WO2012173341A2 - 국부적 방사선 치료용 x선 바늘 모듈 - Google Patents

국부적 방사선 치료용 x선 바늘 모듈 Download PDF

Info

Publication number
WO2012173341A2
WO2012173341A2 PCT/KR2012/003624 KR2012003624W WO2012173341A2 WO 2012173341 A2 WO2012173341 A2 WO 2012173341A2 KR 2012003624 W KR2012003624 W KR 2012003624W WO 2012173341 A2 WO2012173341 A2 WO 2012173341A2
Authority
WO
WIPO (PCT)
Prior art keywords
ray
rays
needle
mirror
radiation therapy
Prior art date
Application number
PCT/KR2012/003624
Other languages
English (en)
French (fr)
Other versions
WO2012173341A3 (ko
Inventor
전인수
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Priority to US13/813,329 priority Critical patent/US9089697B2/en
Publication of WO2012173341A2 publication Critical patent/WO2012173341A2/ko
Publication of WO2012173341A3 publication Critical patent/WO2012173341A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1027Interstitial radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0875Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising two or more metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/165Vessels; Containers; Shields associated therewith joining connectors to the tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • A61N2005/1022Generators, e.g. X-ray tubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith

Definitions

  • the present invention relates to an X-ray needle module for local radiation therapy, and more particularly to high-intensity short-wavelength parallel control through radially spreading X-rays to minimize damage to healthy tissues other than cancerous tissues of patients.
  • the present invention relates to an X-ray needle module for local radiation therapy, which is necessary to implement a new radiation therapy technique for forming an X-ray needle of X-rays and applying it to the treatment of cancer tissue.
  • Radiation therapy uses radiation, such as X-rays, gamma rays, and proton rays to treat disease, to delay or stop tissue growth of various cancers and malignant diseases, and even destroy them to assist in treatment.
  • radiation such as X-rays, gamma rays, and proton rays to treat disease, to delay or stop tissue growth of various cancers and malignant diseases, and even destroy them to assist in treatment.
  • X-ray treatment for cancer is a means of local / regional control where the tumor is large and invasive and difficult to operate or cannot be removed by surgery. 60% of all cancer patients treat this X-ray. Is getting.
  • IMRT intensity-controlled X-ray therapy
  • Tomotherapy X-ray tomography
  • cyber knife using a small linear accelerator have been developed and used.
  • the present invention has been made to solve the conventional problems
  • Local radiation therapy X-ray needle module of the present invention provided to achieve the above object is an X-ray generating unit for generating X-rays by receiving power from the outside; And an X-ray needle forming unit for collecting X-rays generated from the X-ray generating unit and extracting the collected X-rays as high-strength short wavelength parallel X-rays to form an X-ray needle.
  • the X-ray needle forming unit has a housing in which an entrance hole into which an X-ray generated from an X-ray generator is incident is formed on one side, and an exit hole in which an X-ray needle is emitted is formed on the other side, and the inside of the housing.
  • An X-ray mirror provided at the X-ray generator and condensing X-rays generated from the X-ray generator to form an X-ray needle having a high intensity short wavelength parallel X-ray, and an X-ray mirror provided at the tip of the X-ray mirror Characterized in that consisting of a position controller for controlling the installation angle of the.
  • connection portion for coupling the X-ray generating portion and the X-ray needle forming portion is provided.
  • one side of the X-ray generator is characterized in that the coupling portion is mounted to the robot structure capable of movement of multiple degrees of freedom.
  • the X-ray mirror is a core based on a pre-designed geometric shape
  • the polymer material (SU8) is installed on the top of the core and cured by separating, after separating the density of the polymer material surface It is advisable to produce a multi-layer laminate X-ray mirror by forming a multi-layer laminate composed of repeated layers of two different metal layers.
  • the core is preferably used by processing a material coated with nickel on an aluminum metal plate, or glass or silicon material with a surface precision of a centerline average roughness (Ra) of 1 to 3 nm.
  • an appropriate thickness ratio t A / t B of two kinds of metal layers A and B having different densities is determined after re-calculating the X-ray reflectance of the X-ray mirror, and the polymer material Is preferably a polymer such as SU8.
  • the X-ray needle module for local radiation therapy collects the X-rays generated from the X-ray generating unit by the X-ray mirror to form a high intensity short wavelength parallel X-ray, and a high intensity short wavelength parallel X-ray X-ray needles can be used to minimize damage to healthy human tissues by providing a localized examination of cancerous tissues.
  • the structure is very simple and cost-competitive, combined with the robot structure is free By enabling the movement also can implement a more detailed and effective cancer treatment.
  • 1 to 3 is a conceptual diagram showing a conventional X-ray treatment technique
  • FIG. 4 is a view showing a schematic structure of an X-ray needle module for local radiation treatment according to the present invention
  • FIG. 5 is a view showing a manufacturing process of the X-ray mirror according to the present invention.
  • FIG. 6 is a conceptual diagram illustrating an X-ray treatment technique using an X-ray needle module for local radiation treatment according to the present invention.
  • Figure 4 is a view showing a schematic structure of the X-ray needle module for local radiation treatment according to the present invention
  • Figure 5 is a view showing the manufacturing process of the X-ray mirror according to the present invention
  • Figure 6 is the present invention It is a conceptual diagram showing the X-ray treatment technique using the X-ray needle module for local radiation therapy according to.
  • the present invention provides an X-ray generating unit 100 that receives electric power from the outside to generate an X-ray 101, and an X-ray 101 generated from the X-ray generating unit. And the X-ray needle forming unit 200 to form the X-ray needle by extracting the focused X-ray 101 to a high intensity short wavelength parallel X-ray 201.
  • the X-ray generator 100 includes a source 110 for generating X-rays by receiving power from the outside.
  • the source 110 preferably applies a structure that can be fastened in close proximity to the X-ray optical component in the housing 120, and receives power from an external generator (not shown).
  • the X-ray generator 100 may apply an X-ray generator for generating X-rays by irradiating an energy beam to the target and any means for generating X-rays.
  • the X-ray needle forming unit 200 has an entrance hole 211 through which the X-ray 101 generated from the X-ray generator 100 is incident on one side thereof, and an exit hole 212 is formed on the other side thereof. After condensing the X-rays incident on the inlet 211 into the formed housing 210 to form a high-strength short wavelength parallel X-ray 201 in which the X-ray line width does not change, and then to the exit port 212 An X-ray mirror 220 is mounted which exits to form an X-ray needle 201.
  • the X-ray mirror 220 focuses the X-rays emitted from the X-ray generator 100 to extract high-strength short wavelength parallel X-rays, and the high-strength short wavelength parallel X-rays exit the exit opening 212. As it passes, it exits forward in the shape of an X-ray needle 201.
  • the X-ray mirror 220 has to be manufactured first with a thin film type X-ray mirror.
  • the thin film type X-ray mirror manufacturing process produces a core Core 221 based on a pre-designed geometric shape (a) and a polymer material SU8 222 on top of the core Core 221. ), And after curing (b), separating (c) and forming a multi-layer laminate consisting of repeated lamination of two different metal layers (A, B) of different densities on the surface of the polymer material (SU8, 222) (d-f), the multiple thin film laminated X-ray mirror 226 (g) is produced.
  • the mirror equation for deriving parallel X-rays from constraints for the X-rays reflected from the X-ray mirror 220 to proceed in the horizontal direction is determined as follows.
  • x and y represent the curve formed by the mirror and the constant 'a' can be determined from the initial point A of the mirror curve.
  • a multi-layer laminated X-ray mirror 226 is formed by repeatedly stacking two kinds of metal layers (A / B) having different densities.
  • the reflectance ⁇ j of the mirror should be calculated from the following equation.
  • X-ray mirror 220 In order to design the X-ray mirror 220, it is necessary to calculate the X-ray reflectance.
  • X-ray reflectance As shown in Fig. 2 can be obtained. have.
  • Figure 2 shows the reflectance of a W / Al multilayer X-ray mirror designed for a Cr target X-ray source.
  • the first incident angle ( ⁇ ) of the X-rays incident on one mirror is 0.86 ° to form parallel X-rays
  • the last incident angle ( ⁇ ) Is 0.68 °
  • the difference between the first incident angle ⁇ and the last incident angle ⁇ is 0.18 °. Therefore, designing the structure of the mirror by setting the allowable angle of incidence ( ⁇ ) of the X-ray mirror to 0.86 °, and repeatedly stacking two kinds of metal layers having different densities (for example, W / Al) and the first angle of incidence ( ⁇ ) Due to the narrow difference between the last angles of incidence ( ⁇ ), when reflection occurs only in the area A of Fig.
  • the X-ray reflectance is at least 60% within this area, mainly K ⁇ is reflected and a part of K ⁇ is also reflected. Since the amount of reflection is very small, only the designed X-ray mirror can be used to form high intensity parallel X-rays close to a single wavelength of K ⁇ X-rays.
  • the core 221 may be manufactured using a surface super precision processing apparatus based on the geometric shape of the parallel X-ray mirror 220 designed as described above.
  • the multilayer thin film stack it is preferable to recalculate the X-ray reflectance of the X-ray mirror 220 and determine an appropriate thickness ratio t A / t B of two kinds of metal layers A and B having different densities.
  • a position controller 230 is provided at the tip of the X-ray mirror 220 to control the installation angle of the X-ray mirror 220.
  • connection part 300 for coupling the X-ray generator 100 and the X-ray needle forming unit 200 is provided between the X-ray generating unit 100 and the X-ray needle forming unit 200.
  • the connection part 300 is preferably provided with a structure in which the X-ray generating unit 100 and the X-ray needle forming unit 200 are detachable from each other.
  • one side of the X-ray generating unit 100 connected by the X-ray needle forming unit 200 and the connecting portion 300 can be mounted directly on the robot structure to enable the multi-degree of freedom of the X-ray needle module. It is preferable that the coupling part 400 is provided.
  • the X-ray 101 generated from the X-ray generating unit 100 is X through the inlet 211 of the X-ray needle forming unit 200.
  • the light is focused on the ray mirror 220, and the X-ray mirror 220 forms an incident X-ray 101 into a high intensity parallel X-ray 201 close to a short wavelength and then exits the exit port of the housing 210. Exit at (212).
  • the high-strength short-wavelength parallel X-ray 201 that is emitted becomes an X-ray needle that does not change the line width, thereby minimizing damage to healthy human tissue by performing a local irradiation on cancer tissue.
  • X-rays can be absorbed by the cancer cells to maximize the cancer treatment effect even after destroying the cancer tissue.
  • the X-ray mirror 220 to extract the X-ray 101 generated from the X-ray generator 100 as a high-strength short-wavelength parallel X-ray 201, its structure is very simple and competitive price It can be equipped with, by combining the robot structure to enable the multiple degree of freedom, it is possible to implement a more detailed and effective cancer treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

본 발명의 국부적 방사선 치료용 X-선 바늘 모듈은 외부로부터 전력을 공급받아 X-선을 발생시키는 X-선 발생부; 및 상기 X-선 발생부로부터 발생되는 X-선을 집광하고, 집광된 X-선을 고강도 단파장 평행 X-선으로 추출하여 X-선 바늘을 형성하는 X-선 바늘 형성부;를 포함하며, 상기 X-선 바늘 형성부는 X-선 발생부로부터 발생되는 X-선이 입사되는 입사구가 일측면에 형성되고 X-선 바늘이 출사되는 출사구가 타측면에 형성된 하우징과, 상기 하우징의 내부에 구비되고 X-선 발생부로부터 발생되는 X-선을 집광하여 고강도 단파장 평행 X-선의 X-선 바늘을 형성하는 X-선 거울과, 상기 X-선 거울의 선단에 구비되어 X-선 거울의 설치각도를 제어하는 위치 컨트롤러로 구성되는 것을 특징으로 한다. 본 발명에 따르면, X-선 발생부로부터 발생되는 X-선을 X-선 거울이 집광하여 고강도 단파장 평행 X-선을 형성하고, 고강도 단파장 평행 X-선이 X-선 바늘이 되어 암 조직에 대한 국부적인 조사가 이루어짐으로 건강한 인체 조직에 미치는 손상을 최소화시킨다. 또한, X-선 거울을 이용하여 X-선 발생부로부터 발생되는 X-선을 고강도 단파장 평행 X-선으로 추출해냄으로써 그 구조가 매우 간단하고 가격 경쟁력을 갖출 수 있으며, 로봇구조에 결합하여 다자유도 움직임이 가능하게 함으로써, 보다 세밀하고 효과적인 암치료를 구현할 수 있다.

Description

국부적 방사선 치료용 X선 바늘 모듈
본 발명은 국부적 방사선 치료용 X-선 바늘 모듈에 관한 것으로, 보다 상세하게는 환자의 암 조직 이외의 건강한 조직에 대한 손상의 최소화를 위하여 방사형으로 퍼져나가는 X-선에 대한 제어를 통해 고강도 단파장 평행 X-선의 X-선 바늘을 형성한 후 이를 암 조직의 치료에 적용하는 새로운 방사선 치료기법을 구현하기 위해 필요한 국부적 방사선 치료용 X-선 바늘 모듈에 관한 것이다.
방사선 치료는 질병의 치료를 위해 X-선, 감마선, 양성자선과 같은 방사선을 이용하여 다양한 암 및 악성 질병의 조직 성장을 지연시키거나 멈추게 하고, 더 나아가서는 파괴시켜 치료를 돕는다.
우리나라의 암 발생 환자의 경우, 2007년 한해 기준 16만1,920명이며 발생순서는 위암, 폐암, 간암, 자궁경부암의 순이다. 이러한 암의 치료를 위해서는 다양한 방사선 중에서 특히, X-선의 역할이 중요하다.
일반적으로 암에 대한 X-선 치료는 종양이 크고 침습이 되어 수술이 어렵거나 수술로 제거하지 못한 국한 부위를 치료(local/ regional control)하는 수단으로서 모든 암환자의 60%가 이러한 X-선 치료를 받고 있다.
그러나, 종래의 X-선 치료는 도 1에 도시한 바와 같이 X-선 소스로부터 방사형으로 방출되는 X-선 자체의 특성으로 인하여 암 조직에 대한 국부적인 조사가 이루어지기 힘들어, 암 발생 부위 주변의 건강한 세포조직도 X-선에 노출되는 문제점이 있으며, 이러한 문제점으로 인해 X-선 치료를 받게 되는 환자는 세포조직 손상, 탈모, 면역력 약화 및 부가적인 합병증에 시달리게 된다.
이러한 문제점을 개선을 위하여 최근에는 세기조절 X-선 치료기법(IMRT), X-선 단층 치료기법(Tomotherapy), 소형 선형가속기를 이용한 사이버나이프(Cyber knife) 등이 개발되어 사용되고 있다.
그러나, 세기조절 X-선 치료기법 (IMRT) 및 X-선 단층치료기법 (Tomotherapy)의 경우, 도 2에 도시한 바와 같이 암세포를 포함한 광범위 영역에 대한 X-선 조사가 불가피한 문제점이 존재한다.
또한, 사이버 나이프의 경우, 도 3에 도시한 바와 같이 X-선을 초점화(focusing) 하여 폭이 좁으며 강도가 높은 X-선을 다양한 방향으로 조사하여 암 조직에 대한 국부적인 치료가 가능하나, 초점화되어 암 조직을 파괴한 이후의 X-선이 암세포에 흡수되지 못한 채 다시 방사형으로 퍼지며 인체에 유해한 영향을 미치는 문제점이 여전히 남아있다.
따라서, 환자의 암 조직 이외의 건강한 조직에 대한 손상의 최소화시키는 새로운 방사선 치료기법의 개발이 요망되고 있다.
본 발명은 종래의 문제점을 해결하기 위해 안출 된 것으로서,
본 발명의 목적은 X-선을 집광하여 고강도 단파장 평행 X-선을 추출하는 X-선 거울을 이용하여 고강도 단파장 평행 X-선 바늘을 형성함으로써 암 조직에 대한 국부적이며 제한적인 X-선 치료가 가능하며, 암 조직 이외의 건강한 조직에 대한 손상을 최소화시킬 수 있는 국부적 방사선 치료용 X-선 바늘 모듈을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위해 제공되는 본 발명의 국부적 방사선 치료용 X-선 바늘 모듈은 외부로부터 전력을 공급받아 X-선을 발생시키는 X-선 발생부; 및 상기 X-선 발생부로부터 발생되는 X-선을 집광하고, 집광된 X-선을 고강도 단파장 평행 X-선으로 추출하여 X-선 바늘을 형성하는 X-선 바늘 형성부;를 포함하며, 상기 X-선 바늘 형성부는 X-선 발생부로부터 발생되는 X-선이 입사되는 입사구가 일측면에 형성되고 X-선 바늘이 출사되는 출사구가 타측면에 형성된 하우징과, 상기 하우징의 내부에 구비되고 X-선 발생부로부터 발생되는 X-선을 집광하여 고강도 단파장 평행 X-선의 X-선 바늘을 형성하는 X-선 거울과, 상기 X-선 거울의 선단에 구비되어 X-선 거울의 설치각도를 제어하는 위치 컨트롤러로 구성되는 것을 특징으로 한다.
그리고, 상기 X-선 발생부와 X-선 바늘 형성부 사이에는 X-선 발생부와 X-선 바늘 형성부를 결합시키는 연결부가 구비되는 것을 특징으로 한다.
또한, 상기 X-선 발생부의 일측에는 다자유도의 움직임이 가능한 로봇구조에 장착되는 결합부가 구비되는 것을 특징으로 한다.
상기 X-선 거울은 상기 X-선 거울은 미리 설계된 기하학적 형상을 바탕으로 코어를 제작하고, 상기 코어의 상부에 폴리머재료(SU8)를 설치하고 경화시켜, 분리한 후 폴리머재료의 표면에 밀도가 서로 다른 두 종류의 금속층의 반복적층으로 구성된 다중 박막 적층을 형성하여 다중 박막 적층 X-선 거울을 제작하는 것이 좋다.
그리고, 상기 코어는 알루미늄 금속판에 니켈을 코팅한 재료 또는 유리 또는 실리콘 재료를 중심선 평균 거칠기(Ra)= 1∼3nm 사이의 표면 정밀도로 가공하여 사용하는 것이 바람직하다.
또한, 상기 다중 박막 적층은 X-선 거울에 대한 X-선 반사율 계산을 재실시한 후 밀도가 서로 다른 두 종류의 금속층(A, B)의 적정 두께비 tA/tB를 결정하고, 상기 폴리머재료는 SU8과 같은 폴리머인 것이 바람직하다.
본 발명에 따른 국부적 방사선 치료용 X-선 바늘 모듈은 X-선 발생부로부터 발생되는 X-선을 X-선 거울이 집광하여 고강도 단파장 평행 X-선을 형성하고, 고강도 단파장 평행 X-선이 X-선 바늘이 되어 암 조직에 대한 국부적인 조사가 이루어짐으로 건강한 인체 조직에 미치는 손상을 최소화시키는 효과가 있다.
또한, 종래 사이버 나이프 치료기법처럼 초점화가 아닌 선폭이 변하지 않는 평행 X-선 바늘을 형성함으로 암 조직을 파괴한 이후에도 X-선이 암세포에 흡수되어 암치료 효과를 극대화시킨다. 또한, 치료환자의 부작용을 최소화시키고 치료환자의 회복속도를 증가시키는 효과가 있다.
또한, X-선 거울을 이용하여 X-선 발생부로부터 발생되는 X-선을 고강도 단파장 평행 X-선으로 추출해냄으로써 그 구조가 매우 간단하고 가격경쟁력을 갖출 수 있으며, 로봇구조에 결합하여 다자유도 움직임이 가능하게 함으로써, 보다 세밀하고 효과적인 암치료를 구현할 수 있다.
도 1 내지 도 3은 종래의 X-선 치료기법을 도시한 개념도,
도 4는 본 발명에 따른 국부적 방사선 치료용 X-선 바늘 모듈의 개략적인 구조를 도시한 도면,
도 5는 본 발명에 따른 X-선 거울의 제작 공정을 나타낸 도면 및
도 6은 본 발명에 따른 국부적 방사선 치료용 X-선 바늘 모듈을 이용한 X-선 치료기법을 도시한 개념도이다.
본 발명의 상기와 같은 목적, 특징 및 다른 장점들은 첨부도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명함으로써 더욱 명백해질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 국부적 방사선 치료용 X-선 바늘 모듈을 상세히 설명하기로 한다. 본 명세서를 위해서, 도면에서의 동일한 참조번호들은 달리 지시하지 않는 한 동일한 구성부분을 나타낸다.
도 4는 본 발명에 따른 국부적 방사선 치료용 X-선 바늘 모듈의 개략적인 구조를 도시한 도면이고, 도 5는 본 발명에 따른 X-선 거울의 제작 공정을 나타낸 도면이며, 도 6은 본 발명에 따른 국부적 방사선 치료용 X-선 바늘 모듈을 이용한 X-선 치료기법을 도시한 개념도이다.
도 4에 도시한 바와 같이 본 발명은 외부로부터 전력을 공급받아 X-선(101)을 발생시키는 X-선 발생부(100) 및, 상기 X-선 발생부로부터 발생되는 X-선(101)을 집광하고, 집광된 X-선(101)을 고강도 단파장 평행 X-선(201)으로 추출하여 X-선 바늘을 형성하는 X-선 바늘 형성부(200)를 포함한다.
여기서, X-선 발생부(100)는 외부로부터 전력을 공급받아 X-선을 발생시키는 소오스(110)를 포함한다. 소오스(110)는 하우징(120) 속에서 X-선 광학부품과 근접하여 체결될 수 있는 구조를 적용하는 것이 바람직하고, 외부의 발전기(미도시)로부터 전원을 공급받도록 한다. 이외에도, X-선 발생부(100)는 타켓에 에너지 빔을 조사하여 X-선을 발생시키는 X-선 발생장치 및 X-선을 발생시키는 모든 수단을 적용할 수 있다.
X-선 바늘 형성부(200)는 일측면에 X-선 발생부(100)로부터 발생되는 X-선(101)이 입사되는 입사구(211)가 형성되고 타측면에 출사구(212)가 형성된 하우징(210)의 내부에 입사구(211)로 입사되는 X-선을 집광하여 X-선 선폭이 변하지 않는 고강도 단파장 평행 X-선(201)을 형성한 후, 이를 출사구(212)로 출사시켜 X-선 바늘(201)을 형성하는 X-선 거울(220)이 장착된다.
여기서, X-선 거울(220)은 X-선 발생부(100)로부터 방출되는 X-선을 집광하여 고강도 단파장 평행 X-선을 추출하고, 고강도 단파장 평행 X-선은 출사구(212)를 통과하면서 X-선 바늘(201) 형상으로써 전방으로 출사된다.
본 발명에서의 X-선 거울(220)은 박막형 X-선 거울이 먼저 제작되어야 한다. 도 5에 도시한 바와 같이 박막형 X-선 거울 제작 공정은 미리 설계된 기하학적 형상을 바탕으로 코어(Core, 221)를 제작하고(a), 코어(Core, 221)의 상부에 폴리머재료(SU8, 222)를 설치하고 경화시켜(b), 분리한 후(c) 폴리머재료(SU8, 222)의 표면에 밀도가 서로 다른 두 종류의 금속층(A, B)의 반복 적층으로 구성된 다중 박막 적층을 형성하여(d~f), 다중 박막 적층 X-선 거울(226)(g)을 제작한다.
이러한 X-선 거울(220)은 제작 전, X-선 발생부(100)에서 발생되는 특성 X-선(Cr 타겟 X-선 소스의 Kα X-선 고려)의 진폭길이=2.289Å를 고려하여 X-선 거울의 기하학적 형상에 대한 설계를 진행한다. 설계가 완료되면 이를 바탕으로 중심선 표면 거칠기(Ra) 1-3nm의 표면을 갖는 코어(221)를 제작한다.
기하학적 설계 과정을 살펴보면, X-선 거울(220)로부터 반사된 X-선이 수평방향으로 진행하기 위한 구속 조건으로부터 평행 X-선을 유도하기 위한 거울 방정식은 다음과 같이 결정된다.
Figure PCTKR2012003624-appb-I000001
여기서 x와 y는 거울이 이루는 곡선을 나타내며 상수 'a'는 거울 곡선의 초기점 A로부터 결정할 수 있다.
Figure PCTKR2012003624-appb-I000002
<그림 1> 평행 X-선 형성 거울의 기하학적 설계 예
상기 그림 1에서 나타나 있는 X-선 거울(220)의 허용 입사각 θ를 증가시키기 위하여 밀도가 서로 다른 두 종류의 금속층(A/B)을 반복적으로 적층하는 다중 박막 적층 X-선 거울(226)을 제작하여야 하며, 허용 입사각 θ를 결정하기 위해서는 거울의 반사율 χj를 다음의 식으로부터 계산하여야 한다.
Figure PCTKR2012003624-appb-I000003
Figure PCTKR2012003624-appb-I000004
(dj는 j번째 층의 두께, rj는 j번째 경계면에서 반사의 프레넬 계수, i는 복소수)
Figure PCTKR2012003624-appb-I000005
<그림 2> X-선 입사각에 대한 X-선 반사율
이러한 X-선 거울(220)이 설계되기 위해서는 X-선 반사율에 대한 계산이 필요하다. 만일 X-선 거울을 제작할 때, 서로 다른 밀도의 금속(예를 들어 W/Al)을 서로 간의 두께 비를 적절히 선택한 다음 반복적으로 적층하게 되면 그림 2의 경우와 같은 X-선 반사율을 획득할 수 있다. 그림 2는 Cr 타겟 X-선 소스에 대해 설계된 W/Al 다중적층 X-선 거울의 반사율을 나타낸 그래프이다.
구체적으로 그림 2를 살펴보면, 본 발명을 위하여 설계된 X-선 거울의 경우 평행 X-선을 형성하기 위하여 하나의 거울에 입사되는 X-선의 첫 입사각(θ)을 0.86°로 하고 마지막 입사각(β)를 0.68°로서 첫 입사각(θ)과 마지막 입사각(β)의 차이는 0.18°이다. 그러므로 X-선 거울의 허용 입사각(θ)을 0.86°로 설정하여 거울의 구조를 설계하고, 밀도가 서로 다른 두 종류의 금속층(예를 들어 W/Al)을 반복 적층하면 첫 입사각(θ)과 마지막 입사각(β) 간의 좁은 차이로 인하여 그림 2의 A 영역에서만 반사가 일어나고 이 영역 내에서 X-선 반사율이 최소 60% 이상의 구간을 고려할 경우, 주로 Kα가 반사되고, Kβ의 일부 역시 반사되나 그 반사량이 매우 작으므로 설계된 X-선 거울만을 이용하여 Kα X-선의 단일파장에 가까운 고강도의 평행 X-선을 형성할 수 있다.
코어(221)는 상기와 같이 설계된 평행 X-선 거울(220)의 기하학적 형상을 바탕으로 표면 초정밀 가공장치를 이용하여 제작할 수 있다. 코어(221)는 알루미늄 금속판에 니켈을 코팅하여 사용할 수 있으며, 유리 및 실리콘과 같은 재료를 사용할 수도 있다. 중심선 평균 거칠기(Ra)= 1~3nm 사이의 표면 정밀도로 가공한다.
다중 박막 적층은 X-선 거울(220)에 대한 X-선 반사율 계산을 재실시한 후 밀도가 서로 다른 두 종류의 금속층(A,B)의 적정 두께비 tA/tB를 결정하는 것이 바람직하다.
X-선 거울(220)의 선단에는 위치컨트롤러(230)가 구비되어 X-선 거울(220)의 설치각도를 제어하도록 한다.
그리고, X-선 발생부(100)와 X-선 바늘 형성부(200) 사이에는 X-선 발생부(100)와 X-선 바늘 형성부(200)를 결합시키는 연결부(300)가 구비된다. 여기서, 연결부(300)는 X-선 발생부(100)와 X-선 바늘 형성부(200)가 서로 탈부착 가능한 구조로 구비되는 것이 바람직하다.
또한, X-선 바늘 형성부(200)와 연결부(300)에 의해 연결된 X-선 발생부(100)의 일측에는 X-선 바늘 모듈의 다자유도의 움직임이 가능하도록 로봇구조에 직접 장착할 수 있는 결합부(400)가 구비되는 것이 바람직하다.
상기와 같이 구성된 국부적 방사선 치료용 X-선 바늘 모듈은 X-선 발생부(100)로부터 발생되는 X-선(101)이 X-선 바늘 형성부(200)의 입사구(211)를 통해 X-선 거울(220)에 집광되고, X-선 거울(220)은 입사되는 X-선(101)을 단파장에 가까운 고강도의 평행 X-선(201)으로 형성한 후 하우징(210)의 출사구(212)로 출사시킨다.
도 6에 도시한 바와 같이 출사되는 고강도 단파장 평행 X-선(201)은 선폭이 변하지 않는 X-선 바늘이 되어 암 조직에 대한 국부적인 조사가 이루어짐으로 건강한 인체 조직에 미치는 손상을 최소화시킨다. 또한, 종래 사이버 나이프 치료기법처럼 초점화가 아닌 선폭이 변하지 않는 평행 X-선 바늘을 형성함으로 암조직을 파괴한 이후에도 X-선이 암세포에 흡수되어 암치료 효과를 극대화시킬 수 있다.
또한, X-선 거울(220)을 이용하여 X-선 발생부(100)로부터 발생되는 X-선(101)을 고강도 단파장 평행 X-선(201)으로 추출해냄으로써 그 구조가 매우 간단하고 가격경쟁력을 갖출 수 있으며, 로봇구조에 결합하여 다자유도 움직임이 가능하게 함으로써, 보다 세밀하고 효과적인 암치료를 구현할 수 있다.
이상에서 본 발명의 바람직한 실시 예에 대하여 설명하였으나, 본 발명은 상술한 특정의 실시 예에 한정되지 아니한다. 즉, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능하며, 그러한 모든 적절한 변경 및 수정은 균등물들도 본 발명의 범위에 속하는 것으로 간주 되어야 할 것이다.

Claims (7)

  1. 외부로부터 전력을 공급받아 X-선을 발생시키는 X-선 발생부; 및
    상기 X-선 발생부로부터 발생되는 X-선을 집광하고, 집광된 X-선을 고강도 단파장 평행 X-선으로 추출하여 X-선 바늘을 형성하는 X-선 바늘 형성부;를 포함하며,
    상기 X-선 바늘 형성부는 X-선 발생부로부터 발생되는 X-선이 입사되는 입사구가 일측면에 형성되고 X-선 바늘이 출사되는 출사구가 타측면에 형성된 하우징과, 상기 하우징의 내부에 구비되고 X-선 발생부로부터 발생되는 X-선을 집광하여 고강도 단파장 평행 X-선의 X-선 바늘을 형성하는 X-선 거울과, 상기 X-선 거울의 선단에 구비되어 X-선 거울의 설치각도를 제어하는 위치 컨트롤러로 구성되는 것을 특징으로 하는 국부적 방사선 치료용 X-선 바늘 모듈.
  2. 제 1 항에 있어서,
    상기 X-선 발생부와 X-선 바늘 형성부 사이에는 X-선 발생부와 X-선 바늘 형성부를 결합시키는 연결부가 구비되는 것을 특징으로 하는 국부적 방사선 치료용 X-선 바늘 모듈.
  3. 제 1 항에 있어서,
    상기 X-선 발생부의 일측에는 다자유도의 움직임이 가능한 로봇구조에 장착되는 결합부가 구비되는 것을 특징으로 하는 국부적 방사선 치료용 X-선 바늘 모듈.
  4. 제 1 항에 있어서,
    상기 X-선 거울은 미리 설계된 기하학적 형상을 바탕으로 코어를 제작하고,
    상기 코어의 상부에 폴리머재료를 설치하고 경화시켜, 분리한 후 폴리머재료의 표면에 밀도가 서로 다른 두 종류의 금속층의 반복적층으로 구성된 다중 박막 적층을 형성하여 다중 박막 적층 X-선 거울을 제작하는 것을 특징으로 하는 국부적 방사선 치료용 X-선 바늘 모듈.
  5. 제 4 항에 있어서,
    상기 코어는 알루미늄 금속판에 니켈을 코팅한 재료 또는 유리 또는 실리콘 재료를 중심선 평균 거칠기(Ra)= 1∼3nm 사이의 표면 정밀도로 가공하여 사용하는 것을 특징으로 하는 국부적 방사선 치료용 X-선 바늘 모듈.
  6. 제 4 항에 있어서,
    상기 다중 박막 적층은 X-선 거울에 대한 X-선 반사율 계산을 재실시한 후 밀도가 서로 다른 두 종류의 금속층(A,B)의 적정 두께비 tA/tB를 결정하는 것을 특징으로 하는 국부적 방사선 치료용 X-선 바늘 모듈.
  7. 제 4 항에 있어서,
    상기 폴리머재료는 SU8과 같은 폴리머인 것을 특징으로 하는 국부적 방사선 치료용 X-선 바늘 모듈.
PCT/KR2012/003624 2011-06-14 2012-05-09 국부적 방사선 치료용 x선 바늘 모듈 WO2012173341A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/813,329 US9089697B2 (en) 2011-06-14 2012-05-09 X-ray needle module for local radiation therapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110057240A KR101332502B1 (ko) 2011-06-14 2011-06-14 국부적 방사선 치료용 x―선 바늘 모듈
KR10-2011-0057240 2011-06-14

Publications (2)

Publication Number Publication Date
WO2012173341A2 true WO2012173341A2 (ko) 2012-12-20
WO2012173341A3 WO2012173341A3 (ko) 2013-03-28

Family

ID=47357564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003624 WO2012173341A2 (ko) 2011-06-14 2012-05-09 국부적 방사선 치료용 x선 바늘 모듈

Country Status (3)

Country Link
US (1) US9089697B2 (ko)
KR (1) KR101332502B1 (ko)
WO (1) WO2012173341A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479701B1 (ko) * 2013-07-02 2015-01-07 전남대학교산학협력단 고강도 단파장 평행 x-선 모듈 제어 시스템 및 그 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739592A (ja) * 1993-07-27 1995-02-10 Mitsubishi Electric Corp 放射線治療装置
JPH09178676A (ja) * 1995-12-22 1997-07-11 Toyota Motor Corp X線コリメータ及びx線放射装置
US20060133575A1 (en) * 2004-12-21 2006-06-22 Advanced X-Ray Technology, Inc. X-ray needle apparatus and method for radiation treatment
KR100997419B1 (ko) * 2010-03-26 2010-11-30 전남대학교산학협력단 3차원 x선 현미경 구조 및 이에 사용되는 소형 x선 거울의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675889A (en) * 1985-07-08 1987-06-23 Ovonic Synthetic Materials Company, Inc. Multiple wavelength X-ray dispersive devices and method of making the devices
US4958363A (en) * 1986-08-15 1990-09-18 Nelson Robert S Apparatus for narrow bandwidth and multiple energy x-ray imaging
WO1998041992A1 (en) * 1997-03-18 1998-09-24 Focused X-Rays Llc Medical uses of focused and imaged x-rays
US6014423A (en) * 1998-02-19 2000-01-11 Osmic, Inc. Multiple corner Kirkpatrick-Baez beam conditioning optic assembly
US6421417B1 (en) * 1999-08-02 2002-07-16 Osmic, Inc. Multilayer optics with adjustable working wavelength
AU2003264670A1 (en) * 2002-06-19 2004-01-06 Xenocs Optical device for x-ray applications
DE602004012562T2 (de) * 2003-06-13 2009-04-16 Osmic, Inc., Auburn Hills Strahlaufbereitungssystem
NL1027836C2 (nl) * 2004-12-21 2006-06-22 Stichting Fund Ond Material Meerlagenspiegel voor straling in het zachte-röntgen- en XUV-golflengtegebied.
JP5452826B2 (ja) * 2007-09-19 2014-03-26 ロバーツ、ウォルター、エー. 直接可視化ロボットによる術中放射線療法アプリケータ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739592A (ja) * 1993-07-27 1995-02-10 Mitsubishi Electric Corp 放射線治療装置
JPH09178676A (ja) * 1995-12-22 1997-07-11 Toyota Motor Corp X線コリメータ及びx線放射装置
US20060133575A1 (en) * 2004-12-21 2006-06-22 Advanced X-Ray Technology, Inc. X-ray needle apparatus and method for radiation treatment
KR100997419B1 (ko) * 2010-03-26 2010-11-30 전남대학교산학협력단 3차원 x선 현미경 구조 및 이에 사용되는 소형 x선 거울의 제조방법

Also Published As

Publication number Publication date
US9089697B2 (en) 2015-07-28
US20130121474A1 (en) 2013-05-16
KR20120138003A (ko) 2012-12-24
WO2012173341A3 (ko) 2013-03-28
KR101332502B1 (ko) 2013-11-26

Similar Documents

Publication Publication Date Title
US8857438B2 (en) Devices and methods for acoustic shielding
US6359963B1 (en) Medical uses of focused and imaged x-rays
CN108156742B (zh) 中子束源产生器及其滤屏
JP2005507684A (ja) 望ましくない細胞の画像形成及び抹殺のための反陽子の生産及び送達
WO2001051124A3 (en) Linac neutron therapy and imaging
US7402813B2 (en) Lens system for nuclear medicine gamma ray camera
CN101689408A (zh) 激光致动的微型加速器平台
AU2017203109A1 (en) Cancer treatment room fiducial marker apparatus and method of use thereof
JP2004522558A (ja) X線治療のためのデバイス
US4921327A (en) Method of transmitting an ionizing radiation
WO2012173341A2 (ko) 국부적 방사선 치료용 x선 바늘 모듈
JP2022177102A (ja) 低侵襲中性子線発生装置
CN107432992B (zh) 近端治疗装置及其放射源
Ma et al. Comparison of dosiology between three dimensional conformal and intensity-modulated radiotherapies (5 and 7 fields) in gastric cancer post-surgery
Chu et al. Treatment of breast cancer with high-energy electrons produced by 24-MeV betatron
Tsunemoto et al. Indications of particle radiation therapy in the treatment of carcinoma of the esophagus
Lu et al. Optically guided stereotactic radiotherapy for lacrimal sac tumors: a report on two cases
Zhang et al. Ion therapy guideline (Version 2020)
WO2019039704A1 (ko) Kilovoltage x-ray를 이용한 반려동물 방사선 치료 장치 및 방법
Fan et al. Advantages of proton therapy in non-small cell lung cancers
Hao et al. Imaging-guided proton therapy for gastrointestinal tumors
TWI503104B (zh) 聚焦裝置,聚焦的方法及放射線治療裝置
Currey et al. and Zelmira Lazarova
Chikawa Closing Remark
Riley Peaking into the future with Proton Therapy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13813329

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799953

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12799953

Country of ref document: EP

Kind code of ref document: A2