WO2012176325A1 - スケール除去方法及びスケール除去装置 - Google Patents

スケール除去方法及びスケール除去装置 Download PDF

Info

Publication number
WO2012176325A1
WO2012176325A1 PCT/JP2011/064504 JP2011064504W WO2012176325A1 WO 2012176325 A1 WO2012176325 A1 WO 2012176325A1 JP 2011064504 W JP2011064504 W JP 2011064504W WO 2012176325 A1 WO2012176325 A1 WO 2012176325A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
water
storage container
adhering
trap
Prior art date
Application number
PCT/JP2011/064504
Other languages
English (en)
French (fr)
Inventor
神谷 俊行
禎司 齊藤
一普 宮
古川 誠司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/064504 priority Critical patent/WO2012176325A1/ja
Priority to EP11868122.0A priority patent/EP2724989A4/en
Priority to CN201180071865.1A priority patent/CN103635435A/zh
Publication of WO2012176325A1 publication Critical patent/WO2012176325A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a scale removing device and a scale removing method having a function of suppressing scale adhesion to a heat exchanger.
  • the present invention relates to a scale removing method or a water heater to which a scale removing device is applied.
  • heat pump water heaters have heat exchangers for transferring heat to water.
  • heat is transferred to water, so it is important to keep the heat transfer surface clean. If the wall surface becomes dirty, the heat transfer area is reduced and the heat conduction is deteriorated, resulting in a decrease in heat transfer performance. Further, when the dirt accumulates, the flow path may be blocked.
  • scale crystal growth proceeds when ions in water and scale particles bind to nuclei precipitated on the high temperature surface. If the water once heated is introduced again into the heat exchanger and heated, the probability that the scale particles in the water collide with the nucleus increases, and crystal growth is promoted. Therefore, in order to suppress the crystal growth in the heat exchanger, it is effective to remove the scale particles precipitated in the water from the water so as not to be introduced into the heat exchanger again.
  • Patent Document 1 discloses a measure for separating scale particles from water.
  • a scale reservoir 7 is provided at the rear stage of the heat exchanger, scale particles are deposited in the scale reservoir 6 below the scale reservoir by its own weight and water flow, and scale particles are removed from the water.
  • Technology is disclosed.
  • Patent Document 1 in order to remove scale particles from water, the sedimentation property of the scale itself is mainly used.
  • the larger the particle the larger the settling speed of the particle, so that a scale particle having a large particle size can be removed from water by this method.
  • the sedimentation rate is small, so it is difficult to obtain a sufficient removal effect by this method, and it is impossible to suppress crystal growth caused by these fine scale particles. There was a problem.
  • the present invention eliminates not only large-scale particles with a large particle size, that is, large sediment particles but also small scale particles with small sedimentation from the water, so that the heat exchanger used in a heat pump water heater or the like can be used. It is an object of the present invention to provide a method and an apparatus for suppressing scale adhesion.
  • the present invention it is possible to reduce scale adhesion to the heat exchange device by introducing a high-temperature adhering substance into the water circuit and removing scale particles including small scale particles having low sedimentation properties from the water. A decrease in transmission performance can be prevented.
  • FIG. 2 is a schematic configuration diagram of a heating device 1001 according to Embodiment 1.
  • FIG. 5 is a schematic configuration diagram of a heating device 1002 according to Embodiment 2.
  • FIG. 10 is a schematic configuration diagram of a heating device 1003 according to Embodiment 3.
  • FIG. 6 is a schematic configuration diagram of a heating device 1004 according to Embodiment 4. The block diagram of the scale capturer 109-6 in Embodiment 6.
  • FIG. 10 is a configuration diagram of a scale trap 109-7 in the seventh embodiment.
  • FIG. 10 is a transparent perspective view of scale trap 109-7 in the seventh embodiment.
  • FIG. 19 is a configuration diagram of a scale trap 109-81 in the eighth embodiment.
  • FIG. 19 is a configuration diagram of a scale trap 109-82 in the eighth embodiment.
  • FIG. 10 is a configuration diagram of a scale trap 109-83 in an eighth embodiment.
  • FIG. 10 is a schematic configuration diagram of a scale trap 109-91 according to a ninth embodiment.
  • FIG. 10 is a configuration diagram of a scale trap 109-92 according to the ninth embodiment.
  • FIG. 18 is a configuration diagram of a scale trap 109-10 in the tenth embodiment.
  • FIG. 18 is a configuration diagram of a scale trap 109-11 in the eleventh embodiment.
  • FIG. 12 is a transparent perspective view of scale trap 109-11 in the eleventh embodiment.
  • FIG. 16 is a configuration diagram of a scale trap 109-12 in the twelfth embodiment.
  • FIG. 18 is a configuration diagram of a scale trap 109-13 in the thirteenth embodiment.
  • FIG. 18 is a top view of scale trap 109-13 according to the thirteenth embodiment.
  • FIG. 18 is a configuration diagram of a scale trap 109-14 in the fourteenth embodiment.
  • a scale removal method and a scale removal device for removing scale from heated water heated by a heat exchanger will be described.
  • an adherent having excellent affinity for scale particles is placed in a water circuit including a heat exchanger to adhere scale particles. Furthermore, by maintaining the adherent at a high temperature, not only the adherence but also the scale particles are captured while the scale particles are crystal-grown on the adherend surface. Moreover, the captured scale is peeled off from the adherent during a period in which heating is not performed, and the scale after peeling is discharged from the water circuit.
  • Experiments 1 to 3 (1) Experiment 1: Experiment 1 shows the effectiveness of scale capture when an adherent is used. (2) Experiment 2: Experiment 2 shows a case where the ultimate temperature is increased with respect to Experiment 1. (3) Experiment 3: Experiment 3 shows the effect of cleaning the adherent against Experiment 1.
  • Embodiment 1 shows a configuration of a heating device 1001 in which a scale trap is used.
  • Embodiment 2 shows a configuration of a heating device 1002 in which a scale trap is used.
  • a tap water supply pipe 111, a scale discharge pipe 112, and the like are connected to the scale trapping device as compared with the first embodiment.
  • the adherend 7 can be washed and the scale peeled off by washing can be discharged.
  • Embodiment 3 shows a configuration of a heating device 1003 in which a scale trap is used.
  • tap water of the scale discharge pipe 112 is used as compared with the second embodiment.
  • Embodiment 4 shows the configuration of the heating device 1004.
  • an intermediate circuit 300 in which hot water circulates exists between the heat source 101 and the plate heat exchanger 108 as compared with the first to third embodiments.
  • the fifth embodiment relates to pulsation operation.
  • the sixth to fifteenth embodiments relate to the structure of the adhering body 7 and the structure of the scale trap 109 in which the adhering body 7 is accommodated.
  • Embodiment 6 shows the case where a granular adhering body is used.
  • Embodiment 7 shows a case where a string-like adhering body is used.
  • the eighth embodiment shows a case where a scale peeling step and a peeled scale discharging step are further added to the sixth embodiment.
  • the ninth embodiment shows a case where a scale peeling process and a peeled scale discharging process are further added to the seventh embodiment.
  • the tenth embodiment shows a configuration in which a peeling mechanism 210 for peeling the scale attached to the attached body 7 is added to the eighth embodiment (FIG. 11).
  • the eleventh embodiment shows a configuration in which a peeling mechanism 220 is added to the ninth embodiment (FIG. 15).
  • the twelfth embodiment shows a configuration in which a peeling mechanism 230 different from the eleventh embodiment is added to the ninth embodiment (FIG. 15).
  • the thirteenth embodiment shows a configuration in which the peeling mechanism 240 is operated with tap water as power, compared to the tenth embodiment (FIG. 17).
  • the fourteenth embodiment shows a configuration in which the peeling mechanism 250 is operated by using tap water as a motive power with respect to the twelfth embodiment (FIG. 20).
  • the fifteenth embodiment shows variations of the contents described in the first to fourteenth embodiments.
  • Scale capture 1 A scale capture container filled with granular silicone rubber as an adherent was installed at the subsequent stage of the plate-type heat exchanger, and water that had been heated by the plate-type heat exchanger was passed through. This aims at attaching scale particles existing in water to the adherent and capturing them while growing crystals of the scale on the surface of the adherent at a high temperature.
  • Scale capture 2 This is the same method as the preceding example (Japanese Patent Laid-Open No. 2008-190780).
  • a scale capture container that does not use an adhering substance and has a mechanism for storing the scale in the lower part is installed after the plate heat exchanger, and heated by the plate heat exchanger. After passing water. This is aimed at capturing scale particles existing in water while being settled by their own weight.
  • FIG. 1 shows the amount of scale adhesion and the amount of reduction under each condition when the scale amount of “(a) No countermeasure” is 100%.
  • the reduction rate was only 14%
  • the reduction rate for “(c) Scale capture 1” is 72%.
  • the reduction rate in “(e) Scale acquisition 2” was significantly higher than 9%.
  • “(D) Scale capture 1 + pulsation” has a reduction rate of 96%. This is, “(B) Pulsation” alone, The value was 10% larger than the sum (86%) of “(c) Scale capture 1” alone.
  • Experiment 2 shows the case where the ultimate temperature is increased with respect to Experiment 1.
  • the case where the temperature reached 60 ° C. per hour was shown.
  • the temperature reached 40 ° C., 50 ° C., 60 ° C. (same as Experiment 1), 70 ° C. under the same conditions as in Experiment 1. , 80 ° C. and 90 ° C. are shown.
  • scale capture 1 in Experiment 1 (a scale-capture vessel filled with granular silicone rubber as an adhering substance is installed after the plate-type heat exchanger and heated by the plate-type heat exchanger. After passing water).
  • Experiment 2 performed two conditions with and without countermeasures for each temperature, and measured the amount of scale attached to the plate of the plate heat exchanger after about one month of operation.
  • FIG. 2 shows the relationship between the scale reduction rate with countermeasures and the scale trapping container temperature when the scale amount without countermeasures at each temperature is 100%. As shown in FIG. 2, the scale reduction rate increased with the temperature of the scale trapping vessel.
  • the reduction rate was around 38% at around 50 ° C, and a high reduction rate of 70% or more at 60 ° C. Has changed significantly. Further, when the temperature of the scale capturing container was 60 ° C. or higher, the scale reduction rate did not change greatly. From this result, it was found that the scale capturing using the adhering body can obtain a particularly high scale suppressing effect when the temperature of the capturing container is 50 ° C. or higher.
  • Experiment 3 shows the effect of cleaning the adherent against Experiment 1. Similar to Experiment 1, Hardness 300mg / L, pH 7.8, Temperature 20 ° C, A 200 L capacity water was held in a 200 L capacity tank, and a pump and a water circuit were provided to circulate the water in the tank to the plate heat exchanger. High temperature water heated by a heater simulating a heat pump is circulated on the primary side of the plate heat exchanger. On the other hand, the water in the tank was circulated at a flow rate of 20 L / min to the secondary side of the plate heat exchanger and heated to 60 ° C. in about 1 hour.
  • scale capture 1 in Experiment 1 (a scale-capture vessel filled with granular silicone rubber as an adhering substance is installed after the plate-type heat exchanger and heated by the plate-type heat exchanger. After passing water).
  • a process of introducing tap water into the container filled with silicone rubber at a flow rate of 40 L / min in the direction opposite to that during heating for about 1 hour to clean the silicone rubber in the container was added.
  • the tap water used for washing was not returned to the tank, but was drained after the water flow.
  • Experiment 3 performed two conditions in which the above cleaning was performed after one month of operation and no cleaning was performed. After 4 months of operation, the amount of scale attached to the plate of the plate heat exchanger was measured.
  • FIG. 3 shows the scale reduction rate under each condition, and also shows the results after one month of operation corresponding to the start of the cleaning process. As shown in FIG. 3, when the cleaning was not performed, the reduction rate decreased from 72% after 1 month to 27% after 4 months, but when the cleaning was performed, the reduction rate of 71% was maintained after 4 months.
  • Embodiment 1 (Overall configuration of the device: The attached body can be exchanged)
  • the first embodiment will be described with reference to FIG.
  • the structure of the heating apparatus 1001 in which the scale trap 109 is used is shown.
  • the control of each device is executed by the control device (not shown) in the first to fifteenth embodiments.
  • the temperature of the heated water flowing out from the plate heat exchanger 108 (hereinafter also referred to as the heat exchanger 108) and flowing into the scale trap 109 is equal to or higher than a predetermined temperature (in Experiment 2). Based). For example, it is 50 ° C. or higher.
  • FIG. 4 shows a schematic configuration of the heating apparatus 1001 according to the first embodiment.
  • the primary side of the heat source 101 and the heat exchanger 108 is connected by a circulation pipe 110.
  • the hot water supply tank 102, the secondary side of the plate heat exchanger 108, and the scale trap 109 are connected by a heat exchanger inlet pipe 105, a scale trap inlet pipe 106, and a scale trap outlet pipe 117, respectively.
  • a circulation pump 107 is installed in the heat exchanger inlet pipe 105, and a water supply pipe 103 and a hot water supply pipe 104 are installed in the hot water supply tank 102, respectively.
  • the scale trap 109 is filled with granular silicone rubber as the adherent 7.
  • Tap water is introduced from the water pipe 103 into the hot water supply tank 102, and when the water is full, the heat source 101 is operated to circulate a high-temperature refrigerant in the circulation pipe 110.
  • the circulation pump 107 is operated, and the water in the hot water supply tank 102 is supplied to the plate heat exchanger 108 through the heat exchanger inlet pipe 105 and heated by heat exchange with the refrigerant.
  • Water from the plate-type heat exchanger 108 is introduced into the scale trap 109 through the scale trap inlet pipe 106 and brought into contact with the adherent 7 in the scale trap (attachment step), and then comes out of the scale trap.
  • Water is returned to the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the coolant and the water in the hot water supply tank 102 are continuously circulated until the water temperature in the hot water supply tank 102 reaches a predetermined temperature. After the heating is completed, the water in the hot water supply tank 102 is appropriately used as hot water through the hot water supply pipe 104.
  • a scale trap is provided at the rear stage of the heat exchanger 108, and water containing scale particles is allowed to pass while contacting the adhering substance, thereby allowing the scale particles in the water to pass through the adhering substance surface. Can be attached and removed from the water. Furthermore, crystallization of the scale can be promoted by allowing water to pass while keeping the adherent at a high temperature. That is, it is possible to promote the phenomenon (scale growth on the surface of the adherent body) in which the scale particles in the water come into contact with the scale attached to the adherend body and are taken in to form crystals of the scale.
  • the scale particles in the water can be captured by the adhering substance by the two actions including not only “adhesion” but also “crystallization”, and the scale particles can be removed from the water.
  • the scale adherence to the heat exchanger 108 can be significantly reduced as compared with the conventional scale trap having no effect of adhesion or crystallization, and the heat transfer performance of the heat exchanger 108 can be maintained.
  • the trapping ability of the adherent in the scale trap when the trapping ability of the adherent in the scale trap is reduced due to the adhesion of the scale, it can be appropriately replaced with a new adherent. Further, the attached body may be pulled out once and washed and then attached again.
  • FIG. 5 shows a schematic configuration diagram of the heating device 1002 of the second embodiment.
  • the configuration of the heating device 1002 will be described with reference to FIG.
  • the tap water supply pipe 111, the scale discharge pipe 112, and the like are further connected to the scale catcher 109, compared to the heating apparatus 1002 of the first embodiment.
  • the attached body 7 can be washed, and the scale peeled off (peeling process) can be discharged (discharge process).
  • a tap water supply pipe 111 is connected to the upper part of the scale catcher 109, and a scale discharge pipe 112 is connected to the lower part of the scale catcher.
  • One of the tap water supply pipes 111 is connected to the water pipe 103 and one of the scale discharge pipes 112 is connected to the drain outlet of each house.
  • the reason for each house is that it is assumed that the heating device 1002 is arranged in each house.
  • the tap water supply pipe 111, the scale discharge pipe 112, the scale trap inlet pipe 106, and the scale trap outlet pipe 117 are provided with flow path opening / closing valves 113, 114, 115, and 116, respectively. Other than that, it is equivalent to the heating apparatus 1001 of FIG.
  • the circulation pump 107 is operated to supply water in the hot water supply tank 102 to the heat exchanger 108 and heated by heat exchange with the refrigerant. At this time, the water discharged from the heat exchanger 108 is returned to the hot water supply tank 102 through the scale trap 109. In this process, the flow path opening / closing valves 115 and 116 are opened, and the flow path opening / closing valves 113 and 114 are closed.
  • the channel opening and closing valves 115 and 116 are closed, the channel opening and closing valves 113 and 114 are opened, and the tap water (an example of fluid) is passed through the tap water supply pipe 111 from the tap pipe 103. )
  • the tap water that has passed through the scale catcher is discharged (discharge process) to the discharge port of each house through the scale discharge pipe 112.
  • opening and closing of each valve may be automatically performed by the control device, or may be manually performed periodically, for example. In the case of FIG. 6 showing a third embodiment described later, it is assumed that the control device automatically opens and closes each valve.
  • a period in which heating is not performed means a period in which a heat medium for heating and heated water (tap water to be heated) are not circulated in the heat exchanger 108.
  • a heat medium for heating and heated water tap water to be heated
  • a scale trap is provided at the subsequent stage of the heat exchanger 108, and the same effect as in the first embodiment can be obtained by bringing water containing scale particles into contact with the adherent.
  • Water circuit 400 The water circuit 400 will be described with reference to FIG. “Water circuit 400” in FIG. 5 is a path of hot water supply tank 102 ⁇ heat exchanger 108 ⁇ scale trap 109 ⁇ hot water tank 102. More specifically, the “water circuit 400” refers to the hot water tank 102 ⁇ the heat exchanger inlet pipe 105 ⁇ the circulation pump 107 ⁇ the heat exchanger 108 ⁇ the scale trap inlet pipe 106 ⁇ the scale trap 109 ⁇ the scale trap outlet.
  • the pipes and equipment (including the flow path opening / closing valves 115 and 116) in the path from the pipe 117 to the hot water supply tank 102 are collectively referred to as a water circuit 400.
  • This water circuit 400 is the same as in the first, third, and fourth embodiments of FIGS. However, the flow path opening / closing valves 115 and 116 are not used in FIGS.
  • FIG. 6 shows a schematic configuration diagram of the heating device 1003 of the third embodiment.
  • the heating device 1003 of the third embodiment uses tap water in the scale discharge pipe 112 as compared to the heating device 1002 of the second embodiment.
  • the scale discharge pipe 112 installed at the lower part of the scale trap 109 is connected to the water supply line of each house. Other than that, it is equivalent to the heating device 1002 of FIG.
  • the circulation pump 107 is operated, the water in the hot water supply tank 102 is supplied to the heat exchanger 108, and heated by heat exchange with the refrigerant. At this time, the water discharged from the heat exchanger 108 is returned to the hot water supply tank 102 through the scale trap 109. In this process, the flow path opening / closing valves 115 and 116 are opened, and the flow path opening / closing valves 113 and 114 are closed.
  • the flow path opening / closing valves 115 and 116 are closed and the flow path opening / closing valves 113 and 114 are opened in conjunction with the use of tap water.
  • tap water is introduced from the water pipe 103 through the tap water supply pipe 111 into the upper part of the scale trap 109.
  • the tap water that has passed through the scale catcher is used as water supply for toilets and washrooms of each house through the scale discharge pipe 112.
  • a scale trap is provided at the rear stage of the heat exchanger 108, and the same effect as in the first embodiment can be obtained by bringing water containing scale particles into contact with the adhering body.
  • tap water is introduced into the scale trap as cleaning water during the period when heating is not performed as in the third embodiment, and the scale is peeled off from the adherent (peeling step), and this is discharged outside the water circuit.
  • the tap water after washing contains a scale, it can be used as tap water. Therefore, as in the third embodiment, cleaning is performed in conjunction with the use of tap water, and the amount of tap water used for cleaning is increased by using the cleaned tap water as water supply for each house. Therefore, the heat transfer performance of the heat exchanger 108 can be maintained.
  • the above “in conjunction with the use of tap water” is as follows.
  • the tap water is supplied by a detection device (means) that can detect that water is flowing, such as a flow rate sensor or a pressure sensor in a water line.
  • a detection signal of the detection device is captured by the control device, and an open / close signal is output from the control device to the flow path opening / closing valves 113 and 114.
  • the flow path opening / closing valves 115 and 116 and the control device constitute a stop unit that stops the passage of the heated water in the scale trap 109.
  • the tap water supply pipe 111, the scale discharge pipe 112, the flow path opening / closing valves 113 and 114, and the control device constitute a peeling unit that peels the scale from the attached body 7.
  • a stop part serves as the discharge part which discharges the peeled scale.
  • FIG. 7 shows a schematic configuration diagram of the heating device 1004 of the fourth embodiment.
  • the structure of the heating apparatus 1004 of Embodiment 4 is demonstrated.
  • an intermediate circuit 300 in which hot water circulates exists between the heat source 101 and the heat exchanger 108 as compared to the heating devices 1001 to 1003 of the first to third embodiments.
  • the refrigerant from the heat source is circulated to the primary side of the heat exchanger 108, but the present invention is not limited to this configuration.
  • the water heated by the heat pump may be circulated similarly to the primary side of the heat exchanger 108.
  • FIG. 7 shows this schematic configuration.
  • the configuration of the heating device 1004 will be described.
  • the primary side of the heat source 101 and the plate heat exchanger (2) 119 is the circulation pipe (2) 118
  • the secondary side of the plate heat exchanger (2) 119 and the primary side of the heat exchanger 108 are
  • the circulation pipes 110 are connected to each other, and a circulation pump (2) 122 is installed in the circulation pipe 110.
  • the circulation pipe is branched from the heating circulation pipe 121, a switching valve 123 is installed at the branch point, and the heating circulation pipe is connected to the heating system 120. Others are the same as FIG.
  • Tap water is introduced into the hot water supply tank 102 from the water pipe 103, and when the water is full, the heat source 101 is operated and high-temperature refrigerant is circulated in the circulation pipe (2) 118.
  • the switching valve 123 is operated, the heating circulation pipe 121 is closed, the circulation pump (2) 122 is operated, and the heat exchanger (2) 119 and the heat exchanger 108 and the circulation pipe 110 therebetween are placed. Circulate water.
  • the circulation pump 107 is operated, the water in the hot water supply tank 102 is supplied to the heat exchanger 108 through the heat exchanger inlet pipe 105, and is heated by heat exchange with the circulating water in the circulation pipe.
  • the water from the heat exchanger 108 is introduced into the scale trap 109 through the scale trap inlet pipe 106 and brought into contact with the adhering substance 7 in the scale trap 109, and then the water from the scale trap 109 is trapped in the scale. It returns to the hot water supply tank 102 through the outlet pipe 117.
  • the refrigerant and the water in the hot water supply tank 102 are continuously circulated until the temperature reaches a predetermined temperature. After the heating is completed, the water in the hot water supply tank 102 is appropriately used as hot water through the hot water supply pipe 104.
  • a scale trap 109 is provided at the rear stage of the heat exchanger 108, and water containing scale particles is attached to the adhering body. By contacting, scale particles in the water can be attached to the surface of the adherend and removed from the water.
  • the scale adherence to the heat exchanger 108 can be significantly reduced as compared with the conventional scale trap having no effect of adhesion or crystallization, and the heat transfer performance of the heat exchanger 108 can be maintained.
  • the trapping ability of the adherent in the scale trap decreases with the scale adherence, it can be replaced with a new adherent as appropriate.
  • the attached body may be pulled out once and washed and then attached again.
  • FIG. 7 does not show scale peeling from the attached body 7 of the scale catcher 109 and scale discharge from the water circuit.
  • a heat pump an example of the heat source 101
  • the scale may be peeled off from the adherent and discharged out of the water circuit.
  • Embodiment 5 (Addition of pulsation process) Next, a fifth embodiment will be described.
  • the fifth embodiment relates to pulsation.
  • the state of the water flow in the hot water supply tank 102, the heat exchanger 108, the scale trap 109, and the water circuit therebetween is not particularly shown.
  • it may flow at a constant flow rate as in normal operation, and pulsation, that is, the flow rate is 20 L / min for 4 seconds, 40 L / min for 1 second, or 4 seconds. You may repeat the driving
  • the pulsation is generated by the control device controlling the circulation pump 107.
  • the pulsation may be generated in the heated water passing through at least the inside of the heat exchanger 108.
  • pulsation may be generated on the outlet side (the high temperature side of the heated water) with respect to the inlet side of the heat exchanger 108.
  • FIG. Scale trap structure: granular, no washing
  • the following sixth to fifteenth embodiments relate to the structure of the adhering body 7 and the structure of the scale trap 109 in which the adhering body 7 is accommodated.
  • the following sixth to fifteenth embodiments are used, for example, for the heating devices 1001 to 1004 described in the first to fourth embodiments.
  • the adherent 7 is a granular or string-like one.
  • a diagonal line rising to the right indicates a granular adhering body 7
  • a diagonal line descending to the right indicates a string-shaped adhering body.
  • the scale trap 109-6 of the sixth embodiment will be described with reference to FIG. Embodiment 6 shows the case where the granular adhering body 7 is used.
  • the diameter of the granular adhering body 7 is, for example, about 1 to 5 mm.
  • FIG. 8 shows a schematic configuration diagram of the scale trap 109-6.
  • a scale trap inlet pipe 106 and a scale trap outlet pipe 117 are connected to the scale trap 109-6.
  • the other of the scale trap inlet pipe 106 and the scale trap outlet pipe 117 is connected to the heat exchanger 108 and the hot water supply tank 102, respectively, as in the heating device 1001 of FIG.
  • the rectifier 4 and the adhering substance holding container 8 are mounted inside the scale trap 109-6, and the adhering substance holding container 8 is filled with granular silicone rubber as the adhering substance 7.
  • the adhering substance holding container 8 is formed of a metal mesh or the like, and is configured to allow water and scale particles to pass freely while holding the adhering substance 7.
  • the structure is detachable from the scale catcher 109-6.
  • high-temperature water heated by the heat exchanger 108 is introduced into the lower part of the scale trap through the scale trap inlet pipe 106, and is passed through the rectifier 4 while making contact with the deposit in the deposit holding container. .
  • the water after passing is introduced into the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the deposit holder holding container is taken out of the scale trap 109-6 during a period when heating is not performed, and the deposit holding container filled with the new deposit is removed. Installing. Further, the attached body may be pulled out once and washed and then attached again.
  • the scale capturing ability can be quickly and easily restored by exchanging the adherent together with the adherend holding container 8.
  • the rectifying body 4 is used in FIG. 8, as long as the water after a heating can contact an adhering body uniformly, you may use not only the rectifying body 4 but another apparatus. Further, when the water flow can be made uniform by the structure under the scale trap 109 or the like, the rectifier is not necessary.
  • Embodiment 7 FIG. (Capturer structure: string, no washing)
  • the scale trap 109-7 of the seventh embodiment will be described with reference to FIGS.
  • FIG. 9 shows the configuration of the scale trap 109-7.
  • the seventh embodiment is different from the sixth embodiment in that the attached body 7 has a string shape.
  • the diameter of the string-like adhering body 7 is, for example, 0.2 to 1.0 mm. Others are equivalent to the sixth embodiment.
  • the scale trap 109-7 of the seventh embodiment has a configuration without washing (corresponding to the heating device 1001), similar to the scale trap 109-6 of the sixth embodiment.
  • FIG. 10 is a diagram schematically showing a perspective view transmitted through the scale trap 109-7.
  • the adhering body holding container 8 is expressed by two planes for convenience.
  • the broken arrow direction in the figure indicates the direction in which the heated water flows.
  • the X direction arrow of FIG. 10 is FIG.
  • FIG. 10 is FIG. In addition, in FIG.
  • FIGS. 9 and 10 are examples, and the present invention is not limited to this configuration.
  • the upper part and the lower part of the adhering substance holding container 8 are open so that water and scale particles can pass freely while holding the adhering substance 7, and the adhering substance holding container 8 is further removed from the scale trap. It has a detachable structure. Other than that, it is equivalent to FIG.
  • the operation of the heating device 1001 is the same as that of the scale trap 109-6. This will be described with reference to FIG.
  • the high-temperature water heated by the heat exchanger 108 is introduced into the lower part of the scale trap through the scale trap inlet pipe 106, and is passed through the rectifier while making contact with the deposit in the deposit holding container.
  • the water after passing is introduced into the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the adhering substance holding container is taken out from the scale trap 109-7 during the period when heating is not performed, and the adhering substance holding container 8 filled with the new adhering substance is removed. Installing. Further, the attached body may be pulled out once and washed and then attached again.
  • the rectifier was used in FIG. 9, similarly to Embodiment 6, as long as the water after a heating can contact an adhering body uniformly, you may use not only the rectifier 4 but another apparatus. . Further, when the water flow can be made uniform by the structure below the scale trap 109-7, the rectifier is not necessary.
  • Embodiment 8 FIG. (Capturer structure: granular, scale peeling due to impact of adhering material (means: tap water flow))
  • the scale traps 109-81 to 109-83 of the eighth embodiment will be described with reference to FIGS. These are configurations in which tap water is introduced into the sixth embodiment.
  • FIG. 11 shows the configuration of the scale trap 109-81.
  • FIG. 12 shows the configuration of the scale trap 109-82.
  • FIG. 13 shows the configuration of the scale trap 109-83.
  • FIG. 14 shows a Z direction arrow view (top view) of the scale trap 109-83 of FIG.
  • tap water is introduced into the scale trap, and the scale is peeled off and discharged. That is, the heating device 1002 in FIG. 5 (or the heating device 1003 in FIG. 6) corresponds.
  • the scale catcher 109-81 is connected to the scale catcher inlet pipe 106, the scale catcher outlet pipe 117, the tap water supply pipe 111, and the scale discharge pipe 112.
  • the scale discharge pipe 112 In the tap water supply pipe 111, the scale discharge pipe 112, the scale trap inlet pipe 106, and the scale trap outlet pipe 117, flow path opening / closing valves 113, 114, 115, and 116 are installed, respectively.
  • the other of the scale catcher inlet pipe 106, the scale catcher outlet pipe 117, the tap water supply pipe 111, and the scale discharge pipe 112 is a heat exchanger 108, a hot water supply tank 102, a water pipe, They are connected to the drains or supply lines of each house, but these are omitted here.
  • the adherend holding container 8 is mounted inside the scale trap 109.
  • the adherend holding container 8 is filled with “granular silicone rubber” as the adherend 7.
  • the adhering body holding container 8 is formed of a metal mesh or the like so that water and scale particles can pass freely while holding the adhering body.
  • the scale trap 109 is provided with a scale reservoir 6 at a portion below the connection position with the scale trap inlet pipe 106, and a scale discharge pipe 112 is connected to the scale reservoir 109.
  • the channel opening / closing valves 115 and 116 are opened, and the channel opening / closing valves 113 and 114 are closed.
  • the high-temperature water heated by the heat exchanger 108 is introduced into the scale trap through the scale trap inlet pipe 106, and is allowed to pass while being in contact with the deposit in the deposit holding container.
  • the water after passing is introduced into the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the flow path opening / closing valves 115 and 116 are closed and the flow path opening / closing valves 113 and 114 are opened during a period in which heating is not performed.
  • tap water is introduce
  • peeling process the peeled scale is discharged from the scale discharge pipe 112 (discharge process).
  • the surface of the adhering body and the tap water are contacted, and the adhering body and the adhering body holding container are collided or the adhering bodies collide due to the flow of the adhering body.
  • the scale adhering to the adhering body can be peeled off from the adhering body.
  • the scale capture capability can be recovered by discharging the scale after peeling with tap water.
  • tap water is supplied from the upper part of the scale catcher 109-81 in order to peel the scale from the adhering body, and this tap water is separated from the lower part of the scale catcher. Discharged.
  • tap water is brought into contact with the surface of the adherent body, the adherent body is further flowed, the adherent body collides with the adherend holding container and the adherend bodies, and the scale attached thereto is peeled off.
  • Other methods can also be used if they can be made.
  • Tap water may be introduced from the lower part and discharged from the upper part like the scale catcher 109-82 shown in FIG.
  • tap water is introduced from the side in a tangential direction to generate a swirling flow and discharged from the lower part.
  • Such a configuration of the scale trap 109-83 may be used.
  • Embodiment 9 FIG. (Capturer structure: string-like, scale peeling by contact with adherent (means: tap water flow))
  • the scale trap 109-9 and the scale trap 109-92 of the ninth embodiment will be described with reference to FIGS.
  • FIG. 15 shows the configuration of the scale trap 109-91.
  • FIG. 16 shows the configuration of the scale trap 109-92.
  • the scale trap 109-91 and the scale trap 109-92 of the ninth embodiment correspond to the scale trap 109-81 and the scale trap 109-82 of the eighth embodiment, respectively.
  • the eighth embodiment uses a granular adherent 7
  • the ninth embodiment uses a string-like adherent 7. Therefore, the scale trap 109-91 and the scale trap 109-92 correspond to the heating device 1002 in FIG. 5 (or the heating device 1003 in FIG. 6).
  • the scale trap 109-91 will be described with reference to FIG.
  • the adhering substance holding container 8 is mounted, and “string-like silicone rubber” is formed so as to bridge the left and right wall surfaces of the adhering substance holding container. Filled.
  • the upper part and the lower part of the adhering substance holding container 8 are open so that water and scale particles can pass freely while holding the adhering substance. Otherwise, it is equivalent to the scale catcher 109-81 of FIG.
  • the operation of the heating device 1002 will be described with reference to FIG.
  • the following operation of the heating device 1002 is the same as that in the eighth embodiment.
  • the flow path opening / closing valves 115 and 116 are opened, the flow path opening / closing valves 113 and 114 are closed, and high-temperature water heated by the heat exchanger 108 is introduced into the scale trap through the scale trap inlet pipe 106. And let it pass while making contact with the adherend in the adherend holding container.
  • the water after passing is introduced into the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the flow path opening / closing valves 115 and 116 are closed and the flow path opening / closing valves 113 and 114 are opened during a period when heating is not performed.
  • tap water is introduce
  • the peeled scale is discharged from the scale discharge pipe 112.
  • the flow of tap water causes contact between the surface of the adhering body and tap water, and the collision between the adhering body and the adhering body holding container or the collision between the adhering bodies due to the expansion and contraction of the adhering body.
  • the scale adhering to the adhering body can be peeled off from the adhering body.
  • the scale capture capability can be recovered by discharging the scale after peeling with tap water.
  • FIG. 15 shows the scale trap 109-92. For example, it may be introduced from the lower part and discharged from the upper part like the scale catcher 109-92 of FIG.
  • FIG. 17 shows the scale trap 109-10 of the tenth embodiment.
  • the scale catcher 109-10 has a configuration in which a peeling mechanism 210 is provided in the scale catcher 109-81 of the eighth embodiment.
  • the scale trap 109-10 is connected to the scale trap inlet pipe 106, the scale trap outlet pipe 117, the tap water supply pipe 111, and the scale discharge pipe 112.
  • the scale trap inlet pipe 106, and the scale trap outlet pipe 117 flow path opening / closing valves 113, 114, 115, and 116 are installed, respectively.
  • the other of the scale catcher inlet pipe 106, the scale catcher outlet pipe 117, the tap water supply pipe 111, and the scale discharge pipe 112 is the heat exchanger 108, the hot water supply tank 102, the water pipe, They are connected to a house drain or supply line, but these are omitted here.
  • An adhering substance holding container 8 is mounted in the scale trap 109-10, and the adhering substance holding container 8 is filled with granular silicone rubber as the adhering substance 7.
  • the adhering body holding container 8 is formed of a metal mesh or the like so that water and scale particles can pass freely while holding the adhering body.
  • the scale trap 109-10 includes a peeling mechanism 210 that peels the scale from the attached body 7.
  • the peeling mechanism 210 includes a rotating shaft 9, a rotating blade 10, and a rotating motor 11.
  • a rotating shaft 9 provided with rotating blades 10 is held inside the adhering body holding container 8, and the rotating shaft 9 is connected to a rotating motor 11 provided outside the upper part of the scale capturing body.
  • the scale trap 109 is provided with a scale reservoir 6 at a portion below the connection position with the scale trap inlet pipe 106, and a scale discharge pipe 112 is connected to the scale reservoir 109.
  • the flow path opening / closing valves 115 and 116 are opened, the flow path opening / closing valves 113 and 114 are closed, and the high temperature water heated by the heat exchanger 108 is supplied to the scale trap inlet pipe. It introduce
  • the flow path opening / closing valves 115 and 116 are closed during the period when the heating is not performed. Then, the rotary motor 11 is operated to rotate the rotary blade 10. Due to the rotation, the adhering body flows, and the scale adhering to the adhering body is peeled off by the impact caused by the collision with the rotating blade, the wall surface of the adhering body holding container, the collision between the adhering bodies, or the like. After the rotation for a predetermined time, the rotation is stopped and the water is stopped, so that the scale peeled off from the adherent is precipitated (stored) in the scale storage unit 6 (storage process). Thereafter, the channel opening / closing valves 113 and 114 are opened, tap water is introduced from the tap water supply pipe 111, and the stored scale is discharged from the scale discharge pipe 112.
  • the rotating blade 10 is used to cause a collision between the surface of the adherent body and the rotating blade, a collision between the adherent body and the adherent holding container due to a flow of the adherent body, and a collision between the adherent bodies (impact
  • impact The scale trapping ability can be recovered by discharging the scale attached to the adherent from the adherent and discharging the scale after removal with tap water.
  • the rotating blades are used in the attachment holding container in order to peel the scale from the attachment, but the present invention is not limited to this.
  • Other methods can be used as long as the adhering body is caused to flow, the adhering body collides with the adhering body holding container and the adhering bodies, and the scale adhering thereto can be peeled off. For example, by installing a structure in the attachment holding container and moving it up and down, rotating the attachment holding container in the scale catcher, or moving the attachment holding container up and down in the scale catcher Can achieve the same effect.
  • FIG. 11 Capturer structure: string-like, scale peeling by contact with attached body (means: left-right motion by motor)
  • the scale trap 109-11 of the eleventh embodiment will be described with reference to FIGS.
  • the scale catcher 109-11 (string) corresponds to the scale catcher 109-10 (granular).
  • FIG. 18 is a diagram showing a configuration of the scale trap 109-11.
  • the scale catcher 109-11 has a configuration in which a peeling mechanism 220 is provided in the scale catcher 109-91 of the ninth embodiment.
  • FIG. 19 is a diagram schematically showing a perspective view transmitted through the scale trap 109-11, and shows a state in which a peeling mechanism 220 is added to FIG.
  • the moving body 15 and the contact body 17 of the peeling mechanism 220 are described.
  • the adhering substance holding container 8 is mounted inside the scale trap 109-11, and as described in FIG. 10, the left and right wall surfaces of the adhering substance holding container 8 are bridged. It is filled with string-like silicone rubber. The upper part and the lower part of the adhering substance holding container 8 are open so that water and scale particles can pass freely while holding the adhering substance.
  • the scale catcher 109-11 includes a peeling mechanism 220.
  • the peeling mechanism 220 includes the rotary motor 11, the moving shaft 12, the rotation-linear motion converter 13, and the moving body 15.
  • the moving body 15 is reciprocated in the longitudinal direction of the attachment body 7 (Y direction in FIG. 19), and the contact body 17 is moved while being in contact with the attachment body 7, thereby Scrape off the scale.
  • the specific operation is as follows.
  • a moving shaft 12 is installed on the top of the adhering body holding container 8.
  • a moving body 15 that moves the moving shaft 12 left and right, a rotary motor 11 that moves the moving body 15, and A rotation-linear motion converter 13 is provided.
  • a large number of elongated wire-like metals or the like are installed on the moving body 15 as a contact body 17 like a brush and are in contact with the attachment body 7.
  • FIG. 1 The scale catcher 109-11 includes a peeling mechanism 220.
  • the peeling mechanism 220 includes the rotary motor 11, the moving shaft 12, the rotation
  • the channel opening / closing valves 115 and 116 are opened, and the channel opening / closing valves 113 and 114 are closed. Then, the high-temperature water heated by the heat exchanger 108 is introduced into the scale trap through the scale trap inlet pipe 106 and allowed to pass while being in contact with the deposit in the deposit holding container. The water after passing is introduced into the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the flow path opening / closing valves 115 and 116 are closed during the period when the heating is not performed. Then, the rotary motor 11 is operated to move the moving body 15 left and right. By moving the contact body 17 together with the moving body 15 in contact with the attachment body, the scale attached to the attachment body is peeled off. After repeating the left-right movement for a predetermined time, the movement is stopped and the water is stopped, and the scale peeled off from the adhering substance is precipitated in the scale storage unit 6. Thereafter, the flow path opening / closing valves 113 and 114 are opened, tap water is introduced from the tap water supply pipe, and the stored scale is discharged from the scale discharge pipe.
  • the scale can be peeled off from the adherent.
  • the scale capture capability can be recovered by discharging the scale after peeling with tap water.
  • FIG. 20 shows the configuration of the scale trap 109-12.
  • a scale trap 109-12 of the twelfth embodiment will be described with reference to FIG.
  • the scale trap 109-12 is similar in configuration to the scale trap 109-11.
  • the scale trap 109-12 is different from the scale trap 109-11 in the peeling mechanism. In the peeling mechanism 220 of the scale catcher 109-11, the contact body moves in the lateral direction, but in the scale catcher 109-12, it moves in the vertical direction.
  • the adherend holding container 8 is mounted in the scale trap 109 and is filled with string-like silicone rubber so as to bridge the left and right wall surfaces of the adherend holding container.
  • the upper part and the lower part of the adhering substance holding container 8 are open so that water and scale particles can pass freely while holding the adhering substance.
  • the scale catcher 109-12 includes a peeling mechanism 230.
  • the peeling mechanism 230 includes the rotary motor 11, the moving shaft 12, the rotation-linear motion converter 13, and the contact body 17.
  • a moving shaft 12 is installed inside the adherend holding container 8, and is provided with a contact body 17, a rotary motor 11 for moving the moving shaft 12, and a rotation-linear motion converter 13.
  • the contact body 17 is formed of a metal mesh or the like so that water and scale particles can freely pass therethrough. Other than that is the same as FIG.
  • the channel opening / closing valves 115 and 116 are opened, and the channel opening / closing valves 113 and 114 are closed. Then, the high-temperature water heated by the heat exchanger 108 is introduced into the scale trap 109-12 through the scale trap inlet pipe 106 and is allowed to pass while being in contact with the deposit 7 in the deposit holding container 8. The water after passing is introduced into the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the flow path opening / closing valves 115 and 116 are closed and the rotary motor 11 is operated during the period when heating is not performed, and the contact body 17 is moved up and down. Move.
  • the scale adhering to the adhering body 7 is peeled off by expanding and contracting (elastically deforming) the adhering body 7 as the contact body 17 moves up and down.
  • the expansion and contraction is as follows. As described with reference to FIG. 10, the adhering body 7 exists in a form that bridges the left and right walls of the adhering body holding container 8 and expands and contracts (elastically deforms) like an elastic band.
  • the contact body 17 If the contact body 17 is arrange
  • the scale adhering to the adhering body can be peeled off from the adhering body, and the scale capturing ability can be recovered by discharging the scale after peeling off with tap water.
  • Embodiment 13 FIG. (Capturer structure: granular, scale peeling due to impact of adhering material (means: rotational movement by water flow))
  • the scale trap 109-13 of the thirteenth embodiment will be described with reference to FIGS.
  • FIG. 21 shows the configuration of the scale trap 109-13.
  • 22 is a Z direction arrow view (top view) of FIG.
  • the scale trap 109-13 has a configuration similar to the scale trap 109-10 of the tenth embodiment.
  • the scale catcher 109-13 is powered by tap water relative to the scale catcher 109-10.
  • the configuration of the scale trap 109-13 will be described.
  • the scale catcher 109-13 includes a peeling mechanism 240.
  • the peeling mechanism 240 includes a rotating shaft 9, a rotating blade 10, a partition wall 18, a rotating body 19, and the like.
  • the partition wall 18 is installed in the upper part of the scale trap 109.
  • a rotating body 19 connected to the rotating shaft 9 is installed in the space above the partition wall 18.
  • a tap water supply pipe 111 and a tap water introduction pipe 20 are connected to the space above the partition wall 18. Other than that, it is equivalent to FIG.
  • the channel opening / closing valves 115 and 116 are opened, and the channel opening / closing valves 113 and 114 are closed. Then, the high-temperature water heated by the heat exchanger 108 is introduced into the scale trap through the scale trap inlet pipe 106 and allowed to pass while being in contact with the deposit in the deposit holding container. The water after passing is introduced into the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the channel opening and closing valves 115 and 116 are closed and the channel opening and closing valves 113 and 114 are opened during the period when heating is not performed, so that tap water is supplied.
  • Tap water is introduced from the pipe 111, and the rotating body 19 above the partition wall 18 is rotated by the flow of the tap water.
  • the rotating shaft 9 and the rotating blade 10 are rotated to cause the adhering body 7 to flow, and adhere to the adhering body 7 by the collision between the rotating blade 10 and the wall surface of the adhering body holding container 8 and the collision between the adhering bodies. Peel off the scale that was left.
  • the tap water supplied from the tap water supply pipe 111 is introduced into the space below the partition wall 18 of the scale trap 109 through the tap water introduction pipe 20, and the rotary blade 10 is rotated and peeled as described above.
  • the peeled scale is discharged from the scale discharge pipe 112 through the scale storage unit 6.
  • the scale attached to the attachment 7 can be peeled off from the attachment 7. Further, by discharging the scale after stripping with tap water, the scale capture capability can be recovered with a simple device and low cost without requiring power for stripping.
  • the rotary blade 10 is used in the attachment holding container 8 in order to peel the scale from the attachment 7.
  • the present invention is not limited to this.
  • Other methods can be used as long as the adhering body 7 is made to flow, the adhering body 7 collides with the adhering body holding container 8 and the adhering bodies 7 and the scale adhering thereto can be peeled off.
  • a structure is installed in the attachment holding container 8 and moved up and down, the attachment holding container 8 is rotated in the scale trap, or the attachment holding container 8 is moved up and down in the scale trap. The same effect can be obtained even if the above operation is performed.
  • the partition wall 18 is used, and the rotating body 19 is rotated here, but this is not restrictive.
  • Another structure may be used as long as the rotating blade 10 can be rotated or the structure can be moved up and down by the action of the water flow.
  • FIG. 23 is a block diagram of the scale trap 109-14.
  • a scale trap 109-14 according to the fourteenth embodiment will be described with reference to FIG.
  • the scale catcher 109-14 has a configuration similar to the scale catcher 109-12 of the twelfth embodiment.
  • the scale catcher 109-14 is powered by tap water relative to the scale catcher 109-12.
  • the configuration of the scale trap 109-14 will be described.
  • the scale catcher 109-14 includes a peeling mechanism 250.
  • the peeling mechanism 250 includes a moving shaft 12, a contact body 17, a partition wall 18, a moving body 21, and the like.
  • the partition wall 18 is installed in the upper part of the scale trap 109-14, and the moving body 21 connected to the moving shaft 12 is installed in the space above the partition wall 18.
  • a tap water supply pipe 111 and a tap water introduction pipe 20 are connected to the space above the partition wall 18. Other than that is the same as FIG.
  • the channel opening / closing valves 115 and 116 are opened, and the channel opening / closing valves 113 and 114 are closed.
  • the high-temperature water heated by the heat exchanger 108 is introduced into the scale trap 109-14 through the scale trap inlet pipe 106 and is allowed to pass while being in contact with the deposit 7 in the deposit holding container 8.
  • the water after passing is introduced into the hot water supply tank 102 through the scale catcher outlet pipe 117.
  • the flow path opening / closing valves 115 and 116 are closed and the 113 and 114 are opened during the period when the heating is not performed.
  • tap water is introduce
  • the moving shaft 12 and the contact body 17 are pushed up and the attached body 7 is expanded and contracted (elastically deformed), whereby the scale attached to the attached body 7 is peeled off.
  • the tap water supplied from the tap water supply pipe 111 is introduced into the space below the partition wall 18 of the scale trap 109 through the tap water introduction pipe 20, and this peeling is performed while pushing the contact body 17 upward and peeling as described above.
  • the scale is discharged from the scale discharge pipe 112 through the scale storage unit 6.
  • the adhesion body surface adheres to the contact body 17 by causing the contact body surface to contact the contact body 17, and the attachment body 7 to expand and contract or to collide with each other.
  • the scale thus removed can be peeled off from the adherend 7. Further, by discharging the scale after stripping with tap water, the scale capture capability can be recovered with a simple device and low cost without requiring power for stripping.
  • the contact body 17 is pushed up in the adherend holding container 8 in order to peel the scale from the adherend body 7, but the present invention is not limited to this.
  • Other methods can be used as long as the attached body 7 can be expanded and contracted to remove the scale attached thereto.
  • the same effect can be obtained not only by pushing up the contact body 17 but also by moving the contact body 17 up and down or repeating the up and down movement.
  • the partition 18 is used and the moving body 15 is pushed up here.
  • the present invention is not limited to this, and another structure may be used as long as the moving body can be moved by the action of water flow.
  • Embodiment 15 FIG. (Manual mode, timing and frequency of cleaning, supplement of adherent material)
  • the rotation motor 11 is automatically used, but the present invention is not limited to this.
  • a mechanism for manually rotating the rotating part and moving the moving part up and down may be provided, and the user or the maintenance person may perform the operation manually.
  • Embodiments 8 to 14 inflow of tap water, the scale is peeled off from the adhering body 7 in the scale trap when the scale adhering “when the adhering body 7 capture capacity is reduced”, and the water circuit Although the scale was discharged outside, it is not limited to this. Even when the capturing ability of the adherend 7 does not decrease, for example, this operation may be performed immediately after heating, and this operation may be performed once a week. It is also possible to estimate the time to operate from changes in the temperature of the hot water supply tank 102 and the flow rate of water, and to perform scale peeling and discharge automatically. You can also do this by informing them.
  • the above-mentioned “when the capturing ability of the adhering body 7 decreases” is as follows.
  • the flow path resistance of the scale trap 109 gradually increases.
  • the trapping capability of the scale trap 109 decreases, the scale becomes difficult to trap, so the increase in flow path resistance becomes dull and approaches a constant value, so that “decrease in trapping capability of the adherent 7” can be determined.
  • the flow path resistance can also be obtained from the flow rate and the pressure values before and after the scale trap 109 (inlet and outlet of heated water). Alternatively, “when the capturing ability is considered to have decreased” may be determined in advance, and then the scale may be peeled off and discharged.
  • silicone rubber is used for the adherend 7, but the present invention is not limited to this. Any material can be used as long as it has an excellent affinity with the scale, does not deteriorate or break down under the temperature conditions used, and does not adversely affect the human body.
  • Any material can be used as long as it has an excellent affinity with the scale, does not deteriorate or break down under the temperature conditions used, and does not adversely affect the human body.
  • polyethylene, polypropylene, polysulfone, polyvinylidene fluoride, polyamide, cellulose acetate, polyacrylonitrile, vinyl chloride, etc. are used as resins, and isoprene rubber, butadiene rubber, nitrile rubber, ethylene propylene rubber, fluorine rubber as rubbers.
  • the metal copper, aluminum, stainless steel or the like can be used, and as other materials, cellulose (cotton) or the like can be used.
  • the granular and string-like adhering body 7 is used.
  • the present invention is not limited to this, and may be used as long as it has high contact with water and can be held in the scale trap. Can do.
  • a fragment shape (a shape in which the attached body 7 is torn off), a fiber shape, a mesh shape, or the like can be used.
  • the “fragment” is a shape that is torn into pieces.
  • a thin rubber plate (about 0.5 to 3 mm) is not a shape that can be defined as a square or a rectangle, What is cut into an “appropriate shape” with an approximate size (5 mm square) can be mentioned.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 加熱装置1002では、熱交換器108を含む水回路400に、スケール粒子と親和性に優れた付着体7を収容したスケール捕捉器109を設置して、熱交換器108から流出した加熱水に含まれるスケール粒子を付着させる。さらに、付着体7を高温状態に保つことで、付着だけでなくスケール粒子を付着体表面で結晶成長させる。すなわち粒径の大きい沈降性の大きなスケール粒子だけでなく、沈降性の小さな微小なスケール粒子についても捕捉する。また、加熱を行わない期間に、水道水供給配管111からスケール捕捉器109に水道水を供給し、捕捉したスケールを付着体7からスケールを剥離する。そして、剥離後のスケールをスケール排出配管112によって水回路400から排出し、付着体7の捕捉能力を長期にわたって保持する。

Description

スケール除去方法及びスケール除去装置
 この発明は、熱交換器へのスケール付着を抑制する機能を有するスケール除去装置及びスケール除去方法に関する。例えば、スケール除去方法、あるいは、スケール除去装置を適用した給湯器に関する。
 浴室や台所に温水を供給する給湯器のうち、ヒートポンプ式給湯器では熱を水に伝えるための熱交換器が存在する。熱交換器では水に熱を伝えるため、熱伝達面を清浄な状態に保つことが重要である。壁面が汚れると熱伝達面積の減少や、熱伝導の悪化が起こり熱伝達性能の低下を招く。また、汚れが蓄積すると流路が閉塞するおそれもある。
 水中の硬度成分(カルシウムイオンやマグネシウムイオン)が高い地域では、加熱によりスケールと呼ばれるカルシウムやマグネシウムの炭酸塩結晶が熱交換器内部に付着し、上記のような熱伝達性能の低下、流路の閉塞等の不具合を引き起こす。水中ではイオンの状態で存在する硬度成分がスケールとして付着する機構のひとつとして、熱交換器の熱伝達面など高温表面上で炭酸カルシウムなどの分子が析出し、この表面上の分子を核としてスケールの結晶成長が進むと考えられる。一方、加熱過程では、水中にも炭酸カルシウムなどの分子が析出し、析出したスケール成分(以下スケール粒子とする)が水中に浮遊する状態で存在する。
 したがって、スケールの結晶成長は、高温表面上に析出した核に、水中のイオンおよびスケール粒子が結合することで進む。いったん加熱された水が再び熱交換器に導入され加熱されるような場合には、水中のスケール粒子と核が衝突する確率が高まり、結晶成長が促進される。よって、熱交換器での結晶成長を抑えるには、水中で析出したスケール粒子を再び熱交換器に導入させぬように水中から除去することが有効となる。
 スケール粒子を水中から分離する対策としては、たとえば特許文献1がある。特許文献1の図1では、熱交換器の後段にスケール貯留体7を備え、スケールの自重と水流によってスケール粒子をスケール貯留体下部のスケール貯留部6に堆積させ、水中からスケール粒子を除去する技術が開示されている。
特開2008-190780号公報
 特許文献1では、水中からスケール粒子を除去するために、主にスケール自体の沈降性を利用している。一般に粒子の沈降速度は粒子が大きいほど大きいため、粒径の大きなスケール粒子であればこの方法で水中から除去できる。しかし、粒径の小さい微小なスケール粒子に対しては、沈降速度が小さくなるため、この方法では十分な除去効果を得ることは難しく、これら微小なスケール粒子に起因する結晶成長については抑制できないという課題があった。
 本発明は、粒径の大きい、すなわち沈降性の大きなスケール粒子だけでなく、沈降性の小さな微小なスケール粒子についても水中から除去することによって、ヒートポンプ給湯器などで使用される熱交換器へのスケール付着を抑制する方法および装置を提供することを目的とする。
 この発明のスケール除去方法は、
 水を貯めるタンクから熱交換装置に流入して加熱され、前記熱交換装置から流出して前記タンクに戻る途中の加熱水を、スケールを付着する機能を有するスケール付着体が収納された収納容器の内部を通過させて前記タンクに戻すことにより、前記加熱水に含まれるスケールを前記スケール付着体に付着させる付着工程を備えたことを特徴とする。
 本発明によれば、水回路中に高温状態の付着体を導入し、沈降性の小さい微小スケール粒子を含むスケール粒子を水中から除去することで、熱交換装置へのスケール付着を低減でき、熱伝達性能の低下を防ぐことができる。
実験1におけるスケール付着量、低減量を示す特性図。 実験2におけるスケール捕捉容器の温度とスケール低減率を示す特性図。 実験3におけるスケール低減率を示す特性図。 実施の形態1における加熱装置1001の概略構成図。 実施の形態2における加熱装置1002の概略構成図。 実施の形態3における加熱装置1003の概略構成図。 実施の形態4における加熱装置1004の概略構成図。 実施の形態6におけるスケール捕捉器109-6の構成図。 実施の形態7におけるスケール捕捉器109-7の構成図。 実施の形態7におけるスケール捕捉器109-7の透過斜視図。 実施の形態8におけるスケール捕捉器109-81の構成図。 実施の形態8におけるスケール捕捉器109-82の構成図。 実施の形態8におけるスケール捕捉器109-83の構成図。 実施の形態8におけるスケール捕捉器109-83の上面図 実施の形態9におけるスケール捕捉器109-91の概略構成図。 実施の形態9におけるスケール捕捉器109-92の構成図。 実施の形態10におけるスケール捕捉器109-10の構成図。 実施の形態11におけるスケール捕捉器109-11の構成図。 実施の形態11におけるスケール捕捉器109-11の透過斜視図。 実施の形態12におけるスケール捕捉器109-12の構成図。 実施の形態13におけるスケール捕捉器109-13の構成図。 実施の形態13におけるスケール捕捉器109-13の上面図。 実施の形態14におけるスケール捕捉器109-14の構成図。
 以下の実施の形態では、熱交換器(熱交換装置)で加熱された加熱水からスケールを除去するスケール除去方法及びスケール除去装置を説明する。以下に説明するスケール除去方法及びスケールは、熱交換器を含む水回路中に、スケール粒子に対して親和性に優れた付着体を設置してスケール粒子を付着させる。さらに、付着体を高温状態に保つことで、付着だけでなくスケール粒子を付着体表面で結晶成長させながら、スケールを捕捉することを特徴とする。また、加熱を行わない期間に、捕捉したスケールを付着体から剥離し、剥離後のスケールを水回路から排出することを特徴とする。
 以下の説明では、最初の部分では、スケール除去方法(あるいはスケール除去装置)のもととなる実験1~実験3を説明し、その後に実施の形態1~15を説明する。実験及び実施の形態の概要を以下に記載しておく。
(実験1~3)
(1)実験1:実験1は、付着体を用いた場合のスケール捕捉の有効性を示す。
(2)実験2:実験2は、実験1に対し、到達温度を増やした場合を示す。
(3)実験3:実験3は、実験1に対し、付着体の洗浄の効果を示す。
(1)実施の形態1は、スケール捕捉器が使用される加熱装置1001の構成を示す。
(2)実施の形態2は、スケール捕捉器が使用される加熱装置1002の構成を示す。実施の形態2は、実施の形態1に対して、スケール捕捉器に水道水供給配管111、スケール排出配管112等が接続された。加熱装置1002では、付着体7の洗浄、洗浄によって剥離されたスケールの排出が可能である。
(3)実施の形態3は、スケール捕捉器が使用される加熱装置1003の構成を示す。実施の形態3は、実施の形態2に対して、スケール排出配管112の水道水が利用される。
(4)実施の形態4は、加熱装置1004の構成を示す。実施の形態4は、実施の形態1~3に対して、熱源101とプレート型熱交換器108との間に、温水が循環する中間回路300が存在する。
(5)実施の形態5は、脈動運転に関する。
 実施の形態6~15は、付着体7の構造及び付着体7が収納されるスケール捕捉器109の構造に関する。
(6)実施の形態6は、粒状の付着体を用いる場合を示す。
(7)実施の形態7は、紐状の付着体を用いる場合を示す。
(8)実施の形態8は、実施の形態6に、さらに、スケールの剥離工程、剥離したスケールの排出工程を加えた場合を示す。
(9)実施の形態9は、実施の形態7に、さらに、スケールの剥離工程、剥離したスケールの排出工程を加えた場合を示す。
(10)実施の形態10は、実施の形態8(図11)に対して、付着体7に付着したスケールを剥離する剥離機構210を追加した構成を示す。
(11)実施の形態11は、実施の形態9(図15)に剥離機構220を追加した構成を示す。
(12)実施の形態12は、実施の形態9(図15)に、実施の形態11とは別の剥離機構230を追加した構成を示す。
(13)実施の形態13は、実施の形態10(図17)に対して、水道水を動力として剥離機構240を動作させる構成を示す。
(14)実施の形態14は、実施の形態12(図20)に対して、水道水を動力として剥離機構250を動作させる構成を示す。
(15)実施の形態15は、実施の形態1~14で説明した内容のバリエーションを示す。
<実験1>
(付着体によるスケール捕捉の有効性、脈動との併用)
 以下の実施の形態で説明する加熱方法のもととなる実験1を説明する。
 硬度300mg/L、
 pH7.8、
 温度20℃、
 容積200L
の水を、
 容積200Lのタンクに保持し、タンク内の水をプレート型熱交換器に循環させるポンプと水回路を設けた。プレート型熱交換器の1次側にはヒートポンプを模擬したヒータで加熱した高温水を循環させる。一方、タンク内の水が、プレート型熱交換器の2次側に、20L/分の流量で循環するようにし、タンク内の水は約1時間で60℃まで加熱される。タンク容積に対する加熱期間内の循環水量の比率を循環比率と定義すると、この実験では循環比率は6(=(20L/分×60分)/200L)となる。
 プレート型熱交換器のスケール対策として、以下を導入した。
(1)スケール捕捉1:プレート型熱交換器の後段に、付着体として粒状のシリコーンゴムを充填したスケール捕捉容器を設置し、プレート型熱交換器で加熱した後の水を通した。これは、水中に存在するスケール粒子を付着体に付着させ、かつ高温状態で付着体表面でスケールの結晶を成長させながら捕捉することを狙いとする。
(2)スケール捕捉2:これは先行例(特開2008-190780号公報)と同様の方法である。スケール捕捉2では、プレート型熱交換器の後段に、付着体を用いないスケール捕捉容器であって、スケールを下部に貯留する機構を設けたスケール捕捉容器を設置し、プレート型熱交換器で加熱した後の水を通した。これは、水中に存在するスケール粒子をその自重で沈降させながら捕捉することを狙いとする。
(3)脈動:ポンプの流量を4秒間は20L/分、1秒間は40L/分と変化させた運転を繰り返した。これは、流速を瞬間的に増加させることでプレート型熱交換器内部に揃断力を発生させ、熱伝達面へのスケール核の形成を防止するとともに、熱伝達面に付着したスケールを剥離させることを狙いとする。
 実験1では、
(a)対策なし、
(b)脈動、
(c)スケール捕捉1、
(d)スケール捕捉1+脈動、
(e)スケール捕捉2(付着体なし)、
の5条件を行った。
 約1ヶ月運転後にプレート型熱交換器のプレートに付着したスケール量を測定した。
 図1は、「(a)対策なし」のスケール量を100%としたときの各条件でのスケール付着量、低減量を示したものである。
 図1のように、
 「(b)脈動」では低減率は14%にとどまったが、
 「(c)スケール捕捉1」での低減率は72%となり、
 「(e)スケール捕捉2」での低減率9%よりも大幅に高い値であった。
 また、スケール捕捉と脈動の併用では、
 「(d)スケール捕捉1+脈動」では96%の低減率となり、
 これは、
 「(b)脈動」単独と、
 「(c)のスケール捕捉1」単独との和(86%)よりも、さらに10%大きな値であった。
 この結果より、本実験条件のように、循環比率が6のように比較的大きい場合、スケール対策としては、「付着体」を用いたスケール捕捉が有効であること、「スケール捕捉と脈動とを組み合わせること」で単独での効果の和を上回る相乗効果があることを見出した。
<実験2>
(スケール捕捉1に対する温度の影響)
 以下の実施の形態の加熱方法のもととなる、別の実験2を説明する。実験2は、実験1に対し、到達温度を増やした場合を示す。実験1では1時間に60℃に到達の場合を示したが、実験2では、実験1と他は同じ条件で、到達温度を40℃、50℃、60℃(実験1と同じ)、70℃、80℃、90℃と変えた場合を示す。
 実験1と同様、
 硬度300mg/L、
 pH7.8、
 温度20℃、
 容積200Lの水を容積200Lのタンクに保持し、タンク内の水をプレート型熱交換器に循環させるポンプと水回路を設けた。プレート型熱交換器の1次側にはヒートポンプを模擬したヒータで加熱した高温水を循環させる。一方、タンク内の水をプレート型熱交換器の2次側に20L/分の流量で循環させ、約1時間で所定の温度になるまで加熱した。到達温度を40℃、50℃、60℃、70℃、80℃、90℃と変え、到達時のスケール捕捉容器内の温度を測定した。
 プレート型熱交換器のスケール対策として、実験1のスケール捕捉1(プレート型熱交換器の後段に、付着体として粒状のシリコーンゴムを充填したスケール捕捉容器を設置し、プレート型熱交換器で加熱した後の水を通す)を導入した。実験2は、各温度に対して、対策なしと対策ありの2条件を行い、約1ヶ月運転後にプレート型熱交換器のプレートに付着したスケール量を測定した。
 図2は、各温度で対策なしの場合のスケール量を100%としたときの、対策ありの場合のスケール低減率と、スケール捕捉容器温度の関係を示したものである。図2のように、スケール捕捉容器の温度とともにスケール低減率は増加したが、50℃付近では低減率38%に対し、60℃では70%以上の高い低減率となり、これら温度の間で低減率が大きく変化した。また、スケール捕捉容器の温度が60℃以上の場合はスケール低減率は大きく変化しなかった。この結果により、付着体を用いたスケール捕捉では、捕捉容器の温度が50℃以上の場合に、特に高いスケール抑制効果が得られることを見出した。
<実験3>
(付着体の洗浄による再生効果)
 以下の実施の形態の加熱方法のもととなる、別の実験3を説明する。
 実験3は、実験1に対し、付着体の洗浄の効果を示す。
 実験1と同様、
 硬度300mg/L、
 pH7.8、
 温度20℃、
 容積200Lの水を容積200Lのタンクに保持し、タンク内の水をプレート型熱交換器に循環させるポンプと水回路を設けた。プレート型熱交換器の1次側にはヒートポンプを模擬したヒータで加熱した高温水を循環させる。一方、タンク内の水をプレート型熱交換器の2次側に20L/分の流量で循環させ、約1時間で60℃まで加熱した。
 プレート型熱交換器のスケール対策として、実験1のスケール捕捉1(プレート型熱交換器の後段に、付着体として粒状のシリコーンゴムを充填したスケール捕捉容器を設置し、プレート型熱交換器で加熱した後の水を通す)を導入した。また、加熱を行わない期間に、シリコーンゴムを充填した容器の内部に、加熱時とは逆方向に40L/分の流量で水道水を約1時間導入し、容器内のシリコーンゴムを洗浄する工程を加えた。また、洗浄に用いた水道水はタンクには戻さず、通水後はすべて排水した。
 実験3は、運転1ヶ月経過後から、上記の洗浄を行った場合と、全く洗浄を行わない2条件を行った。4ヶ月運転後にプレート型熱交換器のプレートに付着したスケール量を測定した。
 図3は、各条件のスケール低減率を示したものであり、洗浄工程開始時にあたる運転1ヶ月経過後の結果もあわせて示す。図3のように、洗浄を行わない場合は1ヵ月後の72%から4ヵ月後には27%にまで低減したが、洗浄した場合は4ヵ月後も71%の低減率を維持した。
 図3の結果より、付着体を用いたスケール捕捉では、定期的に水道水を導入するなどの操作で捕捉したスケールを付着体から剥離し、水回路外に排出することが、長期的な運転に有効であることを見出した。
 実施の形態1.
(装置全体構成:付着体は交換で対応)
 図4を参照して実施の形態1を説明する。実施の形態1では、スケール捕捉器109が使用される加熱装置1001の構成を示す。なお、各機器の制御に関しては実施の形態1~15では、制御装置(図示していない)が実行する。
 以下の実施の形態1~15では、プレート型熱交換器108(以下、熱交換器108ともいう)から流出してスケール捕捉器109に流入する加熱水の温度は所定の温度以上(実験2に基づく)である。例えば、50℃以上である。
 図4は、実施の形態1の加熱装置1001の概略構成を示す。はじめに、加熱装置1001の構成を説明する。図4のように、熱源101と熱交換器108の1次側が循環配管110で、接続されている。また、給湯タンク102、プレート型熱交換器108の2次側およびスケール捕捉器109が、熱交換器入口配管105、スケール捕捉器入口配管106、スケール捕捉器出口配管117で、それぞれ連結されている。熱交換器入口配管105には循環ポンプ107が、給湯タンク102には水道配管103と給湯配管104が、それぞれ設置されている。また、スケール捕捉器109の内部には、付着体7として、粒状のシリコーンゴムが充填されている。
 次いで、加熱装置1001の運転動作を、図4を参照して説明する。水道水を水道配管103から給湯タンク102に導入し、満水となった時点で熱源101を運転し、循環配管110中に高温の冷媒を循環させる。これと同時に循環ポンプ107を動作させ、給湯タンク102内の水を熱交換器入口配管105を通してプレート型熱交換器108に供給し、冷媒との熱交換によって加熱する。プレート型熱交換器108から出た水をスケール捕捉器入口配管106を通してスケール捕捉器109に導入し、スケール捕捉器内の付着体7と接触させた後(付着工程)、スケール捕捉器から出た水をスケール捕捉器出口配管117を通して給湯タンク102へ戻す。給湯タンク102内の水温が所定の温度になるまで、冷媒、給湯タンク102内の水の循環を続け、加熱終了後、給湯タンク102内の水を適宜給湯配管104を通して温水として使用する。
 このように給湯タンク102の水をプレート型熱交換器108で加熱する際、熱交換器108から出る高温の水中には加熱によってスケール粒子が生じている。このスケール粒子をこのまま給湯タンク102に戻すと、このスケール粒子が熱交換器108に導入されることになり、熱交換器108内部のスケール付着を促進してしまう。
 しかし、本実施の形態1のように、熱交換器108後段にスケール捕捉器を設け、スケール粒子を含む水を付着体と接触させながら通過させることで、水中のスケール粒子を付着体の表面に付着させ、水中から取り除くことができる。さらに、付着体を高温に保ちながら水を通過させることで、スケールの結晶化を促進できる。すなわち、付着体に付着したスケールに水中のスケール粒子が接触し、取り込まれてスケールの結晶を形成する現象(付着体表面での結晶成長)を促進できる。
(付着と結晶化)
 したがって、単なる「付着」だけでなく、「結晶化」を加えた2つの作用によって、水中のスケール粒子を付着体で捕捉することができ、水中からスケール粒子を除去することが可能となる。その結果、熱交換器108へのスケール付着を、付着や結晶化の作用がない従来のスケール捕捉器よりも大幅に低減でき、熱交換器108の熱伝達性能を維持できる。
 なお、スケール付着にともない、スケール捕捉器中の付着体の捕捉能力が低下した場合は、適宜、新しい付着体と交換することができる。また、付着体をいったん引き抜いて洗浄後、再び装着しても構わない。
 実施の形態2.
(装置全体構成:付着体の洗浄+排水)
 図5は、実施の形態2の加熱装置1002の概略構成図を示す。図5を参照して加熱装置1002の構成を説明する。加熱装置1002は、実施の形態1の加熱装置1002に対して、さらに、スケール捕捉器109に水道水供給配管111、スケール排出配管112等が接続された。加熱装置1002では、付着体7の洗浄、洗浄によって剥離(剥離工程)されたスケールの排出(排出工程)が可能である。
 図5のように、スケール捕捉器109の上部に水道水供給配管111が、スケール捕捉体の下部にスケール排出配管112が、それぞれ接続されている。水道水供給配管111の一方は水道配管103に、スケール排出配管112の一方は各家の排水口に、それぞれつながっている。各家としたのは、各家に加熱装置1002が配置されている状態を想定したからである。実施の形態1、3、4も同様である。また、水道水供給配管111、スケール排出配管112、スケール捕捉器入口配管106、スケール捕捉器出口配管117には、流路開閉バルブ113、114、115、116がそれぞれ設置されている。それ以外は、図4の加熱装置1001と同等である。
 次いで、加熱装置1002の運転動作について、図5を参照しながら説明する。実施の形態1と同様に、循環ポンプ107を動作させ給湯タンク102内の水を熱交換器108に供給し、冷媒との熱交換によって加熱する。このとき、熱交換器108から出た水をスケール捕捉器109を通して給湯タンク102へ戻す。この工程での流路開閉バルブ115、116は開、流路開閉バルブ113、114は閉である。
 次に、「加熱を行わない期間」に、流路開閉バルブ115、116を閉、流路開閉バルブ113、114を開とし、水道配管103から水道水供給配管111を通して、水道水(流体の一例)をスケール捕捉器の上部に導入する。スケール捕捉器を通過した水道水をスケール排出配管112を通して各家の排出口に排出(排出工程)する。なお、各バルブの開閉は、制御装置で自動的に行ってもよいし、例えば定期的に手動で行ってもよい。なお、後述する実施の形態3を示す図6の場合は、制御装置で自動的に各バルブの開閉を行うことを想定している。また、加熱を行わない期間(非加熱期間あるいは非加熱工程)とは、熱交換器108に、加熱用の熱媒体と被加熱水(加熱されるべき水道水)が循環されない期間を意味する。給湯タンク102内の水道水が所定の温度になれば、このように熱交換器108への熱媒体と水導水の流れを停止する。
 本実施の形態2のように、熱交換器108の後段にスケール捕捉器を設け、スケール粒子を含む水を付着体と接触させることで、実施の形態1と同様の効果を得ることができる。
(洗浄、排水の効果)
 さらに、本実施の形態2のように、加熱を行わない期間に、スケール捕捉器内部に水道水を洗浄水として導入し、付着体からスケールを剥離し、これを水回路外に排出することで、付着体を再生することができる。すなわち付着体の付着機能を再生できる。付着機能の再生によって、長期間にわたって付着体の交換をおこなわずともスケール捕捉を行うことができるので、熱交換器108の熱伝達性能をより簡単な操作で維持できる。
(水回路400)
 図5を参照して、水回路400について説明しておく。「水回路400」とは、図5において、給湯タンク102→熱交換器108→スケール捕捉器109→給湯タンク102の経路である。さらに具体的には、→「水回路400」とは給湯タンク102→熱交換器入口配管105→循環ポンプ107→熱交換器108→スケール捕捉器入口配管106→スケール捕捉器109→スケール捕捉器出口配管117→給湯タンク102の経路における配管、機器(流路開閉バルブ115,116も含む)をまとめて水回路400という。この水回路400は、図4、図6、図7の実施の形態1,3,4についても同様である。ただし、図4、図7には流路開閉バルブ115,116は使用されていない。
 実施の形態3.
(装置全体構成:付着体の洗浄+給水使用)
 図6は、実施の形態3の加熱装置1003の概略構成図を示す。図6を参照して実施の形態3の加熱装置1003の構成を説明する。実施の形態3の加熱装置1003は、実施の形態2の加熱装置1002に対して、スケール排出配管112の水道水が利用される。図6のように、加熱装置1003では、スケール捕捉器109の下部に設置されたスケール排出配管112が、各家の給水ラインにつながっている。それ以外は、図5の加熱装置1002と同等である。
 次いで、加熱装置1003の運転動作について、図6を参照しながら説明する。実施の形態2と同様に、循環ポンプ107を動作させ、給湯タンク102内の水を熱交換器108に供給し、冷媒との熱交換によって加熱する。このとき、熱交換器108から出た水をスケール捕捉器109を通して給湯タンク102へ戻す。この工程での流路開閉バルブ115、116は開、流路開閉バルブ113、114は閉である。
 次に、加熱を行わない期間に、トイレや洗面などで水道水を使用する場合、水道水の使用に連動して、流路開閉バルブ115、116を閉、流路開閉バルブ113、114を開とし、水道配管103から水道水供給配管111を通して水道水をスケール捕捉器109の上部に導入する。スケール捕捉器を通過した水道水は、スケール排出配管112を通して各家のトイレや洗面などの給水として使用する。
 本実施の形態3のように、熱交換器108後段にスケール捕捉器を設け、スケール粒子を含む水を付着体と接触させることで、実施の形態1と同様の効果を得ることができる。
 また、本実施の形態3のように加熱を行わない期間に、スケール捕捉器内部に水道水を洗浄水として導入し、付着体からスケールを剥離し(剥離工程)、これを水回路外に排出(排出工程)することで、実施の形態2と同様の効果を得ることができる。
(排水の利用)
 さらに、洗浄後の水道水はスケールを含むものの、水道水として利用できる。そのため、本実施の形態3のように、水道水の使用に連動させて洗浄を行い、洗浄後の水道水を各家の給水として使用することで、洗浄用として水道水の使用量を増加させることなく、熱交換器108の熱伝達性能を維持できる。なお、前記の「水道水の使用に連動させて」とは以下の内容である。水道水の供給は、例えば水道ラインにおける流量センサ、圧力センサなど、水が流れていることを検知できる検知装置(手段)で行う。この検知装置の検知信号を制御装置で取り込み、制御装置から流路開閉バルブ113、114に対して、開閉信号を出す。
 実施の形態3の加熱装置1003では、流路開閉バルブ115、116、制御装置が、加熱水のスケール捕捉器109内の通過を停止させる停止部を構成する。また、水道水供給配管111、スケール排出配管112、流路開閉バルブ113、114、制御装置が、付着体7からスケールを剥離させる剥離部を構成する。また、停止部は、剥離されたスケールを排出する排出部を兼ねる。
 実施の形態4.
(装置全体構成:2段加熱)
 図7は、実施の形態4の加熱装置1004の概略構成図を示す。図7を参照して実施の形態4の加熱装置1004の構成を説明する。実施の形態4の加熱装置1004は、実施の形態1~3の加熱装置1001~1003に対して、熱源101と熱交換器108との間に、温水が循環する中間回路300が存在する。
 実施の形態1~3では、熱交換器108の1次側に熱源からの冷媒を循環させたが、この構成に限るものではない。欧州のように、ヒートポンプで加熱された水を暖房と給湯との共通熱源として使用する場合には、ヒートポンプで加熱された水を、同様に熱交換器108の1次側に循環させてもよい。図7は、この概略構成を示している。
 はじめに加熱装置1004の構成を説明する。
 図7のように、熱源101とプレート熱交換器(2)119の1次側が循環配管(2)118で、プレート熱交換器(2)119の2次側と熱交換器108の1次側が循環配管110で、それぞれ接続され、循環配管110には循環ポンプ(2)122が設置されている。
 さらに循環配管は暖房循環配管121と分岐され、分岐点には切替えバルブ123が設置され、暖房循環配管は暖房系120と接続されている。
 その他は、図4と同等である。
 次いで、加熱装置1004の運転動作を、図7を参照しながら説明する。水道水を水道配管103から給湯タンク102に導入し、満水となった時点で熱源101を運転し、循環配管(2)118の中に高温の冷媒を循環させる。次に、切替えバルブ123を操作して、暖房循環配管121を閉じ、循環ポンプ(2)122を動作させ、熱交換器(2)119と熱交換器108、およびその間の循環配管110の中に水を循環させる。これと同時に、循環ポンプ107を動作させ、給湯タンク102内の水を熱交換器入口配管105を通して熱交換器108に供給し、循環配管中の循環水との熱交換によって加熱する。熱交換器108から出た水をスケール捕捉器入口配管106を通してスケール捕捉器109に導入し、スケール捕捉器109内の付着体7と接触させた後、スケール捕捉器109から出た水をスケール捕捉器出口配管117を通して給湯タンク102へ戻す。所定の温度になるまで、冷媒、給湯タンク102内の水の循環を続け、加熱終了後、給湯タンク102内の水を適宜給湯配管104を通して温水として使用する。
 本実施の形態4のように、ヒートポンプで加熱した水を暖房と給湯の共通熱源として使用する場合においても、熱交換器108後段にスケール捕捉器109を設け、スケール粒子を含む水を付着体と接触させることで、水中のスケール粒子を付着体表面に付着させ、水中から取り除くことができる。
 さらに、付着体を高温に保ちながら水を通過させることで、スケールの結晶化を促進し、単なる「付着」だけでなく「結晶化」を加えた2つの作用によって水中のスケール粒子を付着体で捕捉でき、水中からスケール粒子を除去することが可能となる。その結果、熱交換器108へのスケール付着を、付着や結晶化の作用がない従来のスケール捕捉器よりも大幅に低減でき、熱交換器108の熱伝達性能を維持できる。
 また、スケール付着にともないスケール捕捉器中の付着体の捕捉能力が低下した場合は、適宜、新しい付着体へ交換することができる。また、付着体をいったん引き抜いて洗浄後再び装着しても構わない。
 なお、図7はスケール捕捉器109の付着体7からのスケール剥離、水回路からのスケール排出は示していない。しかし、ヒートポンプ(熱源101の例)で加熱した水を暖房と給湯の共通熱源として使用する場合においても、図5、図6のように、スケール捕捉器に水導水供給配管、スケール排出配管を設け、付着体からのスケール剥離、水回路外への排出を行ってもよい。
 実施の形態5.
(脈動工程の追加)
 次に実施の形態5を説明する。実施の形態5は脈動に関する。実施の形態1~4では、給湯タンク102、熱交換器108、スケール捕捉器109およびこの間の水回路中の水流の状態は特に示さなかった。しかし、実施の形態1~4では、通常の運転ように一定流量で流してもよいし、また、脈動、すなわち、流量を4秒間は20L/分、1秒間は40L/分、あるいは4秒間は20L/分、1秒間は5L/分のように、周期的に変化させる運転を繰り返してもよい。この場合、スケール捕捉と脈動運転(脈動工程)とを併用することで、両者の相乗効果によって、いっそう高いスケール抑制効果が得られる。脈動は、制御装置が循環ポンプ107を制御することで発生させる。なお、脈動は、少なくとも熱交換器108の内部を通過中の加熱水に生じさせることができればよい。例えば、熱交換器108の入口側に対して出口側(加熱水の高温側)で脈動を発生させてもよい。
 実施の形態6.
(スケール捕捉器の構造:粒状、洗浄なし)
 以下の実施の形態6~15は、付着体7の構造及び付着体7が収納されるスケール捕捉器109の構造に関する。以下の実施の形態6~15は、例えば、実施の形態1~4で説明した加熱装置1001~1004に使用される。実施の形態6~14では、付着体7として、粒状、紐状のものを示している。以下の図では、右上がりの斜線が粒状の付着体7を示し、右下がりの斜線が紐状の付着体を示す。まず図8を参照して、実施の形態6のスケール捕捉器109-6を説明する。実施の形態6は、粒状の付着体7を用いる場合を示す。粒状の付着体7の直径は、例えば、1~5mm程度である。
 図8は、スケール捕捉器109-6の概略構成図を示す。
 はじめに、実施の形態6のスケール捕捉器109-6の構成を説明する。図8のように、スケール捕捉器109-6にはスケール捕捉器入口配管106、スケール捕捉器出口配管117が接続されている。スケール捕捉器入口配管106、スケール捕捉器出口配管117の他方は、図4の加熱装置1001のように、それぞれ熱交換器108、給湯タンク102に接続されるが、ここではこれらは省略する。スケール捕捉器109-6の内部には整流体4、付着体保持容器8が装着され、付着体保持容器8には付着体7として粒状のシリコーンゴムが充填されている。また、付着体保持容器8は、金属製のメッシュなどで形成され、付着体7を保持しつつ、水、およびスケール粒子が自由に通過できるようになっており、さらに付着体保持容器8は、スケール捕捉器109-6から着脱可能な構造となっている。
 次いで、実施の形態6のスケール捕捉器109-6が加熱装置1001に使用された場合の、加熱装置1001の運転動作を、図8を参照しながら説明する。
 加熱工程において、熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器下部に導入し、整流体4を経て付着体保持容器内の付着体と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない付着体7の捕捉能力が低下した際には、加熱を行わない期間に付着体保持容器をスケール捕捉器109-6から取り出し、新しい付着体を充填した付着体保持容器を装着する。また、付着体をいったん引抜いて洗浄後再び装着してもよい。
 本実施の形態6のように、整流体を用いて加熱後の水を均一に粒状の付着体に接触することで、スケールの付着、結晶成長をより安定に行うことができる。また、付着体を付着体保持容器8ごと交換することで、スケール捕捉能力をすばやく、かつ容易に回復することができる。
 なお、図8では整流体4を用いたが、加熱後の水を均一に付着体に接触することができれば、整流体4に限らず他の装置を用いてもよい。また、スケール捕捉器109の下部の構造などによって水の流れを均一にできる場合は、整流装置はなくともよい。
 実施の形態7.
(捕捉器構造:紐状、洗浄なし)
 図9、図10を参照して実施の形態7のスケール捕捉器109-7を説明する。
 図9は、スケール捕捉器109-7の構成を示す。実施の形態7は、実施の形態6に対して、付着体7が紐状である点が異なる。紐状の付着体7の直径は、例えば、0.2~1.0mmである。他は実施の形態6と同等である。実施の形態7のスケール捕捉器109-7は、実施の形態6のスケール捕捉器109-6と同様に、洗浄がない(加熱装置1001に対応)構成である。
 はじめに実施の形態7のスケール捕捉器109-7の構成を説明する。図9のように、スケール捕捉器109-7内には整流体4、付着体保持容器8が装着され、付着体保持容器の左右の壁面を橋渡しするようなかたちで紐状のシリコーンゴムが充填されている。
 図10は、スケール捕捉器109-7を透過した斜視図を模式的に示した図である。付着体保持容器8は便宜的に2つの平面で表現している。図中の破線の矢印方向は、加熱水の流れる方向を示す。図10のX方向矢視が図9である。
 なお、図10では、付着体7が加熱水の流れる破線の矢印方向に、間隔をあけて配置されているが、これは見やすいようにしたためである。現実には、破線の矢印方向に、付着体7は密集して配置される。
 図10に示すように、スケール捕捉器109-7では、紐(付着体7)の付け根は、水流の抵抗にならない範囲でできるだけ密集させて、付着体保持容器8の壁に取り付ける。付着体保持容器8の左右の壁を橋渡しするような形で、非常に多くの細い紐状の付着体7が存在するというイメージである。もちろん図9、図10は一例であり、この構成に限定されない。付着体保持容器8の上部、下部は開放となっており、付着体7を保持しつつ、水、スケール粒子が自由に通過できるようになっており、さらに付着体保持容器8はスケール捕捉器から着脱可能な構造となっている。それ以外は図8と同等である。
 加熱装置1001での運転動作はスケール捕捉器109-6の場合と同様である。図9を参照しながら説明する。加熱工程において、熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器下部に導入し、整流体を経て付着体保持容器内の付着体と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない付着体の捕捉能力が低下した際には、加熱を行わない期間に付着体保持容器をスケール捕捉器109-7から取り出し、新しい付着体を充填した付着体保持容器8を装着する。また、付着体をいったん引抜いて洗浄後再び装着してもよい。
 本実施の形態7のように、整流体を用いて加熱後の水を均一に「紐状の付着体」に接触することで、スケールの付着、結晶成長をより安定に行うことができる。また、付着体を付着体保持容器ごと交換することで、スケール捕捉能力をすばやく、かつ容易に回復することができる。
 なお、図9では整流体を用いたが、実施の形態6と同様に、加熱後の水を均一に付着体に接触することができれば、整流体4に限らず他の装置を用いてもよい。また、スケール捕捉器109-7の下部の構造などによって水の流れを均一にできる場合は、整流装置はなくともよい。
 実施の形態8.
(捕捉器構造:粒状、付着体衝突によるスケール剥離(手段:水道水の流れ))
 図11~図14を参照して、実施の形態8のスケール捕捉器109-81~109-83を説明する。これらは実施の形態6に水道水を導入する構成である。
 図11は、スケール捕捉器109-81の構成を示す。
 図12は、スケール捕捉器109-82の構成を示す。
 図13は、スケール捕捉器109-83の構成を示す。
 図14は、図13のスケール捕捉器109-83のZ方向矢視(上面図)を示す。実施の形態8は、スケール捕捉器に水道水が導入され、スケールの剥離、排出が行われる。すなわち、図5の加熱装置1002(あるいは図6の加熱装置1003)が対応する。
 はじめにスケール捕捉器109-81の構成を説明する。図11のように、スケール捕捉器109-81には、スケール捕捉器入口配管106、スケール捕捉器出口配管117、水道水供給配管111、スケール排出配管112が、接続される。水道水供給配管111、スケール排出配管112、スケール捕捉器入口配管106、スケール捕捉器出口配管117には、流路開閉バルブ113、114、115、116が、それぞれ設置されている。スケール捕捉器入口配管106、スケール捕捉器出口配管117、水道水供給配管111、スケール排出配管112の他方は、図5、図6のように、それぞれ熱交換器108、給湯タンク102、水道配管、各家の排水口または供給ラインに接続されるが、ここではこれらは省略する。スケール捕捉器109の内部には付着体保持容器8が装着される。付着体保持容器8には付着体7として「粒状のシリコーンゴム」が充填されている。付着体保持容器8は金属製のメッシュなどで形成され、付着体を保持しつつ、水、およびスケール粒子が自由に通過できるようになっている。さらに、スケール捕捉器109内にはスケール捕捉器入口配管106との接続位置よりも下の部分にスケール貯留部6が設けられ、この先にスケール排出配管112が接続されている。
 次いで、図11を参照しながら、加熱装置1002(あるいは加熱装置1003)の運転動作を、説明する。加熱工程において、流路開閉バルブ115、116を開、流路開閉バルブ113、114を閉とする。熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器に導入し、付着体保持容器内の付着体と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない付着体の捕捉能力が低下した際には、加熱を行わない期間に、流路開閉バルブ115、116を閉、流路開閉バルブ113、114を開とする。そして、水道水供給配管111から水道水を導入し、水道水を付着体と接触させ、付着体からスケールを剥離する(剥離工程)。同時に、スケール排出配管112から、剥離したスケールを排出(排出工程)する。
 本実施の形態8のように、水道水の流れを用いて付着体表面と水道水の接触、および付着体の流動による付着体と付着体保持容器の衝突や付着体どうしの衝突を起すことによって、付着体に付着したスケールを付着体から剥離できる。また、剥離後のスケールを水道水で排出することで、スケール捕捉能力を回復することができる。
(剥離方式の種類)
 図11のスケール捕捉器109-81では、付着体からスケールを剥離するために、スケール捕捉器109-81の上部から水道水を供給し、この水道水をスケール捕捉器の下部から剥離したスケールとともに排出した。しかし、これに限るものではなく、付着体表面に水道水を接触させ、さらに付着体を流動させ、付着体を付着体保持容器や付着体どうしと衝突させ、そこに付着していたスケールを剥離させることができれば他の方法も用いることができる。図12に示すスケール捕捉器109-82のように下部から水道水を導入し、上部から排出してもよい。図13、図14に示すスケール捕捉器109-83では、側部から接線方向に水道水を導入して旋回流を生じさせ、下部から排出するようにしている。このようなスケール捕捉器109-83の構成でもよい。
 実施の形態9.
(捕捉器構造:紐状、付着体接触によるスケール剥離(手段:水道水の流れ))
 図15、図16を参照して、実施の形態9のスケール捕捉器109-9、スケール捕捉器109-92を説明する。
 図15は、スケール捕捉器109-91の構成を示す。
 図16は、スケール捕捉器109-92の構成を示す。実施の形態9のスケール捕捉器109-91、スケール捕捉器109-92は、それぞれ、実施の形態8のスケール捕捉器109-81、スケール捕捉器109-82に対応する。実施の形態8が粒状の付着体7を使用するのに対して、実施の形態9では紐状の付着体7を使用する。従って、スケール捕捉器109-91、スケール捕捉器109-92とも図5の加熱装置1002(あるいは図6の加熱装置1003)が対応する。
 図15を参照してスケール捕捉器109-91を説明する。スケール捕捉器109-91内には、図10で示したように、付着体保持容器8が装着され、付着体保持容器の左右の壁面を橋渡しするようなかたちで「紐状のシリコーンゴム」が充填されている。付着体保持容器8の上部、下部は開放となっており、付着体を保持しつつ、水、スケール粒子が自由に通過できるようになっている。それ以外は図11のスケール捕捉器109-81と同等である。
 次いで、図15を参照しながら、加熱装置1002の運転動作を説明する。以下の加熱装置1002の動作は、実施の形態8と同様である。加熱工程において、流路開閉バルブ115、116を開、流路開閉バルブ113、114を閉とし、熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器に導入し、付着体保持容器内の付着体と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない付着体の捕捉能力が低下した際には、加熱を行わない期間に流路開閉バルブ115、116を閉、流路開閉バルブ113、114を開とする。そして、水道水供給配管111から水道水を導入し、水道水を付着体と接触させ、付着体からスケールを剥離する。同時に、スケール排出配管112から、剥離したスケールを排出する。
 本実施の形態9のように、水道水の流れを用いて付着体表面と水道水の接触、および付着体の伸縮による付着体と付着体保持容器の衝突や付着体どうしの衝突を起すことによって、付着体に付着したスケールを付着体から剥離できる。また、剥離後のスケールを水道水で排出することで、スケール捕捉能力を回復することができる。
 図15のスケール捕捉器109-91では、付着体からスケールを剥離するために、スケール捕捉器の上部から水道水を供給し、この水道水をスケール捕捉器の下部から剥離したスケールとともに排出した。しかし、これに限るものではない。付着体表面に水道水を接触させ、さらに付着体を伸縮させ、付着体を付着体保持容器や付着体どうしと衝突させ、そこに付着していたスケールを剥離させることができれば他の方法も用いることができる。図15は、スケール捕捉器109-92を示す。例えば、図16のスケール捕捉器109-92のように下部から導入し、上部から排出するようにしてもよい。
 実施の形態10.
(捕捉器構造:粒状、付着体衝突によるスケール剥離(手段:モータによる回転運動))
 図17は、実施の形態10のスケール捕捉器109-10を示す。図17を参照して、実施の形態10のスケール捕捉器109-10を説明する。スケール捕捉器109-10は、実施の形態8のスケール捕捉器109-81に剥離機構210を設けた構成である。
 図17を参照してスケール捕捉器109-10の構成を説明する。実施の形態8と同様に、スケール捕捉器109-10には、スケール捕捉器入口配管106、スケール捕捉器出口配管117、水道水供給配管111、スケール排出配管112が、接続されている。水道水供給配管111、スケール排出配管112、スケール捕捉器入口配管106、スケール捕捉器出口配管117には、流路開閉バルブ113、114、115、116が、それぞれ設置されている。スケール捕捉器入口配管106、スケール捕捉器出口配管117、水道水供給配管111、スケール排出配管112の他方は、図5、図6のようにそれぞれ熱交換器108、給湯タンク102、水道配管、各家の排水口または供給ラインに接続されるが、ここではこれらは省略する。スケール捕捉器109-10内には付着体保持容器8が装着され、付着体保持容器8には付着体7として粒状のシリコーンゴムが充填されている。付着体保持容器8は金属製のメッシュなどで形成され、付着体を保持しつつ、水、およびスケール粒子が自由に通過できるようになっている。
(剥離機構210)
 また、スケール捕捉器109-10は、付着体7からスケールを剥離する剥離機構210を備えている。剥離機構210は、回転軸9、回転羽根10、回転モータ11を備える。付着体保持容器8の内部には回転羽根10を備えた回転軸9が保持され、回転軸9は、スケール捕捉体の上部外側に備えられた回転モータ11に接続されている。さらに、スケール捕捉器109内にはスケール捕捉器入口配管106との接続位置よりも下の部分にスケール貯留部6が設けられ、この先にスケール排出配管112が接続されている。
 次いで、加熱装置1002の運転動作を、図17を参照しながら説明する。加熱工程において、実施の形態8と同様に、流路開閉バルブ115、116を開、流路開閉バルブ113、114を閉とし、熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器に導入し、付着体保持容器内の付着体と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない、付着体の捕捉能力が低下した際には、加熱を行わない期間に流路開閉バルブ115、116を閉とする。そして、回転モータ11を動作させ、回転羽根10を回転させる。回転によって、付着体が流動し、回転羽根、付着体保持容器の壁面との衝突、および付着体どうしの衝突等による衝撃によって、付着体に付着していたスケールを剥離させる。所定時間回転を行った後、回転を停止し水を静止することで、付着体から剥離したスケールをスケール貯留部6に沈殿(貯留)させる(貯留工程)。その後、流路開閉バルブ113、114を開とし、水道水供給配管111から水道水を導入し、スケール排出配管112から、貯留したスケールを排出する。
 本実施の形態10のように、回転羽根10を用いて付着体表面と回転羽根の接触、および付着体の流動による付着体と付着体保持容器の衝突や付着体どうしの衝突を起すこと(衝撃の付与)によって、付着体に付着したスケールを付着体から剥離でき、剥離後のスケールを水道水で排出することで、スケール捕捉能力を回復することができる。
 図17では、付着体からスケールを剥離するために、付着体保持容器内で回転羽根を用いたが、これに限るものではない。付着体を流動させ、付着体を付着体保持容器や付着体どうしと衝突させ、そこに付着していたスケールを剥離させることができれば他の方法も用いることができる。例えば、付着体保持容器内に構造物を設置しこれを上下させる、スケール捕捉器の中で付着体保持容器を回転させる、またはスケール捕捉器の中で付着体保持容器を上下させる操作を行っても同等の効果が得られる。
 実施の形態11.
(捕捉器構造:紐状、付着体接触によるスケール剥離(手段:モータによる左右運動)
 図18、図19を参照して実施の形態11のスケール捕捉器109-11を説明する。スケール捕捉器109-11(紐状)は、スケール捕捉器109-10(粒状)に対応する。
 図18は、スケール捕捉器109-11の構成を示す図である。スケール捕捉器109-11は、実施の形態9のスケール捕捉器109-91に、剥離機構220を設けた構成である。
 図19は、スケール捕捉器109-11を透過した斜視図を模式的に示した図であり、図10に剥離機構220を加えた状態である。説明の便宜のため、剥離機構220のうち、移動体15、接触体17を記載した。
 スケール捕捉器109-11の構成を説明する。図18のように、スケール捕捉器109-11の内部には、付着体保持容器8が装着され、図10で説明したように、付着体保持容器8の左右の壁面を橋渡しするような構成で、紐状のシリコーンゴムが充填されている。付着体保持容器8の上部、下部は開放となっており、付着体を保持しつつ、水、スケール粒子が自由に通過できるようになっている。
(剥離機構220)
 スケール捕捉器109-11は剥離機構220を備えている。剥離機構220は、回転モータ11、移動軸12、回転-直動変換機13、移動体15を備えている。図19に示すように、移動体15を付着体7の長手方向(図19のY方向)に往復移動し、接触体17を付着体7と接触した状態で移動させることで、付着体表面についたスケールをこすり落とす。具体的な動作は、次のようである。図18に示すように、付着体保持容器8の上部には移動軸12が設置され、ここには移動軸12を左右に移動する移動体15、移動体15を移動させるための回転モータ11および回転-直動変換機13が備えられている。また、移動体15には接触体17として細長い針金状の金属などがブラシのように多数設置され、付着体7と接触している。それ以外は図15と同等である。
 次いで、加熱装置1002の運転動作を、図18を参照しながら説明する。加熱工程において、流路開閉バルブ115、116を開、流路開閉バルブ113、114を閉とする。そして、熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器に導入し、付着体保持容器内の付着体と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない付着体の捕捉能力が低下した際には、加熱を行わない期間に流路開閉バルブ115、116を閉とする。そして、回転モータ11を動作させ、移動体15を左右に移動させる。移動体15とともに接触体17を付着体と接触しながら移動させることによって、付着体に付着していたスケールを剥離させる。所定時間、左右移動を繰り返した後、移動を停止して水を静止し、付着体から剥離したスケールをスケール貯留部6に沈殿させる。その後、流路開閉バルブ113、114を開とし、水道水供給配管から水道水を導入し、スケール排出配管から、貯留したスケールを排出する。
 本実施の形態11のように、移動体15、接触体17を用いて付着体表面と接触体の接触、および付着体の揺動による付着体どうしの衝突を起すことによって、付着体に付着したスケールを付着体から剥離できる。また、剥離後のスケールを水道水で排出することで、スケール捕捉能力を回復することができる。
 実施の形態12.
(捕捉器構造:紐状、付着体伸縮によるスケール剥離(手段:モータによる上下運動))
 図20は、スケール捕捉器109-12の構成を示す。図20を参照して実施の形態12のスケール捕捉器109-12を説明する。スケール捕捉器109-12は、スケール捕捉器109-11に類似の構成である。スケール捕捉器109-12は、スケール捕捉器109-11と、剥離機構が異なる。スケール捕捉器109-11の剥離機構220は接触体が横方向に動いたが、スケール捕捉器109-12では上下方向に動く。
 スケール捕捉器109-12の構成を説明する。図20のように、スケール捕捉器109内には、付着体保持容器8が装着され、付着体保持容器の左右の壁面を橋渡しするようなかたちで紐状のシリコーンゴムが充填されている。付着体保持容器8の上部、下部は開放となっており、付着体を保持しつつ、水、スケール粒子が自由に通過できるようになっている。
(剥離機構230)
 スケール捕捉器109-12は、剥離機構230を備える。剥離機構230は、回転モータ11、移動軸12、回転-直動変換機13、接触体17を備える。付着体保持容器8の内部には、移動軸12が設置され、これには接触体17、移動軸12を移動させるための回転モータ11および回転-直動変換機13が備えられている。なお、接触体17は金属製のメッシュなどで形成され、水、およびスケール粒子が自由に通過できるようになっている。それ以外は図18と同等である。
 次いで、加熱装置1002の運転動作を、図20を参照しながら説明する。加熱工程において、流路開閉バルブ115、116を開、流路開閉バルブ113、114を閉とする。そして、熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器109-12に導入し、付着体保持容器8内の付着体7と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない付着体7の捕捉能力が低下した際には、加熱を行わない期間に、流路開閉バルブ115、116を閉とし、回転モータ11を動作させ、接触体17を上下に移動させる。接触体17の上下移動にともない付着体7を伸縮(弾性変形)させることによって、付着体7に付着していたスケールを剥離させる。
 伸縮について、具体的には、以下の様である。図10で説明したように、付着体7は付着体保持容器8の左右の壁を橋渡しするような形で存在し、かつゴムひものように伸縮(弾性変形)する。この中に接触体17を配置しておき、あるタイミングで上方に移動させると、接触体17の上側に接触する付着体7は上に伸びながら移動する(両端は固定のまま)。次に接触体17を元の位置まで下げると、付着体7は縮みながら元の長さに戻る。このように、接触体17を上下に移動させると、これに接触する付着体7が伸縮する。付着体表面に付着したスケールは、付着体7の伸縮によって、付着体7の表面から剥がれ落ちる。
 所定時間、上下移動を繰り返した後、移動を停止して水を静止し、付着体7から剥離したスケールをスケール貯留部6に沈殿させる。その後、流路開閉バルブ113、114を開とし、水道水供給配管から水道水を導入し、スケール排出配管から、貯留したスケールを排出する。
 本実施の形態12のように、接触体17を用いて付着体表面と接触体17の接触、および付着体7の伸縮による付着体7と付着体保持容器8の衝突や付着体どうしの衝突を起すことによって、付着体に付着したスケールを付着体から剥離でき、剥離後のスケールを水道水で排出することで、スケール捕捉能力を回復することができる。
 実施の形態13.
(捕捉器構造:粒状、付着体衝突によるスケール剥離(手段:水流による回転運動))
 図21、図22を参照して実施の形態13のスケール捕捉器109-13を説明する。
 図21は、スケール捕捉器109-13の構成を示す。
 図22は、図21のZ方向矢視(上面図)である。スケール捕捉器109-13は、実施の形態10のスケール捕捉器109-10に類似の構成である。スケール捕捉器109-13は、スケール捕捉器109-10に対して、水道水を動力とする。
 スケール捕捉器109-13の構成を説明する。スケール捕捉器109-13は、剥離機構240を備える。剥離機構240は、回転軸9、回転羽根10、隔壁18、回転体19等を備えている。図21のように、スケール捕捉器109内の上部に隔壁18が設置される。隔壁18の上部の空間には、回転軸9と接続した回転体19が設置される。さらに、隔壁18の上部の空間には、水道水供給配管111、水道水導入配管20が接続されている。それ以外は図17と同等である。
 次いで、加熱装置1002の運転動作を、図21を参照しながら説明する。加熱工程において、流路開閉バルブ115、116を開、流路開閉バルブ113、114を閉とする。そして、熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器に導入し、付着体保持容器内の付着体と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない付着体7の捕捉能力が低下した際には、加熱を行わない期間に、流路開閉バルブ115、116を閉、流路開閉バルブ113、114を開とし、水道水供給配管111から水道水を導入し、水道の流れによって隔壁18上部の回転体19を回転させる。この回転によって回転軸9および回転羽根10を回転させ、付着体7を流動させ、回転羽根10、付着体保持容器8の壁面との衝突、および付着体どうしの衝突によって、付着体7に付着していたスケールを剥離させる。水道水供給配管111から供給した水道水を、水道水導入配管20を通ってスケール捕捉器109の隔壁18下部の空間に導入し、上記のように回転羽根10を回転して剥離させながら、この剥離したスケールをスケール貯留部6を通して、スケール排出配管112から排出する。
 本実施の形態13のように、水流と回転羽根10を用いて付着体表面と回転羽根10の接触、および付着体7の流動による付着体7と付着体保持容器8の衝突や、付着体どうしの衝突を起すことによって、付着体7に付着したスケールを付着体7から剥離できる。また、剥離後のスケールを水道水で排出することで、剥離に動力を必要とせずに、簡素な装置および低コストでスケール捕捉能力を回復することができる。
 なお、図21では、付着体7からスケールを剥離するために、付着体保持容器8内で回転羽根10を用いたが、これに限るものではない。付着体7を流動させ、付着体7を付着体保持容器8や付着体7どうしと衝突させ、そこに付着していたスケールを剥離させることができれば他の方法も用いることができる。例えば、付着体保持容器8内に構造物を設置しこれを上下させる、スケール捕捉器の中で付着体保持容器8を回転させる、またはスケール捕捉器の中で付着体保持容器8を上下させるなどの操作を行っても同等の効果が得られる。
 また、図21では隔壁18を用い、ここで回転体19を回転させるようにしたが、これに限るものではない。水流の作用によって、回転羽根10を回転させる、あるいは構造物を上下させることができれば、別の構造でも構わない。
 実施の形態14.
(捕捉器構造:紐状、付着体伸縮によるスケール剥離(手段:水流による上下運動))
 図23は、スケール捕捉器109-14の構成図である。図23を参照して実施の形態14のスケール捕捉器109-14を説明する。スケール捕捉器109-14は、実施の形態12のスケール捕捉器109-12に類似の構成である。スケール捕捉器109-14は、スケール捕捉器109-12に対して、水道水を動力とする。
 スケール捕捉器109-14の構成を説明する。スケール捕捉器109-14は、剥離機構250を備える。剥離機構250は、移動軸12、接触体17、隔壁18、移動体21等を備えている。図23のように、スケール捕捉器109-14内の上部に隔壁18が設置され、隔壁18の上部の空間には、移動軸12と接続した移動体21が設置される。さらに、隔壁18の上部の空間には、水道水供給配管111、水道水導入配管20が接続される。それ以外は図20と同等である。
 次いで、加熱装置1002の運転動作を、図23を参照しながら説明する。加熱工程において、流路開閉バルブ115、116を開、流路開閉バルブ、113、114を閉とする。そして、熱交換器108で加熱後の高温水を、スケール捕捉器入口配管106を通してスケール捕捉器109-14に導入し、付着体保持容器8内の付着体7と接触させながら通過させる。通過後の水をスケール捕捉器出口配管117を通して給湯タンク102へ導入する。
 また、スケール付着にともない付着体7の捕捉能力が低下した際には、加熱を行わない期間に、流路開閉バルブ115、116を閉、113、114を開とする。そして、水道水供給配管111から水道水を導入し、水道の流れによって隔壁18上部の移動体21を上部に押し上げる。この移動体21の移動によって移動軸12および接触体17を上部に押し上げ、付着体7を伸縮(弾性変形)させることによって、付着体7に付着していたスケールを剥離させる。水道水供給配管111から供給した水道水を、水道水導入配管20を通してスケール捕捉器109の隔壁18の下部の空間に導入し、上記のように接触体17を上部に押し上げ剥離させながら、この剥離したスケールをスケール貯留部6を通って、スケール排出配管112から排出する。
 本実施の形態14のように、水流と接触体17を用いて付着体表面と接触体17の接触、および付着体7の伸縮や付着体7どうしの衝突を起すことによって、付着体7に付着したスケールを付着体7から剥離できる。また、剥離後のスケールを水道水で排出することで、剥離に動力を必要とせずに、簡素な装置および低コストでスケール捕捉能力を回復することができる。
 なお、図23では、付着体7からスケールを剥離するために、付着体保持容器8内で接触体17を押し上げたが、これに限るものではない。付着体7を伸縮させ、そこに付着していたスケールを剥離させることができれば他の方法も用いることができる。例えば、接触体17を押し上げるだけでなく、接触体17を上下させる、また上下の動きを繰り返すなどの操作を行っても同等の効果が得られる。
 また、図23では隔壁18を用いここで移動体15を押し上げるようにしたが、これに限るものではなく、水流の作用によって、移動体を移動させることができれば別の構造でも構わない。
 実施の形態15.
(手動モード、洗浄時期と頻度、付着体材料の補足)
 実施の形態10~12では、付着体7からスケールを剥離させる際に回転モータ11を用い自動で行ったが、これに限るものではない。例えばモータに代えて、手動で回転部分を回転させる、移動部分を上下移動させるような機構を設け、利用者やメンテナンス者が手動で操作を行っても構わない。
 また、実施の形態8~14(水道水の流入)では、スケール付着にともない「付着体7の捕捉能力が低下した際」に、スケール捕捉器内の付着体7からスケールを剥離し、水回路外へスケールを排出したが、これに限るものではない。付着体7の捕捉能力が低下しない場合でも、例えば、加熱直後にこの操作を行う、1週間に1回この操作を行うなど、定期的にスケール剥離と排出を行っても構わない。また、給湯タンク102の温度や水の流量の変化から、操作すべき時期を推定し、自動的にスケール剥離と排出を行うことも可能で、手動で操作する場合は利用者に操作の時期を知らせてこの操作を行うこともできる。なお、上記の「付着体7の捕捉能力が低下した際」については以下の様である。スケール捕捉器109にスケールが捕捉されると、スケール捕捉器109の流路抵抗が徐々に増加する。スケール捕捉器109の捕捉能力が低下すると、スケールが捕捉されにくくなるため流路抵抗の増加は鈍くなり一定値に近づくので、これから「付着体7の捕捉能力の低下」を判別できる。また、流路抵抗は流量と、スケール捕捉器109の前後(加熱水の入口と出口)の圧力の値とから求めることもできる。あるいは、「捕捉能力が低下したと考えられる際」を予め決めておき、そのときにスケールを剥離し、排出してもよい。
 また、実施の形態1~14では、付着体7にシリコーンゴムを用いたが、これに限るものではない。スケールとの親和性に優れ、使用する温度条件で変質、破壊がなく、かつ人体に悪影響のない材料であれば用いることができる。例えば、樹脂類としてはポリエチレン、ポリプロピレン、ポリスルフォン、ポリフッ化ビニルデン、ポリアミド、酢酸セルロース、ポリアクリルニトリル、塩化ビニルなどを、ゴム類としてはイソプレンゴム、ブタジエンゴム、ニトリルゴム、エチレンプロピレンゴム、フッ素ゴムなどを、金属としては、銅、アルミニウム、ステンレスなどを、その他材料としてはセルロース(木綿)などを、用いることができる。
 また、実施の形態1~14では、粒状、紐状の付着体7を用いたが、これに限るものではなく、水との接触性が高くスケール捕捉器内に保持できる形態であれば用いることができる。例えば、断片状(付着体7が断片状にちぎれたような形状)、繊維状、メッシュ状などを、用いることができる。また、これらの任意の組み合わせを用いてもよい。なお「断片状」とは、断片状にちぎれたような形状であり、例をあげれば、薄いゴム板(0.5~3,mm程度)を、正方形や長方形などと規定できる形状ではなく、大体の大きさ(5mm角位)で「適当な形」に切断したものが挙げられる。
 4 整流体、6 スケール貯留部、7 付着体、8 付着体保持容器、9 回転軸、10 回転羽根、11 回転モータ、12 移動軸、13 回転-直動変換機、15 移動体、16 接触体、17 接触体、18 隔壁、19 回転体、20 水道水導入配管、21 移動体、22 隔壁、101 熱源、102 給湯タンク、103 水道配管、104 給湯配管、105 熱交換器入口配管、106 スケール捕捉器入口配管、107 循環ポンプ、108 プレート型熱交換器、109 スケール捕捉器、110 循環配管、111 水道水供給配管、112 スケール排出配管、113 流路開閉バルブ、114 流路開閉バルブ、115 流路開閉バルブ、116 流路開閉バルブ、117 スケール捕捉器出口配管、118 循環配管(2)、119 熱交換器(2)、120 暖房系、121 暖房循環配管、122 循環ポンプ(2)、123 切替えバルブ、210,220,230,240,250 剥離機構、300 中間回路、400 水回路、1001,1002,1003,1004 加熱装置。

Claims (15)

  1.  水を貯めるタンクから熱交換装置に流入して加熱され、前記熱交換装置から流出して前記タンクに戻る途中の加熱水を、スケールを付着する機能を有するスケール付着体が収納された収納容器の内部を通過させて前記タンクに戻すことにより、前記加熱水に含まれるスケールを前記スケール付着体に付着させる付着工程
    を備えたことを特徴とするスケール除去方法。
  2.  前記スケール除去方法は、さらに、
     前記加熱水の前記収納容器の内部の通過を停止し、スケールが付着した前記スケール付着体からスケールを剥離する剥離工程と、
     前記加熱水の前記収納容器の内部の通過が停止しているときに、剥離したスケールを前記収納容器の外部に排出する排出工程と
    を備えたことを特徴とする請求項1記載のスケール除去方法。
  3.  前記排出工程は、
     前記加熱水とは異なる流体を前記収納容器の内部を通過させて、剥離したスケールを前記収納容器の外部に排出することを特徴とする請求項2記載のスケール除去方法。
  4.  前記剥離工程は、
     前記加熱水とは異なる流体を前記収納容器の内部を通過させて、スケールが付着した前記スケール付着体からスケールを剥離することを特徴とする請求項2記載のスケール除去方法。
  5.  前記排出工程は、
     剥離したスケールを、前記流体によって、前記収納容器の外部に排出することを特徴とする請求項4記載のスケール除去方法。
  6.  前記剥離工程は、
     前記収納容器の内部に配置された剥離機構によって前記スケール付着体に衝撃と、弾性変形との少なくともいずれかを与えることで、スケールが付着した前記スケール付着体からスケールを剥離することを特徴とする請求項2記載のスケール除去方法。
  7.  前記剥離工程は、
     前記収納容器の内部に配置された剥離機構によって前記スケール付着体の表面を擦ることで、スケールが付着した前記スケール付着体からスケールを剥離することを特徴とする請求項2記載のスケール除去方法。
  8.  前記スケール除去方法は、さらに、
     前記剥離工程で前記スケール付着体から剥離されたスケールを、前記収納容器の内部に形成されたスケール貯留部に貯留する貯留工程を備え、
     前記排出工程は、
     前記加熱水とは異なる流体を前記収納容器の内部を通過させて、前記スケール貯留部に貯留したスケールを前記収納容器の外部に排出することを特徴とする請求項2記載のスケール除去方法。
  9.  前記剥離工程は、
     前記加熱水とは異なる流体を前記収納容器の内部を通過させ、前記流体によって前記収納容器の内部に配置された剥離機構を動作させ、前記剥離機構によって、スケールが付着した前記スケール付着体からスケールを剥離し、
     前記排出工程は、
     前記剥離機構によって剥離されたスケールを、前記流体によって前記収納容器の外部へ排出することを特徴とする請求項2記載のスケール除去方法。
  10.  前記付着工程は、
     前記収納容器に所定の温度以上の前記加熱水を通過させることで、前記スケール付着体に付着したスケールの成長を助長させることを特徴とする請求項1~9のいずれかに記載のスケール除去方法。
  11.  前記収納容器に収納されるスケール付着体は、
     粒状、紐状、網状、小片状、繊維状のいずれか、またはこれらの組み合わせであることを特徴とする請求項1~10のいずれかに記載のスケール除去方法。
  12.  前記スケール除去方法は、さらに、
     少なくとも前記熱交換装置の内部を通過中の前記加熱水に、脈動を生じさせる脈動工程を備えたことを備えたことを特徴とする請求項1~11のいずれかに記載のスケール除去方法。
  13.  水を貯めるタンクと熱交換装置とが、前記タンクから前記熱交換装置に向かう水が流れる配管と、前記熱交換装置で加熱され前記熱交換装置から流出して前記タンクに向かう加熱水が流れる配管とによって接続された水回路と、
     前記タンクに向かう前記加熱水が流れる前記配管の途中に配置されると共にスケールを付着する機能を有するスケール付着体が収納された収納容器であって、前記加熱水を内部を通過させて前記タンクに戻すことにより、前記加熱水に含まれるスケールを前記スケール付着体に付着させる収納容器と
    を備えたことを特徴とするスケール除去装置。
  14.  前記スケール除去装置は、さらに、
     前記加熱水の前記収納容器の内部の通過を停止する停止部と、
     前記停止部によって前記加熱水の前記収納容器の内部の通過が停止されているときに、スケールが付着した前記スケール付着体からスケールを剥離する剥離部と、
     前記停止部によって前記加熱水の前記収納容器の内部の通過が停止されているときに、前記剥離部によって剥離されたスケールを前記収納容器の外部に排出する排出部と
    を備えたことを特徴とする請求項13記載のスケール除去装置。
  15.  前記収納容器は、
     前記スケール付着体が、着脱可能に収納されることを特徴とする請求項13または14のいずれかに記載のスケール除去装置。
PCT/JP2011/064504 2011-06-24 2011-06-24 スケール除去方法及びスケール除去装置 WO2012176325A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/064504 WO2012176325A1 (ja) 2011-06-24 2011-06-24 スケール除去方法及びスケール除去装置
EP11868122.0A EP2724989A4 (en) 2011-06-24 2011-06-24 METHOD AND DEVICE FOR REMOVING KESSELSTEIN
CN201180071865.1A CN103635435A (zh) 2011-06-24 2011-06-24 水垢去除方法以及水垢去除装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064504 WO2012176325A1 (ja) 2011-06-24 2011-06-24 スケール除去方法及びスケール除去装置

Publications (1)

Publication Number Publication Date
WO2012176325A1 true WO2012176325A1 (ja) 2012-12-27

Family

ID=47422200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064504 WO2012176325A1 (ja) 2011-06-24 2011-06-24 スケール除去方法及びスケール除去装置

Country Status (3)

Country Link
EP (1) EP2724989A4 (ja)
CN (1) CN103635435A (ja)
WO (1) WO2012176325A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156992A (ja) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp 給湯機
JP2014159938A (ja) * 2013-02-21 2014-09-04 Panasonic Corp 給湯装置
JP2015064123A (ja) * 2013-09-24 2015-04-09 三菱電機株式会社 温水装置及び温水装置における異常通知方法
WO2015132984A1 (ja) * 2014-03-03 2015-09-11 三菱電機株式会社 スケール捕捉器及び給湯器
WO2017042909A1 (ja) * 2015-09-09 2017-03-16 三菱電機株式会社 給湯システム
WO2021090758A1 (ja) * 2019-11-05 2021-05-14 ダイキン工業株式会社 給湯装置
CN112851000A (zh) * 2014-10-22 2021-05-28 格雷迪安特公司 脱盐水处理系统中的选择性结垢及相关方法
KR20210149012A (ko) * 2017-11-10 2021-12-08 주식회사 경동나비엔 스케일 수집부가 구비된 보일러
JP6995253B1 (ja) * 2021-02-17 2022-01-14 三菱電機株式会社 スケール捕捉器及び給湯システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340684B2 (ja) 2014-03-28 2018-06-13 三菱日立パワーシステムズ株式会社 蒸気タービン設備
CN107300202B (zh) * 2017-07-06 2020-05-26 广东美的暖通设备有限公司 水力模块的控制方法、系统、计算机设备及可读存储介质
TWI679417B (zh) * 2018-12-19 2019-12-11 國立臺北科技大學 水垢檢測系統
EP3845501A1 (en) * 2019-12-30 2021-07-07 Koninklijke Philips N.V. Removable scale collector & inhibitor filter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114258A (en) * 1977-03-16 1978-10-05 Mitsubishi Heavy Ind Ltd Scale adhering tanks and waste water treating device
JPH05245497A (ja) * 1992-03-09 1993-09-24 Boshoku Eng:Kk 析出スケール除去装置
JP2000301195A (ja) * 1999-04-23 2000-10-31 Kurita Water Ind Ltd 冷却水系のシリカスケール防止方法
JP2001129593A (ja) * 1999-11-02 2001-05-15 Japan Steel Works Ltd:The 水処理材、水処理方法およびその装置
JP2003320393A (ja) * 2002-05-02 2003-11-11 Kurita Water Ind Ltd スケール付着防止方法
JP2007144258A (ja) * 2005-11-24 2007-06-14 Kurita Water Ind Ltd 水の電解処理方法及び電解装置
JP2008190780A (ja) 2007-02-05 2008-08-21 Corona Corp 水冷媒熱交換器
JP2010253360A (ja) * 2009-04-23 2010-11-11 Kawasaki Thermal Engineering Co Ltd 冷凍機・冷温水機の冷却水の処理方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2299859Y (zh) * 1997-06-25 1998-12-09 王仁毅 设置于生水加热容器内的滤心
US8152995B2 (en) * 2005-10-14 2012-04-10 Steven Clay Moore Arrangements to reduce hardness of water in a hot water system
JP5224041B2 (ja) * 2007-06-27 2013-07-03 ダイキン工業株式会社 ヒートポンプ式給湯装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114258A (en) * 1977-03-16 1978-10-05 Mitsubishi Heavy Ind Ltd Scale adhering tanks and waste water treating device
JPH05245497A (ja) * 1992-03-09 1993-09-24 Boshoku Eng:Kk 析出スケール除去装置
JP2000301195A (ja) * 1999-04-23 2000-10-31 Kurita Water Ind Ltd 冷却水系のシリカスケール防止方法
JP2001129593A (ja) * 1999-11-02 2001-05-15 Japan Steel Works Ltd:The 水処理材、水処理方法およびその装置
JP2003320393A (ja) * 2002-05-02 2003-11-11 Kurita Water Ind Ltd スケール付着防止方法
JP2007144258A (ja) * 2005-11-24 2007-06-14 Kurita Water Ind Ltd 水の電解処理方法及び電解装置
JP2008190780A (ja) 2007-02-05 2008-08-21 Corona Corp 水冷媒熱交換器
JP2010253360A (ja) * 2009-04-23 2010-11-11 Kawasaki Thermal Engineering Co Ltd 冷凍機・冷温水機の冷却水の処理方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2724989A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2957839A4 (en) * 2013-02-18 2016-09-07 Mitsubishi Electric Corp HOT WATER SUPPLY DEVICE
JP2014156992A (ja) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp 給湯機
JP2014159938A (ja) * 2013-02-21 2014-09-04 Panasonic Corp 給湯装置
JP2015064123A (ja) * 2013-09-24 2015-04-09 三菱電機株式会社 温水装置及び温水装置における異常通知方法
WO2015132984A1 (ja) * 2014-03-03 2015-09-11 三菱電機株式会社 スケール捕捉器及び給湯器
JPWO2015132984A1 (ja) * 2014-03-03 2017-04-06 三菱電機株式会社 スケール捕捉器及び給湯器
US10197293B2 (en) 2014-03-03 2019-02-05 Mitsubishi Electric Corporation Scale trapping unit and water heater
CN112851000A (zh) * 2014-10-22 2021-05-28 格雷迪安特公司 脱盐水处理系统中的选择性结垢及相关方法
WO2017042909A1 (ja) * 2015-09-09 2017-03-16 三菱電機株式会社 給湯システム
KR20210149012A (ko) * 2017-11-10 2021-12-08 주식회사 경동나비엔 스케일 수집부가 구비된 보일러
KR102436106B1 (ko) * 2017-11-10 2022-08-25 주식회사 경동나비엔 스케일 수집부가 구비된 보일러
WO2021090758A1 (ja) * 2019-11-05 2021-05-14 ダイキン工業株式会社 給湯装置
JP7071672B2 (ja) 2019-11-05 2022-05-19 ダイキン工業株式会社 給湯装置
JP2021076365A (ja) * 2019-11-05 2021-05-20 ダイキン工業株式会社 給湯装置
JP6995253B1 (ja) * 2021-02-17 2022-01-14 三菱電機株式会社 スケール捕捉器及び給湯システム
WO2022176059A1 (ja) * 2021-02-17 2022-08-25 三菱電機株式会社 スケール捕捉器及び給湯システム

Also Published As

Publication number Publication date
CN103635435A (zh) 2014-03-12
EP2724989A4 (en) 2014-12-03
EP2724989A1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2012176325A1 (ja) スケール除去方法及びスケール除去装置
JP5546680B2 (ja) 給湯器及び流量制御方法
KR20080033865A (ko) 에칭액의 재생방법, 에칭방법 및 에칭장치
JP5131081B2 (ja) 熱交換器のスケール除去方法および装置
RU2628389C2 (ru) Способ очистки жидкости
CN106091397A (zh) 洗漱柜、热水器和回收热能废水装置组合
CN114754152A (zh) 一种具有污垢收集功能的排污阀
JP2011241867A (ja) 洗浄可能な弁及び弁洗浄システム
WO2010026476A3 (en) Method and device for cleaning a filter for fluids
JPWO2012176325A1 (ja) 給湯器
CN207307284U (zh) 一种用于污水处理厂的设有链带式刮泥机的平流式沉淀池
JP2007003078A (ja) 排熱回収システム及び熱交換器洗浄装置
CN219815429U (zh) 一种用于人工湿地的污水处理装置
CN201212022Y (zh) 一种敞开式冷却循环水综合处理设备
JP6143159B2 (ja) 逆洗型ろ過装置およびろ過エレメントの付着物除去方法
CN202322540U (zh) 具有除垢功能的反冲洗过滤装置
CN107684773A (zh) 净水装置滤芯清洗方法、滤芯清洗系统及净水装置
CN212998745U (zh) 一种过滤器滤网自动反冲洗机构
JPH03296404A (ja) 濾過槽の洗浄方法
JP3594211B2 (ja) 生下水未利用熱活用システム
WO2007076611A1 (en) Sand filter cleaning apparatus and method thereof
CN205642135U (zh) 一种板式换热器在线加药反冲洗系统
CN211226474U (zh) 滤芯清洗系统及净水装置
CN208182676U (zh) 一种用于转炉除尘系统的水处理系统
JP2005221190A (ja) 源泉減温システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE