WO2012176354A1 - 照明用光源 - Google Patents

照明用光源 Download PDF

Info

Publication number
WO2012176354A1
WO2012176354A1 PCT/JP2012/000430 JP2012000430W WO2012176354A1 WO 2012176354 A1 WO2012176354 A1 WO 2012176354A1 JP 2012000430 W JP2012000430 W JP 2012000430W WO 2012176354 A1 WO2012176354 A1 WO 2012176354A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scattering member
light scattering
light source
light emitting
Prior art date
Application number
PCT/JP2012/000430
Other languages
English (en)
French (fr)
Inventor
由雄 真鍋
甲斐 誠
亨 岡崎
寿蔵 小林
容子 松林
高橋 健治
康一 中村
堀内 誠
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201290000630.3U priority Critical patent/CN203731110U/zh
Priority to JP2012522855A priority patent/JP5059988B1/ja
Publication of WO2012176354A1 publication Critical patent/WO2012176354A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/046Refractors for light sources of lens shape the lens having a rotationally symmetrical shape about an axis for transmitting light in a direction mainly perpendicular to this axis, e.g. ring or annular lens with light source disposed inside the ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/10Refractors for light sources comprising photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/006Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate being distinct from the light source holder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an illumination light source having good light distribution characteristics and easy assembling work.
  • the base 20 has, for example, a substantially cylindrical shape having a substantially circular through hole 21, and the cylinder axis is arranged in a posture that matches the lamp axis J. Accordingly, the through hole 21 of the base 20 penetrates in the vertical direction.
  • the upper surface 22 of the base 20 has a substantially annular shape, is a plane orthogonal to the lamp axis J, and the semiconductor light emitting module 10 is mounted thereon. Thereby, each semiconductor light emitting element 12 is in a state of being arranged in a plane with its main emission direction facing upward. As described above, since all the semiconductor light emitting elements 12 are planarly arranged on the upper surface 22 of the base 20, the semiconductor light emitting elements 12 can be easily mounted on the base 20, and the assembly work of the illumination light source 1 can be performed. Simple.
  • the shape of the globe 30 is not limited to the shape imitating a bulb of an A-type bulb, and may be any shape.
  • the illumination light source may be configured without a globe.
  • the globe 30 may be fixed to the case 60 with an adhesive or the like.
  • the inner surface 32 of the globe 30 is subjected to a diffusion treatment for diffusing light emitted from the semiconductor light emitting module 10, for example, a diffusion treatment using silica, white pigment, or the like. Light incident on the inner surface 32 of the globe 30 passes through the globe 30 and is extracted to the outside of the globe 30.
  • the circuit unit 40 is for lighting the semiconductor light emitting element, and includes a circuit board 42 and various electronic components 43 and 44 mounted on the circuit board 42. In the drawings, only some electronic components are denoted by reference numerals.
  • the circuit unit 40 is accommodated in the circuit holder 50 and the cap member 90, and is fixed to the circuit holder 50 by, for example, screwing, bonding, engagement, or the like.
  • the circuit board 42 is arranged in a posture in which its main surface is parallel to the lamp axis J. In this way, the circuit unit 40 can be stored in the circuit holder 50 in a more compact manner.
  • the circuit unit 40 is arranged such that the heat-sensitive electronic component 43 is located on the lower side far from the semiconductor light emitting module 10 and the heat-resistant electronic component 44 is located on the upper side near the semiconductor light emitting module 10. . In this way, the heat-sensitive electronic component 43 is not easily destroyed by heat generated in the semiconductor light emitting module 10.
  • the circuit unit 40 and the base 70 are electrically connected by electrical wirings 45 and 46.
  • the electrical wiring 45 is connected to the shell portion 71 of the base 70 through the through hole 51 provided in the circuit holder 50.
  • the electrical wiring 46 is connected to the eyelet portion 73 of the base 70 through the lower opening 52 of the circuit holder 50.
  • a part of the circuit unit 40 is disposed in the through hole 21 of the base 20 and in the globe 30.
  • the circuit holder 50 has, for example, a substantially cylindrical shape that is open on both sides, and includes a large diameter portion 53 and a small diameter portion 54. Most of the circuit unit 40 is accommodated in the large-diameter portion 53 located on the upper side. On the other hand, a base 70 is fitted on the small-diameter portion 54 located on the lower side, thereby closing the lower opening 52 of the circuit holder 50.
  • the circuit holder 50 is preferably formed of an insulating material such as resin, for example.
  • the large diameter portion 53 of the circuit holder 50 passes through the through hole 21 of the base 20, and a part of the circuit unit 40 is disposed in the through hole 21 of the base 20 while being accommodated in the circuit holder 50. Yes.
  • the circuit holder 50 and the base 20 are not in contact with each other, and a gap is provided between the outer surface 55 of the circuit holder 50 and the inner surface 23 of the through hole 21 of the base 20.
  • the circuit holder 50 is not in contact with the semiconductor light emitting module 10 and the light scattering member 80, and is between the mounting substrate 11 of the semiconductor light emitting module 10 and the outer surface 55 of the circuit holder 50, and above the circuit holder 50.
  • a gap is also provided between the end portion 56 and the light scattering member 80. Therefore, the heat generated in the semiconductor light emitting module 10 is difficult to propagate to the circuit holder 50, and the circuit holder 50 is unlikely to reach a high temperature.
  • the outer peripheral edge of the lower end portion of the base 20 has a tapered shape in accordance with the shape of the inner peripheral surface 62 of the case 60. Since the tapered surface 24 is in surface contact with the inner peripheral surface 62 of the case 60, the heat propagated from the semiconductor light emitting module 10 to the base 20 is further easily conducted to the case 60.
  • the heat generated in the semiconductor light emitting element 12 is conducted to the base 70 mainly through the base 20 and the case 60 and further through the small diameter portion 54 of the circuit holder 50, and from the base 70 to the lighting fixture (not shown) side. Heat is dissipated.
  • the case 60 is made of, for example, a metal material.
  • a metal material for example, Al, Ag, Au, Ni, Rh, Pd, an alloy composed of two or more of them, or an alloy of Cu and Ag can be considered. Since such a metal material has good thermal conductivity, the heat transmitted to the case 60 can be efficiently transmitted to the base 70 side.
  • the material of the case 60 is not limited to metal, and may be, for example, a resin having high thermal conductivity.
  • FIG. 5 is a cross-sectional view showing the light scattering member according to the first embodiment.
  • the light scattering member 80 has a substantially cylindrical shape, and the outer diameter of the lower end side portion 80a gradually increases from the lower side to the upper side.
  • the outer peripheral surface is the first reflecting surface 81 of the light scattering member 80.
  • the outer diameter of the upper end portion 80b is uniform.
  • the inner diameter of the light scattering member 80 is also uniform over the entire vertical direction.
  • the light scattering member 80 is disposed so that its cylinder axis is orthogonal to the upper surface 22 of the base 20, and the first reflecting surface 81 covers the mounting substrate 11 of the semiconductor light emitting module 10. Thus, each semiconductor light emitting element 12 is opposed.
  • the first reflecting surface 81 has an annular shape.
  • the light scattering member 80 is attached to the mounting substrate 11 of the semiconductor module 10. As shown in FIG. 4, notches 18 are provided at three locations along the circumferential direction on the inner peripheral edge of the element mounting portion 15 of the mounting substrate 11, and as shown in FIG. On the lower surface 82, projections 82 a are provided at three positions corresponding to the cutout portions 18 of the mounting substrate 11. The use of these notches 18 and protrusions 82a allows the light scattering member 80 to be positioned at an appropriate position with respect to the semiconductor light emitting element 12 with a simple operation of fitting the protrusions 82a into the notches 18.
  • FIG. 6 is a schematic diagram for explaining the mode of scattering by the light scattering member.
  • the light scattering member 80 is made of a translucent material in which translucent light scattering particles having an average particle diameter of 10 ⁇ m or less are dispersed and mixed, and is composed of translucent light scattering particles as shown in FIG. It consists of a plurality of particle portions 83 and a base portion 84 that encloses these particle portions 83, and the base portion 84 is made of a translucent material.
  • Examples of the material of the translucent light scattering particles constituting the particle portion 83 include acrylic resins, styrene resins, styrene acrylic resins, melamine-formalin resins, polyurethane resins, polyester resins, silicone resins, and fluorine resins. Examples thereof include resins and copolymers of these resins. Further, inorganic oxides such as silica, titania, alumina, silica alumina, zirconia, zinc oxide, barium oxide, strontium oxide, and zirconium oxide can be used. One type of translucent light scattering particles made of these materials may be used, or a plurality of types may be used in combination.
  • examples of the translucent material constituting the base portion 84 include resins and inorganic materials.
  • the resin include thermoplastic resins such as general-purpose plastics, engineer plastics, and super engineer plastics, and thermosetting resins.
  • polycarbonate resin acrylic resin, fluorine acrylic resin, silicone acrylic resin, epoxy acrylate resin, polystyrene resin, acrylonitrile styrene resin, cycloolefin polymer, methyl styrene resin, fluorene resin, PET (polyethylene terephthalate), Examples thereof include polypropylene, phenol resin, melamine resin, PBT (polybutylene terephthalate), POM (polyoxymethyl), PA (polyamide), and PPS (polyphenyl sulfide).
  • the inorganic material include glass and ceramic.
  • the translucent material forming the particle portion 83 and the base portion 84 is preferably colorless and transparent, but is not limited thereto, and may be colored and transparent as long as it has translucency.
  • the addition amount of the light-transmitting light scattering particles to the light-transmitting material is preferably 0.5 wt% to 20 wt% because of the light scattering frequency.
  • the addition amount is less than 0.5 wt%, light scattering by the translucent light scattering particles hardly occurs, and sufficient light diffusibility cannot be obtained.
  • the added amount exceeds 20 wt%, the light scattering member 80 is separated into two phases, so that the uniformity is lost and the light scattering member 80 becomes brittle and the mechanical characteristics are not sufficient.
  • the haze value is represented by [(diffuse light transmittance / total light transmittance) ⁇ 100].
  • the measurement was performed using an integrating sphere haze meter (for example, Nippon Denshoku Industries Co., Ltd. 300A) as described in JIS K-7105.
  • the total light transmittance was measured using light having a wavelength of 550 nm according to the method described in 5.5 of JIS K7105-1981.
  • the haze value of the light scattering member 80 is preferably 0% to 50% in order to effectively use geometric optical scattering and Mie scattering.
  • the haze value of the light scattering member 80 exceeds 50%, the light scattering property is too strong, and it is not preferable because desired optical characteristics cannot be obtained. In this respect, if the haze value of the light scattering member 80 is in the range of 0% to 50%, both sufficient light scattering properties and optical characteristics can be achieved.
  • the “average particle size” means a particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the first reflecting surface 81 of the light scattering member 80 is a light receiving surface that receives the main emitted light of the semiconductor light emitting element 12.
  • the main emitted light emitted from the semiconductor light emitting module 10 and incident on the first reflecting surface 81 is partially inclined with the first reflecting surface 81 avoiding the upper surface 22 of the base 20 as shown by an optical path L1 in FIG. Reflected downward. Further, as shown by the optical path L ⁇ b> 2 in FIG. 3, another part passes through the first reflecting surface 81 and enters the light scattering member 80.
  • the light that has entered the light scattering member 80 is repeatedly reflected on the surface of the particle portion 83 and scattered within the base portion 84, and as shown by the light path L3, the light scattering member. 80 is emitted from the upper surface 85 of the light scattering member 80 to the outside, as shown by the optical path L4, is emitted from the outer peripheral surface 86 of the upper end side portion 80b of the light scattering member 80 to the outside of the light scattering member 80, or in the optical path L5 As shown, the light is scattered from the first reflecting surface 81 of the light scattering member 80 to the outside of the light scattering member 80.
  • the illumination light source 1 As described above, in the illumination light source 1 according to the present embodiment, a part of the main emitted light of the semiconductor light emitting element 12 is reflected by the first reflecting surface 81 obliquely downward avoiding the upper surface 22 of the base 20. Since the other part of the main emitted light entering the light scattering member 80 is also emitted obliquely downward avoiding the upper surface 22 of the base 20, the semiconductor light emitting element 12 having a narrow irradiation angle is used. However, the light distribution characteristics of the illumination light source 1 are good.
  • the illumination light source 1 is configured to scatter light with translucent light scattering particles, the light extraction efficiency is good.
  • the light in the optical path L6 toward the metal filler 83A is as indicated by the optical path L7.
  • the light reflected from the surface of the metal filler 83A but also enters the metal filler 83A as shown by the optical path L8 and is absorbed as stray light, so that the light extraction efficiency of the light scattering member is poor.
  • the light scattering member 80 according to the present embodiment as shown in FIG.
  • the semiconductor light emitting elements 12 are arranged in an annular shape and the first reflection surface 81 is also formed in a ring shape correspondingly, the reflection downward obliquely avoiding the upper surface 22 of the base 20 is prevented. It occurs over the entire outer circumference. Therefore, the light distribution characteristic is good over the entire circumference around the lamp axis J. Further, since the light scattering member 80 emits a part of the main emitted light entering the inside upward from the upper surface 85 and also to the side from the outer peripheral surface 86 of the upper end side portion 80b, the light scattering member 80 Shadows are unlikely to occur, and the design is good when the illumination light source 1 is viewed from above during lighting.
  • the lower surface 82 and the inner peripheral surface 87 of the light scattering member 80 are mirror-finished. Therefore, the light entering the light scattering member 80 is difficult to be emitted from the lower surface 82 and the inner peripheral surface 87. Therefore, the scattered light inside the light scattering member 80 can be efficiently emitted from the first reflecting surface 81, the upper surface 85, and the outer peripheral surface 86 of the upper end side portion 80b.
  • a reflective film such as a metal thin film or a dielectric multilayer film is formed by a method such as a thermal evaporation method, an electron beam evaporation method, a sputtering method, or a plating method. Can be considered.
  • Such a shape is suitable for reflecting the emitted light of the semiconductor light emitting element 12 obliquely downward closer to the rear (more parallel to the lamp axis J), and widens the light distribution angle of the illumination light source 1. It is effective for. It is also advantageous to concentrate the reflected light in a specific direction.
  • the light scattering member 80 may be substantially plate-shaped as shown in FIG.
  • the light scattering member 80C does not need the hole 88 like the light scattering member 80, so that it is a substantially disk-shaped light scattering member without a hole. 80C is considered. In this case, it is conceivable to provide the light scattering member 80 ⁇ / b> C with the first reflecting surface 81 ⁇ / b> C in a region facing the semiconductor light emitting element 12.
  • the upper surface 85D of the light scattering member 80D is formed into a concave curved surface shape. It is good also as a structure which concentrates the light radiate
  • Cap member 90 has a bottomed cylindrical shape that is closed on the upper side and opened on the lower side, an upper portion 91 that is gradually reduced in diameter upward, and a cylindrical lower portion that has a uniform diameter in the front lower direction.
  • the upper portion 91 is located in the globe 30, and the lower portion 92 is located in the through hole 88 of the light scattering member 80.
  • a gap is provided between the lower portion 92 and the light scattering member 80. Therefore, the heat generated in the semiconductor light emitting module 10 is difficult to propagate to the circuit holder 50 via the light scattering member 80, and the circuit holder 50 is unlikely to reach a high temperature.
  • the light distribution curve A of the incandescent bulb is shown using a one-dot chain line
  • the light distribution curve B of the illumination light source 1000 of Patent Document 1 is shown using a broken line
  • the illumination according to the present embodiment is shown using a solid line.
  • 2 shows a light distribution curve C of the light source 1 for use.
  • the light distribution characteristics were evaluated based on the light distribution angle.
  • the light distribution angle refers to the size of an angle range in which a light intensity equal to or more than half of the maximum light intensity value in the illumination light source is emitted. In the case of the light distribution curve shown in FIG. 8, it is the magnitude
  • the light distribution angle of the incandescent bulb is about 315 °
  • the light distribution angle of the illumination light source 1000 of Patent Document 1 is about 165 °
  • the illumination light source 1 according to the present embodiment has the light distribution angle.
  • the light distribution angle is about 270 °.
  • the illumination light source 1 has a light distribution angle wider than that of the illumination light source 1000 and a light distribution angle closer to that of the incandescent light bulb. Therefore, it can be said that the illumination light source 1 has a light distribution characteristic better than that of the illumination light source 1000 and has a light distribution characteristic approximate to an incandescent lamp.
  • FIG. 9 is a cross-sectional view showing a main configuration of an illumination light source according to the second embodiment. 10 is an enlarged cross-sectional view showing a portion surrounded by a two-dot chain line in FIG.
  • the illumination light source 100 according to the second embodiment is the illumination light source according to the first embodiment in that an auxiliary light scattering member 180 is further disposed above the light scattering member 80.
  • the illumination light source 100 according to the first embodiment is the illumination light source according to the first embodiment in that an auxiliary light scattering member 180 is further disposed above the light scattering member 80.
  • Other configurations are basically the same as those of the illumination light source 1 according to the first embodiment. Therefore, only the difference will be described in detail, and the description of other configurations will be simplified or omitted.
  • symbol as the embodiment is used.
  • the auxiliary light scattering member 180 is different from the light scattering member 80 in that no protrusion is formed on the lower surface 182 and in which the mirror treatment is not applied to the lower surface 182, but the other configurations are the light scattering member 80. Is substantially the same. That is, the auxiliary light scattering member 180 has a substantially cylindrical shape, and the outer diameter of the lower end portion gradually increases from below to above, and the outer peripheral surface of the expanded lower end portion is the auxiliary light scattering portion. This is the third reflecting surface 181 of the member 180. Moreover, the outer diameter of the upper end side portion is uniform, and the inner diameter is uniform over the entire vertical direction.
  • the auxiliary light scattering member 180 is stacked on the light scattering member 80 so that the lower surface 182 thereof is in surface contact with the upper surface 85 of the light scattering member 80. Or it is fixed by screwing. Since the lower surface 182 of the auxiliary light scattering member 180 is not mirror-finished, the light emitted from the upper surface 85 of the light scattering member 80 enters the auxiliary light scattering member 180 from the lower surface 182 of the auxiliary light scattering member 180. You can enter.
  • the light scattering member 80 and the auxiliary light scattering member 180 may be integrally formed.
  • the inner peripheral surface 187 of the auxiliary light scattering member 180 is mirror-finished so that light is not emitted from the auxiliary light scattering member 180 to the cap member 90 side.
  • the hole 188 of the auxiliary light scattering member 180 has the same diameter as the hole 88 of the light scattering member 80, and the inner peripheral surface 187 of the auxiliary light scattering member 180 and the inner peripheral surface 87 of the light scattering member 80 are continuous.
  • the auxiliary light scattering member 180 is positioned with respect to the light scattering member 80.
  • the third reflection surface 181 of the auxiliary light scattering member 180 is a light receiving surface that receives light emitted from the upper surface 85 of the light scattering member 80. A part of the light indicated by the optical path L3 incident on the third reflecting surface 181 of the auxiliary light scattering member 180 is reflected obliquely downward by the third reflecting surface 181 while avoiding the light scattering member 80 as indicated by the optical path L10. . The other part passes through the third reflecting surface 181 and enters the auxiliary light scattering member 180.
  • the light that has entered the auxiliary light scattering member 180 is scattered inside and is emitted from the upper surface 185 of the auxiliary light scattering member 180 to the outside of the auxiliary light scattering member 180 or indicated by the optical path L12 as indicated by the optical path L11.
  • the auxiliary light scattering member 180 is emitted from the outer peripheral surface 186 at the upper end portion to the outside of the auxiliary light scattering member 180, or from the third reflecting surface 181 of the auxiliary light scattering member 180 as indicated by the optical path L13. Or released to the outside of the scattering member 180.
  • the illumination light source 100 in the illumination light source 100 according to the present embodiment, light emitted upward from the light scattering member 80 by the third reflecting surface 181 of the auxiliary light scattering member 180 avoids the light scattering member 80. In addition to being reflected obliquely downward, a part of the light that has entered the auxiliary light scattering member 180 is also emitted obliquely downward avoiding the light scattering member 80, so that the semiconductor light emitting device 12 having a narrow irradiation angle. Even if the light source is used, the light distribution characteristic of the illumination light source 100 is good.
  • the light emitted from the light scattering member 80 and the auxiliary light scattering member 180 is merely scattered and is not subjected to spectroscopy, the color between the light traveling upward and the light traveling diagonally downward. Misalignment does not occur.
  • the upper surface 185 of the auxiliary light scattering member 180 is preferably positioned below the portion 33 where the diameter W1 is maximum.
  • FIG. 11A and 11B are diagrams for explaining an illumination light source according to the third embodiment, in which FIG. 11A is a cross-sectional view showing a main configuration of the illumination light source, and FIG. It is a top view of a semiconductor light emitting module.
  • the illumination light source 200 according to the third embodiment is the same as that of the first embodiment in that the semiconductor light emitting module 210 includes an auxiliary semiconductor light emitting element 212. This is very different from the illumination light source 1. Therefore, only the difference will be described in detail, and the description of other configurations will be simplified or omitted. In addition, when the same member as embodiment already demonstrated is used, the same code
  • An illumination light source 200 is an LED lamp that is an alternative to an incandescent bulb, and includes a semiconductor light emitting module 210 as a light source, a base 20 on which the semiconductor light emitting module 210 is mounted, and semiconductor light emission.
  • Globe 30 covering module 210, circuit unit 40 for lighting semiconductor light emitting module 210, circuit holder 250 housing circuit unit 40, case 60 covering circuit holder 250, and circuit unit 40 are electrically connected.
  • a light scattering member 80 for scattering the emitted light from the semiconductor light emitting module 210.
  • the semiconductor light emitting module 210 has a substantially circular mounting substrate 211 instead of a substantially annular shape, and the semiconductor light emitting element 12 is simply arranged in an annular shape on the mounting substrate 211.
  • the auxiliary semiconductor light emitting element 212 is also arranged inside the ring with the main emission direction facing upward.
  • four sets of auxiliary semiconductor light emitting elements 212 for example, two sets are arranged in the central area of the mounting substrate 211 (area near the lamp axis J).
  • the four sets of auxiliary semiconductor light emitting elements 212 are located inside the light scattering member 80 and are sealed by a sealing body 213 for each set.
  • a connector 217 is provided on the lower surface of the mounting substrate 211.
  • the upper end 256 of the circuit holder 250 is accommodated in the through hole 21 of the base 20 and does not protrude into the globe 30.
  • FIG. 13 is sectional drawing which shows the principal part structure of the light source for illumination which concerns on 4th Embodiment.
  • 14 is an enlarged cross-sectional view showing a portion surrounded by a two-dot chain line in FIG.
  • symbol as the embodiment is used.
  • the illumination light source 300 according to the fourth embodiment includes the first scattering surface 381 a and the third reflection surface 381 b formed on the light scattering member 380, and the cap member 390.
  • the point that the reflection surface 393 is formed is largely different from the illumination light source 1 according to the first embodiment.
  • Other configurations are basically the same as those of the illumination light source 1 according to the first embodiment. Therefore, only the difference will be described in detail, and the description of other configurations will be simplified or omitted.
  • symbol as the embodiment is used.
  • the light scattering member 380 is made of a light transmissive material in which light transmissive light scattering particles having an average particle diameter of 10 ⁇ m or less are dispersed and mixed, and has an external shape in which approximately two truncated cones are stacked in the vertical direction.
  • a substantially cylindrical through-hole 388 is provided in the center and penetrates in the vertical direction.
  • the substantially frustoconical portion on the lower end side of the light scattering member 380 (hereinafter referred to as “lower end side portion 380a”) corresponds to the light scattering member 80 in the second embodiment, and has a substantially frustoconical shape on the upper end side.
  • This part (hereinafter referred to as “upper end part 380b”) corresponds to the auxiliary light scattering member 180 in the second embodiment.
  • the lower end side portion 380a and the upper end side portion 380b according to the present embodiment are greatly different from the light scattering member 80 and the auxiliary light scattering member 180 according to the second embodiment in that they are integrally formed.
  • the first reflecting surface 381a and the third reflecting surface 381b are linear in cross-sectional shape, and there is no portion corresponding to the upper end side portion 80b (a portion having a uniform outer diameter).
  • the lower end side portion 380a has a substantially cylindrical shape, and the outer diameter gradually increases from the lower side to the upper side, and the outer peripheral surface thereof serves as the first reflecting surface 381a of the light scattering member 380.
  • the first reflecting surface 381a corresponds to the first reflecting surface 81 of the light scattering member 80 according to the second embodiment.
  • the lower surface 382a of the lower end portion 380a corresponds to the lower surface 82 of the light scattering member 80, and protrusions (not shown) are provided at three positions corresponding to the notch portion 18 of the mounting substrate 11.
  • the upper surface 385a of the lower end portion 380a corresponds to a portion of the upper surface 85 of the light scattering member 80 according to the second embodiment that is not in contact with the auxiliary light scattering member 180.
  • the upper end side portion 380b has a substantially cylindrical shape, and the outer diameter gradually increases from the lower side to the upper side, and the outer peripheral surface thereof serves as the second reflecting surface 381b of the light scattering member 380.
  • the second reflecting surface 381b corresponds to the third reflecting surface 181 of the auxiliary light scattering member 180 according to the second embodiment.
  • the upper surface 385b of the upper end portion 380b corresponds to the upper surface 185 of the auxiliary light scattering member 180 according to the second embodiment.
  • the second reflecting surface 381b is opposed to the upper surface 385a of the lower end portion 380a and serves as a light receiving surface that receives light emitted from the upper surface 385a.
  • the light emitted from the upper surface 385a is mainly incident on the second reflecting surface 381b, part of which is reflected obliquely downward by the second reflecting surface 381b, and the other part passes through the second reflecting surface 381b and passes through the upper end. It enters the inside of the side portion 380b.
  • the light scattering member 380 has two reflecting surfaces 381a and 381b, the total area of the surfaces on which light can be reflected obliquely downward and light can be emitted obliquely downward is wide. Therefore, more light can be guided obliquely downward. Further, the light emitted upward from the upper surface 385a of the lower end portion 380a is reflected obliquely downward by the second reflecting surface 381b, or is once taken into the upper end portion 380b and second reflected. It can discharge
  • the lower end side portion 380a and the upper end side portion 380b are integrally formed, there is no interface between the lower end side portion 380a and the upper end side portion 380b, and the light inside the lower end side portion 380a. Can be efficiently advanced into the upper end portion 380b. Further, the lower end portion 380a and the upper end portion 380b do not have a portion corresponding to the upper end portion 80b of the light scattering member 80 according to the second embodiment, and as a result, correspond to the outer peripheral surface 86 of the upper end portion 80b. Since there is no portion to perform, as shown by an optical path L4 in FIG. 3, there is little light emitted in the direction orthogonal to the lamp axis J, and the corresponding amount of light can be emitted obliquely downward or upward.
  • the cap member 390 has a bottomed cylindrical shape that is closed on the upper side and opened on the lower side.
  • the cap member 390 includes an upper portion 391 that gradually increases in diameter toward the upper side and a cylindrical lower portion 392 that has a uniform diameter in the front and lower direction. And located in the through hole 388 of the light scattering member 380.
  • the outer peripheral surface of the upper portion 391 is a reflecting surface 393, and the light leaking from the inner peripheral surface 387 of the light scattering member 380 into the through hole 388 is reflected by the reflecting surface 393, so that the light is again transmitted to the inner peripheral surface.
  • the light scattering member 380 can enter from the surface 387. Therefore, there is little loss due to stray light, and lamp efficiency is unlikely to decrease.
  • an illumination light source 400 is an LED lamp that is an alternative to an incandescent bulb, and includes a semiconductor light emitting module 410 as a light source, and a semiconductor light emitting module 410.
  • the semiconductor light emitting module 410 includes a mounting substrate 411, a semiconductor light emitting element 412 mounted on the mounting substrate 411, and a sealing provided on the mounting substrate 411 so as to cover the semiconductor light emitting element 412.
  • a semiconductor light emitting module comprising a body 413 and disposed on the lamp axis J.
  • the mounting substrate 411 has, for example, a substantially square plate shape when viewed from above, and is attached to the upper surface 421 of the base 420.
  • a total of 25 semiconductor light emitting elements 412 of 5 rows and 5 columns are mounted on the front surface of the mounting substrate 411 in a matrix so that the semiconductor light emitting elements 412 are point-symmetric about the lamp axis J. It is arranged in a plane.
  • Each semiconductor light emitting element 412 is mounted in a posture in which the main emission direction is directed upward along the lamp axis J.
  • the number of semiconductor light emitting elements 412 is not limited to 25, and may be, for example, one or a plurality other than 25. Further, the arrangement of the semiconductor light emitting elements 412 is not limited to a matrix, and may be arranged in an annular shape such as an annular shape. Further, the semiconductor light emitting element 412 does not necessarily have to be oriented upward along the lamp axis J direction, and a part of the semiconductor light emitting element 412 is oriented obliquely with respect to the lamp axis J. It may be mounted in a posture, whereby the controllability of the light distribution is further improved, and a more preferable light distribution can be obtained.
  • the sealing body 413 has a block shape, for example, and seals all 25 semiconductor light emitting elements 412.
  • the upper surface 413a of the sealing body 413 is a substantially square plane when viewed from above, and the upper surface 413a and the lamp axis J are orthogonal to each other at the center of the upper surface 413a.
  • the upper surface 413a and the lamp axis J are not necessarily perpendicular to each other at the center of the upper surface 413a, but in order to obtain a uniform light distribution over the entire circumference around the lamp axis J, the upper surface 413a. It is preferable that they intersect at the center, and more preferably orthogonal.
  • the material which comprises the sealing body 413 since it is the same as the sealing body 13 which concerns on 1st Embodiment, description is abbreviate
  • omitted is abbreviate
  • the base 420 has, for example, a substantially disk shape, and the upper surface 421 and the lower surface 422 are both substantially circular planes and are orthogonal to the lamp axis J, respectively.
  • the semiconductor light emitting module 410 is disposed in a plane, and is fixed to the base 420 by, for example, screwing, bonding, engagement, or the like.
  • the upper surface 421 is not limited to a substantially circular shape, and may have any shape.
  • the upper surface 421 does not necessarily have to be entirely flat as long as the semiconductor light emitting module 410 can be arranged in a plane.
  • the lower surface 422 is not limited to a plane.
  • the material which comprises the base 420 since it is the same as the base 20 which concerns on 1st Embodiment, description is abbreviate
  • omitted is abbreviate
  • the base 420 is formed with a pair of through holes 423 penetrating in the vertical direction, and the pair of wirings 41 of the circuit unit 40 is led to the upper side of the base 420 through the through holes 423. These wirings 41 are respectively connected to the mounting substrate 411 of the light emitting module 410, and thereby the light emitting module 410 and the circuit unit 40 are electrically connected.
  • the upper end 456 of the circuit holder 450 is located on the lower surface 422 side of the base 420 and is housed in the case 60 and does not protrude into the globe 30.
  • the light scattering member 480 is made of a translucent material in which translucent light scattering particles having an average particle diameter of 10 ⁇ m or less are dispersed and mixed, and the first reflection that reflects a part of the main emitted light of the semiconductor light emitting module 410 obliquely downward.
  • a surface 481 is provided.
  • the material which comprises the light-scattering member 480 since it is the same as the light-scattering member 80 which concerns on 1st Embodiment, description is abbreviate
  • omitted is abbreviate
  • the light scattering member 480 is placed on the lamp axis J on the upper surface 413 a of the sealing body 413 of the semiconductor light emitting module 410.
  • the light scattering member 480 has, for example, a substantially quadrangular frustum shape, has four side surfaces as the first reflecting surface 481, a lower surface 482, and an upper surface 485, and the upper surface 485 is larger than the lower surface 482.
  • the upper surface 485, the lower surface 482, and the first reflecting surface 481 are flat surfaces, but these surfaces are not limited to flat surfaces.
  • the upper surface 485 of the light scattering member 480 may be a concave surface or a convex surface, and the degree of diffusion of light emitted from the light scattering member 480 may be adjusted.
  • the lower surface 482 of the light scattering member 480 is preferably a flat surface so that a gap is not easily formed between the lower surface 482 and the upper surface 413a of the sealing body 413.
  • the lower surface 482 of the light scattering member 480 is smaller than the upper surface 413a of the sealing body 413 of the semiconductor light emitting module 410. That is, the area of the lower surface 482 of the light scattering member 480 is smaller than the area of the upper surface 413 a of the sealing body 413. Therefore, not all of the upper surface 413a of the sealing body 413 is covered with the lower surface 482 of the light scattering member 480, and a part of the upper surface 413a is exposed. The light emitted from the exposed portion is reflected obliquely downward by the first reflecting surface 481 of the light scattering member 480.
  • the semiconductor light emitting device according to the present invention does not necessarily have to be annularly arranged, and the light scattering member 80 does not have to be cylindrical. Moreover, the structure which the upper surface of the sealing body of a semiconductor light-emitting module and the lower surface of a light-scattering member contact, and the emitted light of a semiconductor light-emitting element approachs directly into the inside of a light-scattering member from the contact part may be sufficient.
  • FIG. 17 is a partially broken perspective view showing an illumination light source according to the sixth embodiment.
  • FIG. 18 is a cross-sectional view showing an illumination light source according to the sixth embodiment.
  • an illumination light source 500 is an LED lamp that is an alternative to an incandescent bulb, and includes a semiconductor light emitting module 510 as a light source, and a semiconductor light emitting module 510.
  • the alternate long and short dash line drawn in the vertical direction of the drawing indicates the lamp axis J of the illumination light source 500.
  • the lamp axis J is an axis that becomes a rotation center when the illumination light source 500 is attached to a socket of an illumination device (not shown), and coincides with the rotation axis of the base 570.
  • the upper side of the drawing is the upper side of the illumination light source 500
  • the lower side of the drawing is the lower side of the illumination light source.
  • the semiconductor light emitting module 510 includes a mounting substrate 511, a plurality of semiconductor light emitting elements 512 as light sources mounted on the mounting substrate 511, and the mounting substrate 511 so as to cover the semiconductor light emitting elements 512. And a sealing body 513 provided.
  • the semiconductor light emitting element 512 is an LED and the semiconductor light emitting module 510 is an LED module.
  • the semiconductor light emitting element 512 may be, for example, an LD (laser diode) or an EL element ( An electric luminescence element).
  • the mounting substrate 511 has a substantially circular shape and is provided with a connector (not shown) to which the wiring 541 of the circuit unit 540 is connected. By connecting the wiring 541 to the connector, the semiconductor light emitting module 510, the circuit unit 540, and the like. Are electrically connected.
  • the shape of the mounting substrate 511 is not limited to a substantially circular shape, and may be a polygon such as a triangle, a quadrangle, or a pentagon. Further, it may be an annular shape or a polygonal shape such as a triangle, a quadrangle, or a pentagon. Any shape can be used as long as the semiconductor light emitting element 512 can be arranged in a plane.
  • 32 semiconductor light emitting elements 512 are mounted in an annular shape on the upper surface of the element mounting portion 515.
  • two sets of semiconductor light emitting elements 512 arranged along the radial direction of the element mounting portion 515 constitute one set, and 16 sets are arranged at equal intervals along the circumferential direction of the element mounting portion 515. It is arranged in a ring.
  • the term “annular” includes not only a circular ring but also a polygonal ring such as a triangle, a quadrangle, and a pentagon. Therefore, the semiconductor light emitting element 512 may be mounted in an elliptical or polygonal ring, for example.
  • the semiconductor light emitting elements 512 are individually sealed by a substantially rectangular parallelepiped sealing body 513 for each set. Therefore, the total number of the sealing bodies 513 is 16.
  • the longitudinal direction of each sealing body 513 coincides with the radial direction of the element mounting portion 515 and is centered on the lamp axis J in a plan view (when viewed from the upper side along the lamp axis J). Are arranged radially.
  • the sealing body 513 is mainly made of a light-transmitting material.
  • the light-transmitting material has a wavelength of light.
  • a wavelength conversion material for converting is mixed.
  • the translucent material for example, a silicone resin can be used, and as the wavelength conversion material, for example, phosphor particles can be used.
  • a semiconductor light emitting element 512 that emits blue light and a sealing body 513 formed of a light-transmitting material mixed with phosphor particles that convert the wavelength of blue light into yellow light are employed.
  • part of the blue light emitted from the semiconductor light emitting element 512 is wavelength-converted into yellow light by the sealing body 513, and white light generated by the color mixture of the unconverted blue light and the converted yellow light is the semiconductor.
  • the light is emitted from the light emitting module 510.
  • the base 520 is made of, for example, a metal material.
  • a metal material for example, Al, Ag, Au, Ni, Rh, Pd, or an alloy of two or more of them, or an alloy of Cu and Ag is considered. It is done. Since such a metal material has good thermal conductivity, heat generated in the semiconductor light emitting module 510 can be efficiently conducted to the case 560.
  • a gap is provided between the upper end 555 of the circuit holder 550 and the lower surface 523 of the base 520, and between the outer peripheral surface 556 of the large diameter portion 553 and the inner peripheral surface 562 of the case 560. Therefore, the heat generated in the semiconductor light emitting module 510 is difficult to propagate to the circuit holder 550, and the circuit holder 550 is difficult to reach a high temperature, so that the circuit unit 540 is difficult to be thermally destroyed.
  • the light scattering member 580 is a member for improving the light distribution characteristics of the illumination light source 500, and has an external shape such that two inverted truncated cones are stacked. Each of the cone axes is coincident with the lamp axis J.
  • the lower part 581 constituting the lower frustoconical part and the upper part 582 constituting the upper frustoconical part are both made of a translucent material, and the lower part 581 and the upper part 582 Is integrally molded. Since the lower part 581 and the upper part 582 are integrally formed, there is no interface between the lower part 581 and the upper part 582, and the light inside the lower part 581 is transmitted to the upper part 582. Enter the inside of the building efficiently.
  • the lower portion 581 and the upper portion 582 may be separate members, and for example, may be configured such that separate members are stacked and joined by adhesion, engagement, or the like.
  • FIGS. 19A and 19B are diagrams for explaining the second reflecting surface region, in which FIG. 19A is a plan view and FIG. 19B is a cross-sectional view.
  • the second reflecting surface 588 is inside the annular “first reflecting surface region” in which the first reflecting surface 583 is formed in plan view. It is formed in the “ring inner region”.
  • the second reflecting surface 583 prevents the light from traveling upward after passing through the first reflecting surface 583. Lamp efficiency is reduced.
  • the second reflecting surface 588 reflects light that can become stray light in the vicinity of the lamp axis J inside the light scattering member 580 toward an annular region that surrounds the side of the base 520, and is reflected outside the light scattering member 580. Since it is for taking out, it is preferable that it is formed in the “ring inner region” so as not to hinder the progress of upward light that cannot be stray light.
  • the light scattering member 580 is a cut surface (hereinafter referred to as “longitudinal section”) when the light scattering member 580 is cut along a virtual plane including the lamp axis J.
  • the shape of the second reflecting surface 583 was linear.
  • the shape of the second reflecting surface in the longitudinal section is not limited to a linear shape.
  • the shape of the second reflecting surface 611 in the longitudinal section may be an arc shape like a light scattering member 610 shown in FIG. .
  • the concave portion of the light scattering member may be columnar.
  • the recess 651 has a substantially cylindrical shape, and the recess 651 has only the inner peripheral surface as the second reflecting surface 652 and the bottom surface 653 is not the second reflecting surface 652.
  • it is preferable that the recess 651 is formed only in the upper portion 654 and does not reach the lower portion 655.
  • an alternate long and two short dashes line indicates an interface 656 between the upper portion 654 and the lower portion 655, but stray light is less likely to be generated when the recess 651 is formed above the interface 656.
  • the light scattering members 610, 620, 630, 640, 650, 660, and 670 according to the modified example described above have the second reflecting surfaces 611, 621, 632, 642, 652, 662, and 672 that “the first reflecting surface is used. It is formed in a “ring inner region” that is an inner side of the “surface region”.
  • FIG. 31 is a partially broken perspective view showing an illumination light source according to the seventh embodiment.
  • FIG. 32 is a cross-sectional view showing an illumination light source according to the seventh embodiment.
  • the semiconductor light emitting module 710 includes a mounting substrate 711, a semiconductor light emitting element 712 mounted on the mounting substrate 711, and a semiconductor light emitting device including a sealing body 713 provided on the mounting substrate 711 so as to cover the semiconductor light emitting element 712.
  • a module is disposed on the lamp axis J.
  • the semiconductor light emitting elements 712 are mounted on the upper surface of the mounting substrate 711 in such a manner that the respective main emission directions are directed upward along the lamp axis J. For example, a total of 36 rows and columns of 6 rows and 6 columns are arranged in a matrix. Has been. Note that the number of semiconductor light emitting elements 712 is not limited to 36, and may be two, for example, or a plurality other than 36. Further, the arrangement of the semiconductor light emitting elements 712 is not limited to a matrix, and may be arranged in an annular shape such as an annular shape.
  • the sealing body 713 has, for example, a substantially rectangular parallelepiped block shape, and seals all 36 semiconductor light emitting elements 712.
  • the upper surface 713a of the sealing body 713 is a substantially square plane in plan view, and is orthogonal to the lamp axis J at the center of the upper surface 713a.
  • the upper surface 713a and the lamp axis J are not necessarily perpendicular to each other at the center of the upper surface 713a, but in order to obtain a uniform light distribution over the entire circumference around the lamp axis J, the upper surface 713a. It is preferable that they intersect at the center, and more preferably they are orthogonal.
  • the material which comprises the sealing body 713 since it is the same as the sealing body 513 which concerns on 6th Embodiment, description is abbreviate
  • omitted is abbreviate
  • the first reflecting surface 783 corresponds to the first reflecting surface 583 of the light scattering member 580 according to the sixth embodiment
  • the first light emitting surface 784 is the first of the light scattering member 580 according to the sixth embodiment. This corresponds to the light exit surface 584.
  • the second light exit surface 786 has a substantially rectangular ring shape and is substantially parallel to the upper surface 521 of the base 520.
  • the third reflecting surface 785 corresponds to the third reflecting surface 585 of the light scattering member 580 according to the sixth embodiment, and the second light emitting surface 786 is the second reflecting surface of the light scattering member 580 according to the sixth embodiment. This corresponds to the light exit surface 586.
  • a concave portion 787 is provided at substantially the center of the surface of the light scattering member 780 opposite to the semiconductor light emitting element 712 (the upper surface of the light scattering member 780), and at least a part of the inner surface of the concave portion 787 is the second reflecting surface. 788.
  • the concave portion 787 has a substantially quadrangular pyramid shape (reverse quadrangular pyramid shape) having a top on the base 520 side, and the quadrangular pyramid axis coincides with the lamp axis J, and the entire cone surface is second reflected. Surface 788 is formed.
  • a part of the main emitted light emitted from the semiconductor light emitting module 710 and incident on the first reflecting surface 783 is reflected by the first reflecting surface 783 toward an annular region surrounding the side of the base 520.
  • the other part of the main emitted light incident on the first reflecting surface 783 passes through the first reflecting surface 783 and enters the light scattering member 780, and is scattered inside the light scattering member 780.
  • Part of the scattered light exits from the first light exit surface 784 and enters the third reflecting surface 785.
  • a part of the incident light is reflected by the third reflecting surface 785 and is reflected toward an annular region surrounding the side of the base 520.
  • the light directed toward the vicinity of the lamp axis J inside the light scattering member 780 is also reflected toward the annular region surrounding the side of the base 520 by the second reflecting surface 788, the irradiation angle Even if the semiconductor light emitting element 512 having a narrow width is used, the light distribution characteristics of the illumination light source 500 are good.
  • the light emitted from the portion covered with the lower surface 789 of the light scattering member 780 on the upper surface 713a of the sealing body 713 directly enters the light scattering member 780 and is scattered inside the light scattering member 780.
  • a part of the scattered light is emitted upward from the second light exit surface 786 of the upper portion 782.
  • the other part of the scattered light is reflected by the second reflecting surface 788 and reflected toward the annular region surrounding the side of the base 520. Further, the other part of the scattered light passes through the second reflecting surface 788 and is emitted to the outside of the light scattering member 780.
  • the light scattering member according to the present invention does not necessarily have an external shape in which truncated cones are stacked, and the semiconductor light emitting element does not necessarily have to be arranged in a ring shape. Moreover, even if the upper surface of the sealing body of the semiconductor light emitting module and the lower surface of the light scattering member are in surface contact, the emitted light of the semiconductor light emitting element directly enters the light scattering member from the contact portion. good.
  • FIG. 33 is a partially broken perspective view showing an illumination light source according to the eighth embodiment.
  • FIG. 34 is a cross-sectional view showing an illumination light source according to the eighth embodiment.
  • the light scattering member 880 has a cylindrical shape, and an outer portion 881 whose tube axis is parallel to the lamp axis, and its outer portion 881.
  • the inner portion 882 is made of a light-transmitting material, and the inner portion 882 has a light-transmitting property having a refractive index lower than that of the light-transmitting material of the outer portion 881.
  • an illumination light source 800 is an LED lamp that is an alternative to an incandescent bulb, and includes a semiconductor light emitting module 710 as a light source and a semiconductor light emitting module 710.
  • a semiconductor light emitting module 710 as a light source and a semiconductor light emitting module 710.
  • a base (not shown) electrically connected to the circuit unit 540, and a light scattering member 880 for diffusing light emitted from the semiconductor light emitting module 710.
  • the light scattering member 880 is a member for diffusing the emitted light so that the emitted light from the semiconductor light emitting module 710 reaches the inner surface 532 of the globe 530 with a maximum luminous intensity within an emission angle range of 30 ° to 60 °.
  • the semiconductor light emitting module 710 is disposed above.
  • the emission angle is defined as 0 ° forward along the lamp axis J and 180 ° rearward along the lamp axis J.
  • the light scattering member 880 has, for example, a substantially inverted truncated cone shape and is disposed on the lamp axis J, and the conical axis of the light scattering member 880 and the lamp axis J coincide with each other.
  • the conical axis of the light scattering member 880 does not necessarily coincide with the lamp axis J. However, in order to obtain a uniform light distribution over the entire circumference around the lamp axis J, the conical axis is the lamp axis. It is preferably parallel to the axis J, and more preferably the cone axis and the lamp axis J are coincident.
  • the light scattering member 880 is formed of a cylindrical outer portion 881 whose cylindrical axis is parallel to the lamp axis J, and an inverted frustoconical inner portion 882 packed in the outer portion 881. There is no gap between the outer portion 881 and the inner portion 882.
  • the light emitted from the upper surface 713a of the sealing body 713 of the semiconductor light emitting module 710 and incident into the inner portion 882 from the lower surface 885 of the inner portion 882 is repeatedly reflected inside the inner portion 882, and a part thereof is the inner portion.
  • the light that has entered the outer portion 881 from the inner portion 882 is repeatedly reflected inside the outer portion 881 and emitted from the upper surface 884 of the outer portion 881 to the outside of the light scattering member 880.
  • the light incident on the light scattering member 880 gathers at the outer portion 881 formed of a material having a higher refractive index and is emitted mainly from the upper surface 884 of the outer portion 881.
  • the outer peripheral surface of the light scattering member 880 reflects the light emitted from the semiconductor light emitting element 712 and not incident on the light scattering member 880 toward the annular region surrounding the side of the base 520.
  • Surface 887 is formed.
  • a recess 888 is provided in the approximate center of the surface of the light scattering member 880 opposite to the semiconductor light emitting element 712 (the upper surface of the light scattering member 880), and at least a part of the inner surface of the recess 888 is the second.
  • a reflection surface 889 is formed.
  • the recess 888 has a substantially inverted conical shape having a top on the base 520 side, and its conical axis coincides with the lamp axis J, and the entire conical surface thereof is the second reflecting surface 889. It has become.
  • the second reflecting surface 889 reflects light incident on the light scattering member 880 toward an annular region surrounding the side of the base 520.
  • the illumination light source 800 described above has good light distribution characteristics because the irradiation angle can be widened by the light scattering member 880 even when the semiconductor light emitting module 710 having a narrow irradiation angle is arranged in a plane. Further, since the outer portion 881 is cylindrical and exists over the entire outer periphery of the light scattering member 880, the irradiation angle can be expanded over the entire circumference centered on the lamp axis J. The light distribution characteristics are good over the entire range.
  • the light incident on the first reflecting surface 887 is reflected toward the annular region surrounding the side of the base 520, and the light collected near the lamp axis J inside the light scattering member 880 is also the second. Since the light is reflected toward the annular region surrounding the side of the base 520 by the reflecting surface 889, the light distribution characteristic is good even when the semiconductor light emitting element 812 having a narrow irradiation angle is used.
  • FIG. 35 is a partially broken perspective view showing an illumination light source according to the ninth embodiment.
  • FIG. 36 is a cross-sectional view showing an illumination light source according to the ninth embodiment.
  • an illumination light source 900 according to the ninth embodiment is an illumination light source according to the sixth embodiment in that the light scattering member 980 has a cylindrical shape having a through hole 981. 500.
  • Other configurations are basically the same as those of the illumination light source 500 according to the sixth embodiment. Therefore, only the difference will be described in detail, and the description of other configurations will be simplified or omitted.
  • symbol as 6th Embodiment is used.
  • An illumination light source 900 is an LED lamp that is an alternative to an incandescent bulb, and includes a semiconductor light emitting module 510 as a light source, a base 520 on which the semiconductor light emitting module 510 is mounted, and a semiconductor light emitting device.
  • Globe 530 covering module 510, circuit unit 540 for lighting semiconductor light emitting module 510, circuit holder 550 housing circuit unit 540, case 560 covering circuit holder 550, and circuit unit 540 are electrically connected.
  • a light scattering member 980 for diffusing the light emitted from the semiconductor light emitting module 510.
  • the light scattering member 980 is made of a translucent material in which translucent light scattering particles having an average particle diameter of 10 ⁇ m or less are dispersed and mixed.
  • the light transmissive light scattering particles and the light transmissive material constituting the light scattering member 980 are the same as those of the light scattering member 580 according to the sixth embodiment, and thus description thereof is omitted.
  • FIG. 37 is a cross-sectional view showing a light scattering member according to the ninth embodiment.
  • the light scattering member 980 has, for example, a substantially cylindrical shape whose outer diameter gradually increases from the bottom to the top.
  • the outer peripheral surface of the light scattering member 980 is opposed to the semiconductor light emitting element 512 of the semiconductor light emitting module 510 arranged in an annular shape on the upper surface 521 of the base 520, and a part of the main emitted light of the semiconductor light emitting element 512 is used as a base.
  • the first reflecting surface 982 has a substantially annular shape that reflects toward an annular region surrounding the side of the table 520.
  • the through hole 981 of the light scattering member 980 penetrates in the vertical direction along the lamp axis J, and the axis of the through hole 981 coincides with the lamp axis J.
  • the outer peripheral surface of the through hole 981, that is, the inner peripheral surface of the light scattering member 980 is substantially annular, and the entire inner peripheral surface of the light scattering member 980 receives the light incident on the inside of the light scattering member 980 as a base 520.
  • the second reflecting surface 983 is reflected toward an annular region surrounding the side of the second reflecting surface 983.
  • the second reflecting surface 983 may be formed in a region inside the annular region where the first reflecting surface 982 is formed in plan view.
  • the lower surface 984 of the light scattering member 980 is substantially annular, and the light scattering member 980 is attached to the mounting substrate 511 so that the lower surface 984 is in contact with the upper surface of the mounting substrate 511 of the semiconductor light emitting module 510. Yes.
  • FIG. 38 is an enlarged cross-sectional view showing a portion surrounded by a two-dot chain line in FIG.
  • the main emitted light emitted from the semiconductor light emitting module 510 and incident on the first reflecting surface 982 partially surrounds the side of the base 520 by the first reflecting surface 982 as shown by an optical path L41 in FIG. It is reflected toward the annular area.
  • the other part of the main emitted light incident on the first reflecting surface 982 passes through the first reflecting surface 982 and enters the light scattering member 980, as shown by the optical path L42 in FIG.
  • a part of the light is reflected by the second reflecting surface 983, further reflected by the upper surface 985, passes through the first reflecting surface 982, and is emitted toward an annular region surrounding the side of the base 520.
  • the second reflecting surface 983 and the upper surface 985 are inclined, but the second reflecting surface 983 and the upper surface 985 do not necessarily need to be inclined.
  • the second reflecting surface 983A and the upper surface 985A may not be inclined.
  • the light scattering member 980A has a through hole 981A and a first reflecting surface 982A, the second reflecting surface 983A is parallel to the lamp axis J, and the upper surface 985A is perpendicular to the lamp axis J.
  • the second reflective surface 983B is provided with an inclination, but the upper surface 985B may be provided with no inclination.
  • the light scattering member 980B has a through hole 981B and a first reflecting surface 982B, and the upper surface 985B is perpendicular to the lamp axis J.
  • the second reflecting surface 983C is not provided with an inclination, but the upper surface 985C may be provided with an inclination.
  • the light scattering member 980C has a through hole 981C and a first reflection surface 982C, and the second reflection surface 983C is parallel to the lamp axis J.
  • These light scattering members 980A, 980B, and 980C configured as shown in FIGS. 39 (a) to 39 (c) can reflect the light emitted from the semiconductor light emitting element 512 obliquely downward, and the light scattering members 980A, 980A, The light emitted toward the vicinity of the lamp axis J inside the 980B and 980C can be reflected obliquely downward by the second reflecting surfaces 983A, 983B, and 983C.
  • FIG. 40 is a light distribution curve diagram for explaining the light distribution characteristics of the illumination light source.
  • the light distribution curve diagram shows the magnitude of the luminous intensity in each direction of 360 ° including the vertical direction of the illumination light source 1, and the upper direction along the lamp axis J of the illumination light source 1 is shown.
  • the scale is engraved at intervals of 10 ° clockwise and counterclockwise, with 0 ° being 180 ° below the lamp axis J.
  • a scale in the radial direction of the light distribution curve diagram represents the light intensity, and the light intensity represents the relative size of each light distribution curve.
  • a light distribution curve BA indicated by a broken line is a light distribution curve of an illumination light source including the second scattering surface 983A and the light scattering member 980A in which the upper surface 985A is not inclined as shown in FIG. .
  • a light distribution curve BB indicated by a solid line is a light distribution curve of the illumination light source 900 including the light scattering member 980 in which the second reflection surface 983 and the upper surface 985 illustrated in FIG. 37 are inclined.
  • the illumination light source in which the second reflecting surface and the upper surface of the light scattering member are provided with an inclination has a wider light distribution angle and better light distribution characteristics.
  • the light distribution angle refers to the size of an angle range in which a light intensity equal to or more than half of the maximum light intensity value in the illumination light source is emitted.
  • the light distribution angle of the illumination light source 900 including the light scattering member 980 provided with the inclination is 293 °
  • the light distribution angle of the illumination light source including the light scattering member 980A without the inclination is 289 °. there were.
  • the light scattering member 980 used in the experiment has a maximum diameter W2 (outer diameter of the upper surface 985) of 30 mm, a minimum diameter W3 (outer diameter of the lower surface 984) of 16.4 mm, and a height W4. (Thickness in the direction along the lamp axis J) is 8 mm, the minimum diameter W5 of the through hole 981 is 15.4 mm, the inclination angle ⁇ of the second reflecting surface 983 is 8.5 °, and the inclination angle ⁇ of the upper surface 985 is 4 °.
  • the light emitting angle of the illumination light source 900 in which the semiconductor light emitting elements 512 are arranged in an annular shape and the globe 530 is attached is 293 °.
  • the light scattering member 980A used in the experiment also has a maximum diameter W2 of 30 mm, a minimum diameter W3 of 16.4 mm, a height W4 of 8 mm, and a diameter W5 of the through hole 981A of 15.4 mm.
  • the light emitting angle of the illumination light source with the semiconductor light emitting element 512 arranged in an annular shape and the globe 530 attached thereto was 289 °.
  • the configuration of the light source for illumination according to the ninth embodiment or the modification thereof has a relatively simple shape and thus uses a light scattering member that is easy to mold, and has a light distribution angle.
  • a wide illumination light source can be obtained.
  • an illumination light source having a wider light distribution angle can be obtained by providing an inclination on the second reflecting surface and the upper surface of the light scattering member.
  • the configuration of the present invention has been described based on the first to ninth embodiments and their modifications.
  • the present invention is not limited to the above-described embodiments and their modifications.
  • the illumination light source may be formed by appropriately combining the partial configurations of the illumination light sources according to the first to ninth embodiments and their modifications, and the configurations according to the following modifications.
  • the materials, numerical values, and the like described in the above embodiments are merely preferable examples and are not limited thereto.
  • the semiconductor light emitting module according to the present invention may be configured to include only one semiconductor light emitting element instead of a plurality.
  • the sealing body 13A is aligned with the element mounting portion 15A of the mounting substrate 11A, and the longitudinal direction of the sealing body 13A is along the circumferential direction of the element mounting portion 15A.
  • a plurality of semiconductor light emitting elements 12A are arranged side by side along the circumferential direction of the element mounting part 15A in the element mounting part 15A of the mounting substrate 11A, and two of these semiconductor light emitting elements 12A are sealed by a sealing body 13A as a set.
  • the longitudinal direction of the sealing body 13A is along the circumferential direction of the element mounting portion 15A.
  • a plurality of semiconductor light emitting elements 12C are arranged side by side along the circumferential direction of the element mounting part 15C on the element mounting part 15C of the mounting substrate 11C.
  • the semiconductor light emitting element 12C may be sealed with one substantially annular sealing body 13C. With such a configuration, the light emitting portion can be continued in the circumferential direction of the element mounting portion 15C, and therefore uneven illuminance in the circumferential direction is unlikely to occur.
  • the mounting substrate 11D includes an element mounting portion 15D having a substantially semicircular arc shape and a tongue portion 16D extending from one portion of the element mounting portion 15D, and a plurality of semiconductor light emitting elements 12D are formed in an arc shape in the element mounting portion 15D.
  • These semiconductor light emitting elements 12D are sealed by one substantially arc-shaped sealing body 13D.
  • the tongue piece 16D is provided with a connector 17D. Even if it is such a structure, if each semiconductor light-emitting module 10D is mounted in the upper surface 22 of the base 20, ie, it is planarly arranged, an assembly operation will not become complicated.
  • FIG. 42 is a view for explaining the diffusion treatment performed on the globe according to the modification, and is an end view showing only the cut surface by cutting the opening vicinity regions 34 and 35 of the globe 30.
  • 5 is an end view cut along a plane including a lamp axis J.
  • the first Light reflected by the reflecting surface 81 obliquely downward avoiding the upper surface 22 of the base 20 can be diffused by the globe 30 (opening vicinity regions 34 and 35 thereof) to further expand the light distribution range downward.
  • the semiconductor light emitting element is arranged with its main emission direction upward, that is, toward the lamp axis J direction.
  • the semiconductor light emitting element may be arranged with all or a part thereof inclined with respect to the lamp axis J direction. Thereby, controllability of light distribution is improved, and desired light distribution can be obtained.
  • the present invention can be widely used in general lighting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

 配光特性が良好かつ組立作業が簡単な照明用光源を提供することを目的とし、基台20の上面22に複数の半導体発光素子12がそれぞれの主出射方向を上方に向けた状態で平面配置され、それら半導体発光素子12の上方には、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなる光散乱部材80が配置されており、前記光散乱部材80は、前記各半導体発光素子12の主出射光の一部を斜め下方へ反射させる反射面81を有する構成の照明用光源1とする。

Description

照明用光源
 本発明は、半導体発光素子を利用した照明用光源に関し、特に配光特性の改良技術に関する。
 近年、白熱電球の代替品として、LED(Light Emitting Diode)などの半導体発光素子を利用した電球形の照明用光源が普及しつつある。
 このような照明用光源は、照射角の狭いLEDを光源としているため、白熱電球と比べて配光特性が狭いという課題を有している。そこで、図43に示すように、特許文献1に記載の照明用光源1000では、基台1001が、第1基台部1002と、第1基台部1002の上面の一部の領域から逆錐台状に突出している第2基台部1003とからなり、第1基台部1002の上面には第1のLED1004が配置され、第2基台部1003の上面には第2のLED1005が配置され、第2基台部1003を上方から第1基台部1002へ投影した場合において、その投影域内に第1のLED1004の発光面が存在し、第2基台部1003の側面が光反射面1006となった構成を採用している。この構成によって、第1のLED1004の出射光を光反射面1006によって斜め下方へ反射させ、LEDの照射角の狭さを補って、比較的良好な配光特性を実現している。
特開2010-86946号公報
 しかしながら、特許文献1に記載の照明用光源1000の場合、第1基台部1002の上面と第2基台部1003の上面とがLEDの搭載面であり、それら2つの搭載面に別途LED1004,1005を搭載しなければならないため、LEDの搭載面が1つだけの場合と比べて組立作業が煩雑である。すなわち、例えば、ロボットを用いてLEDを搭載する場合に、全てのLEDを平面配置するのであれば高さ方向のセッティングが不要であるが、高さの違う搭載面が2つ存在していると、それぞれの高さに対応するための高さ方向のセッティングが必要であり、その結果、ロボット操作が複雑化したり作業速度が低下したりする。
 本発明は、上記のような課題に鑑みてなされたものであって、配光特性が良好かつ組立作業が簡単な照明用光源を提供することを目的とする。
 本発明に係る照明用光源は、基台の上面に複数の半導体発光素子がそれぞれの主出射方向を上方に向けた状態で平面配置され、それら半導体発光素子の上方には、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなる光散乱部材が配置されており、前記光散乱部材は、前記各半導体発光素子の主出射光の一部を斜め下方へ反射させる第1反射面を有することを特徴とする。
 本発明に係る照明用光源は、複数の半導体発光素子が基台の上面に平面配置されている構成であるため、半導体発光素子を基台へ搭載し易く、照明用光源の組立作業が簡単である。また、半導体発光素子の主出射光の一部を斜め下方へ反射させる第1反射面を有する光散乱部材を備えているため、照射角が狭い半導体発光素子が平面配置されていても照明用光源の配光特性が良好である。
第1の実施形態に係る照明用光源を示す一部破断斜視図 第1の実施形態に係る照明用光源を示す断面図 図2において二点鎖線で囲んだ部分を示す拡大断面図 第1の実施形態に係る半導体発光モジュールを示す平面図 第1の実施形態に係る光散乱部材を示す断面図 光散乱部材による散乱の態様を説明するための模式図 第1の実施形態に係る光散乱部材の変形例を示す断面図 照明用光源の配光特性を説明するための配光曲線図 第2の実施形態に係る照明用光源の要部構成を示す断面図 図9において二点鎖線で囲んだ部分を示す拡大断面図 第3の実施形態に係る照明用光源を説明するための図 第3の実施形態に係る照明用光源の変形例に係る照明用光源の要部構成を示す断面図 第4の実施形態に係る照明用光源の要部構成を示す断面図 図13において二点鎖線で囲んだ部分を示す拡大断面図 第5の実施形態に係る照明用光源を示す一部破断斜視図 第5の実施形態に係る照明用光源を示す断面図 第6の実施形態に係る照明用光源を示す一部破断斜視図 第6の実施形態に係る照明用光源を示す断面図 第2反射面領域を説明するための図であって、図19(a)は平面図、図19(b)は断面図 出射光の光路を説明するための模式図であって、図20(a)は、図18において二点鎖線で囲んだ部分を示す拡大断面図、図20(b)は,凹部が形成されていないと仮定した場合の拡大断面図 光散乱部材による散乱の態様を説明するための模式図 照明用光源の配光特性を説明するための配光曲線図 第6の実施形態に係る光散乱部材の変形例を示す断面図 第6の実施形態に係る光散乱部材の変形例を示す断面図 第6の実施形態に係る光散乱部材の変形例を示す断面図 第6の実施形態に係る光散乱部材の変形例を示す断面図 第6の実施形態に係る光散乱部材の変形例を示す断面図 第6の実施形態に係る光散乱部材の変形例を示す断面図 第6の実施形態に係る光散乱部材の変形例を示す断面図 第6の実施形態に係る光散乱部材の変形例を示す断面図 第7の実施形態に係る照明用光源を示す一部破断斜視図 第7の実施形態に係る照明用光源を示す断面図 第8の実施形態に係る照明用光源を示す一部破断斜視図 第8の実施形態に係る照明用光源を示す断面図 第9の実施形態に係る照明用光源を示す一部破断斜視図 第9の実施形態に係る照明用光源を示す断面図 第9の実施形態に係る光散乱部材を示す断面図 図36において二点鎖線で囲んだ部分を示す拡大断面図 第9の実施形態に係る光散乱部材の変形例を示す断面図 照明用光源の配光特性を説明するための配光曲線図 変形例に係る半導体発光モジュールを示す平面図 変形例に係るグローブに施された拡散処理を説明するための図 従来の照明用光源を示す断面図
 以下、本発明の実施形態に係る照明用光源について、図面を参照しながら説明する。なお、各図面における部材の縮尺は実際のものとは異なる。また、本願において、数値範囲を示す際に用いる符号「~」は、その両端の数値を含む。
 <第1の実施形態>
 [概略構成]
 図1は、第1の実施形態に係る照明用光源を示す一部破断斜視図である。図2は、第1の実施形態に係る照明用光源を示す断面図である。図3は、図2において二点鎖線で囲んだ部分を示す拡大断面図である。
 図1から図3に示すように、第1の実施形態に係る照明用光源1は、白熱電球の代替品となるLEDランプであって、光源としての半導体発光モジュール10と、半導体発光モジュール10が搭載された基台20と、半導体発光モジュール10を覆うグローブ30と、半導体発光モジュール10を点灯させるための回路ユニット40と、回路ユニット40を収容した回路ホルダ50と、回路ホルダ50を覆うケース60と、回路ユニット40と電気的に接続された口金70と、半導体発光モジュール10の主出射光を散乱させるための光散乱部材80と、回路ホルダ50の蓋となるキャップ部材90と、を備える。
 なお、図2において紙面上下方向に沿って描かれた一点鎖線は、照明用光源1のランプ軸Jを示している。ランプ軸Jとは、照明用光源1を照明装置(不図示)のソケットに取り付ける際の回転中心となる軸であり、口金70の回転軸と一致している。また、図2において、紙面上方が照明用光源1の上方であって、紙面下方が照明用光源の下方である。
 [各部構成]
 (1)半導体発光モジュール
 図4は、第1の実施形態に係る半導体発光モジュールを示す平面図である。図4に示すように、半導体発光モジュール10は、実装基板11と、実装基板11に実装された光源としての複数の半導体発光素子12と、それら半導体発光素子12を被覆するように実装基板11上に設けられた封止体13とを備える。なお、本実施の形態では、半導体発光素子12はLEDであり、半導体発光モジュール10はLEDモジュールであるが、半導体発光素子12は、例えば、LD(レーザダイオード)であっても良く、EL素子(エレクトリックルミネッセンス素子)であっても良い。
 実装基板11は、中央に略円形の孔部14を有する略円環状の素子実装部15と、素子実装部15の内周縁の一箇所から孔部14の中心へ向けて延出した舌片部16とからなる。舌片部16の下面には、回路ユニット40の配線41が接続されるコネクタ17が設けられており、図2に示すように、配線41をコネクタ17に接続することによって半導体発光モジュール10と回路ユニット40とが電気的に接続される。
 図4に戻って、半導体発光素子12は、例えば32個が素子実装部15の上面に環状に実装されている。具体的には、素子実装部15の径方向に沿って並べられた半導体発光素子12を2個で1組として、16組が素子実装部15の周方向に沿って等間隔を空けて並べて円環状に配置されている。なお、本願において環状とは、円環状だけでなく、三角形、四角形、五角形など多角形の環状も含まれる。したがって、半導体発光素子12は、例えば楕円や多角形の環状に実装されていても良い。
 半導体発光素子12は、1組ごと個別に略直方体形状の封止体13によって封止されている。したがって、封止体13は全部で16個である。各封止体13の長手方向は、素子実装部15の径方向と一致しており、上方側からランプ軸Jに沿って下方側を見た場合において、ランプ軸Jを中心として放射状に配置されている。
 封止体13は、主として透光性材料からなるが、半導体発光素子12から発せられた光の波長を所定の波長へと変換する必要がある場合には、前記透光性材料に光の波長を変換する波長変換材料が混入される。透光性材料としては、例えばシリコーン樹脂を利用することができ、波長変換材料としては、例えば蛍光体粒子を利用することができる。
 本実施の形態では、青色光を出射する半導体発光素子12と、青色光を黄色光に波長変換する蛍光体粒子が混入された透光性材料で形成された封止体13とが採用されており、半導体発光素子12から出射された青色光の一部が封止体13によって黄色光に波長変換され、未変換の青色光と変換後の黄色光との混色により生成される白色光が半導体発光モジュール10から出射される。
 さらに、半導体発光モジュール10は、例えば、紫外線発光の半導体発光素子と三原色(赤色、緑色、青色)に発光する各色蛍光体粒子とを組み合わせたものでも良い。さらに、波長変換材料として半導体、金属錯体、有機染料、顔料など、ある波長の光を吸収し、吸収した光とは異なる波長の光を発する物質を含んでいる材料を利用しても良い。半導体発光素子12はその主出射方向をランプ軸J方向に沿った上方に向けて配置されている。
 (2)基台
 図2に戻って、基台20は、例えば、略円形の貫通孔21を有する略円筒形状であり、その筒軸がランプ軸Jと一致する姿勢で配置されている。したがって、基台20の貫通孔21は上下方向に貫通している。基台20の上面22は、略円環形状であり、ランプ軸Jと直交する平面であって、半導体発光モジュール10が搭載されている。これにより、各半導体発光素子12がそれぞれの主出射方向を上方に向けた状態で平面配置された状態となっている。このように全ての半導体発光素子12が基台20の上面22に平面配置された構成であるため、基台20へ半導体発光素子12を容易に搭載することでき、照明用光源1の組立作業が簡単である。
 なお、上面22は略円環形状に限定されず、どのような形状であっても良い。また、上面22は、半導体発光素子を平面配置できるのであれば、必ずしも全体が平面である必要はない。また、半導体発光モジュール10の基台20への固定は、例えば、ねじ止め、接着または係合などによって行なわれる。
 基台20は、例えば金属材料からなり、金属材料としては、例えばAl、Ag、Au、Ni、Rh、Pd、またはそれらの内の2以上からなる合金、またはCuとAgの合金などが考えられる。このような金属材料は、熱伝導性が良好であるため、半導体発光モジュール10で発生した熱をケース60に効率良く伝導させることができる。
 照明用光源1は、基台20に貫通孔21が設けられているため軽量である。また、貫通孔21内、および、貫通孔21を介してグローブ30内に、回路ユニット40の一部が配置されているため小型である。
 (3)グローブ
 グローブ30は、本実施の形態では、一般電球形状であるA型の電球のバルブを模した形状であり、グローブ30の開口側端部31をケース60の上方側端部61内に圧入することにより、半導体発光モジュール10および光散乱部材80の上方を覆った状態で、ケース60に固定されている。照明用光源1の外囲器は、グローブ30とケース60とで構成されている。
 なお、グローブ30の形状は、A型の電球のバルブを模した形状に限定されず、どのような形状であっても良い。さらには、照明用光源はグローブを備えない構成でも良い。また、グローブ30は接着剤などによりケース60に固定されていても良い。
 グローブ30の内面32には、半導体発光モジュール10から発せられた光を拡散させる拡散処理、例えば、シリカや白色顔料等による拡散処理が施されている。グローブ30の内面32に入射した光はグローブ30を透過しグローブ30の外部へと取り出される。
 (4)回路ユニット
 回路ユニット40は、半導体発光素子を点灯させるためのものであって、回路基板42と、当該回路基板42に実装された各種の電子部品43,44とを有している。なお、図面では一部の電子部品にのみ符号を付している。回路ユニット40は、回路ホルダ50およびキャップ部材90内に収容されており、例えば、ネジ止め、接着、係合などにより回路ホルダ50に固定されている。
 回路基板42は、その主面がランプ軸Jと平行する姿勢で配置されている。このようにすれば、回路ホルダ50内に回路ユニット40をよりコンパクトに格納することができる。また、回路ユニット40は、熱に弱い電子部品43が半導体発光モジュール10から遠い下方側に位置し、熱に強い電子部品44が半導体発光モジュール10に近い上方側に位置するように配置されている。このようにすれば、熱に弱い電子部品43が半導体発光モジュール10で発生する熱によって熱破壊され難い。
 回路ユニット40と口金70とは、電気配線45,46によって電気的に接続されている。電気配線45は、回路ホルダ50に設けられた貫通孔51を通って、口金70のシェル部71と接続されている。また、電気配線46は、回路ホルダ50の下方側開口52を通って、口金70のアイレット部73と接続されている。
 回路ユニット40の一部は、基台20の貫通孔21内、および、グローブ30内に配置されている。このようにすることで、基台20よりも下方側における回路ユニット40を収容するためのスペースを小さくすることができる。したがって、基台20と口金70との距離を縮めたり、ケース60の径を小さくしたりすることが可能であり、照明用光源1の小型化に有利である。
 (5)回路ホルダ
 回路ホルダ50は、例えば、両側が開口した略円筒形状であって、大径部53と小径部54とで構成される。上方側に位置する大径部53には回路ユニット40の大半が収容されている。一方、下方側に位置する小径部54には口金70が外嵌されており、これによって回路ホルダ50の下方側開口52が塞がれている。回路ホルダ50は、例えば、樹脂などの絶縁性材料で形成されていることが好ましい。
 回路ホルダ50の大径部53は基台20の貫通孔21を貫通しており、回路ユニット40の一部は回路ホルダ50に収容された状態で基台20の貫通孔21内に配置されている。図3に示すように、回路ホルダ50と基台20とは接触しておらず、回路ホルダ50の外面55と基台20の貫通孔21の内面23との間には隙間が設けられている。また、回路ホルダ50は、半導体発光モジュール10および光散乱部材80とも接触しておらず、半導体発光モジュール10の実装基板11と回路ホルダ50の外面55との間、および、回路ホルダ50の上方側端部56と光散乱部材80との間にも隙間が設けられている。したがって、半導体発光モジュール10で発生した熱が回路ホルダ50へ伝搬し難く、回路ホルダ50が高温になり難いため、回路ユニット40が熱破壊し難い。
 回路ホルダ50には、半導体発光モジュール10の舌片部16に対応した位置に貫通孔57が設けられている。舌片部16の先端は、貫通孔57を介して回路ホルダ50内に挿入されており、舌片部16に設けられたコネクタ17は、回路ホルダ50内に位置している。
 (6)ケース
 図2に戻って、ケース60は、例えば、両端が開口し上方から下方へ向けて縮径した円筒形状を有する。図3に示すように、ケース60の上方側端部61内には基台20とグローブ30の開口側端部31とが収容されており、例えばカシメによりケース60が基台20に固定されている。なお、ケース60、基台20およびグローブ30で囲まれた空間に接着剤を流し込むなどしてケース60が基台20に固定されていても良い。
 図3に示すように、基台20の下方側端部の外周縁は、ケース60の内周面62の形状にあわせてテーパ形状となっている。そのテーパ面24がケース60の内周面62と面接触しているため、半導体発光モジュール10から基台20へ伝搬した熱が、さらにケース60へ伝導し易くなっている。半導体発光素子12で発生した熱は、主に、基台20およびケース60を介し、さらに回路ホルダ50の小径部54を介して口金70へ伝導し、口金70から照明器具(不図示)側へ放熱される。
 ケース60は、例えば金属材料からなり、金属材料としては、例えばAl、Ag、Au、Ni、Rh、Pd、またはそれらの内の2以上からなる合金、またはCuとAgの合金などが考えられる。このような金属材料は、熱伝導性が良好であるため、ケース60に伝搬した熱を効率良く口金70側に伝搬させることができる。なお、ケース60の材料は、金属に限定されず、例えば熱伝導率の高い樹脂などであっても良い。
 (7)口金
 図2に戻って、口金70は、照明用光源1が照明器具に取り付けられ点灯された際に、照明器具のソケットから電力を受けるための部材である。口金70の種類は、特に限定されるものではないが、本実施の形態ではエジソンタイプであるE26口金が使用されている。口金70は、略円筒形状であって外周面が雄ネジとなっているシェル部71と、シェル部71に絶縁部72を介して装着されたアイレット部73とを備える。シェル部71とケース60との間には絶縁部材74が介在している。
 (8)光散乱部材
 図5は、第1の実施形態に係る光散乱部材を示す断面図である。図5に示すように、光散乱部材80は、略円筒状であって、下端側部分80aの外径が下方から上方へ向けて漸次拡径しており、その拡径した下端側部分80aの外周面が光散乱部材80の第1反射面81となっている。一方、上端側部分80bの外径は均一である。また、光散乱部材80の内径も上下方向全体に亘って均一である。
 図2に示すように、光散乱部材80は、その筒軸が基台20の上面22と直交する姿勢で配置されており、第1反射面81は、半導体発光モジュール10の実装基板11を覆うようにして、各半導体発光素子12と対向している。下方側からランプ軸Jに沿って上方側を見た場合に、第1反射面81は環形状である。
 光散乱部材80は、半導体モジュール10の実装基板11に取り付けられている。図4に示すように、実装基板11の素子実装部15の内周縁には、周方向に沿って3箇所に切欠部18が設けられており、また図3に示すように、光散乱部材80の下面82には、実装基板11の切欠部18に対応した位置3箇所に突起82aが設けられている。これら切欠部18および突起82aを利用すれは、突起82aを切欠部18に嵌め込むだけの簡単な作業で、半導体発光素子12に対して適切な位置に光散乱部材80を位置決めすることができる。
 図6は、光散乱部材による散乱の態様を説明するための模式図である。光散乱部材80は、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなり、図6(a)に示すように、透光性光散乱粒子で構成される複数の粒子部分83と、それら粒子部分83を内包するベース部分84とからなり、ベース部分84は透光性材料で構成されている。
 粒子部分83を構成する透光性光散乱粒子の材料としては、アクリル系樹脂、スチレン系樹脂、スチレンアクリル系樹脂、メラミン-ホルマリン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、シリコーン系樹脂、フッ素系樹脂、並びに、これら樹脂の共重合体などが挙げられる。さらに、シリカ、チタニア、アルミナ、シリカアルミナ、ジルコニア、酸化亜鉛、酸化バリウム、酸化ストロンチウム、酸化ジルコニウムなどの無機酸化物が挙げられる。これら材料からなる透光性光散乱粒子は、1種類を使用しても良いし、複数種類を混ぜて使用しても良い。
 一方、ベース部分84を構成する透光性材料としては、樹脂や無機材料が挙げられる。樹脂としては、汎用プラスチック、エンジニアプラスチック、スーパーエンジニアプラスチックなどの熱可塑性樹脂や、熱硬化性樹脂が挙げられる。具体的には、ポリカーボネート樹脂、アクリル系樹脂、フッ素系アクリル樹脂、シリコーン系アクリル樹脂、エポキシアクリレート樹脂、ポリスチレン樹脂、アクリロニトリルスチレン樹脂、シクロオレフィンポリマー、メチルスチレン樹脂、フルオレン樹脂、PET(ポリエチレンテレフタレート)、ポリプロピレン、フェノール樹脂、メラミン樹脂、PBT(ポリブチレンテレフタレート)、POM(ポリオキシメチル)、PA(ポリアミド)、PPS(ポリフェニルサルフィド)などが挙げられる。また、無機材料としては、ガラスやセラミックなどが挙げられる。
 粒子部分83およびベース部分84を形成する透光性材料は、それぞれ無色透明であることが好ましいがこれに限定されず、透光性を有していれば有色透明であっても良い。
 光散乱部材80の内部で効率良く光を散乱させるためには、粒子部分83を構成する透光性光散乱粒子の材料と、ベース部分84を構成する透光性材料との屈折率の差が0.02以上であることが好ましい。屈折率の差が0.02以上であれば良好な光散乱特性を得ることができる。
 透光性光散乱粒子の形状は、例えば略球形状である。透光性光散乱粒子の平均粒子径は、幾何光学の散乱およびミー散乱を有効に利用するために、0.1μm~10μmであることが好ましい。透光性光散乱粒子の平均粒径が0.1μm未満または10μmを超える場合は、透光性光散乱粒による光散乱性が十分に得られず、所望の光学特性を得ることができないため好ましくない。この点、透光性光散乱粒子の平均粒径が0.1μm~10μmの範囲内ならば、十分な光散乱性を得ることができる。特に、透光性光散乱粒子の平均粒径が0.1μm~1μmの範囲内ならば、より十分な光散乱性を得ることができる。
 この場合に、透光性材料に対する透光性光散乱粒子の添加量は、光散乱の頻度の理由から、0.5wt%~20wt%であることが好ましい。添加量が0.5wt%未満の場合は、透光性光散乱粒子による光散乱がほとんど生じず、十分な光拡散性が得られない。また、添加量が20wt%を超える場合は、光散乱部材80が二相に分かれるため均一性がなくなると共に、光散乱部材80が脆くなって機械的特性も十分でないため好ましくない。
 光散乱部材80の光散乱性を示す指標としてヘイズがある。このヘイズの値は[(拡散光線透過率/全光線透過率)×100]で表される。その測定は、JIS  K-7105に記載されているように、積分球式ヘイズメーター(例えば、日本電色工業株式会社  300A)を用いて測定した。 また、全光線透過率は、JIS  K7105-1981の5.5記載の方法により550nmの光を用いて測定した。光散乱部材80のヘイズの値は、幾何光学の散乱およびミー散乱を有効に利用するために、0%~50%であることが好ましい。光散乱部材80のヘイズの値が50%を超える場合には光散乱性が強すぎて、所望の光学特性を得ることができないので好ましくない。この点、光散乱部材80のヘイズの値が0%~50%の範囲内ならば、十分な光散乱性と光学特性を両立できる。
 なお、本願において、「平均粒子径」とは、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味する。
 光散乱部材80の第1反射面81は、半導体発光素子12の主出射光を受光する受光面となっている。半導体発光モジュール10から出射され第1反射面81に入射した主出射光は、図3の光路L1で示すように、その一部が第1反射面81によって基台20の上面22を避けた斜め下方へ反射される。また、図3の光路L2で示すように、他の一部は第1反射面81を通過して光散乱部材80の内部へ進入する。
 光散乱部材80の内部へ進入した光は、図6(a)に示すように、粒子部分83の表面での反射を繰り返してベース部分84内で散乱し、光路L3で示すように光散乱部材80の上面85から光散乱部材80の外部へ放出されたり、光路L4で示すように光散乱部材80の上端側部分80bの外周面86から光散乱部材80の外部へ放出されたり、光路L5で示すように光散乱部材80の第1反射面81から光散乱部材80の外部へ放出されたりする。
 このように、本実施の形態に係る照明用光源1は、半導体発光素子12の主出射光の一部が第1反射面81によって基台20の上面22を避けた斜め下方へ反射されると共に、光散乱部材80の内部に進入した主出射光の他の一部も基台20の上面22を避けた斜め下方へ放出される構成であるため、照射角が狭い半導体発光素子12を用いていても照明用光源1の配光特性が良好である。しかも、光散乱部材80から放出される光は、単に散乱されているだけであり、分光などされていないため、光散乱部材80から上方へ向かう光と、斜め下方に向かう光との間に、色ずれ等が生じない。
 なお、光散乱部材80からグローブ30の内面32に届く光を、グローブ30の外部へと効率良く取り出すためには、グローブ30をランプ軸Jと直交する仮想面で切断した場合に切断面の外径W1が最大となる部分33よりも、光散乱部材80の上面85が下方に位置することが好ましい。
 本実施の形態に係る照明用光源1は、透光性光散乱粒子で光を散乱させる構成であるため、光取り出し効率が良い。例えば、金属フィラーが分散混入された透光性材料からなる光散乱部材の場合は、図6(b)に示すように、金属フィラー83Aに向かった光路L6の光は、光路L7で示すように金属フィラー83Aの表面で反射するだけでなく、光路L8で示すように金属フィラー83Aの内部にも進入し、迷光となり吸収されるため、光散乱部材での光取り出し効率が悪い。一方、本実施の形態に係る光散乱部材80の場合は、図6(c)に示すように、粒子部分83の内部に進入した光は、光路L9で示すように粒子部分83を透過して粒子部分83の外に出るため、迷光によるロスが少なく、光散乱部材80での光取り出し効率が良い。したがって、光散乱部材80を設けてもランプ効率が低下し難い。
 半導体発光素子12が環状に配置されており、それに対応して第1反射面81も環形状に形成されているため、基台20の上面22を避けた斜め下方への反射は、基台20の外側全周に亘って生じる。したがって、ランプ軸Jを中心とする全周に亘って配光特性が良好である。また、光散乱部材80は、内部に進入した主出射光の一部を上面85から上方へ放出すると共に、上端側部分80bの外周面86から側方へも放出するため、光散乱部材80による影が生じ難く、点灯時に照明用光源1を上方から見た場合の意匠性が良好である。
 光散乱部材80の下面82および内周面87には鏡面処理が施されている。したがって、光散乱部材80の内部に進入した光が下面82および内周面87から放出され難い構成となっている。そのため、光散乱部材80の内部の散乱光を第1反射面81、上面85および上端側部分80bの外周面86から効率良く放出できる。第1反射面81に鏡面処理を施す方法としては、例えば金属薄膜や誘電体多層膜などの反射膜を、例えば熱蒸着法、電子ビーム蒸着法、スパッタ法、メッキ、などの方法により形成することが考えられる。
 光散乱部材80の第1反射面81は、光散乱部材80の筒軸側に凹入した凹曲面形状である。具体的には、光散乱部材80を、ランプ軸J(光散乱部材80の筒軸と一致)を含む仮想面で切断した場合の切断面(以下、「縦断面」と称する。)において、第1反射面81の形状はランプ軸J側に膨らんだ略円弧形状である。言い換えると、上記切断面における第1反射面81の下方側端縁と上方側端縁とを結ぶ直線よりもランプ軸J側に凹入した略円弧形状である。具体的には、本実施の形態の場合、縦断面における第1反射面81の円弧の形状は略楕円弧形状である。
 このような形状は、より真後ろに近い(よりランプ軸Jと平行に近い)斜め下方に半導体発光素子12の出射光を反射させることに適しており、照明用光源1の配光角を広げるのに有効である。また、反射光を特定の方向に集中させるのにも有利である。
 なお、光散乱部材80の第1反射面81の形状は、縦断面においてランプ軸J側に膨らんだ略円弧形状に限定されず、図7(a)に示すように、光散乱部材80Aの第1反射面81Aの形状は、縦断面において直線状であっても良い。また、図7(b)に示すように、光散乱部材80Bの第1反射面81Bの形状は、縦断面においてランプ軸Jとは反対側に膨らんだ略円弧形状であっても良い。
 また、本実施の形態に係る光散乱部材80は筒状であったが、図7(c)に示すように、光散乱部材80Cは、略板状であっても良い。例えば、回路ユニット40が回路ホルダ50内に収まっているのであれば、光散乱部材80Cに光散乱部材80のような孔部88は必要でないので、孔部のない略円板形状の光散乱部材80Cとすることが考えられる。この場合、光散乱部材80Cには、半導体発光素子12と対向する領域に第1反射面81Cを設けることが考えられる。
 さらに、図7(d)に示すように、光散乱部材80Dが、第1反射面81Dが設けられた略円板形状である場合に、光散乱部材80Dの上面85Dを凹曲面形状にして、光散乱部材80D内から出射する光を上方へ集中させる構成としても良い。
 (9)キャップ部材
 キャップ部材90は、上方側が閉塞し下方が開口した有底筒状であり、上方へ向かって漸次縮径した上方部分91と、前下方向に径が均一な円筒状の下方部分92とで構成され、上方部分91はグローブ30内に位置し、下方部分92は光散乱部材80の貫通孔88内に位置する。そして、下方部分92と光散乱部材80と間には隙間が設けられている。したがって、半導体発光モジュール10で発生した熱が光散乱部材80を介して回路ホルダ50へ伝搬し難く、回路ホルダ50が高温になり難いため、回路ユニット40が熱破壊し難い。
 [照明用光源の配光特性]
 次に、照明用光源1の配光特性が良好である理由を詳細に説明する。図8は、照明用光源の配光特性を説明するための配光曲線図である。図8に示すように、配光曲線図は、照明用光源1の上下方向を含む360°の各方向に対する光度の大きさを表しており、照明用光源1のランプ軸Jに沿った上方を0°、ランプ軸Jに沿った下方を180°として、時計回りおよび反時計回りにそれぞれ10°間隔に目盛を刻んでいる。配光曲線図の径方向に付した目盛は光度を表しており、光度は各配光曲線における最大値を1とする相対的な大きさで表されている。
 図8において、一点鎖線を用いて白熱電球の配光曲線Aを示し、破線を用いて特許文献1の照明用光源1000の配光曲線Bを示し、実線を用いて本実施の形態に係る照明用光源1の配光曲線Cを示している。
 配光特性は配光角に基づき評価した。配光角とは、照明用光源における光度の最大値の半分以上の光度が出射される角度範囲の大きさをいう。図8に示す配光曲線の場合は、光度が0.5以上となる角度範囲の大きさである。
 図8から分かるように、白熱電球の配光角は約315°であり、特許文献1の照明用光源1000の配光角は約165°であり、本実施の形態に係る照明用光源1の配光角は約270°である。このように、照明用光源1は、照明用光源1000よりも配光角が広く、白熱電球により近い配光角を有する。したがって、照明用光源1は、照明用光源1000よりも配光特性が良く、白熱電球に近似した配光特性を有するといえる。
 なお、照明用光源1の配光角を更に大きくする方法の1つとして、半導体発光素子12を、実装基板11の素子実装部15の外周縁に配置することが考えられる。このようにすれば、光散乱部材80によって、より真後ろに近い(よりランプ軸Jと平行に近い)斜め下方に半導体発光素子12の出射光を反射させることができる。
 <第2の実施形態>
 図9は、第2の実施形態に係る照明用光源の要部構成を示す断面図である。図10は、図9において二点鎖線で囲んだ部分を示す拡大断面図である。
 図9に示すように、第2の実施形態に係る照明用光源100は、光散乱部材80の上方にさらに補助光散乱部材180が配置されている点において、第1の実施形態に係る照明用光源1と相違する。その他の構成については基本的に第1の実施形態に係る照明用光源1と略同様である。したがって、上記相違点についてのみ詳細に説明し、その他の構成については説明を簡略若しくは省略する。なお、既に説明した実施形態と同じ部材が使用されている場合は、その実施形態と同じ符号を用いている。
 補助光散乱部材180は、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなり、光散乱部材80から放出された光の一部を斜め下方へ反射させる第3反射面181を有する。
 補助光散乱部材180は、下面182に突起が形成されていない点、および、下面182に鏡面処理が施されていない点において光散乱部材80と相違するが、その他の構成については光散乱部材80と略同様である。すなわち、補助光散乱部材180は、略円筒状であって、下端側部分の外径が下方から上方へ向けて漸次拡径しており、その拡径した下端側部分の外周面が補助光散乱部材180の第3反射面181となっている。また、上端側部分の外径は均一であり、内径も上下方向全体に亘って均一である。
 図10に示すように、補助光散乱部材180は、その下面182を光散乱部材80の上面85と面接触させるようにして、光散乱部材80上に積み重ねられており、例えば、接着、係合またはねじ止めなどによって固定されている。補助光散乱部材180の下面182には鏡面処理が施されていないため、光散乱部材80の上面85から放出された光は、補助光散乱部材180の下面182から補助光散乱部材180の内部へ進入することができる。なお、光散乱部材80と補助光散乱部材180とは一体成形されていても良い。
 補助光散乱部材180の内周面187には鏡面処理が施されており、補助光散乱部材180からキャップ部材90側に光が放出されないようになっている。また、補助光散乱部材180の孔部188は、光散乱部材80の孔部88と同じ径であり、補助光散乱部材180の内周面187と光散乱部材80の内周面87とを連続させるようにして、補助光散乱部材180が光散乱部材80に対して位置決めされている。
 補助光散乱部材180の第3反射面181は、光散乱部材80の上面85から放出される光を受光する受光面となっている。補助光散乱部材180の第3反射面181に入射した光路L3で示す光は、光路L10で示すようにその一部が第3反射面181によって光散乱部材80を避けた斜め下方へ反射される。また、他の一部は第3反射面181を通過して補助光散乱部材180の内部へ進入する。
 補助光散乱部材180の内部へ進入した光は内部で散乱されて、光路L11で示すように、補助光散乱部材180の上面185から補助光散乱部材180の外部へ放出されたり、光路L12で示すように、補助光散乱部材180の上端側部分の外周面186から補助光散乱部材180の外部へ放出されたり、光路L13で示すように、補助光散乱部材180の第3反射面181から補助光散乱部材180の外部へ放出されたりする。
 このように、本実施の形態に係る照明用光源100は、補助光散乱部材180の第3反射面181によって、光散乱部材80から上方に向けて放出された光が、光散乱部材80を避けた斜め下方へ反射されると共に、補助光散乱部材180の内部に進入した光の一部も光散乱部材80を避けた斜め下方へ放出される構成であるため、照射角が狭い半導体発光素子12を用いていても照明用光源100の配光特性が良好である。しかも、光散乱部材80および補助光散乱部材180から放出される光は、単に散乱されているだけであり、分光などされていないため、上方へ向かう光と斜め下方に向かう光との間に色ずれ等が生じない。
 なお、光散乱部材80からグローブ30の内面32に届く光を、グローブ30の外部へと効率良く取り出すためには、グローブ30をランプ軸Jと直交する仮想面で切断した場合に切断面の外径W1が最大となる部分33よりも、補助光散乱部材180の上面185が下方に位置することが好ましい。
 <第3の実施形態>
 図11は、第3の実施形態に係る照明用光源を説明するための図であって、図11(a)は照明用光源の要部構成を示す断面図であり、図11(b)は半導体発光モジュールの平面図である。
 図11(a)および図11(b)に示すように、第3の実施形態に係る照明用光源200は、半導体発光モジュール210が補助半導体発光素子212を備える点において、第1の実施形態に係る照明用光源1と大きく相違する。したがって、上記相違点についてのみ詳細に説明し、その他の構成については説明を簡略若しくは省略する。なお、既に説明した実施形態と同じ部材が使用されている場合は、その実施形態と同じ符号を用いている。
 第3の実施形態に係る照明用光源200は、白熱電球の代替品となるLEDランプであって、光源としての半導体発光モジュール210と、半導体発光モジュール210が搭載された基台20と、半導体発光モジュール210を覆うグローブ30と、半導体発光モジュール210を点灯させるための回路ユニット40と、回路ユニット40を収容した回路ホルダ250と、回路ホルダ250を覆うケース60と、回路ユニット40と電気的に接続された口金(不図示)と、半導体発光モジュール210からの出射光を散乱させるための光散乱部材80とを備える。
 図11(b)に示すように、半導体発光モジュール210は、略円環状ではなく略円形状の実装基板211を有し、実装基板211には半導体発光素子12が環状に配置されているだけでなく、その環の内側にも補助半導体発光素子212が、主出射方向を上方に向けて配置されている。具体的には、例えば、実装基板211の中央領域(ランプ軸J付近の領域)に、例えば2個を1組とする4組の補助半導体発光素子212が配置されている。それら4組の補助半導体発光素子212は、光散乱部材80の内側に位置しており、1組ごと封止体213により封止されている。なお、実装基板211の下面にはコネクタ217が設けられている。
 回路ホルダ250は、その上方側端部256が基台20の貫通孔21内に収まっており、グローブ30内には突き出してはいない。
 第3の実施形態に係る照明用光源200は、上記のような構成であるため、光散乱部材80の内側に位置する補助半導体発光素子212から出射された光が、光散乱部材80に殆ど干渉されることなく上方へ向かう。したがって、上方へ向かう光量を大きくすることができ、光散乱部材80による影も生じ難い。
 図12は、第3の実施形態に係る照明用光源の変形例に係る照明用光源の要部構成を示す断面図である。図12に示す照明用光源201のように、半導体発光モジュール210が補助半導体発光素子212を備える構成において、光散乱部材80の上方に補助光散乱部材180を積み重ねても良い。この場合は、上記で説明した補助光散乱部材180による効果も得ることができる。
 <第4の実施形態>
 図13は、第4の実施形態に係る照明用光源の要部構成を示す断面図である。図14は、図13において二点鎖線で囲んだ部分を示す拡大断面図である。なお、既に説明した実施形態と同じ部材が使用されている場合は、その実施形態と同じ符号を用いている。
 図13に示すように、第4の実施形態に係る照明用光源300は、光散乱部材380に第1反射面381aおよび第3反射面381bが形成されている点、および、キャップ部材390にも反射面393が形成されている点において、第1の実施形態に係る照明用光源1と大きく相違する。その他の構成については基本的に第1の実施形態に係る照明用光源1と略同様である。したがって、上記相違点についてのみ詳細に説明し、その他の構成については説明を簡略若しくは省略する。なお、既に説明した実施形態と同じ部材が使用されている場合は、その実施形態と同じ符号を用いている。
 図14に示すように、光散乱部材380は、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなり、略円錐台を上下方向に2つ積み重ねた外観形状を有し、中央には上下方向に貫通する略円柱状の貫通孔388が設けられている。光散乱部材380の下端側の略円錐台形状の部分(以下、「下端側部分380a」と称する。)は、第2の実施形態における光散乱部材80に相当し、上端側の略円錐台形状の部分(以下、「上端側部分380b」と称する。)は、第2の実施形態おける補助光散乱部材180に相当する。
 本実施の形態に係る下端側部分380aおよび上端側部分380bが、第2の実施形態に係る光散乱部材80および補助光散乱部材180と大きく異なる点は、それらが一体成形されている点、それら第1反射面381aおよび第3反射面381bの縦断面の形状が直線状である点、それらに上端側部分80bに相当する部分(外径が均一な部分)がない点、である。
 下端側部分380aは、略円筒状であって、外径が下方から上方へ向けて漸次拡径しており、その外周面が光散乱部材380の第1反射面381aとなっている。第1反射面381aは、第2の実施形態に係る光散乱部材80の第1反射面81に相当する。下端側部分380aの下面382aは、光散乱部材80の下面82に相当し、実装基板11の切欠部18に対応した位置3箇所に突起(不図示)が設けられている。下端側部分380aの上面385aは、第2の実施形態に係る光散乱部材80の上面85における補助光散乱部材180と接していない部分に相当する。
 上端側部分380bは、略円筒状であって、外径が下方から上方へ向けて漸次拡径しており、その外周面が光散乱部材380の第2反射面381bとなっている。第2反射面381bは、第2の実施形態に係る補助光散乱部材180の第3反射面181に相当する。上端側部分380bの上面385bは、第2の実施形態に係る補助光散乱部材180の上面185に相当する。第2反射面381bは下端側部分380aの上面385aと対向しており、上面385aから放出される光を受光する受光面となっている。上面385aから放出された光は、主として第2反射面381bに入射し、その一部が第2反射面381bによって斜め下方へ反射され、他の一部が第2反射面381bを通過して上端側部分380bの内部へ進入する。
 光散乱部材380は、2つの反射面381a,381bを有するため、光を斜め下方に向けて反射させたり、光を斜め下方に向けて放出したりできる面の総和面積が広い。したがって、より多くの光を斜め下方へ導くことができる。さらに、下端側部分380aの上面385aから上方へ向けて放出された光を、第2反射面381bによって斜め下方に向けて反射させたり、或いは、上端側部分380bの内部に一旦取り込んで第2反射面381bから斜め下方に向けて放出したりすることができる。したがって、照射角が狭い半導体発光素子12を用いていても照明用光源300の配光特性は良好である。
 また、下端側部分380aと上端側部分380bとが一体成形されているため、下端側部分380aと上端側部分380bとの間には界面が存在しておらず、下端側部分380aの内部の光を上端側部分380bの内部へと効率良く進入させることができる。さらに、下端側部分380aおよび上端側部分380bには、第2の実施形態に係る光散乱部材80の上端側部分80bに相当する部分がなく、その結果、上端側部分80bの外周面86に相当する部分もないため、図3において光路L4で示すようにランプ軸Jと直交する方向へ放出される光が少なく、その分の光を斜め下方または上方へ放出することができる。
 キャップ部材390は、上方側が閉塞し下方が開口した有底筒状であり、上方へ向かって漸次拡径した上方部分391と、前下方向に径が均一な円筒状の下方部分392とで構成され、光散乱部材380の貫通孔388内に位置する。そして、上方部分391の外周面は反射面393となっており、光散乱部材380の内周面387から貫通孔388内に漏れ出した光を反射面393で反射させて、光を再び内周面387から光散乱部材380の内部へ進入させることができる。したがって、迷光によるロスが少なく、ランプ効率が低下し難い。
 <第5の実施形態>
 図15は、第5の実施形態に係る照明用光源を示す一部破断斜視図である。図16は、第5の実施形態に係る照明用光源を示す断面図である。なお、既に説明した実施形態と同じ部材が使用されている場合は、その実施形態と同じ符号を用いている。
 図15および図16に示すように、第5の実施形態に係る照明用光源400は、白熱電球の代替品となるLEDランプであって、光源としての半導体発光モジュール410と、半導体発光モジュール410が搭載された基台420と、半導体発光モジュール410を覆うグローブ30と、半導体発光モジュール410を点灯させるための回路ユニット40と、回路ユニット40を収容した回路ホルダ450と、回路ホルダ450を覆うケース60と、回路ユニット40と電気的に接続された口金70と、半導体発光モジュール410からの出射光を拡散させるための光散乱部材480と、を備える。
 図16に示すように、半導体発光モジュール410は、実装基板411と、実装基板411に実装された半導体発光素子412と、半導体発光素子412を被覆するように実装基板411上に設けられた封止体413とを備える半導体発光モジュールであって、ランプ軸J上に配置されている。
 実装基板411は、例えば、上方側から見て略正方形の板状であって、基台420の上面421に取り付けられている。
 半導体発光素子412は、実装基板411の前面に、例えばマトリクス状に5行5列の計25個が実装されており、それら半導体発光素子412は、ランプ軸Jを中心として点対称となるように平面配置されている。また、各半導体発光素子412は、それぞれの主出射方向がランプ軸Jに沿った上方に向けた姿勢で実装されている。
 なお、半導体発光素子412の数は25個に限定されず、例えば1個であっても良いし25個以外の複数であっても良い。また、半導体発光素子412の配置もマトリックス状に限定されず、例えば円環状などの環状に配置されていても良い。さらに、半導体発光素子412の姿勢は、半導体発光素子412の全てがランプ軸J方向に沿った上方に向いている必要はなく、一部がランプ軸Jに対して斜めに傾いた方向に向けた姿勢で実装されていても良く、これにより配光の制御性がより向上して、より好ましい配光を得ることができる。
 封止体413は、例えばブロック状であって、25個全ての半導体発光素子412を封止している。封止体413の上面413aは、上方から見て略正方形の平面であって、上面413aとランプ軸Jとは、上面413aの中心において直交している。なお、上面413aとランプ軸Jとは、必ずしも上面413aの中心において直交している必要はないが、ランプ軸Jを中心とする全周に亘って均一な配光を得るためには、上面413aの中心において交差していることが好ましく、直交していることがより好ましい。封止体413を構成する材料については、第1の実施形態に係る封止体13と同じであるため説明は省略する。
 基台420は、例えば略円板状であり、その上面421および下面422は、いずれも略円形の平面であって、それぞれランプ軸Jと直交している。基台420の上面421には、半導体発光モジュール410が平面配置されており、例えば、ねじ止め、接着、係合などにより基台420に固定されている。なお、上面421は略円形に限定されず、どのような形状であっても良い。また、上面421は、半導体発光モジュール410を平面配置できるのであれば、必ずしも全体が平面である必要はない。さらに、下面422も平面に限定されない。なお、基台420を構成する材料については、第1の実施形態に係る基台20と同じであるため説明は省略する。
 基台420には、上下方向に貫通する一対の貫通孔423が形成されており、これら貫通孔423を介して回路ユニット40の一対の配線41が基台420の上方側に導出されている。それら配線41は、それぞれ発光モジュール410の実装基板411に接続されており、これにより発光モジュール410と回路ユニット40とが電気的に接続されている。
 回路ホルダ450は、その上方側端部456が基台420の下面422側に位置し、ケース60内に収まっており、グローブ30内には突き出してはいない。
 光散乱部材480は、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなり、半導体発光モジュール410の主出射光の一部を斜め下方へ反射させる第1反射面481を有する。なお、光散乱部材480を構成する材料については、第1の実施形態に係る光散乱部材80と同じであるため説明は省略する。
 光散乱部材480は、半導体発光モジュール410の封止体413の上面413aにおけるランプ軸J上に載置されている。光散乱部材480は、例えば、略四角錐台状であって、第1反射面481としての4つの側面と下面482と上面485とを有し、下面482よりも上面485の方が大きい。本実施の形態では、上面485、下面482および第1反射面481が平面であるが、それらの面は平面に限定されない。例えば、光散乱部材480の上面485を凹面や凸面として、光散乱部材480から出射される光の拡散度合いを調整しても良い。ただし、光散乱部材480の下面482は、封止体413の上面413aとの間に隙間ができ難いように平面であることが好ましい。
 光散乱部材480の下面482は、半導体発光モジュール410の封止体413の上面413aよりも小さい。すなわち、光散乱部材480の下面482の面積は、封止体413の上面413aの面積よりも小さい。したがって、封止体413の上面413aの全てが光散乱部材480の下面482によって覆われているわけではなく、上面413aの一部は露出している。そして、露出した部分から出射される光は、光散乱部材480の第1反射面481によって斜め下方に反射される。
 一方、封止体413の上面413aにおける光散乱部材480の下面482で覆われた部分から出射される光は、光散乱部材480から光散乱部材480の内部へ直接進入し、光散乱部材480の内部で散乱され、光散乱部材480の上面485および4つの第1反射面481から放出される。
 以上のように、本発明に係る半導体発光素子は、必ずしも環状に配置されている必要はなく、また光散乱部材80も筒状である必要はない。また、半導体発光モジュールの封止体の上面と光散乱部材の下面とが接触し、その接触部分から半導体発光素子の出射光が光散乱部材の内部に直接進入する構成であっても良い。
 <第6の実施形態>
 [概略構成]
 図17は、第6の実施形態に係る照明用光源を示す一部破断斜視図である。図18は、第6の実施形態に係る照明用光源を示す断面図である。
 図17および図18に示すように、第6の実施形態に係る照明用光源500は、白熱電球の代替品となるLEDランプであって、光源としての半導体発光モジュール510と、半導体発光モジュール510が搭載された基台520と、半導体発光モジュール510を覆うグローブ530と、半導体発光モジュール510を点灯させるための回路ユニット540と、回路ユニット540を収容した回路ホルダ550と、回路ホルダ550を覆うケース560と、回路ユニット540と電気的に接続された口金570と、半導体発光モジュール510の主出射光を散乱させるための光散乱部材580と、を備える。
 なお、図18において紙面上下方向に沿って描かれた一点鎖線は、照明用光源500のランプ軸Jを示している。ランプ軸Jとは、照明用光源500を照明装置(不図示)のソケットに取り付ける際の回転中心となる軸であり、口金570の回転軸と一致している。また、図18において、紙面上方が照明用光源500の上方であって、紙面下方が照明用光源の下方である。
 [各部構成]
 (1)半導体発光モジュール
 半導体発光モジュール510は、実装基板511と、実装基板511に実装された光源としての複数の半導体発光素子512と、それら半導体発光素子512を被覆するように実装基板511上に設けられた封止体513とを備える。なお、本実施の形態では、半導体発光素子512はLEDであり、半導体発光モジュール510はLEDモジュールであるが、半導体発光素子512は、例えば、LD(レーザダイオード)であっても良く、EL素子(エレクトリックルミネッセンス素子)であっても良い。
 実装基板511は、略円形であって、回路ユニット540の配線541が接続されるコネクタ(不図示)が設けられており、配線541をコネクタに接続することによって半導体発光モジュール510と回路ユニット540とが電気的に接続されている。なお、実装基板511の形状は略円形に限定されず、三角形、四角形、五角形など多角形であっても良い。また、円環状や、三角形、四角形、五角形など多角形の環状であっても良い。半導体発光素子512を平面配置できる形状であれば良い。
 半導体発光素子512は、例えば32個が素子実装部515の上面に環状に実装されている。具体的には、素子実装部515の径方向に沿って並べられた半導体発光素子512を2個で1組として、16組が素子実装部515の周方向に沿って等間隔を空けて並べて円環状に配置されている。なお、本願において環状とは、円環状だけでなく、三角形、四角形、五角形など多角形の環状も含まれる。したがって、半導体発光素子512は、例えば楕円や多角形の環状に実装されていても良い。
 半導体発光素子512は、1組ごと個別に略直方体形状の封止体513によって封止されている。したがって、封止体513は全部で16個である。各封止体513の長手方向は、素子実装部515の径方向と一致しており、平面視において(上方側からランプ軸Jに沿って下方側を見た場合において)、ランプ軸Jを中心として放射状に配置されている。
 封止体513は、主として透光性材料からなるが、半導体発光素子512から発せられた光の波長を所定の波長へと変換する必要がある場合には、前記透光性材料に光の波長を変換する波長変換材料が混入される。透光性材料としては、例えばシリコーン樹脂を利用することができ、波長変換材料としては、例えば蛍光体粒子を利用することができる。
 本実施の形態では、青色光を出射する半導体発光素子512と、青色光を黄色光に波長変換する蛍光体粒子が混入された透光性材料で形成された封止体513とが採用されており、半導体発光素子512から出射された青色光の一部が封止体513によって黄色光に波長変換され、未変換の青色光と変換後の黄色光との混色により生成される白色光が半導体発光モジュール510から出射される。
 さらに、半導体発光モジュール510は、例えば、紫外線発光の半導体発光素子と三原色(赤色、緑色、青色)に発光する各色蛍光体粒子とを組み合わせたものでも良い。さらに、波長変換材料として半導体、金属錯体、有機染料、顔料など、ある波長の光を吸収し、吸収した光とは異なる波長の光を発する物質を含んでいる材料を利用しても良い。半導体発光素子512はその主出射方向をランプ軸J方向に沿った上方に向けて配置されている。
 (2)基台
 基台520は、例えば、短尺の略円柱形状(略円盤形状)であり、その柱軸がランプ軸Jと一致する姿勢で配置されている。基台520の上面521は、略円形状の平面であって、ランプ軸Jと直交しており、その中央には直方体形状の窪み522が形成されている。窪み522に半導体発光モジュール510の実装基板511を嵌め込むことによって、基台520に半導体発光モジュール510が搭載され、基台520の上面521と実装基板511の上面とは略面一である。したがって、実装基板511の上面に実装された各半導体発光素子512は、それぞれの主出射方向を上方に向けた状態で基台520の上面521に平面配置された状態となっている。このように全ての半導体発光素子512が基台520の上面521に平面配置される構成であれば、半導体発光素子512を容易に基台520へ搭載することでき、照明用光源500の組立作業が簡単である。
 なお、基台520の上面521は略円形状に限定されず、どのような形状であっても良い。また、上面521は、半導体発光素子を平面配置できるのであれば、必ずしも上面521の全体が平面である必要はない。また、半導体発光モジュール510の基台520への固定は、例えば、ねじ止め、接着または係合などによって行なうことが考えられる。
 基台520は、例えば金属材料からなり、金属材料としては、例えばAl、Ag、Au、Ni、Rh、Pd、またはそれらの内の2種以上からなる合金、またはCuとAgの合金などが考えられる。このような金属材料は、熱伝導性が良好であるため、半導体発光モジュール510で発生した熱をケース560に効率良く伝導させることができる。
 (3)グローブ
 グローブ530は、本実施の形態では、一般電球形状であるA型の電球のバルブを模した形状であり、グローブ530の開口側端部531をケース560の上方側端部561内に嵌め込み、半導体発光モジュール510および光散乱部材580の上方を覆った状態で、ケース560に接着剤により固定されている。照明用光源500の外囲器は、グローブ530とケース560と口金570とで構成されている。
 なお、グローブ530の形状は、A型の電球のバルブを模した形状に限定されず、どのような形状であっても良い。さらには、照明用光源はグローブを備えない構成でも良い。また、グローブ530は接着以外の方法でケース560に固定されていても良い。
 グローブ530の内面532には、半導体発光モジュール510から発せられた光を拡散させる拡散処理、例えば、シリカや白色顔料等による拡散処理が施されている。グローブ530の内面532に入射した光はグローブ530を透過しグローブ530の外部へと取り出される。
 (4)回路ユニット
 回路ユニット540は、半導体発光素子を点灯させるためのものであって、回路基板542と、当該回路基板542に実装された各種の電子部品543,544とを有している。なお、図面では一部の電子部品にのみ符号を付している。回路ユニット540は、回路ホルダ550内に収容されており、例えば、ネジ止め、接着、係合などにより回路ホルダ550に固定されている。
 回路基板542は、その主面がランプ軸Jと平行する姿勢で配置されている。このようにすれば、回路ホルダ550内に回路ユニット540をよりコンパクトに格納することができる。また、回路ユニット540は、熱に弱い電子部品543が半導体発光モジュール510から遠い下方側に位置し、熱に強い電子部品544が半導体発光モジュール510に近い上方側に位置するように配置されている。このようにすれば、熱に弱い電子部品543が半導体発光モジュール510で発生する熱によって熱破壊され難い。
 回路ユニット540と口金570とは、電気配線545,546によって電気的に接続されている。電気配線545は、回路ホルダ550に設けられた貫通孔551を通って、口金570のシェル部571と接続されている。また、電気配線546は、回路ホルダ550の下方側開口552を通って、口金570のアイレット部573と接続されている。
 (5)回路ホルダ
 回路ホルダ550は、例えば、両側が開口した略円筒形状であって、大径部553と小径部554とで構成されている。上方側に位置する大径部553には回路ユニット540の大半が収容されている。一方、下方側に位置する小径部554には口金570が外嵌されており、これによって回路ホルダ550の下方側開口552が塞がれている。回路ホルダ550は、例えば、樹脂などの絶縁性材料で形成されていることが好ましい。
 回路ホルダ550の上方側端部555と基台520の下面523との間、および、大径部553の外周面556とケース560の内周面562との間には隙間が設けられている。したがって、半導体発光モジュール510で発生した熱が回路ホルダ550へ伝搬し難く、回路ホルダ550が高温になり難いため、回路ユニット540が熱破壊し難い。
 (6)ケース
 ケース560は、例えば、両端が開口し上方から下方へ向けて縮径した略円筒形状を有する。ケース560の上方側端部561内には基台520とグローブ530の開口側端部531とが収容されており、例えばカシメによりケース560が基台520に固定されている。なお、ケース560、基台520およびグローブ530で囲まれた空間に接着剤を流し込むなどして、ケース560が基台520に固定されていても良い。
 図18に示すように、基台520の下方側端部の外周縁は、ケース560の内周面562の形状にあわせてテーパ形状となっている。そのテーパ面524がケース560の内周面562と面接触しているため、半導体発光モジュール510から基台520へ伝搬した熱が、さらにケース560へ伝導し易くなっている。半導体発光素子512で発生した熱は、主に、基台520およびケース560を介し、さらに回路ホルダ550の小径部554を介して口金570へ伝導し、口金570から照明器具(不図示)側へ放熱される。
 ケース560は、例えば金属材料からなり、金属材料としては、例えばAl、Ag、Au、Ni、Rh、Pd、またはそれらの内の2種以上からなる合金、またはCuとAgの合金などが考えられる。このような金属材料は、熱伝導性が良好であるため、ケース560に伝搬した熱を効率良く口金570側に伝搬させることができる。なお、ケース560の材料は、金属に限定されず、例えば熱伝導率の高い樹脂などであっても良い。
 (7)口金
 口金570は、照明用光源500が照明器具に取り付けられ点灯された際に、照明器具のソケットから電力を受けるための部材である。口金570の種類は、特に限定されるものではないが、本実施の形態ではエジソンタイプであるE17口金、E26口金等が使用されている。口金570は、略円筒形状であって外周面が雄ネジとなっているシェル部571と、シェル部571に絶縁部572を介して装着されたアイレット部573とを備える。シェル部571とケース560との間には絶縁部材574が介在している。
 (8)光散乱部材
 光散乱部材580は、照明用光源500の配光特性を向上させるための部材であって、逆円錐台を2つ重ねたような外観形状を有し、各円錐台の円錐軸はそれぞれランプ軸Jと一致している。下側の円錐台の部分を構成する下側部分581と、上側の円錐台の部分を構成する上側部分582とは、いずれも透光性材料からなり、それら下側部分581と上側部分582とは一体成形されている。下側部分581と上側部分582とが一体成形されているため、下側部分581と上側部分582との間には界面が存在しておらず、下側部分581の内部の光は上側部分582の内部へと効率良く進入する。なお、下側部分581と上側部分582とは別部材であっても良く、例えば、別部材を積み重ねて、接着、係合などによって接合した構成であっても良い。
 下側部分581は、略逆円錐台形状であって、その外径は下方から上方へ向けて漸次拡径しており、その側周面で構成される第1反射面583と、その上面(上側部分582と接続されている領域は含まない)で構成される第1光出射面584とを有する。第1反射面583は、略円環形状であって、実装基板511の上面に環状に配置された複数の半導体発光素子512と対向するように形成されており、半導体発光素子512の主出射光を受光する受光面となっている。そして、半導体発光素子512の主出射光の一部を、基台520の側方を囲繞する環状の領域へ向けて(基台520の上面521を避けた斜め下方へ向けて)反射させる。第1光出射面584は、略円環形状であって、基台520の上面521に対して略平行である。第1光出射面584が、基台520の上面521に対して平行または傾斜角度が3°以内であれば、ランプ軸Jを中心とする全周に亘って均一な配光を得ることができる。
 上側部分582は、略逆円錐台形状であって、その外径は下方から上方へ向けて漸次拡径しており、その側周面で構成される第3反射面585と、その上面(凹部587が形成されている領域は含まない)で構成される第2光出射面586とを有する。第3反射面585は、略円環形状であって、平面視において第1反射面583とほぼ重なる領域に、第1光出射面584と対向するよう形成されており。第1光出射面584から出射した光の一部を、基台520の側方を囲繞する環状の領域へ向けて反射させる。第2光出射面586は、略円環形状であって、基台520の上面521に対して略平行である。第2光出射面586が、基台520の上面521に対して平行(ランプ軸Jに対して直交)または傾斜角度が3°以内(ランプ軸Jに対する角度αが87°以上93°以内。図19(b)参照。)であれば、ランプ軸Jを中心とする全周に亘って均一な配光を得ることができる。
 光散乱部材580の半導体発光素子512とは反対側の面(光散乱部材580の上面)の略中央には凹部587が設けられており、その凹部587の内面の少なくとも一部が第2反射面588となっている。具体的には、凹部587は基台520側に頂部を有する略円錐形状(逆円錐形状)であって、その円錐軸はランプ軸Jと一致しており、その錐面の全体が第2反射面588となっている。第2反射面588は、光散乱部材580の内部の光を、基台520の側方を囲繞する環状の領域へ向けて反射させる。
 図19は、第2反射面領域を説明するための図であって、図19(a)は平面図、図19(b)は断面図である。図19(a)および図19(b)に示すように、第2反射面588は、平面視において、第1反射面583が形成された環状の「第1反射面領域」の内側である「環内側領域」に形成されている。平面視において、第1反射面583と第2反射面583とが一部若しくは全部重なっていると、第2反射面583によって、第1反射面583を透過したのち上方に向かう光の進行が妨げられ、ランプ効率が低下する。第2反射面588は、光散乱部材580の内部のランプ軸J付近において迷光となり得る光を、基台520の側方を囲繞する環状の領域へ向けて反射させ、光散乱部材580の外部に取り出すためのものであるため、迷光とはなり得ない上方に向かう光の進行の妨げとならないように、「環内側領域」に形成されていることが好ましい。
 第2反射面588の大きさは、平面視において「環内側領域」内に納まっていれば、どのような大きさであっても良い。但し、ランプ軸Jを中心とする全周に亘って均一な配光を得るためには、第2反射面588の中心がランプ軸Jと一致していることが好ましい。
 なお、第1光出射面584は、平面視において第1反射面583と略重なる領域に形成されていることが好ましく、第3反射面585も、平面視において第1反射面583と略重なる領域に形成されていることが好ましい。この構成により、効率良く半導体発光素子512の出射光を散乱させることができる。
 図20は、出射光の光路を説明するための模式図であって、図20(a)は、図18において二点鎖線で囲んだ部分を示す拡大断面図、図20(b)は凹部が形成されていないと仮定した場合の拡大断面図である。図20(a)に示すように、半導体発光モジュール510から出射され、第1反射面583に入射した主出射光は、光路L21で示すように、その一部が第1反射面583によって、基台520の側方を囲繞する環状の領域へ向けて反射される。
 また、第1反射面583に入射した主出射光の他の一部は、光路L22で示すように、第1反射面583を通過して光散乱部材580の内部へ進入し、光散乱部材580の内部で散乱して、散乱光の一部が第1光出射面584から出射され、第3反射面585に入射する。そして、その入射光の一部が第3反射面585で反射されて、基台520の側方を囲繞する環状の領域へ向けて反射される。なお、光散乱部材580の内部における光の散乱については後述する。
 また、第3反射面585への入射光の他の一部は、光路L23で示すように、第3反射面585を通過して光散乱部材580の内部へ進入し、光散乱部材580の内部で散乱して、散乱光の一部が第2光出射面586から光散乱部材580の上方へ出射される。
 一方、光路L24で示すように、第1反射面583で反射されず、光散乱部材580の内部に進入し、光散乱部材580の内部のランプ軸J付近に集まった光は、第2反射面588に到達し、その一部が第2反射面588によって、基台520の側方を囲繞する環状の領域へ向けて反射される。そして、第1反射面583または第3反射面585から光散乱部材580の外部へ出射される。なお、光路L25で示すように、第2反射面588に到達した光の他の一部は、第2反射面588を透過して光散乱部材580の外部へ出射される。
 このように、第2反射面588が形成されているため、光散乱部材580の内部のランプ軸J付近に集まり迷光になるはずの光を、基台520の側方を囲繞する環状の領域へ向けて光散乱部材580の外部へ取り出すことができるため、迷光によるロスが生じ難く、ランプ効率が低下し難い。このような効果を、別途に反射部材を設けることなく、光散乱部材580に第2反射面588を形成するだけの比較的簡単な加工のみで実施可能である。特に、E17口金のような小型の口金570を備えた小型の照明用光源の場合は、光散乱部材580のサイズも小さくなるため、別途に反射部材を設けるような複雑な構造を採用することはできず、上記第2反射面588を形成する構成が有効である。
 仮に、図20(b)に示す光散乱部材1080のように、二点鎖線で示す位置には凹部が形成されておらず、そのため第2反射面も存在しない場合は、光路L26で示すように、第2反射面に到達するはずであった光の一部は、光散乱部材1080の上面1081で反射して実装基板511へ向かう。このような反射光は、実装基板511によって吸収されたり、光散乱部材1080の上面1081と下面1082との間で反射を繰り返しながら迷光となったりするため、ランプ効率の低下の原因となる。
 図21は、光散乱部材による散乱の態様を説明するための模式図である。光散乱部材580は、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなる。具体的には、図21(a)に示すように、透光性光散乱粒子で構成される複数の粒子部分580aと、それら粒子部分580aを内包しており透光性材料で構成されたベース部分580bとからなる。なお、本願において、「平均粒子径」とは、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒子径を意味する。
 粒子部分580aを構成する透光性光散乱粒子の材料としては、アクリル系樹脂、スチレン系樹脂、スチレンアクリル系樹脂、メラミン-ホルマリン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、シリコーン系樹脂、フッ素系樹脂、並びに、これら樹脂の共重合体などが挙げられる。さらに、シリカ、チタニア、アルミナ、シリカアルミナ、ジルコニア、酸化亜鉛、酸化バリウム、酸化ストロンチウム、酸化ジルコニウムなどの無機酸化物が挙げられる。これら材料からなる透光性光散乱粒子は、1種類を使用しても良いし、複数種類を混ぜて使用しても良い。
 一方、ベース部分580bを構成する透光性材料としては、樹脂や無機材料が挙げられる。樹脂としては、汎用プラスチック、エンジニアプラスチック、スーパーエンジニアプラスチックなどの熱可塑性樹脂や、熱硬化性樹脂が挙げられる。具体的には、ポリカーボネート樹脂、アクリル系樹脂、フッ素系アクリル樹脂、シリコーン系アクリル樹脂、エポキシアクリレート樹脂、ポリスチレン樹脂、アクリロニトリルスチレン樹脂、シクロオレフィンポリマー、メチルスチレン樹脂、フルオレン樹脂、PET(ポリエチレンテレフタレート)、ポリプロピレン、フェノール樹脂、メラミン樹脂、PBT(ポリブチレンテレフタレート)、POM(ポリオキシメチル)、PA(ポリアミド)、PPS(ポリフェニルサルフィド)などが挙げられる。また、無機材料としては、ガラスやセラミックなどが挙げられる。
 粒子部分580aおよびベース部分580bを形成する透光性材料は、それぞれ無色透明であることが好ましいがこれに限定されず、透光性を有していれば有色透明であっても良い。
 光散乱部材580の内部で効率良く光を散乱させるためには、粒子部分580aを構成する透光性光散乱粒子の材料と、ベース部分580bを構成する透光性材料との屈折率の差が0.02以上であることが好ましい。屈折率の差が0.02以上であれば良好な光散乱特性を得ることができる。
 透光性光散乱粒子の形状は、例えば略球形状である。透光性光散乱粒子の平均粒子径は、幾何光学の散乱およびミー散乱を有効に利用するために、0.1μm~10μmであることが好ましい。透光性光散乱粒子の平均粒径が0.1μm未満または10μmを超える場合は、透光性光散乱粒による光散乱性が十分に得られず、所望の光学特性を得ることができないため好ましくない。この点、透光性光散乱粒子の平均粒径が0.1μm~10μmの範囲内ならば、十分な光散乱性を得ることができる。特に、透光性光散乱粒子の平均粒径が0.1μm~1μmの範囲内ならば、より十分な光散乱性を得ることができる。
 この場合に、透光性材料に対する透光性光散乱粒子の添加量は、光散乱の頻度の理由から、0.5wt%~20wt%であることが好ましい。添加量が0.5wt%未満の場合は、透光性光散乱粒子による光散乱がほとんど生じず、十分な光拡散性が得られない。また、添加量が20wt%を超える場合は、光散乱部材580が二相に分かれるため均一性がなくなると共に、光散乱部材580が脆くなって機械的特性も十分でないため好ましくない。
 光散乱部材580の光散乱性を示す指標としてヘイズがある。このヘイズの値は[(拡散光線透過率/全光線透過率)×100]で表される。光散乱部材580のヘイズの値は、幾何光学の散乱およびミー散乱を有効に利用するために、0%~50%であることが好ましい。光散乱部材580のヘイズの値が50%を超える場合には光散乱性が強すぎて、所望の光学特性を得ることができないので好ましくない。この点、光散乱部材580のヘイズの値が0%~50%の範囲内ならば、十分な光散乱性と光学特性を両立できる。なお、ヘイズの値は、JIS  K-7105に記載されているように、積分球式ヘイズメーター(例えば、日本電色工業株式会社  300A)を用いて測定した。 また、全光線透過率は、JIS  K7105-1981の5.5記載の方法により550nmの光を用いて測定した。
 光散乱部材580の内部へ進入した光は内部で散乱して、例えば、光路L27で示すように、光散乱部材580の第1反射面583から光散乱部材580の外部へ出射されたり、光路L28で示すように、光散乱部材580の第1光出射面584から光散乱部材580の外部へ出射されたりする。すなわち、第1反射面583で反射する以外に、光散乱によっても、第1反射面583から基台520の側方を囲繞する環状の領域へ向けて光が出射される。
 光散乱部材580は、透光性光散乱粒子で光を散乱させる構成であるため、光取り出し効率が良い。例えば、図21(b)に示すように、金属フィラーが分散混入された透光性材料からなる光散乱部材の場合は、金属フィラー1080bに向かった光路L29の光が、光路L30で示すように金属フィラー1080bの表面で反射するだけでなく、光路L31で示すように金属フィラー1080bの内部にも進入し、迷光となり吸収されるため光取り出し効率が悪い。
 一方、光散乱部材580の場合は、図21(c)に示すように、粒子部分580aの内部に進入した光は、光路L32で示すように粒子部分580aを透過して粒子部分580aの外に出るため、迷光によるロスが少なく光取り出し効率が良い。したがって、光散乱部材580を設けてもランプ効率が低下し難い。
 [配光特性]
 次に、照明用光源500の配光特性が良好である理由を詳細に説明する。図22は、照明用光源の配光特性を説明するための配光曲線図である。図22に示すように、配光曲線図は、照明用光源500の上下方向を含む360°の各方向に対する光度の大きさを表しており、照明用光源500のランプ軸Jに沿った上方を0°、ランプ軸Jに沿った下方を180°として、時計回りおよび反時計回りにそれぞれ10°間隔に目盛を刻んでいる。配光曲線図の径方向に付した目盛は光度を表しており、光度は各配光曲線における最大値を1とする相対的な大きさで表されている。
 図22において、一点鎖線AAは、白熱電球の配光曲線を示し、破線ABは、特許文献1の照明用光源1000の配光曲線を示し、太い実線ACは、本実施の形態に係る照明用光源500の配光曲線を示し、二点鎖線ADは、光散乱部材に第2反射面を形成しなかった場合の配光曲線を示し、細い実線AEは、「第2反射面領域」と「第1反射面領域」とが一部重なった場合の配光曲線を示している。
 配光特性は、配光角に基づき評価した。配光角とは、照明用光源における光度の最大値の半分以上の光度が出射される角度範囲の大きさをいう。図22に示す配光曲線の場合は、光度が最大値の0.5以上となる角度範囲の大きさである。
 図22から分かるように、白熱電球の配光角は約310°であり、特許文献1の照明用光源1000の配光角は約122°であり、照明用光源500の配光角は約307°である。このように、照明用光源500は、照明用光源1000よりも配光角が広く、白熱電球により近い配光角を有する。したがって、照明用光源500は、照明用光源1000よりも配光特性が良く、白熱電球に近似した配光特性を有するといえる。
 また、図22から分かるように、光散乱部材に第2反射面を形成しなかった場合の配光角は約270°であり、照明用光源500の配光角よりも小さいことから、第2反射面588を形成することによってより配光特性が向上していることが分かる。さらに、「第2反射面領域」と「第1反射面領域」とが一部重なった場合の配光角は約272°であり、光散乱部材に第2反射面を形成しなかった場合よりも更に配光角が小さいことから、第2反射面588は「環内側領域」に収まるように形成しなければ、配光特性がかえって悪くなることが分かる。
 なお、照明用光源500の配光角を更に大きくする方法の1つとして、半導体発光素子512を、実装基板511のより外周縁に近い位置に配置することが考えられる。このようにすれば、光散乱部材580によって、より真後ろに近い(よりランプ軸Jと平行に近い)斜め下方に半導体発光素子512の出射光を反射させることができる。
 [第6の実施形態のまとめ]
 以上のように、本実施の形態に係る照明用光源500は、第1反射面583に入射した光が基台520の側方を囲繞する環状の領域へ向けて反射されると共に、第3反射面585に入射した光も基台520の側方を囲繞する環状の領域へ向けて反射されるだけでなく、さらには、光散乱部材580の内部のランプ軸J付近に集まった光が第2反射面583によって基台520の側方を囲繞する環状の領域へ向けて反射されるため、照射角が狭い半導体発光素子512を用いていても照明用光源500の配光特性が良好である。しかも、光散乱部材580の内部で光は単に散乱されているだけであり、分光などされていないため、光散乱部材580から上方へ向かう光と、基台520の側方を囲繞する環状の領域へ向かう光との間に、色ずれ等が生じない。
 また、半導体発光素子512が環状に配置されており、それに対応して第1反射面583も環形状に形成されているため、基台520の上面521を避けた斜め下方への反射は、基台520の外側全周に亘って生じる。したがって、ランプ軸Jを中心とする全周に亘って配光特性が良好である。また、光散乱部材580は、内部に進入した主出射光の一部を第2光出射面586から上方へ出射するため、光散乱部材580による影が生じ難く、点灯時に照明用光源500を上方から見た場合の意匠性が良好である。
 なお、光散乱部材580からグローブ530の内面532に届く光を、グローブ530の外部へと効率良く取り出すためには、光散乱部材580の全体が、図18に示すように、グローブ530をランプ軸Jと直交する仮想面で切断した場合に切断面の外径W1が最大となる部分533よりも下方側(基台520側)に位置することが好ましい。
 以上のように説明した第6の実施形態に係る照明用光源500は、複数の半導体発光素子512が基台520の上面521に平面配置されている構成であるため、それら半導体発光素子512を基台520に搭載し易く、照明用光源500の組立作業が簡単である。
 また、複数の半導体発光素子512の上方には、透光性材料からなる光散乱部材580が配置されており、前記光散乱部材580には、前記複数の半導体発光素子512と対向する面に、前記複数の半導体発光素子512の主出射光の一部を前記基台520の側方を囲繞する環状の領域へ向けて反射させる環状の第1反射面583が形成されていると共に、前記複数の半導体発光素子とは反対側の面586であって平面視において前記第1反射面583が形成された環状の領域の内側の領域に、前記光散乱部材580の内部に入射した光を前記基台520の側方を囲繞する環状の領域へ向けて反射させる第2反射面588が形成されているため、照射角が狭い半導体発光素子512が平面配置されていても照明用光源500の配光特性が良好である。
 なお、以下に説明する第6の実施形態の変形例、第7の実施形態、第8の実施形態および第9の実施形態に係る照明用光源も同様に上記効果を奏する。
 [第6の実施形態の変形例]
 図22に示すように、光散乱部材580の第2反射面588には、第2反射面588の反射性能を向上させるための反射膜600を設けても良い。この構成により、光散乱部材580の内部の光が第2反射面588を透過し難くなるため、光散乱部材580の内部のランプ軸J付近に集まった光を、基台520の側方を囲繞する環状の領域へ向けてより効率良く反射させることができる。なお、第3反射面588に反射膜600を設ける方法としては、例えば金属薄膜や誘電体多層膜などの反射膜を、例えば熱蒸着法、電子ビーム蒸着法、スパッタ法、メッキ、などの方法により形成することが考えられる。なお、反射膜600を設ける以外に、例えば、第3反射面588に鏡面処理を施すなどして反射性能を向上させても良い。
 図18に示すように、第6の実施形態にかかる光散乱部材580は、光散乱部材580をランプ軸Jを含む仮想面で切断した場合の切断面(以下、「縦断面」と称する。)において、第2反射面583の形状が直線状であった。しかしながら、縦断面における第2反射面の形状は直線状に限定されず、例えば、図24に示す光散乱部材610のように縦断面における第2反射面611の形状が円弧状であっても良い。例えば、第2反射面611はランプ軸J側に凹入した凹曲面形状であって、縦断面における第2反射面の形状はランプ軸J側に膨らんだ(第2反射面611の下方側端縁613と上方側端縁614とを結ぶ直線よりもランプ軸J側に膨らんだ)略円弧形状である。円弧形状は、略正円弧形状であっても略楕円弧形状であっても良い。この構成により、真後ろに近い(よりランプ軸Jと平行に近い)斜め下方に半導体発光素子512の出射光を反射させることができ、照明用光源500の配光角を広げるのに有効である。また、反射光を特定の方向に集中させるのにも有利である。なお、第2反射面はランプ軸Jとは反対側に凸出した凸曲面形状であっても良い。
 さらに、図25に示す光散乱部材620のように、縦断面における第2反射面621の形状は、傾きの異なる2つの領域からなっていても良い。例えば、第2反射面621が下側領域622と上側領域623とからなり、縦断面における下側領域622のランプ軸Jに対する傾きよりも、上側領域623のランプ軸Jに対する傾きの方が、より傾斜角が大きい構成とすることが考えられる。この構成の場合も、真後ろに近い(よりランプ軸Jと平行に近い)斜め下方に半導体発光素子512の出射光を反射させることができ、照明用光源500の配光角を広げるのに有効であり、反射光を特定の方向に集中させるのにも有利である。なお、第2反射面は、傾きの異なる3以上の領域からなっていても良い。
 次に、第6の実施形態にかかる光散乱部材580は、凹部587の内面の全体が第2反射面588であった。しかしながら、必ずしも凹部の内面の全体が第2反射面である必要はなく、例えば図26に示す光散乱部材630のように、凹部631が略逆円錐台形状であっても良い。この場合、第2反射面632は凹部631の内面における錐面の部分のみであり、底面633は第2反射面632ではない。
 また、光散乱部材の凹部は溝状であっても良い。例えば、図27(a)および図27(b)に示す光散乱部材640の凹部641は、断面略V字形であって略円環の溝状である。この場合は、溝の外側の側周面が第2反射面642であり、内側の側周面643は第2反射面642ではない。
 また、光散乱部材の凹部は柱状であっても良い。例えば、図28に示す光散乱部材650は、凹部651が略円柱状であって、凹部651は、内周面のみが第2反射面652であって底面653は第2反射面652ではない。この場合は、凹部651は、上側部分654のみに形成されており、下側部分655にまで到達していない方が好ましい。図28において二点鎖線で示すのが上側部分654と下側部分655との界面656であるが、凹部651はその界面656よりも上方に形成されている方が迷光が生じ難い。
 また、光散乱部材の凹部が柱状である別の例として、図29に示す光散乱部材660は、凹部661がランプ軸Jに沿って光散乱部材660を上下に貫く貫通孔であって、凹部661の内周面が第2反射面662である。この場合は、凹部661の内部に光が入り込んで迷光となり易いため、凹部661の内部に光が入り込み難いよう第2反射面662に反射膜663を設けることが好ましい。
 次に、第6の実施形態にかかる光散乱部材580は、逆円錐台を2つ重ねた外観形状を有し、第1反射面583および第3反射面585を有していたが、第3反射面585は必ずしも必要ではない。例えば、図30に示す光散乱部材670のように、1つの逆円錐台からなる外観形状を有し、第1反射面671は形成されているが第3反射面は形成されていない構成であっても良い。この構成の場合も、第2反射面672を有する凹部673を形成することは、ランプ効率向上のために有効である。
 なお、光散乱部材は、逆円錐台を3個以上重ねた外観形状のものに第2反射面を形成した構成であっても良い。
 なお、以上に説明した変形例にかかる光散乱部材610,620,630,640,650,660,670は、第2反射面611,621,632,642,652,662,672が「第1反射面領域」の内側である「環内側領域」に形成されている。
 <第7の実施形態>
 図31は、第7の実施形態に係る照明用光源を示す一部破断斜視図である。図32は、第7の実施形態に係る照明用光源を示す断面図である。
 図31および図32に示すように、第7の実施形態に係る照明用光源700は、光散乱部材780が逆円錐台を2つ重ねた外観形状でなく逆四角錐台を2つ重ねた外観形状である点、凹部787も逆円錐形状でなく、逆四角錐形状である点、半導体発光素子712が環状に配置されているのではなくマトリクス状に配置されている点において、第6の実施形態に係る照明用光源500と相違する。その他の構成については基本的に第6の実施形態に係る照明用光源500と略同様である。したがって、上記相違点についてのみ詳細に説明し、その他の構成については説明を簡略若しくは省略する。なお、第6の実施形態と同じ部材が使用されている場合は、第6の実施形態と同じ符号を用いている。
 第7の実施形態に係る照明用光源700は、白熱電球の代替品となるLEDランプであって、光源としての半導体発光モジュール710と、半導体発光モジュール710が搭載された基台520と、半導体発光モジュール710を覆うグローブ530と、半導体発光モジュール710を点灯させるための回路ユニット540と、回路ユニット540を収容した回路ホルダ550と、回路ホルダ550を覆うケース560と、回路ユニット540と電気的に接続された口金(不図示)と、半導体発光モジュール710からの出射光を拡散させるための光散乱部材780と、を備える。
 半導体発光モジュール710は、実装基板711と、実装基板711に実装された半導体発光素子712と、半導体発光素子712を被覆するように実装基板711上に設けられた封止体713とを備える半導体発光モジュールであって、ランプ軸J上に配置されている。
 実装基板711は、例えば、平面視において略正方形の板状であって、基台520に搭載されている。
 半導体発光素子712は、それぞれの主出射方向がランプ軸Jに沿った上方に向けた姿勢で実装基板711の上面に実装されており、例えば6行6列の計36個がマトリクス状に平面配置されている。なお、半導体発光素子712の数は36個に限定されず、例えば2個であっても良いし36個以外の複数であっても良い。また、半導体発光素子712の配置もマトリックス状に限定されず、例えば円環状などの環状に配置されていても良い。さらに、半導体発光素子712の姿勢は、半導体発光素子712の全てがランプ軸J方向に沿った上方に向いている必要はなく、一部がランプ軸Jに対して斜めに傾いた方向に向けた姿勢で実装されていても良く、これにより配光の制御性がより向上して、より好ましい配光を得ることができる場合がある。
 封止体713は、例えば略直方体のブロック状であって、36個全ての半導体発光素子712を封止している。封止体713の上面713aは、平面視において略正方形の平面であって、ランプ軸Jとは上面713aの中心で直交している。なお、上面713aとランプ軸Jとは、必ずしも上面713aの中心で直交している必要はないが、ランプ軸Jを中心とする全周に亘って均一な配光を得るためには、上面713aの中心で交差していることが好ましく、直交していることがより好ましい。封止体713を構成する材料については、第6の実施形態に係る封止体513と同じであるため説明は省略する。
 光散乱部材780は、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなり、光散乱部材780は、例えば、略逆四角錐台状の下側部分781と、同じく略逆四角錐台状の上側部分782とを2つ重ねた外観形状を有し、半導体発光モジュール710の封止体713の上面713aにおけるランプ軸J上に載置されている。なお、光散乱部材780を構成する材料については、第6の実施形態に係る光散乱部材580と同じであるため説明は省略する。
 下側部分781は、略逆四角錐台形状であって、その外径は下方から上方へ向けて漸次拡径しており、その側周面で構成される第1反射面783と、その上面(上側部分782と接続されている領域は含まない)で構成される第1光出射面784とを有する。第1反射面783は、略方形環状であって、実装基板711の上面に環状に配置された複数の半導体発光素子712の一部と対向するように形成されており、それら半導体発光素子712の主出射光の一部を、基台520の側方を囲繞する環状の領域へ向けて反射させる。第1光出射面784は、略方形環状であって、基台520の上面521に対して略平行である。第1反射面783は、第6の実施形態に係る光散乱部材580の第1反射面583に相当し、第1光出射面784は、第6の実施形態に係る光散乱部材580の第1光出射面584に相当する。
 上側部分782は、略逆四角錐台形状であって、その外径は下方から上方へ向けて漸次拡径しており、その側周面で構成される第3反射面785と、その上面(凹部787が形成されている領域は含まない)で構成される第2光出射面786とを有する。第3反射面785は、略方形環状であって、平面視において第1反射面783とほぼ重なる領域に、第1光出射面784と対向するよう形成されており。第1光出射面784から出射した光の一部を、基台520の側方を囲繞する環状の領域へ向けて反射させる。第2光出射面786は、略方形環状であって、基台520の上面521に対して略平行である。第3反射面785は、第6の実施形態に係る光散乱部材580の第3反射面585に相当し、第2光出射面786は、第6の実施形態に係る光散乱部材580の第2光出射面586に相当する。
 光散乱部材780の半導体発光素子712とは反対側の面(光散乱部材780の上面)の略中央には凹部787が設けられており、その凹部787の内面の少なくとも一部が第2反射面788となっている。例えば、凹部787は基台520側に頂部を有する略四角錐形状(逆四角錐形状)であって、その四角錐軸はランプ軸Jと一致しており、その錐面の全体が第2反射面788となっている。
 半導体発光モジュール710から出射され、第1反射面783に入射した主出射光は、その一部が第1反射面783によって、基台520の側方を囲繞する環状の領域へ向けて反射される。また、第1反射面783に入射した主出射光の他の一部は、第1反射面783を通過して光散乱部材780の内部へ進入し、光散乱部材780の内部で散乱して、散乱光の一部が第1光出射面784から出射され、第3反射面785に入射する。そして、その入射光の一部が第3反射面785で反射されて、基台520の側方を囲繞する環状の領域へ向けて反射される。また、第3反射面785への入射光の他の一部は、第3反射面785を通過して光散乱部材780の内部へ進入し、光散乱部材780の内部で散乱して、散乱光の一部が第2光出射面786から光散乱部材780の外部へ出射される。
 光散乱部材780は、2つの反射面783,785を有するため、光を斜め下方に向けて反射させたり、光を斜め下方に向けて出射したりできる面の総和面積が広い。したがって、より多くの光を斜め下方へ導くことができる。さらに、下側部分781の第1光出射面784から上方へ向けて出射された光を、第3反射面785によって斜め下方に向けて反射させたり、或いは、上側部分782の内部に一旦取り込んで散乱させた光を第3反射面785から斜め下方に向けて出射したりすることができる。したがって、照射角が狭い半導体発光素子512を用いていても照明用光源800の配光特性は良好である。
 さらには、光散乱部材780の内部のランプ軸J付近に向かった光も第2反射面788によって基台520の側方を囲繞する環状の領域へ向けて反射される構成であるため、照射角が狭い半導体発光素子512を用いていても照明用光源500の配光特性が良好である。
 一方、封止体713の上面713aにおける光散乱部材780の下面789で覆われた部分から出射された光は、光散乱部材780の内部へ直接進入し、光散乱部材780の内部で散乱されて、散乱光の一部が、上側部分782の第2光出射面786から上方へ向けて出射される。また、散乱光の他の一部は、第2反射面788で反射されて基台520の側方を囲繞する環状の領域へ向けて反射される。また、散乱光の他の一部は、第2反射面788を透過して光散乱部材780の外部へ出射される。
 第2反射面788が形成されているため、光散乱部材780の内部のランプ軸J付近に集まり迷光になるはずの光を、基台520の側方を囲繞する環状の領域へ向けて反射させて、光散乱部材780の外部へ出射させることができるため、光散乱部材780の内部で迷光が生じ難く、ランプ効率が低下し難い。
 以上のように、本発明に係る光散乱部材は、必ずしも円錐台を重ねた外観形状である必要はなく、半導体発光素子は、必ずしも環状に配置されている必要はない。また、半導体発光モジュールの封止体の上面と光散乱部材の下面とが面接触しており、その接触部分から半導体発光素子の出射光が光散乱部材の内部に直接進入する構成であっても良い。
 <第8の実施形態>
 図33は、第8の実施形態に係る照明用光源を示す一部破断斜視図である。図34は、第8の実施形態に係る照明用光源を示す断面図である。図33に示すように、第8の実施形態に係る照明用光源800は、光散乱部材880が、筒状であってその筒軸がランプ軸と平行である外側部分881と、その外側部分881の筒内に詰められた柱状の内側部分882とで構成され、外側部分881は透光性材料からなると共に、内側部分882は外側部分881の透光性材料よりも屈折率の低い透光性材料からなる点において、第7の実施形態に係る照明用光源700と大きく相違する。その他の構成については基本的に第7の実施形態に係る照明用光源700と略同様である。したがって、上記相違点についてのみ詳細に説明し、その他の構成については説明を簡略若しくは省略する。なお、第7の実施形態と同じ部材が使用されている場合は、第7の実施形態と同じ符号を用いている。
 図33および図34に示すように、第8の実施形態に係る照明用光源800は、白熱電球の代替品となるLEDランプであって、光源としての半導体発光モジュール710と、半導体発光モジュール710が搭載された基台520と、半導体発光モジュール710を覆うグローブ530と、半導体発光モジュール710を点灯させるための回路ユニット540と、回路ユニット540を収容した回路ホルダ550と、回路ホルダ550を覆うケース560と、回路ユニット540と電気的に接続された口金(不図示)と、半導体発光モジュール710からの出射光を拡散させるための光散乱部材880と、を備える。
 光散乱部材880は、半導体発光モジュール710からの出射光が出射角30°~60°の範囲で最大光度となってグローブ530の内面532に届くように、出射光を拡散させるための部材であって、半導体発光モジュール710の上方に配置されている。なお、出射角は、ランプ軸Jに沿った前方を0°、ランプ軸Jに沿った後方を180°として定義する。
 光散乱部材880は、例えば、略逆円錐台形状であってランプ軸J上に配置されており、光散乱部材880の円錐軸とランプ軸Jとは一致している。なお、光散乱部材880の円錐軸は必ずしもランプ軸Jと一致している必要はないが、ランプ軸Jを中心とする全周に亘って均一な配光を得るためには、円錐軸がランプ軸Jと平行であることが好ましく、円錐軸とランプ軸Jとが一致していることがより好ましい。
 光散乱部材880は、例えば、筒状であってその筒軸がランプ軸Jと平行である外側部分881と、外側部分881の筒内に詰められた逆円錐台形状の内側部分882とで構成され、外側部分881と内側部分882との間に隙間はない。
 外側部分881および内側部分882は、それぞれ透光性材料からなるが、内側部分882の材料は、外側部分881の材料よりも屈折率が低い。外側部分881および内側部分882を構成する透光性材料としては、それぞれ、シリコーンやポリカーボネート等の樹脂材料、ガラス、セラミックなどが挙げられる。例えば、外側部分881を屈折率1.50のガラスで構成し、内側部分882を屈折率1.41のシリコーンで構成することが考えられる。
 なお、外側部分881および内側部分882のいずれか一方または両方の内部に、入射した光を内部散乱させるための光散乱体が含まれていても良い。光散乱体としては、例えば、シリカ、アルミナ、酸化亜鉛やチタニアなどで構成された無色透明または有色透明の粒体が考えられる。そして、粒体の形状としては例えば略球形状が考えられ、その場に直径は0.1μm~40μmの範囲であることが好ましい。また、光散乱体の添加量は、10wt%~60wt%の範囲であることが好ましい。
 半導体発光モジュール710の封止体713の上面713aから出射され、外側部分881の下面883から外側部分881内に入射した光は、外側部分881の内部で反射を繰り返し、外側部分881の上面884から光散乱部材880の外部へ出射される。入射光が外側部分881の内部で反射を繰り返すのは、外側部分881の材料が、空気および内側部分882の材料よりも屈折率が高いからである。
 一方、半導体発光モジュール710の封止体713の上面713aから出射され、内側部分882の下面885から内側部分882内に入射した光は、内側部分882の内部で反射を繰り返し、一部は内側部分882の上面886から光散乱部材880外へ出射するが、他の一部は、外側部分881内へ入射する。内側部分882の材料が外側部分881の材料の屈折率よりも低いため、内側部分882内の光が外側部分881内へ進入し易い。
 内側部分882から外側部分881内に進入した光は、外側部分881の内部で反射を繰り返し、外側部分881の上面884から光散乱部材880外へ出射される。このように、光散乱部材880に入射した光は、より屈折率の高い材料で形成された外側部分881に集まり、主として外側部分881の上面884から出射される。
 また、外側部分881の上面884から出射される光は、主としてランプ軸Jに沿って前方へ出射されるのではなく、主としてランプ軸Jに対して30°~60°の範囲の出射角で出射される。出射角が0°にならずこのような角度になるのは、外側部分881内に入射した光の多くは、外側部分881内をランプ軸Jに沿って真っ直ぐに進まず、外側部分881内をジグザグに内部反射しながら進むからである。特に、内側部分882から外側部分881へ集まる光は、ランプ軸Jと平行でない角度で外側部分881内へ入射してくるため、外側部分881内をジグザグに進む。ジグザグに進んだ光は、上面884から出射された後も、真っ直ぐランプ軸Jに沿った方向に向かわず、ランプ軸Jに対して傾斜した斜め前方の方向へ向かう。このような斜め前方へ向かう出射光が多いために、全体として、主としてランプ軸Jに対して30°~60°の範囲の出射角で出射されることになる。
 半導体発光モジュール710からの出射光は、出射角30°~60°の範囲で最大光度となってグローブ530の内面532に届くように、光散乱部材880によって拡散される。したがって、グローブ530の内面532における下方寄りの領域に光がより多く届くことになり、照明用光源800の配光角が広がる。なお、グローブ530に届いた光は、さらにグローブ530によって拡散される。
 光散乱部材880の外周面は、半導体発光素子712から出射され光散乱部材880の内部に入射しなかった光を、基台520の側方を囲繞する環状の領域へ向けて反射させる第1反射面887となっている。また、光散乱部材880の半導体発光素子712とは反対側の面(光散乱部材880の上面)の略中央には凹部888が設けられており、その凹部888の内面の少なくとも一部が第2反射面889となっている。具体的には、例えば、凹部888は、基台520側に頂部を有する略逆円錐形状であって、その円錐軸はランプ軸Jと一致し、その錐面の全体が第2反射面889となっている。第2反射面889は、光散乱部材880の内部に入射した光を、基台520の側方を囲繞する環状の領域へ向けて反射させる。
 以上に説明した照明用光源800は、照射角が狭い半導体発光モジュール710が平面配置されていても、光散乱部材880によってその照射角を広げることができるため、配光特性が良好である。また、外側部分881が筒状であって光散乱部材880の外周全体に亘って存在しているため、ランプ軸Jを中心とする全周に亘って照射角を広げることができ、その全周に亘って配光特性が良好である。
 さらに、第1反射面887に入射した光が基台520の側方を囲繞する環状の領域へ向けて反射されると共に、光散乱部材880の内部のランプ軸J付近に集まった光も第2反射面889によって基台520の側方を囲繞する環状の領域へ向けて反射されるため、照射角が狭い半導体発光素子812を用いていても配光特性が良好である。
 <第9の実施形態>
 図35は、第9の実施形態に係る照明用光源を示す一部破断斜視図である。図36は、第9の実施形態に係る照明用光源を示す断面図である。
 図35および図36に示すように、第9の実施形態に係る照明用光源900は、光散乱部材980が貫通孔981を有する筒状である点において、第6の実施形態に係る照明用光源500と相違する。その他の構成については基本的に第6の実施形態に係る照明用光源500と略同様である。したがって、上記相違点についてのみ詳細に説明し、その他の構成については説明を簡略若しくは省略する。なお、第6の実施形態と同じ部材が使用されている場合は、第6の実施形態と同じ符号を用いている。
 第9の実施形態に係る照明用光源900は、白熱電球の代替品となるLEDランプであって、光源としての半導体発光モジュール510と、半導体発光モジュール510が搭載された基台520と、半導体発光モジュール510を覆うグローブ530と、半導体発光モジュール510を点灯させるための回路ユニット540と、回路ユニット540を収容した回路ホルダ550と、回路ホルダ550を覆うケース560と、回路ユニット540と電気的に接続された口金570と、半導体発光モジュール510からの出射光を拡散させるための光散乱部材980と、を備える。
 光散乱部材980は、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなる。光散乱部材980を構成する透光性光散乱粒子および透光性材料については、第6の実施形態に係る光散乱部材580と同じであるため説明は省略する。
 図37は、第9の実施形態に係る光散乱部材を示す断面図である。光散乱部材980は、例えば、外径が下方から上方へ向けて漸次拡径した略円筒状である。光散乱部材980の外周面は、基台520の上面521に環状に配置された半導体発光モジュール510の半導体発光素子512と対向しており、半導体発光素子512の主出射光の一部を、基台520の側方を囲繞する環状の領域へ向けて反射させる略円環状の第1反射面982となっている。
 光散乱部材980の貫通孔981は、ランプ軸Jに沿って上下方向に貫通しており、貫通孔981の軸はランプ軸Jと一致している。貫通孔981の外周面、すなわち光散乱部材980の内周面は略円環状であって、光散乱部材980の内周面の全体が、光散乱部材980の内部に入射した光を基台520の側方を囲繞する環状の領域へ向けて反射させる第2反射面983となっている。貫通孔981は、下方から上方へ向けて漸次拡径した円柱状であって、第2反射面983は、内周縁(下側の周縁)983aから外周縁(上側の周縁)983bに向けて漸次ランプ軸Jから離れるような勾配の傾斜が設けられている。
 第2反射面983は、平面視において第1反射面982が形成された環状の領域の内側の領域に形成されていても良い。この構成とすることによって、第1反射面982を透過したのち上方に向かう光の進行が第2反射面983によって妨げられランプ効率が低下することを防止することができる。
 光散乱部材980の下面984は、略円環状であって、その下面984を半導体発光モジュール510の実装基板511の上面に当接させるようにして前記光散乱部材980は実装基板511に取り付けられている。
 光散乱部材980における半導体発光素子512とは反対側の面である上面985は、略円環状であって、内周縁985aから外周縁985bに向けて基台520の上面521から漸次離れるように傾斜している。すなわち、内周縁985a側から外周縁985b側に向けて上がるような勾配の傾斜が設けられている。
 図38は、図36において二点鎖線で囲んだ部分を示す拡大断面図である。半導体発光モジュール510から出射され、第1反射面982に入射した主出射光は、図38の光路L41で示すように、その一部が第1反射面982によって、基台520の側方を囲繞する環状の領域へ向けて反射される。
 また、第1反射面982に入射した主出射光の他の一部は、図38の光路L42で示すように、第1反射面982を通過して光散乱部材980の内部へ進入し、進入光の一部が第2反射面983で反射し、さらに上面985で反射して、第1反射面982を透過し、基台520の側方を囲繞する環状の領域へ向けて出射される。
 光散乱部材980の内部のランプ軸J付近に向かった光も第2反射面983によって基台520の側方を囲繞する環状の領域へ向けて反射される構成であるため、照射角が狭い半導体発光素子512を用いていても照明用光源500の配光特性が良好である。
 第9の実施形態にかかる光散乱部材980では、第2反射面983および上面985に傾斜が設けられているが、それら第2反射面983および上面985には必ずしも傾斜を設ける必要はなく、例えば、図39(a)に示す光散乱部材980Aのように、第2反射面983Aおよび上面985Aに傾斜が設けられていない構成であっても良い。光散乱部材980Aは、貫通孔981Aおよび第1反射面982Aを有し、第2反射面983Aはランプ軸Jと平行であって、上面985Aはランプ軸Jと垂直である。
 また、図39(b)に示す光散乱部材980Bのように、第2反射面983Bには傾斜が設けられているが、上面985Bには傾斜が設けられていない構成であっても良い。光散乱部材980Bは、貫通孔981Bおよび第1反射面982Bを有し、上面985Bはランプ軸Jと垂直である。
 また、図39(c)に示す光散乱部材980Cのように、第2反射面983Cには傾斜が設けられていないが、上面985Cには傾斜が設けられている構成であっても良い。光散乱部材980Cは、貫通孔981Cおよび第1反射面982Cを有し、第2反射面983Cはランプ軸Jと平行である。
 これら、図39(a)~図39(c)に示す構成の光散乱部材980A,980B,980Cでも、半導体発光素子512の出射光を斜め下方に反射させることができると共に、光散乱部材980A,980B,980Cの内部のランプ軸J付近に向かった光を第2反射面983A,983B,983Cによって、半導体発光素子512の出射光を斜め下方に反射させることができる。
 図40は、照明用光源の配光特性を説明するための配光曲線図である。図40に示すように、配光曲線図は、照明用光源1の上下方向を含む360°の各方向に対する光度の大きさを表しており、照明用光源1のランプ軸Jに沿った上方を0°、ランプ軸Jに沿った下方を180°として、時計回りおよび反時計回りにそれぞれ10°間隔に目盛を刻んでいる。配光曲線図の径方向に付した目盛は光度を表しており、光度は各配光曲線の相対的な大きさを表している。
 図40において、破線で示す配光曲線BAは、図39(a)に示す第2反射面983Aおよび上面985Aに傾斜が設けられていない光散乱部材980Aを備える照明用光源の配光曲線である。また、実線で示す配光曲線BBは、図37に示す第2反射面983および上面985に傾斜が設けられている光散乱部材980を備える照明用光源900の配光曲線である。
 図40から分かるように、光散乱部材の第2反射面および上面に傾斜が設けられた照明用光源の方が配光角が広く配光特性が良かった。配光角とは、照明用光源における光度の最大値の半分以上の光度が出射される角度範囲の大きさをいう。傾斜が設けられた光散乱部材980を備えた照明用光源900の配光角は293°であり、傾斜が設けられていない光散乱部材980Aを備えた照明用光源の配光角は289°であった。
 なお、実験に用いた光散乱部材980は、図37に示すように、最大直径W2(上面985の外径)が30mm、最小直径W3(下面984の外径)が16.4mm、高さW4(ランプ軸Jに沿った方向の厚み)が8mm、貫通孔981の最小直径W5が15.4mm、第2反射面983の傾斜角度βが8.5°、上面985の傾斜角度γが4°であり、この光散乱部材980を用い、半導体発光素子512を円環状に配置し、グローブ530を取り付けた照明用光源900の配光角が293°であった。
 一方、実験に用いた光散乱部材980Aも、最大直径W2が30mm、最小直径W3が16.4mm、高さW4が8mm、貫通孔981Aの直径W5が15.4mmであり、この光散乱部材980Aを用い、半導体発光素子512を円環状に配置し、グローブ530を取り付けた照明用光源の配光角が289°であった。
 以上のように、第9の実施形態またはその変形例に係る照明用光源のような構成とすれば、比較的単純な形状であるため成形し易い光散乱部材を用いながらも、配光角の広い照明用光源を得ることができる。特に、光散乱部材の第2反射面および上面に傾斜を設けることによって、より配光角の広い照明用光源を得ることができる。
 <変形例>
 以上、本発明の構成を、第1~第9の実施形態およびそれらの変形例に基づいて説明したが、本発明は上記実施の形態およびそれら変形例に限られない。例えば、第1~第9の実施形態およびそれらの変形例に係る照明用光源の部分的な構成、および下記の変形例に係る構成を、適宜組み合わせてなる照明用光源であっても良い。また、上記実施の形態に記載した材料、数値等は好ましいものを例示しているだけであり、それに限定されることはない。さらに、本発明の技術的思想の範囲を逸脱しない範囲で、照明用光源の構成に適宜変更を加えることは可能である。
 例えば、本発明に係る半導体発光モジュールは、半導体発光素子を複数ではなく1つだけ備える構成であっても良い。
 また、図41(a)に示す半導体発光モジュール10Aのように、封止体13Aを、実装基板11Aの素子実装部15Aに、封止体13Aの長手方向が素子実装部15Aの周方向に沿うように配置しても良い。実装基板11Aの素子実装部15Aには複数の半導体発光素子12Aが素子実装部15Aの周方向に沿って並べて配置され、それら半導体発光素子12Aは2個を1組として封止体13Aにより封止されており、封止体13Aの長手方向は素子実装部15Aの周方向に沿っている。このような構成とすれば、発光する部分が素子実装部15Aの周方向においてより連続に近い状態となるため、周方向の照度むらが生じ難い。
 また、図41(b)に示す半導体発光モジュール10Bのように、複数の半導体発光素子12Bを、実装基板11Bの素子実装部15Bに、素子実装部15Bの周方向に沿って千鳥状に配置しても良い。半導体発光素子12Bは、例えば1個ずつ個別の封止体13Bで封止されている。このような構成とすれば、発光する部分をより満遍なく素子実装部15B上に形成することができ、より配光特性が良好になる。
 また、図41(c)に示す半導体発光モジュール10Cのように、複数の半導体発光素子12Cを、実装基板11Cの素子実装部15Cに、素子実装部15Cの周方向に沿って並べて配置し、全ての半導体発光素子12Cを1つの略円環形状の封止体13Cで封止しても良い。このような構成とすれば、発光する部分を素子実装部15Cの周方向に連続させることができるため、周方向の照度むらが生じ難い。
 また、図41(d)に示す半導体発光モジュール10Dのように、基台20に複数を組み合わせて搭載するものであっても良い。例えば、実装基板11Dは略半円弧形状の素子実装部15Dと素子実装部15Dの一箇所から延出した舌片部16Dとからなり、素子実装部15Dには複数の半導体発光素子12Dが円弧状に並べて配置されており、それら半導体発光素子12Dが1つの略円弧形状の封止体13Dで封止されている。また、舌片部16Dにはコネクタ17Dが設けられている。このような構成であったとしても、各半導体発光モジュール10Dが基台20の上面22に搭載される、すなわち平面配置されるのであれば、組立作業は煩雑にならない。
 次に、本発明に係るグローブ30に関しての変形例を説明する。グローブ30には、光散乱部材80により基台20の上面22を避けた斜め下方へ反射した光が到達する領域(図2おいて符号34で示す領域。以下、「開口部近傍領域34」と称する。)、または、光散乱部材80および補助光散乱部材180により基台20の上面22を避けた斜め下方へ反射した光が到達する領域(図9おいて符号35で示す領域。以下、「開口部近傍領域35」と称する。)に、それ以外の領域よりも光拡散性が高くなるような拡散処理が施されていても良い。
 図42は、変形例に係るグローブに施された拡散処理を説明するための図であり、グローブ30の開口部近傍領域34,35を切断し、その切断面のみを表した端面図であり、ランプ軸Jを含む平面で切断した端面図である。
 グローブ30の内面32には、開口部近傍領域34,35に、半径R(例えば、R=40μm)を有する半球形状の第1の窪み35が一様に複数形成されている。また、各第1の窪み35の内面には、第1の窪み35よりも小さい半径r(例えば、r=5μm)を有する半球形状の第2の窪み36が一様に複数形成されている。なお、第1の窪み35の半径は、R=20μm~40μmの範囲が好ましく、第2の窪みの半径は、r=2μm~8μmの範囲が好ましい。
 このように、一様に形成した微小な窪み(ディンプル)の各々に、これよりも小さい窪み(ディンプル)を一様に形成するといった、二重の窪み構造の領域を形成することにより、第1反射面81によって基台20の上面22を避けた斜め下方へ反射された光をグローブ30(の開口部近傍領域34,35)で拡散して、配光範囲をさらに下方に広げることができる。
 特に、このような二重窪み構造を開口部近傍領域34,35のみに形成し、それ以外の領域には二重窪み構造を形成しないことで、斜め下方へ反射された光以外の光、例えば上方や側方へ向かう光を、グローブ30でロスさせることなく効率良くグローブ30の外側へ取り出すことができる。
 また、半導体発光素子はその主出射方向を上方、すなわちランプ軸J方向に向けて配置したが、半導体発光素子をランプ軸J方向に対して全て、あるいは一部を傾けて配置しても良く、これにより、配光の制御性が向上し、所望の配光を得ることができる。
 本発明は、照明一般に広く利用することができる。
 1,100,200,300,400,500,700,800,900 照明用光源
 12,412,512,712 半導体発光素子
 20,420,520 基台
 21 貫通孔
 22,422,521 上面
 30,530 グローブ
 35,36 窪み
 40 回路ユニット
 70,570 口金
 80,480,580,610,620,630,640,650,660,670,680,780,880,980,980A,980B,980C 光散乱部材
 80a 外径が漸次拡径する部分
 81,481,583,671,681,783,887,982,982a,982b,982c 第1反射面
 83 透光性光散乱粒子
 180 補助光散乱部材
 181,585,785 第3反射面
 212 補助半導体発光素子
 588,611,621,632,642,652,662,672,684,788,889,983,983A,983B,983C 第2反射面
 584,784 環状の光出射面
 586,786,886,985,985A,985B,985C 反対側の面
 587,612,631,641,651,661,673,682,787,888 凹部
 600,663 反射膜
 981,981A,981B,981C 貫通孔

Claims (24)

  1.  基台の上面に複数の半導体発光素子がそれぞれの主出射方向を上方に向けた状態で平面配置され、それら半導体発光素子の上方には、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなる光散乱部材が配置されており、前記光散乱部材は、前記各半導体発光素子の主出射光の一部を斜め下方へ反射させる第1反射面を有することを特徴とする照明用光源。
  2.  前記複数の半導体発光素子は前記基台の上面に環状に配置されており、前記光散乱部材の第1反射面は、その反射光が前記基台を側方から囲繞する環状の領域を通過するよう前記各半導体発光素子に対向させて環状に形成されていることを特徴とする請求項1記載の照明用光源。
  3.  前記光散乱部材は、筒軸が前記基台の上面と直交する姿勢で配置された筒状であって、外径が下方から上方へ向けて漸次拡径する部分を有し、その拡径した部分の外周面が前記第1反射面であることを特徴とする請求項2記載の照明用光源。
  4.  前記第1反射面は、前記光散乱部材の筒軸側に凹入した凹曲面形状であることを特徴とする請求項3記載の照明用光源。
  5.  前記光散乱部材の上方には、平均粒子径10μm以下の透光性光散乱粒子が分散混入された透光性材料からなる補助光散乱部材が配置されており、前記補助光散乱部材は、前記光散乱部材から放出された光の一部を斜め下方へ反射させる補助反射面を有することを特徴とする請求項1に記載の照明用光源。
  6.  前記基台の上面には、上方に前記光散乱部材が存在しない位置に、主出射方向を上方に向けた状態で、補助半導体発光素子が配置されていることを特徴とする請求項1から4のいずれかに記載の照明用光源。
  7.  前記基台の上面には、上方に前記光散乱部材および前記補助光散乱部材が存在しない位置に、主出射方向を上方に向けた状態で、補助半導体発光素子が配置されていることを特徴とする請求項5に記載の照明用光源。
  8.  前記第1反射面は、前記光散乱部材における前記複数の半導体発光素子と対向する面に環状に形成されていると共に、
     前記複数の半導体発光素子とは反対側の面であって平面視において前記第1反射面が形成された環状の領域の内側の領域に、前記光散乱部材の内部に入射した光を前記基台の側方を囲繞する環状の領域へ向けて反射させる第2反射面が形成されていることを特徴とする請求項1に記載の照明用光源。
  9.  前記複数の半導体発光素子は、前記基台の上面に、前記第1反射面と対向するように環状に配置されていることを特徴とする請求項8記載の照明用光源。
  10.  前記光散乱部材の前記複数の半導体発光素子とは反対側の面には凹部が設けられており、前記凹部の内面の少なくとも一部が前記第2反射面となっていることを特徴とする請求項8または9に記載の照明用光源。
  11.  前記凹部は前記基台側に頂部を有する略円錐形状であって、その錐面が前記第2反射面となっていることを特徴とする請求項10記載の照明用光源。
  12.  前記錐面は、前記凹部の円錐軸側に凹入した凹曲面形状であることを特徴とする請求項11記載の照明用光源。
  13.  前記光散乱部材は、前記複数の半導体発光素子とは反対側の面が、前記基台の上面に対して平行または傾斜角度が3°以内であることを特徴とする請求項8記載の照明用光源。
  14.  前記第2反射面には、前記光散乱部材の内部に入射した光を前記基台の側方を囲繞する環状の領域へ向けて反射させる反射膜が設けられていることを特徴とする請求項8記載の照明用光源。
  15.  前記光散乱部材には、平面視において前記第1反射面と重なる領域に、環状の光出射面が形成されていると共に、前記光出射面と対向する領域に前記基台の側方を囲繞する環状の領域へ向けて反射させる環状の第3の反射面が形成されていることを特徴とする請求項8記載の照明用光源。
  16.  前記第1反射面は、前記光散乱部材における前記複数の半導体発光素子と対向する面に環状に形成されていると共に、
     前記光散乱部材は、上下方向に貫通する貫通孔を有する筒状であって、前記光散乱部材の内周面が、前記光散乱部材の内部に入射した光を前記基台の側方を囲繞する環状の領域へ向けて反射させる第2反射面となっていることを特徴とする請求項1に記載の照明用光源。
  17.  前記複数の半導体発光素子は、前記基台の上面に、前記第1反射面と対向するように環状に配置されていることを特徴とする請求項16記載の照明用光源。
  18.  前記第2反射面は、平面視において前記第1反射面が形成された環状の領域の内側の領域に形成されていることを特徴とする請求項16記載の照明用光源。
  19.  前記光散乱部材は外径が下方から上方へ向けて漸次拡径した円筒状であって、前記光散乱部材の外周面が前記第1反射面であることを特徴とする請求項16記載の照明用光源。
  20.  前記貫通孔は下方から上方へ向けて漸次拡径した円柱状であることを特徴とする請求項16記載の照明用光源。
  21.  前記光散乱部材は、前記複数の半導体発光素子とは反対側の面が、内周縁から外周縁に向けて前記基台の上面から漸次離れるように傾斜していることを特徴とする請求項16記載の照明用光源。
  22.  前記基台は上下方向に貫通する貫通孔を有し、前記貫通孔内には前記複数の半導体発光素子を点灯させるための回路ユニットの少なくとも一部が配置されていることを特徴とする請求項1記載の照明用光源。
  23.  前記光散乱部材の上方を覆うグローブを備え、当該グローブは、前記斜め下方へ反射した光が到達する領域の方がそれ以外の領域よりも光拡散性が高いことを特徴とする請求項1記載の照明用光源。
  24.  前記グローブの内周面には、前記斜め下方へ反射した光が到達する領域に複数の窪みが形成されており、それぞれの窪みの内面にはさらに窪みが形成されていることを特徴とする請求項23に記載の照明用光源。
PCT/JP2012/000430 2011-06-24 2012-01-24 照明用光源 WO2012176354A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201290000630.3U CN203731110U (zh) 2011-06-24 2012-01-24 照明用光源
JP2012522855A JP5059988B1 (ja) 2011-06-24 2012-01-24 照明用光源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-140084 2011-06-24
JP2011140084 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176354A1 true WO2012176354A1 (ja) 2012-12-27

Family

ID=47422219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000430 WO2012176354A1 (ja) 2011-06-24 2012-01-24 照明用光源

Country Status (2)

Country Link
CN (1) CN203731110U (ja)
WO (1) WO2012176354A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968330A (zh) * 2013-02-04 2014-08-06 中山伟强科技有限公司 导光结构及其灯泡
EP2910843A1 (de) * 2014-02-24 2015-08-26 Hella KGaA Hueck & Co. Beleuchtungseinheit
CN110173632A (zh) * 2019-06-24 2019-08-27 苏州欧普照明有限公司 蜡烛灯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158378U (ja) * 2009-10-06 2010-04-02 趨勢照明股▲ふん▼有限公司 光源装置
JP2010157459A (ja) * 2008-12-31 2010-07-15 Keiji Iimura Ledランプおよび電球形ledランプ
JP2010251009A (ja) * 2009-04-13 2010-11-04 Nittoh Kogaku Kk 発光装置および電球型ledランプ
JP2011049233A (ja) * 2009-08-25 2011-03-10 Nittoh Kogaku Kk 光学素子および発光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157459A (ja) * 2008-12-31 2010-07-15 Keiji Iimura Ledランプおよび電球形ledランプ
JP2010251009A (ja) * 2009-04-13 2010-11-04 Nittoh Kogaku Kk 発光装置および電球型ledランプ
JP2011049233A (ja) * 2009-08-25 2011-03-10 Nittoh Kogaku Kk 光学素子および発光装置
JP3158378U (ja) * 2009-10-06 2010-04-02 趨勢照明股▲ふん▼有限公司 光源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968330A (zh) * 2013-02-04 2014-08-06 中山伟强科技有限公司 导光结构及其灯泡
EP2910843A1 (de) * 2014-02-24 2015-08-26 Hella KGaA Hueck & Co. Beleuchtungseinheit
CN110173632A (zh) * 2019-06-24 2019-08-27 苏州欧普照明有限公司 蜡烛灯
CN110173632B (zh) * 2019-06-24 2024-04-26 苏州欧普照明有限公司 蜡烛灯

Also Published As

Publication number Publication date
CN203731110U (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
JP4937845B2 (ja) 照明装置および表示装置
WO2012095905A1 (ja) 照明用光源
JP5082021B1 (ja) 照明用光源
JP6217972B2 (ja) 照明器具
JP6311856B2 (ja) 照明器具
JP5584144B2 (ja) 照明用光源
JP5427977B2 (ja) 照明用光源及び照明装置
JP2011054340A (ja) 照明装置
WO2012176354A1 (ja) 照明用光源
EP2568216B1 (en) Luminaire
JP5059988B1 (ja) 照明用光源
JP4923168B1 (ja) 照明用光源
JP5612491B2 (ja) 照明用光源
JP5385437B2 (ja) 照明用光源
JP7236695B2 (ja) 照明装置
EP2781830A2 (en) Luminaire
JP2015090775A (ja) 照明器具
JP5221797B2 (ja) 照明用光源
JP2014086513A (ja) 発光装置用レンズ及び照明装置
JP6590304B2 (ja) 照明器具
JP6332765B2 (ja) 発光装置用レンズ及び照明装置
JP2014157705A (ja) 発光装置及び発光装置用レンズ
JP2014157704A (ja) 発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290000630.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012522855

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803486

Country of ref document: EP

Kind code of ref document: A1