバータ13から交流を入出力する。また、交流入出力部15の電圧/電流検出回路、周波数検出回路の検出出力は、制御部19に入力される。
 ACスイッチ16は、制御部19によりON/OFF制御されるリレースイッチで構成され、ON時において、系統22から交流入出力部15を経て入力される交流入力を整流部17に入力する。
 整流部17は、系統22からの交流を直流に整流する。この整流された直流出力は、DC/DCコンバータ12に入力される。
 直流出力部18は、接続端子を含み、該接続端子に、蓄電池、LED照明機器、パーソナルコンピュータ、インバータ機器等の直流電源を要する直流負荷23が接続される。そして、直流負荷23に、DC/DCコンバータ12あるいは双方向インバータ13からの直流電力が給電される。また、直流出力部18は、電圧/電流検出回路を含み、それらの検出出力が制御部19に入力される。
 制御部19は、動作プログラムや各種の整定範囲、整定値等を記憶するメモリ、タイマ機能等を含む。そして、制御部19は、直流入力部11からの電圧/電流検出出力、交流入出力部15からの電圧/電流検出出力および周波数検出出力、直流出力部18からの電圧/電流検出出力に基づいて、DC/DCコンバータ12のMPPT機能や、系統連系スイッチ14およびACスイッチ16の開閉等を制御する。
 以下、本実施の形態に係るパワーコンディショナ10の動作を、図2に示すフローチャートを参照しながら説明する。なお、初期状態においては、系統連系スイッチ14がON状態、ACスイッチ16がOFF状態にあるものとする。
 先ず、制御部19は、所定の解列条件を満たすか否かを判定する(ステップS201)。ここでは、所定の解列条件として、交流入出力部15からの電圧/電流検出出力および周波数検出出力に基づいて、系統22の系統電圧または系統周波数が整定範囲を外れたか否かを判定する。
 その結果、いずれも整定範囲にある場合は、発電設備21の発電電力と直流負荷23の消費電力(直流負荷電力)との大小関係に応じて、発電設備21または系統22から直流負荷23に電力が供給される。例えば、発電電力>直流負荷電力の場合は、発電電力がDC/DCコンバータ12を経て直流負荷23に供給される。また、発電電力がDC/DCコンバータ12および双方向インバータ13を経て系統22に逆潮流する。発電電力<直流負荷電力の場合は、発電電力とともに系統22からの交流が双方向インバータ13により直流に変換されて直流負荷23に給電される。発電電力=直流負荷電力の場合は、発電電力が逆潮流することなく、また、系統22から電力を得ることもなく、発電電力がDC/DCコンバータ12を経て直流負荷23に供給される。
 これに対し、ステップS201において、系統22の系統電圧または系統周波数が整定範囲から外れていると判定された場合、制御部19は、ACスイッチ16をONとする(ステップS202)。これにより、DC/DCコンバータ12には、系統22の交流が整流部17で直流に整流されて供給される。さらに、制御部19は、直流入力部11からの電圧/電流検出出力に基づいて、発電設備21が発電中か否かを判定する(ステップS203)。
 その結果、発電設備21が発電中の場合、制御部19は、DC/DCコンバータ12がMPPT動作中であれば、MPPT機能の動作を停止して(ステップS204)、DC/DCコンバータ12において発電設備21の発電電圧を、整流部17からの整流電圧に揃える(ステップS205)。次に、制御部19は、系統連系スイッチ14をOFFにするとともに、双方向インバータ13のゲートブロックをONにする、つまりゲート信号を遮断する(ステップS206)。これにより、発電設備21および双方向インバータ13は、系統22から解列される。この解列は、ステップS201において系統22の系統電圧または系統周波数が整定範囲から外れていると判定されてから、上述したように2秒以内で行われる。なお、ステップS203において、発電設備21が発電中でない場合は、ステップS206に移行する。
 その後、制御部19は、解列後の復帰時間の整定値(例えば、10秒)に設定されたタイマを起動させて、系統の復帰処理を実行する(ステップS207)。
 図3は、図2のステップS207による復帰処理を示すフローチャートである。先ず、制御部19は、タイマが整定値に達したか否かを判定する(ステップS301)。そして、整定値に達したら、制御部19は、交流入出力部15からの電圧/電流検出出力および周波数検出出力に基づいて、系統22が回復したか否か、つまり系統電圧または系統周波数が整定範囲に回復したか否かを判定する(ステップS302)。
 その結果、系統22が回復したと判定された場合、制御部19は、系統連系スイッチ14をONにするとともに、双方向インバータ13のゲートブロックをOFFつまりゲート信号を供給する(ステップS303)。これにより、発電設備21および双方向インバータ13は、系統22に連系される。
 その後、制御部19は、ACスイッチ16をOFFとし(ステップS304)、さらに、DC/DCコンバータ12のMPPT機能の動作を開始して(ステップS305)、復帰処理を終了する。
 以上のように、本実施の形態に係るパワーコンディショナ10によると、系統電圧や系統周波数が整定範囲から外れたことが検出されると、解列に先立って系統22の交流が整流部17により直流に整流されてDC/DCコンバータ12に供給される。したがって、その後に双方向インバータ13が解列されても、発電設備21の発電電力に影響されることなく、直流負荷23に直流電力を継続して給電することができる。これにより、直流負荷23を安定して稼動することが可能となる。
 また、整流部17の整流出力は、DC/DCコンバータ12に入力されるので、整流部17からは、必ずしも一定電圧の直流を出力させる必要はなく、脈流があってもよい。したがって、整流部17は、一つのダイオードを有する半波整流回路やダイオードブリッジを有する全波整流回路により、簡単に構成することができる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、図1において、双方向インバータ13と系統連系スイッチ14との間に交流負荷を接続して、発電設備21または系統22により交流負荷に給電することも可能である。また、図1の直流入力部11の機能は、DC/DCコンバータ12に持たせることができる。同様に、交流入出力部15の機能は、双方向インバータ13に持たせることもできる。また、DC/DCコンバータ12のMPPT機能は、ACスイッチ16をONする場合は、常に動作を停止させるように制御してもよい。さらに、系統連系スイッチ14を直列に2つ設けるようにしてもよい。
 10 パワーコンディショナ
 11 直流入力部
 12 DC/DCコンバータ
 13 双方向インバータ
 14 系統連系スイッチ
 15 交流入出力部
 16 ACスイッチ
 17 整流部
 18 直流出力部
 19 制御部
 21 発電設備
 22 商用電源系統(系統)
 23 直流負荷
 

Claims (15)

  1.  発電設備から出力される直流を入力するDC/DCコンバータと、
     該DC/DCコンバータの直流出力を外部に出力するための直流出力部と、
     商用電源系統に接続される系統連系スイッチと、
     該系統連系スイッチを介して前記商用電源系統に接続され、前記DC/DCコンバータの直流出力を交流変換して前記商用電源系統に出力するDC/AC変換を実行するインバータと、
     前記系統連系スイッチの前記商用電源系統側に接続されたACスイッチと、
     該ACスイッチを介して前記商用電源系統に接続され、前記商用電源系統からの交流を整流して前記DC/DCコンバータに出力する整流部と、
     所定の解列条件で前記系統連系スイッチを解列する際に、該系統連系スイッチの解列の前に前記ACスイッチを並列する制御部と、
     を備えることを特徴とするパワーコンディショナ。
  2.  前記制御部は、前記ACスイッチを並列する際、前記発電設備が発電中の場合には、前記発電設備から出力される直流の電圧を前記整流部からの整流電圧に揃える、
     ことを特徴とする請求項1に記載のパワーコンディショナ。
  3.  前記DC/DCコンバータは、前記発電設備から出力される直流の最大電力点追従機能を有し、
     前記制御部は、前記最大電力点追従機能の動作を停止させて前記発電設備から出力される直流の電圧を前記整流部からの整流電圧に揃える、
     ことを特徴とする請求項2に記載のパワーコンディショナ。
  4.  前記発電設備として、太陽光パネルを含む設備に対して接続される、
     ことを特徴とする請求項3に記載のパワーコンディショナ。
  5.  前記制御部は、前記商用電源系統の系統電圧または系統周波数が所定範囲から外れた場合を前記所定の解列条件として、前記系統連系スイッチの解列および前記ACスイッチの並列を制御する、
     ことを特徴とする請求項1に記載のパワーコンディショナ。
  6.  前記制御部は、前記所定の解列条件を検知してから、第1の時間内に前記系統連系スイッチの解列および前記ACスイッチの並列を制御する、
     ことを特徴とする請求項5に記載のパワーコンディショナ。
  7.  前記第1の時間は2秒である、
     ことを特徴とする請求項5に記載のパワーコンディショナ。
  8.  前記制御部は、前記系統連系スイッチの解列および前記ACスイッチの並列を実行した場合に、前記系統連系スイッチの解列から第2の時間経過した後に系統連系復帰処理を実行する、
     ことを特徴とする請求項1に記載のパワーコンディショナ。
  9.  前記第2の時間は10秒である、
     ことを特徴とする請求項8に記載のパワーコンディショナ。
  10.  前記制御部は、前記系統連系復帰処理として、前記所定の解列条件から外れた場合に前記系統連系スイッチの並列および前記ACスイッチの解列を実行する、
     ことを特徴とする請求項8に記載のパワーコンディショナ。
  11.  前記制御部は、前記系統連系スイッチを並列する際に、前記ACスイッチの解列の前に前記系統連系スイッチの並列を実行する、
     ことを特徴とする請求項10に記載のパワーコンディショナ。
  12.  前記DC/DCコンバータは、前記発電設備から出力される直流の最大電力点追従機能を有し、
     前記制御部は、前記系統連系復帰処理の際に、前記最大電力点追従機能の動作を開始させる、
     ことを特徴とする請求項8に記載のパワーコンディショナ。
  13.  前記インバータは、前記商用電源系統からの交流を直流変換して前記直流出力部に出力するAC/DC変換も実行可能な双方向インバータであって、
     前記双方向インバータは、前記DC/AC変換および前記AC/DC変換を選択的に実行する、
     ことを特徴とする請求項1に記載のパワーコンディショナ。
  14.  発電設備から出力される直流を入力するDC/DCコンバータと、
     該DC/DCコンバータの直流出力を外部に出力するための直流出力部と、
     商用電源系統に接続される系統連系スイッチと、
     該系統連系スイッチを介して前記商用電源系統に接続され、前記DC/DCコンバータの直流出力を交流変換して前記商用電源系統に出力するDC/AC変換を実行するインバータとを備えるパワーコンディショナの制御方法であって、
     前記系統連系スイッチの前記商用電源系統側に接続されたACスイッチと、
     該ACスイッチを介して前記商用電源系統に接続され、前記商用電源系統からの交流を整流して前記DC/DCコンバータに出力する整流部と、
     所定の解列条件で前記系統連系スイッチを解列する際に、該系統連系スイッチの解列の前に前記ACスイッチを並列する制御部と、
     を備えることを特徴とする制御方法。
  15.  発電設備とパワーコンディショナとを有する発電システムであって、
     前記パワーコンディショナが、
     発電設備から出力される直流を入力するDC/DCコンバータと、
     該DC/DCコンバータの直流出力を外部に出力するための直流出力部と、
     商用電源系統に接続される系統連系スイッチと、
     該系統連系スイッチを介して前記商用電源系統に接続され、前記DC/DCコンバータの直流出力を交流変換して前記商用電源系統に出力するDC/AC変換を実行するインバータと、
     前記系統連系スイッチの前記商用電源系統側に接続されたACスイッチと、
     該ACスイッチを介して前記商用電源系統に接続され、前記商用電源系統からの交流を整流して前記DC/DCコンバータに出力する整流部と、
     所定の解列条件で前記系統連系スイッチを解列する際に、該系統連系スイッチの解列の前に前記ACスイッチを並列する制御部と、
     を備えることを特徴とする発電システム。
     
PCT/JP2012/004082 2011-06-22 2012-06-22 パワーコンディショナ、制御方法および発電システム WO2012176477A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/128,503 US20140132073A1 (en) 2011-06-22 2012-06-22 Power conditioner, control method and power generation system
JP2013521478A JP5646751B2 (ja) 2011-06-22 2012-06-22 パワーコンディショナ、制御方法および発電システム
EP20120802907 EP2725676A4 (en) 2011-06-22 2012-06-22 CURRENT CONDITIONER, CONTROL METHOD, AND CURRENT GENERATION SYSTEM
CN201280030937.2A CN103688437B (zh) 2011-06-22 2012-06-22 功率调节器、控制方法和发电系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-138793 2011-06-22
JP2011138793 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012176477A1 true WO2012176477A1 (ja) 2012-12-27

Family

ID=47422331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004082 WO2012176477A1 (ja) 2011-06-22 2012-06-22 パワーコンディショナ、制御方法および発電システム

Country Status (5)

Country Link
US (1) US20140132073A1 (ja)
EP (1) EP2725676A4 (ja)
JP (1) JP5646751B2 (ja)
CN (1) CN103688437B (ja)
WO (1) WO2012176477A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837765A (zh) * 2013-09-17 2014-06-04 株洲南车时代电气股份有限公司 能馈型变流器功率测试系统及其方法
JP2015154691A (ja) * 2014-02-19 2015-08-24 田淵電機株式会社 電力変換装置
WO2018142579A1 (ja) * 2017-02-03 2018-08-09 東芝三菱電機産業システム株式会社 無停電電源装置
JP2018186700A (ja) * 2017-05-29 2018-11-22 京セラ株式会社 管理システム、管理方法、制御装置及び蓄電池装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971057B2 (en) * 2009-03-25 2015-03-03 Stem, Inc Bidirectional energy converter with controllable filter stage
JP5646752B2 (ja) * 2011-06-28 2014-12-24 京セラ株式会社 系統連系インバータ装置およびその制御方法
DE102011083741A1 (de) * 2011-09-29 2013-04-04 Siemens Ag Schaltungsanordnung
JP5968719B2 (ja) * 2012-08-06 2016-08-10 京セラ株式会社 管理システム、管理方法、制御装置及び蓄電池装置
CN104375039B (zh) * 2014-11-21 2017-05-10 华北电力大学(保定) 一种隔离型直流变压器测试系统
US10797514B2 (en) * 2016-02-25 2020-10-06 Bloom Energy Corporation Fuel cell system for information technology loads
US10998746B2 (en) * 2017-04-03 2021-05-04 Smart Charging Technologies Llc Direct current uninterruptible power supply with AC power supply and related methods
US10525833B2 (en) * 2017-08-14 2020-01-07 Hamilton Sundstrand Corporation Tactical vehicle to grid electric power architecture
DE102017217729B4 (de) 2017-10-05 2020-01-23 Audi Ag Energiebereitstellungseinrichtung zum Bereitstellen elektrischer Energie für wenigstens ein Endgerät sowie Verfahren zum Betreiben einer Energiebereitstellungseinrichtung
CN109818569B (zh) * 2017-11-18 2021-06-08 丰郅(上海)新能源科技有限公司 用于光伏组件的并联式关断系统及关断后重新启动的方法
WO2021000253A1 (en) * 2019-07-02 2021-01-07 Marich Holdings The Netherlands B.V. Photovoltaic system and control method thereof
BE1028004B1 (nl) * 2019-12-30 2021-08-24 Futech Bvba DC-bron in elektrische installatie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083330A (ja) * 1998-09-03 2000-03-21 Nissin Electric Co Ltd 分散型電源設備
JP2002135982A (ja) * 2000-10-18 2002-05-10 Mitsubishi Electric Corp 無瞬断自立移行発電システム
JP2003189477A (ja) 2001-12-14 2003-07-04 Daikin Ind Ltd 電力制御装置
JP2010041886A (ja) * 2008-08-07 2010-02-18 Panasonic Electric Works Co Ltd 配電システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737762B2 (en) * 2001-10-26 2004-05-18 Onan Corporation Generator with DC boost for uninterruptible power supply system or for enhanced load pickup
US6940735B2 (en) * 2003-11-14 2005-09-06 Ballard Power Systems Corporation Power converter system
US7193872B2 (en) * 2005-01-28 2007-03-20 Kasemsan Siri Solar array inverter with maximum power tracking
JP5124114B2 (ja) * 2006-08-28 2013-01-23 シャープ株式会社 蓄電機能を有するパワーコンディショナ
TWI384720B (zh) * 2008-07-17 2013-02-01 Atomic Energy Council 家用負載之直流電力裝置
DE102009040090A1 (de) * 2009-09-04 2011-03-10 Voltwerk Electronics Gmbh Inseleinheit für ein Energienetz mit einer Steuereinheit zum Steuern eines Energieflusses zwischen der Energieerzeugungseinheit, der Energiespeichereinheit, der Lasteinheit und/oder dem Energienetz
EP2325970A3 (en) * 2009-11-19 2015-01-21 Samsung SDI Co., Ltd. Energy management system and grid-connected energy storage system including the energy management system
KR101074785B1 (ko) * 2010-05-31 2011-10-19 삼성에스디아이 주식회사 배터리 관리 시스템 및 이의 제어 방법, 및 배터리 관리 시스템을 포함한 에너지 저장 시스템
CN201829966U (zh) * 2010-08-03 2011-05-11 上海兆能电力电子技术有限公司 一种具有不间断电源功能的光伏风能并网发电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083330A (ja) * 1998-09-03 2000-03-21 Nissin Electric Co Ltd 分散型電源設備
JP2002135982A (ja) * 2000-10-18 2002-05-10 Mitsubishi Electric Corp 無瞬断自立移行発電システム
JP2003189477A (ja) 2001-12-14 2003-07-04 Daikin Ind Ltd 電力制御装置
JP2010041886A (ja) * 2008-08-07 2010-02-18 Panasonic Electric Works Co Ltd 配電システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Grid Interconnection Technical Requirements Guidelines for Guaranteeing Electric Power Quality", 1 October 2004, AGENCY FOR NATURAL RESOURCES AND ENERGY
See also references of EP2725676A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837765A (zh) * 2013-09-17 2014-06-04 株洲南车时代电气股份有限公司 能馈型变流器功率测试系统及其方法
CN103837765B (zh) * 2013-09-17 2016-09-14 株洲南车时代电气股份有限公司 能馈型变流器功率测试系统及其方法
JP2015154691A (ja) * 2014-02-19 2015-08-24 田淵電機株式会社 電力変換装置
WO2018142579A1 (ja) * 2017-02-03 2018-08-09 東芝三菱電機産業システム株式会社 無停電電源装置
JP2018186700A (ja) * 2017-05-29 2018-11-22 京セラ株式会社 管理システム、管理方法、制御装置及び蓄電池装置

Also Published As

Publication number Publication date
CN103688437A (zh) 2014-03-26
EP2725676A4 (en) 2015-03-18
EP2725676A1 (en) 2014-04-30
JP5646751B2 (ja) 2014-12-24
JPWO2012176477A1 (ja) 2015-02-23
US20140132073A1 (en) 2014-05-15
CN103688437B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5646751B2 (ja) パワーコンディショナ、制御方法および発電システム
JP5344759B2 (ja) 配電システム
JP5311153B2 (ja) 電力制御装置および電力制御方法
KR101830666B1 (ko) 전력 변환 장치
WO2013001820A1 (ja) 系統連系インバータ装置およびその制御方法
US20160172861A1 (en) Power conversion apparatus, method for power management, and power conversion system
JP6248720B2 (ja) 電源装置及びその制御方法
JP6599700B2 (ja) 系統連系装置
KR101477395B1 (ko) 연료전지 전원 시스템
JP2008283788A (ja) 無停電電源装置の制御電源回路
JP6145777B2 (ja) 電力変換装置
US20150115713A1 (en) Power supply apparatus
JP5680525B2 (ja) 蓄電システム、蓄電制御装置及び電力制御方法
JP2016001981A (ja) 直流送電システム
JP6415259B2 (ja) パワーコンディショナ、およびその制御装置
JPWO2014038020A1 (ja) 駅舎電源装置
JP6000144B2 (ja) 分散型電源システム
JP2012196024A (ja) 電力制御装置および電力制御方法
JP2018033226A (ja) 太陽光発電システム
JP6415260B2 (ja) パワーコンディショナ、その制御装置および電力システム
JP5790084B2 (ja) 発電システム
JP7363858B2 (ja) パワーコンディショナ
JP6089836B2 (ja) 燃料電池用系統連系システム
JP2016096613A (ja) 電源装置および蓄電システム
JP2016096646A (ja) 電力供給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280030937.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521478

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012802907

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14128503

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE