WO2012173461A2 - 광전지용 시트 - Google Patents

광전지용 시트 Download PDF

Info

Publication number
WO2012173461A2
WO2012173461A2 PCT/KR2012/004821 KR2012004821W WO2012173461A2 WO 2012173461 A2 WO2012173461 A2 WO 2012173461A2 KR 2012004821 W KR2012004821 W KR 2012004821W WO 2012173461 A2 WO2012173461 A2 WO 2012173461A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
sheet
formula
photovoltaic
silicone resin
Prior art date
Application number
PCT/KR2012/004821
Other languages
English (en)
French (fr)
Other versions
WO2012173461A3 (ko
Inventor
고민진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280029921.XA priority Critical patent/CN103620798A/zh
Priority to EP12800383.7A priority patent/EP2722896B1/en
Priority to JP2014515770A priority patent/JP6020937B2/ja
Publication of WO2012173461A2 publication Critical patent/WO2012173461A2/ko
Publication of WO2012173461A3 publication Critical patent/WO2012173461A3/ko
Priority to US14/109,772 priority patent/US20140174523A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to a sheet for photovoltaic cells.
  • Photovoltaic cells are semiconductor devices that can convert light into electricity. Photovoltaic cells, when exposed to light, generate a voltage to produce a flow of electrons. The magnitude of the flow of electrons is proportional to the light impingement intensity on the photovoltaic junction.
  • Photocells include wafer photovoltaic cells and thin film photovoltaic cells.
  • a photoelectric conversion element made of a single crystal or polycrystalline silicon ingot is used, and in a thin film type photovoltaic cell, the photoelectric conversion element is formed on a substrate, a ferroelectric, or the like by sputtering or vapor deposition.
  • Wafer photovoltaic cells and thin film photovoltaic cells are brittle, and therefore a load bearing member is required.
  • the support member may be a light transmissive upper layer disposed on the photovoltaic cell or a back layer disposed on the back surface of the photovoltaic cell.
  • the back layer disposed on the backside of the photovoltaic cell is generally in the form of a rigid back skin.
  • Various materials of the back layer are known, and for example, a ferroelectric such as glass, a metal foil such as aluminum, a polyester polymer sheet in which a fluorine resin or a metal foil, or the like is laminated may be used.
  • the present application provides a sheet for photovoltaic cells.
  • An exemplary photovoltaic sheet can have a resin layer containing a silicone resin and a light resistance imparting agent.
  • the silicone resin may include an aryl group, for example, an aryl group bonded to a silicon atom.
  • the sheet can be used, for example, as a support member for photovoltaic cells, for example a back sheet.
  • M unit generally means a so-called monofunctional siloxane unit that may be represented by the formula [R 3 SiO 1/2 ], and the term “D unit” is usually represented by the formula [R 2 SiO 2/2].
  • T unit usually means the so-called trifunctional siloxane units which may be represented by a formula [RSiO 3/2 ]
  • Q Unit may refer to a so-called tetrafunctional siloxane unit that is usually represented by the formula [SiO 4/2 ].
  • R is a substituent directly bonded to the silicon atom, and may be, for example, hydrogen, a hydroxy group, an epoxy group, an acryloyl group, a methacryloyl group, an isocyanate group, an alkoxy group or a monovalent hydrocarbon group.
  • the photovoltaic sheet may further include a base layer.
  • the resin layer may be formed on one side or both sides of the base layer.
  • the resin layer may be a layer formed on a sheet or film shape and laminated on the base layer or a coating layer formed on the base layer.
  • coating layer means a layer formed by coating a liquid coating solution containing the silicone resin or a precursor thereof and a light resistance imparting agent.
  • the photovoltaic sheet 100 may include a base layer 101 and may include the resin layer 102 formed on one surface of the base layer 101.
  • the photovoltaic sheet 200 may include resin layers 202 and 203 formed on both surfaces of the substrate layer 201 as shown in FIG. 2.
  • the resin layers formed on both surfaces are resin layers containing the silicone resin and the light resistance imparting agent, or the numbers formed on both surfaces. Any of the resin layers in the layer is a layer containing the silicone resin and the light resistance imparting agent, and the resin layer formed on the opposite side may be a resin layer different from the resin layer.
  • the resin layer formed on the opposite side may also include a silicone resin.
  • the silicone resin includes, for example, an aryl group as described above, and the molar ratio (Ar / Si) of all the aryl groups (Ar) included in the resin to all the silicon atoms (Si) included in the resin is 0.3. It may be exceeding resin.
  • other components such as a light resistance imparting agent, may be contained in the said resin layer as needed, it is not necessary to include them.
  • a conventional base layer used as a back sheet of a photovoltaic module may be used.
  • metal foil Fluorine resin sheets such as polyvinyl fluoride (PVF) or ethylene tetrafuloroethylene (ETFE); Or a polyester sheet such as polyethylene terephthalate (PET) sheet or the like may be used.
  • PET polyethylene terephthalate
  • the base material layer a laminated sheet in which two or more selected from the above-listed sheets or the above-listed sheets and other sheets are laminated may be used.
  • a polyester sheet may be used as the substrate layer, but is not limited thereto.
  • a silicon oxide layer (SiOx) or other primer layer or the like may be formed from the viewpoint of improving adhesion to the resin layer or barrier properties.
  • the silicon oxide layer (SiOx) or the primer layer may be formed on the top of the resin layer, between the resin layer and the base layer, or on the surface of the base layer on which the resin layer is not formed.
  • the silicone resin of the resin layer can be such that the resin layer exhibits high adhesion to various materials to which the sheet for photovoltaic cells comes into contact with in the module, such as an encapsulant. Silicone resin can also improve the light condensing efficiency of a module, such as moisture resistance, weather resistance, light resistance, etc. of a resin layer.
  • Silicone resin contains an aryl group, specifically, the aryl group couple
  • aryl group may refer to a monovalent moiety derived from a compound or derivative thereof having a benzene ring or comprising a structure in which two or more benzene rings are linked or condensed, unless otherwise specified.
  • aryl group may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms or 6 to 21 carbon atoms, and may be a phenyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, or xylyl group. Or a naphthyl group.
  • the aryl group may be a phenyl group.
  • the silicone resin may have a molar ratio (Ar / Si) of all aryl groups (Ar) to all silicon atoms (Si) included in the resin of more than 0.3, 0.5 or more, or 0.7 or more.
  • a molar ratio (Ar / Si) exceeds 0.3, the moisture resistance, weather resistance and hardness of the resin layer can be improved, and the light collection efficiency in the photovoltaic module can be increased.
  • the upper limit of the molar ratio (Ar / Si) of the aryl group is not limited, and may be, for example, 1.5 or less or 1.2 or less.
  • the aryl group of the silicone resin may be included in, for example, the D unit or the T unit.
  • the silicone resin may include one or more units selected from units represented by Formulas 1 and 2 below.
  • R 1 and R 2 are each independently hydrogen, a hydroxyl group, an epoxy group, acryloyl group, methacryloyl group, an isocyanate group, an alkoxy group, or a monovalent hydrocarbon group, and at least one of R 1 and R 2 One is an aryl group, and R 3 is an aryl group.
  • alkoxy group may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkoxy group may be linear, branched or cyclic, and may be optionally substituted with one or more substituents.
  • the term "monovalent hydrocarbon group” may refer to a monovalent moiety derived from a compound consisting of carbon and hydrogen or a compound in which at least one of hydrogen of a compound consisting of carbon and hydrogen is substituted by an arbitrary substituent.
  • the monovalent hydrocarbon group may include, for example, 1 to 20, 1 to 16, 1 to 12, 1 to 8 or 1 to 4 carbon atoms.
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group, etc. can be illustrated.
  • alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms, unless otherwise specified.
  • the alkyl group may be linear, branched or cyclic and may be optionally substituted with one or more substituents.
  • alkenyl group may mean an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • Alkenyl groups may be linear, branched or cyclic alkenyl groups and may be optionally substituted with one or more substituents.
  • alkynyl group may mean an alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified.
  • Alkynyl groups may be linear, branched or cyclic and may be optionally substituted with one or more substituents.
  • substituents that may be optionally substituted with epoxy, acryloyl, methacryloyl, alkoxy or monovalent hydrocarbon groups include halogen, hydroxy, epoxy, acrylic, methacrylic, acryloyl and methacrylic.
  • a royl group, an isocyanate group, a thiol group, the said monovalent hydrocarbon group, etc. can be illustrated.
  • R 1 and R 2 may be each independently an alkyl group or an aryl group.
  • the unit of formula (1) is a D unit containing at least one aryl group bonded to a silicon atom.
  • the aryl group may be, for example, a phenyl group.
  • the alkyl group may be, for example, a methyl group.
  • the unit of formula 1 may be, for example, a unit of formula 3 or 4 below.
  • the silicone resin includes a unit of Formula 1
  • the ratio ((Ar + Ak) / Si) of the sum of the number of moles of the aryl group (Ar) and the number of water of the alkyl group (Ak) included in the unit of Formula 1 to the number of moles of all silicon atoms (Si) included in the resin is 0.5 to 0.9 or 0.7 to 0.85. In this range, the physical properties of the resin layer can be improved.
  • Formula 2 is a T unit containing an aryl group bonded to a silicon atom.
  • the unit of Formula 2 may be a unit represented by the following Formula 5.
  • the silicone resin includes a unit of formula (2)
  • the molar ratio (Ar / Si) of the aryl group (Ar) included in the unit of formula (2) to all silicon atoms (Si) included in the silicone resin is 0.5 to 0.9 or 0.7 to 0.85. In this range, the physical properties of the resin layer can be improved.
  • all of the aryl groups included in the silicone resin may be included in the units of Formulas 1 and / or 2.
  • the unit of Formula 1 may be a unit of Formula 3 or 4
  • the unit of Formula 2 may be a unit of Formula 5.
  • the silicone resin may be, for example, represented by an average composition formula of the following Chemical Formula 6.
  • R is a substituent bonded to a silicon atom, each independently hydrogen, hydroxy group, epoxy group, acryloyl group, methacryloyl group, isocyanate group, alkoxy group or monovalent hydrocarbon group, at least among R One is an aryl group and when a + b + c + d is converted to 1, a is 0 to 0.6, b is 0 to 0.97, c is 0 to 0.8, d is 0 to 0.4, b and c is not zero at the same time
  • the silicone resin is represented by a specific average composition formula, as well as the case where a single silicone resin included in the resin layer is represented by the average composition formula, a plurality of resin components are present in the resin layer, and the plurality of resins Taking the average of the composition of the components also includes the case represented by the average composition formula.
  • R is a substituent directly bonded to a silicon atom, each R may be the same or different from each other, and each independently hydrogen, hydroxy group, epoxy group, acryloyl group, methacryloyl group, isocyanate group, alkoxy Group or monovalent hydrocarbon group.
  • At least one of R in Formula 6 may be an aryl group, for example, a phenyl group.
  • the aryl group may be included in the silicone resin to satisfy the molar ratio (Ar / Si) described above.
  • At least one of R in formula 6 may also be hydrogen, hydroxy group, epoxy group, acryloyl group, methacryloyl group, isocyanate group, alkoxy group or alkenyl group. Including such a functional group can further improve the physical properties of the resin layer, for example, adhesion.
  • a, b, c, and d are mole fractions of each siloxane unit, and when the sum is 1, a may be 0 to 0.6 or 0 to 0.5, and b is 0 to 0.97 or 0 to 0.8 C may be 0 to 0.8 or 0 to 0.7, and d may be 0 to 0.4 or 0 to 0.2. Where b and c are not zero at the same time. That is, the silicone resin of Chemical Formula 6 may include a T unit or a Q unit.
  • the silicone resin may have a molecular weight of 500 to 200,000 or 1,000 to 200,000.
  • a resin layer excellent in physical properties such as hardness can be formed, and workability and the like can also be improved in the process of forming the resin layer.
  • the term "molecular weight of a silicone resin” means a weight average molecular weight (Mw) of a silicone resin.
  • the weight average molecular weight may be, for example, a conversion value for standard polystyrene measured by Gel Permeation Chromatograph (GPC).
  • the resin layer also includes a light resistance imparting agent.
  • the light resistance imparting agent can prevent damage to the sheet and improve the overall durability even when exposed to ultraviolet light having a short wavelength.
  • a light resistance imparting agent a ultraviolet absorber and / or a light stabilizer can be used, for example.
  • the ultraviolet absorber for example, one or more selected from a benzophenone compound, a benzotriazole compound, and a triazine compound may be used, but is not limited thereto.
  • the benzophenone compound include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy benzophenone, 2-hydroxy-4-methoxy benzophenone-5-sulfonic acid and 2-hydroxy-4 -n-octyloxy benzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxy benzophenone, bis (5-benzoyl-4-hydroxy-2-methoxy Phenyl) methane, 2,2'-dihydroxy-4-methoxy benzophenone or 2,2'-dihydroxy-4,4'-dimethoxy benzophenone and the like can be exemplified, and as the benzotriazole compound, Is, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2-
  • a hindered amine compound can be used, for example.
  • the hindered amine compound include bis (2,2,6,6-tetramethyl-4-piperidyl) succinate and bis (2,2,6,6-tetramethyl-4-piperidyl Sebacate or bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2 Butyl malonate, and the like, TINUBIN 292 or TINUBIN 123 available from Nippon Ciba Geigy, or ADK STAB LA82 or ADK STAB LA87 available from ADEKA, and the like, but are not limited thereto. It is not.
  • the resin layer may include 0.05 parts by weight to 10 parts by weight or 0.1 parts by weight to 10 parts by weight of a light resistance imparting agent with respect to 100 parts by weight of the silicone resin.
  • unit "weight part” means the ratio of the weight between components.
  • the lightfastness imparting agent is 10 parts by weight to 70 parts by weight and 20 parts by weight with respect to 100 parts by weight of the ultraviolet light absorbent within the above ratio. To 60 parts by weight or 30 to 40 parts by weight of the light stabilizer may be included. When the ultraviolet absorber and the light stabilizer are simultaneously included in this manner, the durability of the resin layer can be further improved.
  • the resin layer may further include light scattering or light reflecting particles.
  • the light scattering or reflective particles are particles that can scatter or reflect incident light to the resin layer, and various kinds of particles can be used as long as such a function is exhibited.
  • the light scattering particles particles having a refractive index different from that of the resin layer can be used.
  • grain the particle
  • the upper limit of the refractive index of the particles is not particularly limited, and may be set in consideration of necessary scattering properties and the like.
  • the light scattering or light reflecting particles can further improve the light efficiency, the ultraviolet ray blocking effect, and the like of the resin layer.
  • glass such as glass beads, alumina, titania, zirconia, cerium oxide, hafnium oxide, niobium pentoxide, tantalum pentoxide, indium oxide, tin oxide, indium tin oxide
  • Inorganic particles such as zinc oxide, silicon-based particles, zinc sulfate, barium sulfate, calcium carbonate, titanium oxide or magnesium oxide can be used.
  • the light scattering or light reflecting particles may have, for example, an average particle diameter of 40 nm to 100,000 nm, 40 nm to 50,000 nm or 200 nm to 10,000 nm. Within the range of such an average particle diameter, the particles can be uniformly dispersed in the resin layer and can maintain excellent processability and adhesion.
  • the light scattering or light reflecting particles may be included in the resin layer in a ratio of 0.1 part by weight to 50 parts by weight or 0.1 part by weight to 30 parts by weight with respect to 100 parts by weight of the silicone resin. In this range of weight ratio, the light scattering property, reflectivity, processability and adhesive properties of the resin layer can be excellently maintained.
  • the resin layer may further contain a known additive when necessary.
  • a known additive various thermoplastic resins; Flame retardant; Ultraviolet stabilizers; glass fiber; Glass beads; Or optical brighteners and the like can be exemplified, but is not limited thereto.
  • the present application also provides a silicone resin or a precursor thereof; And it relates to a method for producing a sheet for photovoltaic cells comprising forming a resin layer using a liquid coating liquid containing a light resistance imparting agent.
  • a silicone resin contained in the liquid coating solution the silicone resin described above may be used.
  • the precursor may use, for example, one or more components capable of forming the silicone resin through a curing process or the like.
  • the resin layer may be formed, for example, by coating the liquid coating solution and curing or drying the coated material.
  • the sheet for photovoltaic cells may be coated with the base layer by coating a liquid coating solution including a precursor capable of forming the resin together with the light resistance imparting agent through the silicone resin or a curing process, and forming a resin layer. It can manufacture.
  • the kind of precursor which can form a silicone resin for example, liquid silicon-based material, is not particularly limited, and various components known in the art can be employed without limitation.
  • the component may be an addition curable silicone material, a condensation or polycondensation curable silicone material, an ultraviolet curable silicone material, a peroxide vulcanized silicone material, or the like.
  • the addition-curable silicone-based material is a material that is cured through hydrosilylation.
  • This material contains at least an organosilicon compound having a hydrogen atom directly bonded to a silicon atom and an organosilicon compound having an aliphatic unsaturated group such as a vinyl group, and the compound reacts with each other in the presence of a catalyst to cure.
  • the catalyst may include a metal of Group 8 of the periodic table, a catalyst in which the metal is supported on a carrier such as alumina, silica, or carbon black, or a salt or complex of the metal.
  • platinum, rhodium, ruthenium, or the like can be used, for example.
  • the condensation or polycondensation curable silicone-based material may be prepared by using a hydrolyzable functional group such as -Cl, -OCH 3 , -OC (O) CH 3 , -N (CH 3 ) 2 , -NHCOCH 3, or -SCH 3 .
  • a silicone resin is produced by hydrolysis and condensation reaction of silicon compounds such as silane and siloxane or hydrolyzates thereof. Examples of the unit compound that can be used in this manner include silane compounds such as R a 3 Si (OR b ), R a 2 Si (OR b ) 2 , R a Si (OR b ) 3, and Si (OR b ) 4 . May be exemplified.
  • R b may be a linear or branched alkoxy group having 1 to 8 carbon atoms, for example, methoxy, ethoxy, n-propoxy, n-butoxy, isopropoxy, isobutoxy, sec -Butoxy or t-butoxy.
  • R a is a functional group bonded to a silicon atom, and is a functional group selected in consideration of the substituent contained in the desired silicone resin.
  • a silicon compound such as silane or siloxane having an ultraviolet reactor such as acryloyl group, or a hydrolyzate thereof is applied to a hydrolysis and condensation reaction to produce a resin, and reacted by ultraviolet irradiation.
  • the target resin is produced.
  • the method of applying the liquid coating liquid is not particularly limited, and for example, a known method such as bar coating, spin coating or comma coating can be used.
  • the coating layer formed in this manner may be cured and / or dried under appropriate conditions to form a resin layer.
  • the manner of forming the resin layer is not limited to the above.
  • the raw material may be extruded and cured to a process base material layer, or the sheet
  • the present application also relates to photovoltaic modules.
  • exemplary photovoltaic modules can include the photovoltaic sheets, substrates, and devices described above, such as photoelectric conversion devices.
  • the device may be encapsulated with an encapsulant between the photovoltaic sheet and the substrate.
  • the photovoltaic sheet in the photovoltaic module may be applied, for example, as a backsheet or a support substrate.
  • the photovoltaic module may be configured in various forms as long as it includes the photovoltaic sheet, and examples thereof include a silicon wafer-based photovoltaic module or a thin film photovoltaic module.
  • FIG. 3 and 4 are diagrams schematically showing an example photovoltaic module.
  • 3 shows an example of a module 300 including a photovoltaic sheet 301, and schematically illustrates a module 300 including a silicon-based photovoltaic wafer as a photoelectric conversion element 303.
  • exemplary module 400 typically includes a front substrate 302 which is a ferroelectric such as glass or the like; Backsheet 301; Photoelectric conversion elements 303 such as silicon wafers; And an encapsulant 304 encapsulating the device 303.
  • the encapsulating material for example, an EVA-based material or a silicone-based material can be used.
  • compatibility with a photovoltaic sheet used as the back sheet 301 may be improved, but is not limited thereto.
  • the photoelectric conversion element 402 may be formed on the front substrate 401, which is usually a ferroelectric.
  • the device 402 may be encapsulated by the encapsulant 403 between the front substrate 401 and the photovoltaic sheet that is the support substrate 301.
  • the photoelectric conversion element 402, which is usually a thin film, may be formed by, for example, chemical vapor deposition (CVD).
  • the photovoltaic module includes, for example, the sheet for photovoltaic cells as a supporting member, other configurations and manufacturing methods are not particularly limited, and a general manner in this field may be applied as it is.
  • a sheet for photovoltaic cells excellent in moisture barrier property, weather resistance, moisture resistance, heat resistance, light resistance, and the like, and a photovoltaic module including the same may be provided.
  • 1 and 2 exemplarily show sheets for photovoltaic cells.
  • 3 and 4 exemplarily show photovoltaic modules.
  • the siloxane compound synthesized in a known manner the compounds represented by the following formulas (A) to (D) are mixed, and 5 g of a catalyst and an ultraviolet absorber (TINUBIN 384, Nippon Ciba Geigy) are mixed and cured by a hydrosilylation reaction.
  • a precursor (A), which is a curable composition was prepared (mixture: compound of formula A: 100 g, compound of formula B: 10 g, compound of formula C: 200 g, compound of formula D: 60 g).
  • a platinum catalyst Platinum catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) was added in an amount such that the content of Pt (0) was 20 ppm.
  • the prepared precursor (A) was coated, and maintained at about 150 ° C. for about 1 hour to form a sheet-shaped resin layer having a thickness of 1 mm.
  • a curable composition prepared by mixing a compound of Formulas E to G below synthesized in a known manner and further combining 10 g of a catalyst and an ultraviolet absorber (TINUBIN 384, Nippon Ciba Geigy) (compound amount: Compound of Formula E: 100 g, a compound of Formula F: 20 g, a compound of Formula G: 50 g), except that the precursor (B) was used in the same manner as in Example 1 to form a resin layer (B).
  • Platinum catalyst Platinum catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) was added to the precursor (B) so that the content of Pt (0) was 10 ppm.
  • a curable composition prepared by mixing a compound represented by the following formulas H to J synthesized in a known manner and further combining 10 g of a catalyst and an ultraviolet absorber (TINUBIN 384, Nippon Ciba Geigy) (compound amount: compound of formula H: Resin layer (C) was formed in the same manner as in Example 1, except that precursor (C), 100 g, compound of formula I: 20 g, and compound of formula J: 50 g) was used.
  • a catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane was added in an amount such that the Pt (0) content was 20 ppm.
  • Example 1 For the resin layers prepared in Example 1 and Comparative Examples 1 and 2, the moisture permeability was measured by mocon equipment under the same conditions in the thickness direction, and the results are shown in Table 1 below.
  • Example 1 Comparative Example 1 Comparative Example 2 Moisture permeability 15 g / cm 2 day 101 g / cm 2 day 120 g / cm 2 day
  • the precursor (D) was repeatedly coated and cured on a PET (poly (ethylene terephtahlate)) sheet to form a resin layer on both sides of the PET sheet. Curing in the above, was carried out by maintaining the coating layer for 1 hour at 150 ° C.
  • a sheet for photovoltaic cells was prepared in the same manner as in Example 2, except that precursor E, in which 10 g of titanium dioxide (TiO 2 , an average particle diameter of 3 ⁇ m) was further added to the same precursor as in Example 2, was used.
  • precursor E in which 10 g of titanium dioxide (TiO 2 , an average particle diameter of 3 ⁇ m) was further added to the same precursor as in Example 2, was used.
  • a precursor was prepared in the same manner as in Example 2 except that only the light stabilizer was not added, and a sheet for photovoltaic cells was also prepared.
  • a precursor and a photovoltaic sheet were prepared in the same manner as in Example 1, except that a UV absorber (TINUBIN 384, Nippon Ciba Geigy) and a light stabilizer (TINUBIN 123, Nippon Ciba Geigy) were not blended in preparing the curable composition. .
  • the PET sheet having the resin layer prepared in Examples and Comparative Examples was left for 1,000 hours at a temperature of 85 ° C. and a relative humidity of 85%, and whether a peeling phenomenon was caused between the resin layer and PET. Observation and evaluation were made with the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 출원은 광전지용 시트, 그 제조 방법 및 광전지 모듈에 관한 것이다. 본 출원에서는, 수분 차단성, 내후성, 내습성, 내열성 및 내광성 등이 우수한 광전지용 시트 및 그를 포함하는 광전지 모듈이 제공될 수 있다.

Description

광전지용 시트
본 출원은 광전지용 시트에 관한 것이다.
광전지는, 광을 전기로 전환시킬 수 있는 반도체 장치이다. 광전지는, 광에 노출되면, 전압을 발생시켜 전자의 흐름을 생성한다. 전자의 흐름의 크기는 광전지 접합부에 대한 광 충돌 강도에 비례한다.
광전지로는, 웨이퍼 광전지 및 박막형 광전지 등이 있다. 실리콘 웨이퍼 광전지에서는, 단결정 또는 다결정 실리콘 잉곳(ingot)으로 제조한 광전 변환 소자를 사용하고, 박막형 광전지에서는, 스퍼터링 또는 증착 등으로 광전 변환 소자를 기판 또는 강유전체 등에 형성한다.
웨이퍼 광전지 및 박막형 광전지는 취성을 가지기 때문에, 내하중 지지 부재가 요구된다. 지지 부재는, 광전지의 상부에 배치되는 광투과성의 상부층 또는 광전지의 이면에 배치되는 배면층일 수 있다.
광전지의 이면에 배치되는 배면층은, 강직성 백스킨 형태인 것이 일반적이다. 배면층의 다양한 재료가 공지되어 있으며, 예를 들면, 유리와 같은 강유전체, 알루미늄 등과 같은 금속 호일, 불소계 수지 또는 금속 호일 등이 적층되어 있는 폴리에스테르 고분자 시트 등이 사용될 수 있다.
본 출원은 광전지용 시트를 제공한다.
예시적인 광전지용 시트는, 실리콘 수지와 내광성 부여제를 포함하는 수지층을 가질 수 있다. 상기 실리콘 수지는, 아릴기, 예를 들면, 규소 원자에 결합되어 있는 아릴기를 포함할 수 있다. 상기 시트는, 예를 들면, 광전지용 지지 부재, 예를 들면 백시트(back sheet)로 사용될 수 있다.
본 명세서에서 용어 「M 단위」는 통상 식 [R3SiO1/2]로 표시되는 경우가 있는 소위 1관능성 실록산 단위를 의미하고, 용어 「D 단위」는 통상 식 [R2SiO2/2]로 표시되는 경우가 있는 소위 2관능성 실록산 단위를 의미하며, 용어 「T 단위」는 통상 식 [RSiO3/2]로 표시되는 경우가 있는 소위 3관능성 실록산 단위를 의미하고, 용어 「Q 단위」는 통상 식 [SiO4/2]로 표시되는 경우가 있는 소위 4관능성 실록산 단위를 의미할 수 있다. 상기 「R」은 규소 원자에 직접 결합하고 있는 치환기이고, 예를 들면, 수소, 히드록시기, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 알콕시기 또는 1가 탄화수소기 등일 수 있다.
하나의 예시에서 상기 광전지용 시트는 기재층을 추가로 포함할 수 있다. 기재층이 포함되는 경우, 상기 수지층은 상기 기재층의 일면 또는 양면에 형성되어 있을 수 있다. 상기 수지층은, 시트 또는 필름 형상으로 제조되어 기재층에 라미네이트된 층 또는 기재층상에 형성된 코팅층일 수 있다. 용어 「코팅층」은 상기 실리콘 수지 또는 그 전구체 및 내광성 부여제를 포함하는 액상 코팅액을 코팅하여 형성된 층을 의미한다.
도 1 및 2는 예시적인 광전지용 시트(100, 200)를 나타내는 도면이다. 도 1과 같이, 광전지용 시트(100)는, 기재층(101)을 포함하고, 상기 기재층(101)의 일면에 형성된 상기 수지층(102)을 포함할 수 있다. 또한, 광전지용 시트(200)는, 도 2와 같이, 기재층(201)의 양면에 형성된 수지층(202, 203)을 포함할 수 있다. 도 2와 같이 기재층(201)의 양면에 수지층(202, 203)이 형성되는 경우에, 양면에 형성된 수지층이 모두 상기 실리콘 수지와 내광성 부여제를 포함하는 수지층이거나, 양면에 형성된 수지층 중에 어느 하나의 수지층이 상기 실리콘 수지와 내광성 부여제를 포함하는 층이며, 그 반대측면에 형성되는 수지층은, 상기 수지층과는 다른 수지층일 수 있다. 상기에서 다른 수지층의 구체적인 성분은 특별히 제한되지 않는다. 하나의 예시에서 상기 반대측면에 형성되는 수지층도, 실리콘 수지를 포함할 수 있다. 상기 실리콘 수지는, 예를 들면, 상기와 같이 아릴기를 포함하고, 수지에 포함되는 모든 규소 원자(Si)에 대한 수지에 포함되는 모든 아릴기(Ar)의 몰비율(Ar/Si)이 0.3을 초과하는 수지일 수 있다. 상기 수지층에는, 내광성 부여제 등의 다른 성분이 필요에 따라서 포함될 수도 있으나, 포함되어 있지 않아도 무방하다.
기재층으로는 예를 들면, 광전지 모듈의 백시트로 사용되는 통상의 기재층이 사용될 수 있다. 예를 들면, 금속 호일(metal foil); 폴리불화비닐(PVF; poly(vinyl fluoride)) 또는 에틸렌테트라플루오로에틸렌(ETFE; ethylene tetrafuloroethylene) 등과 같은 불소 수지 시트; 또는 PET(polyethyleneterephthalate) 시트 등과 같은 폴리에스테르 시트 등이 사용될 수 있다. 기재층으로는, 상기 나열된 시트 중에서 선택된 2종 이상 또는 상기 나열된 시트 및 다른 시트가 적층되어 있는 적층 시트를 사용할 수도 있다. 예를 들면, 기재층으로는 폴리에스테르 시트를 사용할 수 있으나, 이에 제한되는 것은 아니다.
기재층의 일면 또는 양면에는, 수지층 등과의 접착력이나 배리어성의 개선의 관점에서, 산화규소층(SiOx) 또는 기타 프라이머층 등이 형성되어 있을 수 있다. 상기 산화규소층(SiOx) 또는 프라이머층 등은 수지층의 상부, 수지층과 기재층의 사이 또는 수지층이 형성되어 있지 않은 기재층의 표면에 형성될 수 있다.
수지층의 실리콘 수지는, 수지층이 봉지재 등과 같이 광전지용 시트가 모듈 내에서 접촉하게 되는 다양한 재료에 대하여 높은 접착성을 나타내도록 할 수 있다. 실리콘 수지는, 또한 수지층의 내습성, 내후성 및 내광성 등과 모듈의 집광 효율을 개선할 수 있다.
실리콘 수지는, 아릴기, 구체적으로는 규소 원자에 결합되어 있는 아릴기를 포함한다. 용어 「아릴기」는, 특별히 달리 규정하지 않는 한, 벤젠 고리를 가지거나, 2개 이상의 벤젠 고리가 연결 또는 축합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 용어 「아릴기」의 범위에는 통상적으로 아릴기로 호칭되고 있는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 아릴기는, 예를 들면, 탄소수 6 내지 25 또는 탄소수 6 내지 21의 아릴기일 수 있으며, 페닐기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 포함될 수 있다. 하나의 예시에서 상기 아릴기는, 페닐기일 수 있다.
실리콘 수지는, 상기 수지에 포함되는 모든 규소 원자(Si)에 대한 모든 아릴기(Ar)의 몰 비율(Ar/Si)이 0.3 초과, 0.5 이상, 또는 0.7 이상일 수 있다. 몰 비율(Ar/Si)이 0.3을 초과하면, 수지층의 내습성, 내후성 및 경도 등이 향상되고, 광전지 모듈에서의 집광 효율을 높아질 수 있다. 아릴기의 몰 비율(Ar/Si)의 상한은 제한되지 않으며, 예를 들면, 1.5 이하 또는 1.2 이하일 수 있다.
실리콘 수지의 아릴기는, 예를 들면, D 단위 또는 T 단위에 포함될 수 있다. 예를 들면, 실리콘 수지는 하기 화학식 1 및 2로 표시되는 단위로부터 선택된 하나 이상의 단위를 포함할 수 있다.
[화학식 1]
[R1R2SiO2/2]
[화학식 2]
[R3SiO3/2]
화학식 1 및 2에서, R1 및 R2는, 각각 독립적으로 수소, 히드록시기, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 알콕시기 또는 1가 탄화수소기이되, R1 및 R2 중 적어도 하나는 아릴기이고, R3는 아릴기이다.
용어 「알콕시기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는, 직쇄상, 분지상 또는 고리상일 수 있고, 임의로 하나 이상의 치환기로 치환되어 있을 수 있다.
용어 「1가 탄화수소기」는 탄소 및 수소로 이루어지는 화합물 또는 탄소 및 수소로 이루어진 화합물의 수소 중 적어도 하나가 임의의 치환기에 의해서 치환되어 있는 화합물로부터 유도되는 1가 잔기를 의미할 수 있다. 상기 1가 탄화수소기는, 예를 들면, 1개 내지 20개, 1개 내지 16개, 1개 내지 12개, 1개 내지 8개 또는 1개 내지 4개의 탄소 원자를 포함할 수 있다. 1가 탄화수소기로는, 알킬기, 알케닐기, 알키닐기 또는 아릴기 등이 예시될 수 있다.
용어 「알킬기」는, 특별히 달리 규정하지 않는 한 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8, 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 알킬기는, 직쇄상, 분지상 또는 고리상일 수 있고, 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
또한, 용어 「알케닐기」는, 특별히 달리 규정하지 않는 한 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8, 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 알케닐기는 직쇄상, 분지상 또는 고리형의 알케닐기일 수 있고, 임의로 하나 이상의 치환기로 치환되어 있을 수 있다.
또한, 용어 「알키닐기」는, 특별히 달리 규정하지 않는 한 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8, 또는 탄소수 2 내지 4의 알키닐기를 의미할 수 있다. 알키닐기는, 직쇄상, 분지상 또는 고리상일 수 있고, 임의로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서, 에폭시기, 아크릴로일기, 메타크릴로일기, 알콕시기 또는 1가 탄화수소기에 임의로 치환되어 있을 수 있는 치환기로는 할로겐, 히드록시기, 에폭시기, 아크릴기, 메타크릴기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기 또는 상기 1가 탄화수소기 등이 예시될 수 있다.
상기 화학식 1에서 R1 및 R2는, 예를 들면, 각각 독립적으로 알킬기 또는 아릴기일 수 있다. 화학식 1의 단위는, 규소 원자에 결합된 아릴기를 하나 이상 포함하는 D 단위이다. 상기 아릴기는, 예를 들면, 페닐기일 수 있다. 상기 화학식 1의 단위에 알킬기가 포함될 경우, 상기 알킬기는, 예를 들면, 메틸기일 수 있다.
화학식 1의 단위는 예를 들면, 하기 화학식 3 또는 4의 단위일 수 있다.
[화학식 3]
[(C6H5)(CH3)SiO2/2]
[화학식 4]
[(C6H5)2SiO2/2]
실리콘 수지가 화학식 1의 단위를 포함하면, 하나의 예시에서 실리콘 수지에 포함되는 모든 규소 원자(Si)에 대한 화학식 1의 단위에 포함되는 아릴기(Ar)의 몰비(Ar/Si) 또는 상기 실리콘 수지에 포함되는 모든 규소 원자(Si)의 몰수에 대한 화학식 1의 단위에 포함되는 아릴기(Ar)의 몰수와 알킬기(Ak)의 물수의 합의 비율((Ar+Ak)/Si)은 0.5 내지 0.9 또는 0.7 내지 0.85일 수 있다. 이러한 범위에서 수지층의 물성을 개선할 수 있다.
화학식 2는, 규소 원자에 결합되어 있는 아릴기를 포함하는 T 단위이다. 하나의 예시에서 화학식 2의 단위는, 하기 화학식 5로 표시되는 단위일 수 있다.
[화학식 5]
(C6H5)SiO3/2
실리콘 수지가 화학식 2의 단위를 포함하면, 예를 들면, 실리콘 수지에 포함되는 모든 규소 원자(Si)에 대한 화학식 2의 단위에 포함되는 아릴기(Ar)의 몰비(Ar/Si)가 0.5 내지 0.9 또는 0.7 내지 0.85일 수 있다. 이러한 범위에서 수지층의 물성을 개선할 수 있다.
하나의 예시에서 실리콘 수지에 포함되는 모든 아릴기는, 상기 화학식 1 및/또는 2의 단위에 포함되어 있을 수 있다. 이 경우에 화학식 1의 단위는 화학식 3 또는 4의 단위이며, 화학식 2의 단위는 상기 화학식 5의 단위일 수 있다.
실리콘 수지는, 예를 들면, 하기 화학식 6의 평균 조성식으로 표시될 수 있다.
[화학식 6]
(R3SiO1/2)a(R2SiO2/2)b(RSiO3/2)c(SiO4/2)d
화학식 6에서, R은, 규소 원자에 결합하고 있는 치환기이고, 각각 독립적으로, 수소, 히드록시기, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 알콕시기 또는 1가 탄화수소기이되, R 중 적어도 하나는 아릴기이고, a+b+c+d를 1로 환산할 경우, a는 0 내지 0.6이며, b는 0 내지 0.97이고, c는 0 내지 0.8이며, d는 0 내지 0.4이되, b 및 c는 동시에 0이 아니다
본 명세서에서 실리콘 수지가 특정의 평균 조성식으로 표시된다는 것은, 수지층에 포함되는 단일의 실리콘 수지가 그 평균 조성식으로 표시되는 경우는 물론, 수지층에 다수의 수지 성분이 존재하고, 그 다수의 수지 성분의 조성의 평균을 취하면, 그 평균 조성식으로 표시되는 경우도 포함한다.
화학식 6에서 R은 규소 원자에 직접 결합되어 있는 치환기이고, 각각의 R은 서로 동일하거나, 상이할 수 있으며, 각각 독립적으로 수소, 히드록시기, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 알콕시기 또는 1가 탄화수소기이다.
화학식 6에서 R 중의 적어도 하나는 아릴기, 예를 들면, 페닐기일 수 있다. 상기 아릴기는 상기 기술한 몰 비율(Ar/Si)을 만족하도록 실리콘 수지 내에 포함되어 있을 수 있다.
화학식 6에서 R 중의 적어도 하나는 또한 수소, 히드록시기, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 알콕시기 또는 알케닐기일 수 있다. 이러한 관능기를 포함하면, 수지층의 물성, 예를 들면, 접착성 등을 추가로 개선할 수 있다.
화학식 6에서, a, b, c 및 d는 각 실록산 단위의 몰 분율이며, 그 총합을 1로 환산하면, a는 0 내지 0.6 또는 0 내지 0.5일 수 있고, b는 0 내지 0.97 또는0 내지 0.8일 수 있으며, c는 0 내지 0.8 또는 0 내지 0.7일 수 있고, d는 0 내지 0.4 또는 0 내지 0.2일 수 있다. 상기에서 b 및 c는 동시에 0이 아니다. 즉, 화학식 6의 실리콘 수지는, T 단위 또는 Q 단위를 포함할 수 있다.
실리콘 수지는, 분자량이 500 내지 200,000 또는 1,000 내지 200,000 정도일 수 있다. 상기 범위의 분자량을 가지는 수지를 사용하면, 경도 등의 물성이 우수한 수지층을 형성할 수 있고, 수지층의 형성 과정에서 작업성 등도 개선할 수 있다. 특별히 달리 규정하지 않는 한 용어 「실리콘 수지의 분자량」은 실리콘 수지의 중량평균분자량(Mw: Weight Average Molecular Weight)을 의미한다. 중량평균분자량은, 예를 들면, GPC(Gel Permeation Chromatograph)로 측정된 표준 폴리스티렌에 대한 환산 수치일 수 있다.
수지층은, 내광성 부여제를 또한 포함한다. 내광성 부여제는, 단파장의 자외선에 노출되는 경우에도, 시트에 손상이 발생하는 것을 방지하고, 전체적인 내구성을 향상시킬 수 있다. 내광성 부여제로는, 예를 들면, 자외선 흡수제 및/또는 광안정제를 사용할 수 있다.
자외선 흡수제로는, 예를 들면, 벤조페논 화합물, 벤조트리아졸 화합물 및 트리아진 화합물로부터 선택되는 하나 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다. 벤조페논 화합물로는, 2,4-디히드록시벤조페논, 2-히드록시-4-메톡시 벤조페논, 2-히드록시-4-메톡시 벤조페논-5-술폰산, 2-히드록시-4-n-옥틸옥시 벤조페논, 2-히드록시-4-n-도데실옥시벤조페논, 2-히드록시-4-벤질옥시 벤조페논, 비스(5-벤조일-4-히드록시-2-메톡시페닐)메탄, 2,2’-디히드록시-4-메톡시 벤조페논 또는 2,2’-디히드록시-4,4’-디메톡시 벤조페논 등이 예시될 수 있고, 벤조트리아졸 화합물로는, 2-(2’-히드록시-5’-메틸페닐)벤조트리아졸, 2-(2’-히드록시-5’-tert-부틸페닐)벤조트리아졸, 2-(2’-히드록시-3’,5’-디-tert-부틸페닐)벤조트리아졸, 2-(2’-히드록시-5’-tert-옥틸페닐)벤조트리아졸 또는 2-(2’-히드록시-3’,5’-디-tert-옥틸페닐)벤조트리아졸이나, Nippon Ciba Geigy사에서 입수할 수 있는 TINUBIN 1130, TINUBIN 384, TINUBIN 571 또는 TINUBIN 900 등이 예시될 수 있으며, 트리아진 화합물로는, 예를 들면, Nippon Ciba Geigy사에서 입수할 수 있는 TINUBIN 400, TINUBIN 405, TINUBIN 460, TINUBIN 477DW 또는 TINUBIN 479 등이 예시될 수 있다.
광안정제로는, 예를 들면 힌더드 아민 화합물을 사용할 수 있다. 힌더드 아민 화합물로는, 비스(2,2,6,6-테트라메틸-4-피페리딜)숙시네이트(succinate), 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트(sebacate) 또는 비스(1,2,2,6,6-펜타메틸-4-피페리딜)-2-(3,5-디-tert-부틸-4-히드록시벤질)-2-부틸 말로네이트(malonate) 등이나, Nippon Ciba Geigy사에서 입수할 수 있는 TINUBIN 292 또는 TINUBIN 123, 또는 ADEKA사로부터 입수할 수 있는 ADK STAB LA82 또는 ADK STAB LA87 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
수지층은, 실리콘 수지 100 중량부에 대하여 0.05 중량부 내지 10 중량부 또는 0.1 중량부 내지 10 중량부의 내광성 부여제를 포함할 수 있다. 내광성 부여제의 함량을 0.05 중량부 내지 10 중량부로 유지하여, 수지층의 내구성을 우수하게 유지할 수 있다. 본 명세서에서 특별히 달리 규정하지 않는 한, 단위 「중량부」는, 성분간의 중량의 비율을 의미한다.
하나의 예시에서 수지층이 내광성 부여제로서 자외선 흡수제 및 광안정제를 동시에 포함하는 경우에, 내광성 부여제는, 상기 비율의 범위 내에서 자외선 흡수제 100 중량부 대비 10 중량부 내지 70 중량부, 20 중량부 내지 60 중량부 또는 30 중량부 내지 40 중량부의 광안정제를 포함할 수 있다. 이와 같이 자외선 흡수제와 광안정제를 동시에 포함하면, 수지층의 내구성을 보다 향상시킬 수 있다.
수지층은 또한 광산란성 또는 광반사성 입자를 추가로 포함할 수 있다. 광산란성 또는 반사성 입자는, 수지층으로의 입사광을 산란 또는 반사시킬 수 있는 입자이고, 이러한 기능이 발휘되는 한 다양한 종류의 입자가 사용될 수 있다. 예를 들면, 광산란성 입자로는, 수지층과 상이한 굴절률을 가지는 입자를 사용할 수 있다. 상기 입자로는, 예를 들면, 450 nm의 파장의 빛에 대하여 1.5 이상의 굴절률을 나타내는 입자를 사용할 수 있다. 상기 입자의 굴절률의 상한은 특별히 제한되지 않고, 필요한 산란성 등을 고려하여 설정될 수 있다. 광산란성 또는 광반사성 입자는, 수지층의 광 효율이나 자외선 차단 효과 등을 보다 개선할 수 있다. 광산란성 또는 광반사성 입자로는, 예를 들면, 유리 비드(glass bead) 등과 같은 글래스, 알루미나, 티타니아, 지르코니아, 산화 세륨, 산화 하프늄, 오산화 니오브, 오산화 탄탈, 산화 인듐, 산화 주석, 산화 인듐 주석, 산화 아연, 규소계 입자, 황 아연, 황산 바륨, 탄산 칼슘, 산화 티탄 또는 산화 마그네슘 등의 무기 입자를 사용할 수 있다.
광산란성 또는 광반사성 입자는, 예를 들면, 40 nm 내지 100,000 nm, 40 nm 내지 50,000 nm 또는 200 nm 내지 10,000 nm의 평균 입경을 가질 수 있다. 이러한 평균 입경의 범위 내에서 상기 입자들이 수지층 내에서 균일하게 분산되고, 공정성이나 접착성을 우수하게 유지할 수 있다.
광산란성 또는 광반사성 입자는, 실리콘 수지 100 중량부에 대하여 0.1 중량부 내지 50 중량부 또는 0.1 중량부 내지 30 중량부의 비율로 수지층에 포함될 수 있다. 이러한 중량 비율의 범위에서 수지층의 광산란성, 반사성, 공정성 및 접착 특성 등을 우수하게 유지할 수 있다.
수지층은, 필요한 경우에 공지된 첨가제를 추가로 포함할 수 있다. 첨가제로는, 다양한 열가소성 수지; 난연제; 자외선 안정제; 유리 섬유; 유리 비드; 또는 광학 증백제 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또한, 실리콘 수지 또는 그 전구체; 및 내광성 부여제를 포함하는 액상 코팅액을 사용하여 수지층을 형성하는 것을 포함하는 광전지용 시트의 제조 방법에 대한 것이다. 상기 액상 코팅액에 포함되는 실리콘 수지로는, 상기에서 기술한 실리콘 수지를 사용할 수 있다. 또한, 그 전구체는, 예를 들면, 경화 과정 등을 거쳐 상기 실리콘 수지를 형성할 수 있는 하나 이상의 성분을 포함하는 것을 사용할 수 있다. 상기 수지층은, 예를 들면, 상기 액상 코팅액을 코팅하고, 코팅된 재료를 경화 또는 건조시키는 것을 거쳐서 형성할 수 있다.
하나의 예시에서 광전지용 시트는, 상기 실리콘 수지 또는 경화 공정 등을 거쳐서 상기 수지를 형성할 수 있는 전구체를 상기 내광성 부여제와 함께 포함하는 액상 코팅액을 상기 기재층에 코팅하고, 수지층을 형성하여 제조할 수 있다.
실리콘 수지를 형성할 수 있는 전구체, 예를 들면, 액상의 규소계 재료의 종류는 특별히 제한되지 않고, 이 분야에서 공지되어 있는 다양한 성분을 제한 없이 채용할 수 있다. 예를 들면, 상기 성분은, 부가 경화형 실리콘 재료, 축합 또는 중축합 경화형 실리콘 재료, 자외선 경화형 실리콘 재료 또는 퍼옥시드 가황형 실리콘 재료 등일 수 있다.
부가 경화형 실리콘계 재료는, 수소규소화 반응(hydrosilylation)을 통하여 경화하는 재료이다. 이 재료는, 규소 원자에 직접 결합되어 있는 수소 원자를 가지는 유기 규소 화합물 및 비닐기와 같은 지방족 불포화기를 가지는 유기 규소 화합물을 적어도 포함하고, 상기 화합물은, 촉매의 존재 하에 서로 반응하여 경화된다. 촉매의 예에는, 주기율표 제8족의 금속이나, 상기 금속을 알루미나, 실리카 또는 카본 블랙 등의 담체에 담지시킨 촉매 또는 상기 금속의 염이나 착체 등이 포함될 수 있다. 주기율표 제8족의 금속으로는, 예를 들면, 백금, 로듐 또는 루테늄 등을 사용할 수 있다.
축합 또는 중축합 경화형 실리콘계 재료를 사용하는 방식은, -Cl, -OCH3, -OC(O)CH3, -N(CH3)2, -NHCOCH3 또는 -SCH3 등과 같은 가수분해성 관능기를 가지는 실란이나 실록산 등의 규소 화합물 또는 그 가수분해물의 가수 분해 및 축합 반응을 통해 실리콘 수지를 제조하는 방식이다. 이러한 방식에서 사용할 수 있는 단위 화합물로는, Ra 3Si(ORb), Ra 2Si(ORb)2, RaSi(ORb)3 및 Si(ORb)4 등의 실란 화합물이 예시될 수 있다. 상기에서 (ORb)는 탄소수 1 내지 8의 직쇄상 또는 분기상 알콕시기일 수 있고, 예를 들면, 메톡시, 에톡시, n-프로폭시, n-부톡시, 이소프로폭시, 이소부톡시, sec-부톡시 또는 t-부톡시 등일 수 있다. 또한, 상기 화합물에서 Ra는 규소 원자에 결합되어 있는 관능기이고, 목적하는 실리콘 수지에 포함되는 치환기를 고려하여 선택되는 관능기이다.
자외선 경화형 실리콘계 재료를 사용하는 방식은, 아크릴로일기 등과 같은 자외선 반응기를 가지는 실란 또는 실록산 등의 규소 화합물 또는 그 가수분해물을 가수 분해 및 축합 반응에 적용하여 수지를 제조하고, 자외선 조사에 의해 반응시켜 목적 수지를 제조는 방식이다.
이 분야에서는, 상기와 같은 소재가 다양하게 공지되어 있으며, 평균적 기술자는 목적하는 실리콘 수지를 고려하여, 공지의 재료를 용이하게 채용하여 액상의 코팅액을 제조할 수 있다.
액상의 코팅액을 도포하는 방법은 특별히 제한되지 않으며, 예를 들면, 바 코팅, 스핀 코팅 또는 콤마 코팅 등의 공지의 방식을 사용할 수 있다. 예를 들면, 이와 같은 방식으로 형성된 코팅층을 적정 조건에서 경화 및/또는 건조시켜 수지층을 형성할 수 있다.
수지층을 형성하는 방식은 상기에 제한되는 것은 아니다. 예를 들면, 원료를 공정 기재층에 압출 및 경화시키거나, 또는 상기 원료로 시트 또는 필름상의 성형체를 제조하고, 이를 기재층에 라미네이트하는 방식 등을 사용할 수도 있다.
본 출원은 또한 광전지 모듈에 대한 것이다. 예시적인 광전지 모듈은, 상기 기술한 광전지용 시트, 기판 및 소자, 예를 들면, 광전 변환 소자를 포함할 수 있다. 상기 소자는, 상기 광전지용 시트와 기판의 사이에서 봉지재에 의해 캡슐화되어 있을 수 있다.
광전지 모듈에서 상기 광전지용 시트는, 예를 들면, 백시트 또는 지지 기판으로 적용될 수 있다. 광전지 모듈은, 상기 광전지용 시트를 포함하는 한, 다양한 형태로 구성될 수 있으며, 그 예에는 실리콘 웨이퍼계 광전지 모듈 또는 박막형 광전지 모듈 등의 형태가 포함된다.
도 3 및 4는 예시적인 광전지 모듈을 모식적으로 나타내는 도면이다. 도 3는 광전지용 시트(301)를 포함하는 모듈(300)의 하나의 예시로서, 실리콘계 광전지 웨이퍼를 광전 변환 소자(303)로 포함하는 모듈(300)을 모식적으로 나타낸다. 도 3과 같이, 예시적인 모듈(400)은 통상 유리 등과 같은 강유전체인 전면 기판(302); 백시트(301); 실리콘계 웨이퍼 등의 광전 변환 소자(303); 및 상기 소자(303)을 캡슐화하고 있는 봉지재(304)를 포함할 수 있다. 상기 봉지재로는, 예를 들면, EVA계 소재 또는 실리콘계 소재 등을 사용할 수 있다. 봉지재로서, 실리콘계 소재를 사용하면, 백시트(301)로 사용되고 있는 광전지용 시트 등과의 상용성을 향상시킬 수 있으나, 이에 제한되는 것은 아니다.
도 4는 다른 예시적인 모듈(400)로서, 박막형 광전지 모듈을 나타내는 모식도이다. 도 5와 같이, 박막형 광전지 모듈(400)에서, 광전 변환 소자(402)는, 통상 강유전체인 전면 기판(401)에 형성될 수 있다. 상기 소자(402)는, 전면 기판(401) 및 지지 기판(301)인 상기 광전지용 시트의 사이에서 봉지재(403)에 의해 캡슐화되어 있을 수 있다. 통상 박막인 광전 변환 소자(402)는, 예를 들면, 화학 기상 증착(CVD) 등의 방법으로 형성될 수 있다.
광전지 모듈은, 예를 들어, 지지 부재로서 상기 광전지용 시트를 포함하는 한, 그 외의 기타 구성이나 제조 방법은 특별히 제한되지 않고, 이 분야의 일반적인 방식이 그대로 적용될 수 있다.
본 출원에서는, 수분 차단성, 내후성, 내습성, 내열성 및 내광성 등이 우수한 광전지용 시트 및 그를 포함하는 광전지 모듈이 제공될 수 있다.
도 1 및 2는 광전지용 시트를 예시적으로 나타내는 도면이다.
도 3 및 4는 광전지 모듈을 예시적으로 나타내는 도면이다.
이하 실시예 및 비교예를 통하여 상기 광전지용 시트 등을 상세히 설명하나, 상기 시트 등의 범위가 하기 실시예에 의해 제한되는 것은 아니다(실시예 및 비교예에서 기호 Vi는 비닐기를 나타내고, Me는 메틸기를 나타내며, Ph는 페닐기를 나타내고, Ep는 에폭시기를 나타낸다.).
실시예 1.
실리콘 수지 전구체(A)의 제조
공지의 방식으로 합성한 실록산 화합물로서, 각각 하기의 화학식 A 내지 D로 표시되는 화합물을 혼합하고, 촉매 및 자외선 흡수제(TINUBIN 384, Nippon Ciba Geigy) 5 g을 배합하여, 히드로실릴화 반응에 의해 경화하는 경화성 조성물인 전구체(A)를 제조하였다(배합량: 화학식 A의 화합물: 100 g, 화학식 B의 화합물: 10 g, 화학식 C의 화합물: 200 g, 화학식 D의 화합물: 60 g). 촉매로는, Pt(0)의 함량이 20 ppm이 되는 양으로 백금 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하였다.
[화학식 A]
(ViMe2SiO1/2)2(Ph2SiO2/2)10(Me2SiO2/2)10
[화학식 B]
(ViMe2SiO1/2)2(EpSiO3/2)3(MePhSiO2/2)15
[화학식 C]
(ViMe2SiO1/2)3(MePhSiO2/2)(PhSiO3/2)9
[화학식 D]
(HMe2SiO1/2)2(Ph2SiO2/2)1.5
수지층(A)의 제조
제조된 전구체(A)를 코팅하고, 약 150°C에서 약 1 시간 동안 유지하여 경화시킴으로써 두께가 1 mm인 시트상의 수지층을 형성하였다.
비교예 1.
공지의 방식으로 합성한 하기의 화학식 E 내지 G의 화합물을 혼합하고, 촉매 및 자외선 흡수제(TINUBIN 384, Nippon Ciba Geigy) 10 g을 추가로 배합하여 제조된 경화성 조성물(배합량: 화학식 E의 화합물: 100 g, 화학식 F의 화합물: 20 g, 화학식 G의 화합물: 50g)인 전구체(B)를 사용한 것을 제외하고는, 실시예 1과 동일한 방식으로 수지층(B)를 형성하였다. 상기 전구체(B)에는 촉매로서, Pt(0)의 함량이 10 ppm이 되도록 백금 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하였다.
[화학식 E]
(ViMe2SiO1/2)2(ViMeSiO2/2)15(MeSiO3/2)5(Me2SiO2/2)50
[화학식 F]
(ViMe2SiO1/2)2(Me2SiO3/2)6(PhSiO3/2)1.5
[화학식 G]
(HMe2SiO1/2)2(HMeSiO2/2)2(Me2SiO2/2)10
비교예 2.
공지의 방식으로 합성한 하기 화학식 H 내지 J로 표시되는 화합물을 혼합하고, 촉매 및 자외선 흡수제(TINUBIN 384, Nippon Ciba Geigy) 10 g을 추가로 배합하여 제조한 경화성 조성물(배합량: 화학식 H의 화합물: 100 g, 화학식 I의 화합물: 20 g, 화학식 J의 화합물: 50 g)인 전구체(C)를 사용한 것을 제외하고는, 실시예 1과 동일한 방식으로 수지층(C)를 형성하였다. 상기 전구체(C)에는, Pt(0) 함량이 20 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하였다.
[화학식 H]
(ViPh2SiO1/2)2(Me2SiO2/2)20
[화학식 I]
(ViPh2SiO1/2)3(MeSiO3/2)10
[화학식 J]
(HMe2SiO1/2)2(HMeSiO2/2)2(Me2SiO2/2)10
시험예 1. 수분 투과도의 측정
실시예 1 및 비교예 1 및 2에서 제조된 수지층에 대하여 두께 방향으로 동일 조건에서 모콘 장비로 수분 투과도를 측정하고, 그 결과를 하기 표 1에 기재하였다.
표 1
실시예 1 비교예 1 비교예 2
수분 투과성 15 g/cm2 day 101 g/cm2 day 120 g/cm2 day
실시예 2
전구체(D)의 제조
공지의 방식으로 합성한 실록산 화합물로서, 각각 하기의 화학식 K 내지 N으로 표시되는 화합물을 혼합하였다(배합량: 화학식 K의 화합물: 100 g, 화학식 L의 화합물: 3 g, 화학식 M의 화합물: 50 g, 화학식 N의 화합물: 20 g). 상기 혼합물에 백금 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane) 0.001 g, 자외선 흡수제(TINUBIN 384, Nippon Ciba Geigy) 10 g 및 광안정제(TINUBIN 123, Nippon Ciba Geigy) 4 g을 배합하여 경화성 조성물인 전구체(D)를 제조하였다.
[화학식 K]
(ViMe2SiO1/2)2(ViMeSiO2/2)5(Ph2SiO2/2)20(Me2SiO2/2)40
[화학식 L]
(ViMe2SiO1/2)2(MeEpSiO2/2)5(Ph2SiO2/2)10(Me2SiO2/2)10
[화학식 M]
(ViMe2SiO1/2)2.5(PhSiO3/2)5
[화학식 N]
(HMe2SiO1/2)2(Ph2SiO2/2)1.5
광전지용 시트의 제조
전구체(D)를 PET(poly(ethylene terephtahlate)) 시트에 코팅 및 경화시키는 과정을 반복하여 상기 PET 시트의 양면에 수지층을 형성하였다. 상기에서 경화는, 코팅층을 150°C에서 1 시간 동안 유지하여 수행하였다.
실시예 3
실시예 2와 동일한 전구체에 이산화 티탄(TiO2, 평균 입경 3 ㎛) 10 g을 추가로 배합한 전구체(E)를 사용한 것을 제외하고는, 실시예 2와 동일한 방식으로 광전지용 시트를 제조하였다.
실시예 4
광안정제만을 배합하지 않은 것을 제외하고는, 실시예 2와 동일한 방식으로 전구체를 제조하고, 또한 광전지용 시트를 제조하였다.
비교예 3
경화성 조성물의 제조 시에 자외선 흡수제(TINUBIN 384, Nippon Ciba Geigy) 및 광안정제(TINUBIN 123, Nippon Ciba Geigy)를 배합하지 않은 것을 제외하고는, 실시예 1과 동일하게 전구체 및 광전지용 시트를 제조하였다.
상기 실시예 2와 3, 그리고 비교예 3에 대하여 하기 방식으로 고온 및 고습 조건에서의 신뢰성 및 황변 저항성을 측정하고, 그 결과를 하기 표 2에 정리하였다.
1. 고온 및 고습 하에서의 신뢰성 측정
실시예 및 비교예에서 제조된 수지층이 형성되어 있는 PET 시트를 85°C의 온도 및 85%의 상대 습도의 조건에서 1,000 시간 동안 방치하고, 수지층과 PET의 사이에 박리 현상이 유발되는지를 관찰하여, 하기 기준으로 평가하였다.
<평가 기준>
O: 수지층 및 PET 시트의 계면에서 박리가 발생하지 않은 경우
X: 수지층 및 PET 시트의 계면에서 박리가 발생한 경우
2. 황변 발생 정도의 측정
실시예 및 비교예에서 제조된 두께가 1 mm인 수지층에 대하여 Q-UVA(340 nm, 0.89W/Cm2) 장비로 60°C에서 3일 동안 광을 조사한 후 황변 발생 여부를 관찰하여 하기 기준으로 결과를 평가하였다.
<평가 기준>
O: 450 nm의 파장의 광에 대한 흡수율이 5% 미만인 경우
X: 450 nm의 파장의 광에 대한 흡수율이 5% 이상인 경우
표 2
실시예 2 실시예 3 실시예 4 비교예 3
내구신뢰성 O O O X
황변 평가 O O O X
[부호의 설명]
100, 200, 301: 광전지용 시트
101, 201: 기재층
102, 202, 203: 수지층
300, 400: 광전지 모듈
302, 401: 전면 기판
304, 403: 봉지재
303, 402: 광전 변환 소자

Claims (18)

  1. 아릴기를 가지는 실리콘 수지이고, 상기 실리콘 수지에 포함되는 전체 규소 원자에 대한 상기 아릴기의 몰비가 0.3을 초과하며, 하기 화학식 1 또는 2의 실록산 단위를 포함하는 실리콘 수지 및 내광성 부여제를 포함하는 수지층을 가지는 광전지용 시트:
    [화학식 1]
    (R1R2SiO2/2)
    [화학식 2]
    (R3SiO3/2)
    상기 화학식 1 및 2에서, R1 및 R2는 각각 독립적으로 수소, 히드록시기, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 알콕시기 또는 1가 탄화수소기이되, R1 및 R2 중 하나 이상은 아릴기이고, R3는 아릴기이다.
  2. 제 1 항에 있어서, 기재층을 추가로 포함하고, 수지층이 상기 기재층의 일면 또는 양면에 형성되는 광전지용 시트.
  3. 제 1 항에 있어서, 기재층을 추가로 포함하고, 수지층이 상기 기재층의 일면에 형성되어 있으며, 상기 기재층의 반대면에는 아릴기를 포함하는 실리콘 수지이고, 상기 수지에 포함되는 전체 규소 원자에 대한 상기 아릴기의 몰비가 0.3을 초과하는 실리콘 수지를 포함하는 제 2 수지층이 형성되어 있는 광전지용 시트.
  4. 제 2 항에 있어서, 기재층이 금속, 불소 수지 시트, 폴리에스테르 시트 또는 상기 중 2개 이상의 적층 시트인 광전지용 시트.
  5. 제 1 항에 있어서, 실리콘 수지에 포함되는 전체 규소 원자에 대한 아릴기의 몰비가 0.5 이상인 광전지용 시트.
  6. 제 1 항에 있어서, 실리콘 수지는, 하기 화학식 6의 평균 조성식을 가지는 광전지용 시트:
    [화학식 6]
    (R3SiO1/2)a(R2SiO2/2)b(RSiO3/2)c(SiO4/2)d
    상기 화학식 6에서, R은, 규소 원자에 직접 결합하고 있는 치환기로서, 각각 독립적으로, 수소, 히드록시기, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 알콕시기 또는 1가 탄화수소기이고, R 중 적어도 하나는 아릴기이며, a+b+c+d를 1로 환산하였을 때에 a는 0 내지 0.6이고, b는 0 내지 0.97이며, c는 0 내지 0.8이고, d는 0 내지 0.4이며, b 및 c는 동시에 0이 아니다.
  7. 제 1 항에 있어서, 실리콘 수지는, 중량평균분자량이 500 내지 100,000인 광전지용 시트.
  8. 제 1 항에 있어서, 내광성 부여제는 자외선 흡수제 및 광안정제로 이루어진 군으로부터 선택된 하나 이상인 광전지용 시트.
  9. 제 8 항에 있어서, 자외선 흡수제가 벤조페논 화합물, 벤조트리아졸 화합물 또는 트라이진 화합물인 광전지용 시트.
  10. 제 8 항에 있어서, 광안정제가 힌더드 아민 화합물인 광전지용 시트.
  11. 제 1 항에 있어서, 내광성 부여제가 자외선 흡수제 및 광안정제인 광전지용 시트.
  12. 제 1 항에 있어서, 수지층은 실리콘 수지 100 중량부에 대하여 0.05 중량부 내지 10 중량부의 내광성 부여제를 포함하는 광전지용 시트.
  13. 제 1 항에 있어서, 내광성 부여제가 자외선 흡수제 및 광안정제를 포함하는 광전지용 시트.
  14. 제 13 항에 있어서, 내광성 부여제는 자외선 흡수제 100 중량부 대비 10 중량부 내지 70 중량부의 광안정제를 포함하는 광전지용 시트.
  15. 제 1 항에 있어서, 수지층은 광산란성 또는 광반사성 입자를 추가로 포함하는 광전지용 시트.
  16. 제 15 항에 있어서, 광산란성 또는 광반사성 입자가 글래스, 알루미나, 티타니아, 지르코니아, 산화 세륨, 산화 하프늄, 오산화 니오브, 오산화 탄탈, 산화 인듐, 산화 주석, 산화 인듐 주석, 산화 아연, 규소계 입자, 황 아연, 황산 바륨, 탄산 칼슘, 산화 티탄 및 산화 마그네슘으로 이루어진 군으로부터 선택된 하나 이상인 광전지용 시트.
  17. 아릴기를 가지는 실리콘 수지로서, 상기 실리콘 수지에 포함되는 전체 규소 원자에 대한 상기 아릴기의 몰비가 0.3을 초과하며, 하기 화학식 1 또는 2의 실록산 단위를 포함하는 실리콘 수지 또는 그 전구체를 포함하는 액상 코팅액을 사용하여 수지층을 형성하는 것을 포함하는 광전지용 시트의 제조 방법:
    [화학식 1]
    (R1R2SiO2/2)
    [화학식 2]
    (R3SiO3/2)
    상기 화학식 1 및 2에서, R1 및 R2는 각각 독립적으로 수소, 히드록시기, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 알콕시기 또는 1가 탄화수소기이되, R1 및 R2 중 하나 이상은 아릴기이고, R3는 아릴기이다.
  18. 제 1 항의 광전지용 시트, 기판 및 상기 광전지용 시트와 기판의 사이에서 소자를 캡슐화하고 있는 봉지재를 포함하는 광전지 모듈.
PCT/KR2012/004821 2011-06-17 2012-06-18 광전지용 시트 WO2012173461A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280029921.XA CN103620798A (zh) 2011-06-17 2012-06-18 用于光伏电池的薄板
EP12800383.7A EP2722896B1 (en) 2011-06-17 2012-06-18 Sheet for photovoltaic cell
JP2014515770A JP6020937B2 (ja) 2011-06-17 2012-06-18 光電池用シート
US14/109,772 US20140174523A1 (en) 2011-06-17 2013-12-17 Sheet for photovoltaic cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0059099 2011-06-17
KR20110059099 2011-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/109,772 Continuation US20140174523A1 (en) 2011-06-17 2013-12-17 Sheet for photovoltaic cell

Publications (2)

Publication Number Publication Date
WO2012173461A2 true WO2012173461A2 (ko) 2012-12-20
WO2012173461A3 WO2012173461A3 (ko) 2013-03-28

Family

ID=47357646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004821 WO2012173461A2 (ko) 2011-06-17 2012-06-18 광전지용 시트

Country Status (6)

Country Link
US (1) US20140174523A1 (ko)
EP (1) EP2722896B1 (ko)
JP (1) JP6020937B2 (ko)
KR (1) KR101589337B1 (ko)
CN (1) CN103620798A (ko)
WO (1) WO2012173461A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015094455A1 (en) 2013-12-16 2015-06-25 Dow Corning Corporation Selective light blocking opto-physical materials and optical devices including such selective light blocking opto-physical materials
JP2016529331A (ja) * 2013-08-28 2016-09-23 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987787B (zh) * 2011-11-25 2016-08-24 Lg化学株式会社 可固化组合物
WO2015136820A1 (ja) * 2014-03-12 2015-09-17 横浜ゴム株式会社 硬化性樹脂組成物
US9965113B2 (en) 2014-04-14 2018-05-08 Lg Innotek Co., Ltd. Touch window
JP6765781B2 (ja) * 2014-09-16 2020-10-07 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
WO2016139954A1 (en) * 2015-03-05 2016-09-09 Nichia Corporation Light emitting device
JP6492996B2 (ja) * 2015-06-15 2019-04-03 信越化学工業株式会社 黄変シリコーンゴム硬化物の黄変を低減する方法
JP2019167544A (ja) * 2019-05-10 2019-10-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化型シリコーン樹脂組成物、及びそれを用いた画像表示装置
DE102019008575A1 (de) * 2019-12-05 2021-06-10 Eugeniusz Stepniewski Hybrider Solarkollektor zur Dacheindeckung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368243A (ja) * 2001-06-11 2002-12-20 Bridgestone Corp 太陽電池
JP2004359756A (ja) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Led用封止剤組成物
EP2041801A2 (en) * 2006-06-05 2009-04-01 Dow Corning Corporation A solar cell including a silicone resin layer
TWI361205B (en) * 2006-10-16 2012-04-01 Rohm & Haas Heat stable aryl polysiloxane compositions
US20080099064A1 (en) * 2006-10-27 2008-05-01 Richard Allen Hayes Solar cells which include the use of high modulus encapsulant sheets
US8329156B2 (en) * 2007-12-21 2012-12-11 Dow Corning Corporation Ionomeric silicone thermoplastic elastomers
CN102746467B (zh) * 2008-04-22 2015-01-14 东亚合成株式会社 固化性组合物以及有机硅化合物的制备方法
JP2009267294A (ja) 2008-04-30 2009-11-12 Toppan Printing Co Ltd 太陽電池用バックシート
JP5520528B2 (ja) * 2008-07-10 2014-06-11 東レ・ダウコーニング株式会社 ガスバリアー性硬化オルガノポリシロキサン樹脂フィルム及びその製造方法
DE112009002023T5 (de) * 2008-08-19 2011-06-30 Lintec Corp. Geformter Gegenstand, Verfahren zur Herstellung desselben, elektronisches Vorrichtungsteil und elektronische Vorrichtung
TWI506104B (zh) * 2009-03-11 2015-11-01 旭化成電子材料股份有限公司 塗覆組成物、塗膜、積層體及積層體之製造方法
JP5545298B2 (ja) * 2009-10-21 2014-07-09 信越化学工業株式会社 太陽電池モジュール表面保護用透明積層フィルム及び太陽電池モジュール

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2722896A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529331A (ja) * 2013-08-28 2016-09-23 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
WO2015094455A1 (en) 2013-12-16 2015-06-25 Dow Corning Corporation Selective light blocking opto-physical materials and optical devices including such selective light blocking opto-physical materials
JP2017502329A (ja) * 2013-12-16 2017-01-19 ダウ コーニング コーポレーションDow Corning Corporation 選択的光遮蔽用光物理材料及びその選択的光遮蔽用光物理材料を含む光学素子
EP3083833A4 (en) * 2013-12-16 2017-07-26 Dow Corning Corporation Selective light blocking opto-physical materials and optical devices including such selective light blocking opto-physical materials

Also Published As

Publication number Publication date
KR101589337B1 (ko) 2016-01-29
EP2722896A2 (en) 2014-04-23
JP6020937B2 (ja) 2016-11-02
US20140174523A1 (en) 2014-06-26
CN103620798A (zh) 2014-03-05
WO2012173461A3 (ko) 2013-03-28
KR20120139615A (ko) 2012-12-27
JP2014523642A (ja) 2014-09-11
EP2722896B1 (en) 2016-11-02
EP2722896A4 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2012173461A2 (ko) 광전지용 시트
WO2012102540A2 (ko) 광전지 모듈
WO2011090365A2 (ko) 광전지용 시트
WO2011090366A2 (ko) 광전지 모듈
WO2011090363A2 (ko) 광전지 모듈
JP2013168657A (ja) 太陽電池モジュール表面保護用透明積層フィルム及び太陽電池モジュール
WO2012148176A2 (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
WO2011090367A2 (ko) 광전지용 시트
KR101413892B1 (ko) 광전지 모듈
WO2014148852A1 (ko) 광학소자의 다층구조 봉지방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800383

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2012800383

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012800383

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014515770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE