WO2012173041A1 - 直流ケーブル用終端接続部 - Google Patents

直流ケーブル用終端接続部 Download PDF

Info

Publication number
WO2012173041A1
WO2012173041A1 PCT/JP2012/064697 JP2012064697W WO2012173041A1 WO 2012173041 A1 WO2012173041 A1 WO 2012173041A1 JP 2012064697 W JP2012064697 W JP 2012064697W WO 2012173041 A1 WO2012173041 A1 WO 2012173041A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
insulator
stress cone
termination
insulating
Prior art date
Application number
PCT/JP2012/064697
Other languages
English (en)
French (fr)
Inventor
陽一 渡部
正敏 坂巻
阿部 和俊
Original Assignee
株式会社ジェイ・パワーシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・パワーシステムズ filed Critical 株式会社ジェイ・パワーシステムズ
Priority to EP12799740.1A priority Critical patent/EP2720331B1/en
Publication of WO2012173041A1 publication Critical patent/WO2012173041A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/06Cable terminating boxes, frames or other structures
    • H02G15/064Cable terminating boxes, frames or other structures with devices for relieving electrical stress

Definitions

  • This invention relates to the termination
  • a power cable As a power transmission cable, a power cable (XLPE cable) that is insulated with cross-linked polyethylene (XLPE) is known. It has been proposed to use such an XLPE cable as a DC power transmission cable that forms an actual line up to a voltage of about 150 kV. Generally, a termination connection unit is connected to the end of the power cable.
  • FIG. 1 is a cross-sectional view showing a typical structure of an end connection (end connection) for an XLPE cable.
  • the termination connection portion for the XLPE cable may be simply referred to as “termination connection portion”.
  • the termination connection part 100 shown in FIG. 1 is a general dry termination connection part applied to indoor facilities for direct current power transmission of 150 kV or less.
  • the terminal connection part 100 includes an insulating sleeve 110 formed of silicone rubber or the like having excellent weather resistance.
  • the insulating sleeve 110 is a so-called “stress cone-integrated pleated insulating sleeve”, and includes a small-diameter portion 111 having pleats 111 a and 111 b and a large-diameter portion 112 having an outer diameter larger than that of the small-diameter portion 111.
  • a semiconductive portion 113 made of semiconductive rubber is accommodated in the large diameter portion 112 of the insulating sleeve 110.
  • the terminal connection portion 100 is mounted on the cable insulator 1b of the cable terminal portion 1A of the DC cable 1 formed by an XLPE cable in a state where the inner diameter is enlarged.
  • the terminal connection portion 100 has a simple insulating structure, and it is not necessary to enclose insulating oil or the like after the terminal connection portion 100 is mounted on the cable insulator 1b.
  • the terminal connection portion 100 having the above structure must be mounted with the cable terminal portion 1A in a straight state without bending. For this reason, since it is difficult to mount on the cable insulator 1b, it is considered that the length of the terminal connection portion 100 is about 2 m. Therefore, the termination connecting portion 100 having the structure shown in FIG. 1 is not suitable for a line whose voltage class exceeds 150 kV or a line in an outdoor facility.
  • a protective metal fitting 115 is attached to the end of the large diameter portion 112, and the DC cable 1 extending from the protective metal fitting 115 is covered with a seal portion 114.
  • the conductor lead bar 2 is attached to the tip of the small diameter portion 111 of the insulating sleeve 110.
  • a termination connection portion having a structure in which a certain resistance layer is mounted on the exposed cable insulator and a stress cone is attached on the resistance layer has been proposed (for example, (See Patent Document 1).
  • one end of the resistance layer is connected to the cable high-voltage conductor, and the other end is connected to the cable external semiconductive layer having the ground potential, thereby forming an electric field relaxation layer.
  • a stress cone is attached on the electric field relaxation layer.
  • an oil-immersed termination connection portion composed of a combination of a reinforcing insulator and a capacitor cone has been proposed as a termination connection portion of a higher voltage class exceeding 150 kV.
  • Reinforcing insulators enclose an insulating medium such as silicone oil inside the porcelain porcelain pipe, and insulate sheet and semiconductive tape made of insulating paper or polyethylene so as to form an appropriate stress cone for the purpose of electric field relaxation, It is formed by wrapping on the cable insulator at the construction site.
  • the capacitor cone is manufactured in advance in a factory or the like by laminating insulating paper and metal foil.
  • the volume resistivity of the reinforcing insulator may be higher than the volume resistivity of the cable insulator.
  • the electric field distribution becomes resistance sharing, so that a high voltage is applied to the insulating paper of the stress cone and the insulating sheet of the polyethylene sheet.
  • a high electric field is generated in the stress cone, and dielectric breakdown easily occurs in the stress cone.
  • Patent Document 1 discloses a structure in which an electric field relaxation layer is provided on a cable insulator.
  • the electric field relaxation layer can be formed, for example, by processing the material constituting the resistance layer into a tape shape and winding it on the cable insulator in the field when the terminal connection portion is assembled.
  • a molded insulating tube having an inner diameter smaller than the outer diameter of the cable insulator is molded in advance at the factory, and the molded insulating tube is mounted on the cable insulator while being expanded at a construction site.
  • both methods have a problem that the cost of the material for the terminal connection portion is increased, and the field work is increased, so that the construction takes time.
  • a reinforcing insulator is formed on the cable insulator at the construction site using an insulating sheet or semiconductive tape so as to have an appropriate shape as described above.
  • the stress cone as disclosed in Patent Document 2 is formed by molding in advance, and is further mounted on a cable insulator at a construction site, and a capacitor is attached thereon.
  • an object of the present invention is to provide a DC cable termination connection portion applicable to a high voltage class DC cable.
  • a DC cable termination connecting portion configured to be connected to a DC cable terminal portion covered with a cable insulator, the insulator portion and the semiconductor portion being provided.
  • the insulator portion has a high voltage side taper portion between the high voltage side tip and the large diameter portion, and the volume resistivity of the insulator portion and the volume resistivity of the cable insulator are A stress cone having a volume resistivity such that the ratio is 0.01 to 0.5, and a thickness of the tip portion on the high-pressure side is 6 mm or less, and a cylindrical insulation having a pleat on the surface
  • the DC cable termination connection portion is connected to the DC cable terminal portion.
  • the high-pressure side tip of the stress cone is positioned on the upper metal fitting side
  • the stress cone is mounted on the cable insulator, and the DC cable end portion including the stress cone is covered with the insulating steel pipe, the lower metal fitting, and the upper metal fitting, and an insulating medium is provided inside the insulating steel pipe.
  • An end connection for a DC cable is provided that is encapsulated.
  • FIG. 2 shows a state in which the DC cable termination connection portion according to the first embodiment of the present invention is attached to a DC XLPE cable.
  • the DC cable termination connection 10 is a termination connection having a so-called plug-in insulation structure.
  • the DC cable termination connecting portion 10 includes an insulating insulating pipe 11, a stress cone 12, a lower metal fitting 13 that closes the lower opening of the insulating iron pipe 11, and an upper metal fitting 14 that closes the upper opening of the insulating iron pipe 11.
  • the stress cone 12 is a member provided to alleviate the electric field stress, and is disposed on the DC cable terminal portion 1A that has been stripped.
  • the DC cable terminal portion 1 ⁇ / b> A is covered with an insulating soot tube 11, a lower metal fitting 13 and an upper metal fitting 14, and an insulating medium 15 is enclosed inside the insulating soot tube 11.
  • the step stripping process is a process in which a central conductor is exposed by stripping a cable having a layer structure of several layers from the center toward the outer periphery one layer at a time from the outside.
  • the insulated soot tube 11 includes a soot tube body portion 11a and a plurality of pleats 11b and 11c formed on the outer peripheral surface of the soot tube body portion 11a at regular intervals.
  • the insulating soot tube 11 is formed of an insulating material, for example, porcelain, rubber, plastic or the like.
  • the tub tube main body portion 11a and the plurality of pleats 11b and 11c are integrally molded using silicone rubber to form a single structure.
  • the insulating soot tube 11 may be a composite soot tube having a composite structure in which a surface of an insulating tube made of fiber reinforced plastic (FRP) is covered with a plurality of pleats that form an outer skin made of a polymer insulating material such as silicone rubber.
  • FRP fiber reinforced plastic
  • the stress cone 12 is a member in which the insulator portion 120 and the semiconductive portion 121 are integrally formed at the factory by molding. The detailed configuration of the stress cone 12 will be described later.
  • An opening 13 a for inserting the DC cable terminal 1 ⁇ / b> A of the DC cable 1 is formed in the central portion of the lower metal fitting 13.
  • the lower metal fitting 13 is fixed to the gantry 17 via a plurality of support levers 16.
  • the upper metal fitting 14 is covered with a shield cover 18.
  • the DC cable 1 is, for example, an XLPE cable.
  • the DC cable terminal portion 1A of the DC cable 1 is subjected to a stripping process, so that the conductor 1a, the cable insulator 1b, the external semiconductive layer 1c, and the shielding layer 1d are exposed from the cable sheath 1e.
  • FIG. 3 is a cross-sectional view of the stress cone 12 shown in FIG. If a high voltage is applied to the insulator part 120 of the stress cone 12 by resistance sharing and the electric field value of the insulator part 120 exceeds an allowable value, it may cause a dielectric breakdown of the stress cone 12.
  • the volume resistivity of the material constituting the insulator portion 120 is the volume relative to the volume resistivity of the cable insulator 1b. It has been found that the resistivity ratio (volume resistivity of the insulator portion 120 / volume resistivity of the cable insulator portion 1b) is desirably in the range of 0.01 to 0.5. Since the volume resistivity of the cable insulator and the volume resistivity of the stress cone insulator are both affected by temperature, an insulating material that maintains the above relationship within the range of room temperature to 90 ° C. is selected. This is very important.
  • normal temperature means, for example, a temperature that can be taken by the outside air temperature, and is generally in the range of ⁇ 30 ° C. to 40 ° C.
  • the volume resistivity of the insulator 120 is a relative relationship with the cable insulator 1b, the volume resistivity required for each case is different.
  • the insulator part 120 has a volume resistivity ratio to the volume resistivity of the cable insulator 1b (volume resistivity of the insulator part / volume resistivity of the cable insulator).
  • the volume resistivity of the cable insulator 1b is 1 ⁇ 10 15 ⁇ cm
  • the volume resistivity of the insulator portion 120 is 1 ⁇ 10 13 to 5 ⁇ 10 14 ⁇ cm.
  • the voltage sharing at the stress cone 12 is reduced when a DC voltage is applied, and most of the applied voltage is shared by the cable insulator 1b.
  • the space at the interface between the cable insulator 1b and the insulator portion 120 of the stress cone 12 The charge accumulation characteristic does not adversely affect the breakdown voltage.
  • Samples 1 to 5 were prepared using a stress cone molded using ethylene propylene diene rubber (EPDM) as a material satisfying these conditions, and an electrical test was performed on these samples. As a result, the results shown in Table 1 and FIG. 4 were obtained. As can be seen from Table 1 and FIG. 4, the breakdown voltages of Sample 2, Sample 3 and Sample 4 in which the volume resistivity ratio of the insulator portion 120 of the cable insulator 1b and the stress cone 12 is 0.01 to 0.5. was 740 kV or more, and good results were obtained.
  • EPDM ethylene propylene diene rubber
  • the breakdown voltage of the sample 1 is 650 kV
  • the samples 2, 3, 4 of the embodiment of the present invention are accumulated due to the accumulation of space charge due to the large difference in volume resistivity between the cable insulator 1b and the insulator part 120. It was found that the electrical performance decreased to 650 kV.
  • the voltage sharing to the insulator portion of the stress cone was increased, so the breakdown voltage is considered to have decreased to 540 kV.
  • the insulator portion 120 can be molded using a synthetic elastomer such as silicone rubber in addition to ethylene propylene diene rubber (EPDM).
  • a synthetic elastomer such as silicone rubber in addition to ethylene propylene diene rubber (EPDM).
  • the insulator 120 includes a high pressure side distal end 120a, a low pressure side proximal end 120b, a large diameter portion 120c, and a high pressure side tapered portion formed between the high pressure side distal end 120a and the large diameter portion 120c. 120d and a low pressure side taper portion 120e formed between the low pressure side base end portion 120b and the large diameter portion 120c.
  • the cable insulator 1b is arranged such that the high-voltage side tip portion 120a faces upward as shown in FIG. Mounted on top.
  • the semi-conductor portion 121 is formed integrally with the insulator portion 120 so as to be accommodated (embedded) in the low-voltage taper portion 120e.
  • the semiconductive portion 121 is formed of a semiconductive rubber such as ethylene propylene diene rubber (EPDM) or silicone rubber, for example.
  • EPDM ethylene propylene diene rubber
  • silicone rubber for example.
  • triangular portion When a DC voltage is applied to the boundary between these three types of insulating materials (hereinafter referred to as “triangular portion”), the three significant portion or its Space charge accumulates in the vicinity. As a result, an electric field distribution determined by the resistance sharing to the triple point is generated.
  • the electric charge injected from the conductor 1a which is a high potential portion of the DC cable 1 moves in the insulating medium 15 in the extending direction of the semiconductive portion 121 of the grounded stress cone 12.
  • the thickness t of the high-pressure side tip portion 120a of the insulator portion 120 of the stress cone 12 is larger and the area is larger, a wall that hinders charge transfer is formed. For this reason, charges are trapped and accumulated at the triple point or in the vicinity thereof.
  • the charge accumulated in the vicinity of the triple point causes electric field emphasis during sudden voltage fluctuations such as circuit opening / closing operation, polarity reversal, and surge voltage entry, and dielectric breakdown tends to occur at the triple point.
  • sudden voltage fluctuations such as circuit opening / closing operation, polarity reversal, and surge voltage entry, and dielectric breakdown tends to occur at the triple point.
  • it is effective to reduce the thickness t of the high-pressure side tip 120a of the stress cone 12 to 6 mm or less. As a result, it is possible to suppress the accumulation of electric charges, which is a concern when a DC voltage is applied.
  • the thickness t of the high-voltage side tip portion 120a is extremely thin, if the inner diameter of the DC cable termination connecting portion 10 is expanded and mounted on the cable insulator 1b, tensile stress always acts on the stress cone 12. It becomes. For this reason, a mechanical crack may occur in the thin portion during use of the DC cable terminal connection portion 10 or after attachment, which may cause an electrical fatal wound. Therefore, it is preferable that only the maximum thickness of the high-pressure side tip portion 120a is defined, and the minimum thickness of the high-pressure side tip portion 120a is appropriately selected at the time of design.
  • insulating medium 15 a liquid insulating medium having a volume resistivity smaller than that of the cable insulator 1 b at a used temperature (room temperature to 90 ° C.), such as silicone oil, can be used.
  • silicone oil the insulating medium 15
  • the voltage sharing ratio to the cable insulator 1 b is increased, which is effective in reducing the above-described space charge accumulation in the triple point portion.
  • a gaseous insulating medium having a high resistivity such as SF 6 gas
  • a high resistance region is formed around the stress cone 12, so that the semiconductive portion 121 that is the ground electrode of the stress cone 12 is formed.
  • the electric field concentrates in the vicinity and tends to cause internal dielectric breakdown.
  • the DC cable terminal portion 1A is stripped to expose the conductor 1a, the cable insulator 1b, the external semiconductive layer 1c, and the shielding layer 1d from the cable sheath 1e.
  • the conductor lead bar 2 is compressed and connected to the conductor 1a of the DC cable 1 so as to be caulked.
  • the stress cone 12 is attached as a main reinforcing insulator so as to straddle and surround the cable insulator 1b and the outer semiconductive layer 1c exposed from the cable sheath 1e of the DC cable terminal portion 1A. Further, as appropriate, shielding treatment, mounting of the lower metal fitting 13, covering with the insulating steel pipe 11, attaching the upper metal fitting 14 to cover the DC cable terminal 1 ⁇ / b> A and sealing the silicone oil as the insulating medium 15 inside the insulating steel pipe 11 To do. In this way, the DC cable termination connection 10 is formed.
  • the volume resistivity of the stress cone 12 is made of an insulating material having a value several orders of magnitude smaller than the volume resistivity of the cable insulator 1b.
  • the thickness t of the side tip portion 120a is set to 6 mm or less, and a three-point portion made of three types of insulating materials including the cable insulator 1b, the insulating medium 15, and the stress cone 12 of the high-pressure side taper portion 120d is provided on the high-pressure side tip portion 120a.
  • an insulating sheet such as an insulating paper or a polyethylene sheet having a volume resistivity smaller than the volume resistivity of the cable insulator 1b is wound around the triple point portion, that is, a low resistance layer. It is also effective to form a layer with high conductivity. In other words, the charge accumulation from the conductor 1a is reduced so as not to stay in the local area but to move smoothly toward the ground electrode, thereby reducing the charge accumulation in the triple point.
  • FIG. 5 is a cross-sectional view of a stress cone 12A provided in the DC cable termination connection portion according to the second embodiment of the present invention.
  • the stress cone 12A shown in FIG. 5 includes the insulator portion 120 and the semiconductor portion 121 that are integrally formed, similarly to the stress cone 12 shown in FIG.
  • a low-resistance insulating sheet is provided on the insulator portion 120 so as to cover the high-voltage side of the insulator portion 120, that is, the cable insulator 1b, and the high-pressure side tip portion 120a, the large-diameter portion 120c, and the high-voltage side taper portion 120d of the insulator portion 120.
  • By winding 122 a composite reinforcing insulator is formed.
  • the low-resistance insulating sheet 122 for example, polyethylene that can follow the behavior of expansion and contraction when the cable insulator 1b is energized, and has an expansion coefficient substantially equal to the expansion coefficient of the cable insulator 1b so that cracks and wrinkles do not occur. It is preferable to use plastics. Alternatively, a high-stretch insulating paper having a high elongation that can follow the expansion of the DC cable 1 can also be used. In this embodiment, for example, a polyethylene sheet having an equal width of about 10 cm is used as the low resistance insulating sheet 122, and the polyethylene sheet is wound along the shape of the stress cone 12 to form the low resistance layer.
  • the low resistance insulating sheet 122 may be wound around all or part of the high-pressure-side tip portion 120a and the high-pressure-side tapered portion 120d without being wound around the large-diameter portion 120c of the insulator portion 120.
  • the wound outer diameter may be equal to the outer diameter of the large-diameter portion 120c of the insulator portion 120.
  • the low resistance insulating sheet 122 may be wound thicker than the outer diameter of the large diameter portion 120c.
  • the low resistance insulating sheet 122 may be wound not only on the high pressure side distal end portion 120a, the high pressure side tapered portion 120d and the large diameter portion 120c of the insulator portion 120, but also on the low pressure side tapered portion 120e. You may wind around the part 120b. Furthermore, the winding length in the longitudinal direction of the low resistance insulating sheet 122 around the DC cable 1 may be a length over the entire cable insulator 1b exposed from the insulator portion 120.
  • insulating oil is used as the insulating medium 15, but the present invention can also be applied to the case where insulating gas is used.
  • the present invention is applicable to DC cable termination connections.

Landscapes

  • Cable Accessories (AREA)
  • Insulators (AREA)

Abstract

 直流ケーブル用終端接続部は、ケーブル絶縁体で被覆された直流ケーブル端末部に接続される。ストレスコーンは、絶縁体部の体積抵抗率とケーブル絶縁体の体積抵抗率との比率が、0.01~0.5の範囲となるような体積抵抗率を有する。ストレスコーンの高圧側先端部の厚さは6mm以下である。ストレスコーンは、高圧側先端部が上部金具側に位置するように、ケーブル絶縁体上に装着される。ストレスコーンを含む直流ケーブル端末部が、絶縁碍管、下部金具及び上部金具で覆われ、絶縁碍管の内部に絶縁媒体が封入される。

Description

直流ケーブル用終端接続部
 本発明は、直流ケーブル用終端接続部に関する。
 送電用ケーブルとして、架橋ポリエチレン(XLPE:Cross Linked Polyethylene)で絶縁を施した電力ケーブル(XLPEケーブル)が知られている。このようなXLPEケーブルを、電圧150kV程度までの実線路を形成する直流送電用ケーブルとして用いることが提案されている。一般的に、電力ケーブルの終端には、終端接続部が接続される。
 図1は、XLPEケーブル用終端接続部(終端接続部)の典型的な構造を示す断面図である。以下、XLPEケーブル用終端接続部を単に「終端接続部」と称することもある。
 電圧クラスや設置環境により異なるが、図1に示す終端接続部100は、150kV以下の直流送電用として屋内設備で適用されている一般的な乾式終端接続部である。終端接続部100は、耐候性に優れたシリコーンゴムなどから形成された絶縁スリーブ110を有する。絶縁スリーブ110は、いわゆる「ストレスコーン一体型ひだ付き絶縁スリーブ」であり、ひだ111a、111bを有する小径部111と、小径部111より大きな外径を有する大径部112とを有する。絶縁スリーブ110の大径部112に、半導電性ゴムからなる半導電体部113が収容されている。
 終端接続部100は、その内径を拡大した状態で、XLPEケーブルにより形成された直流ケーブル1のケーブル端末部1Aのケーブル絶縁体1b上に装着される。終端接続部100は簡易絶縁構造を有しており、終端接続部100をケーブル絶縁体1b上に装着した後は、絶縁油などを封入する必要は無い。
 以上のような構造の終端接続部100は、ケーブル端末部1Aを曲がりのない真っ直ぐな状態にして装着しなければならない。このため、ケーブル絶縁体1b上への装着が難しいので、終端接続部100の長さは、約2m程度が限界であると考えられている。従って、図1に示す構造の終端接続部100は、電圧クラスが150kVを超える線路や屋外設備における線路には適していない。
 なお、図1において、大径部112の端部に保護金具115が取り付けられ、保護金具115から延出する直流ケーブル1は、シール部114により覆われている。また、絶縁スリーブ110の小径部111の先端に、導体引出棒2が取り付けられている。
 乾式終端接続部の他の例として、露出させたケーブル絶縁体上にある種の抵抗層を装着し、その抵抗層上にストレスコーンを取り付けた構造の終端接続部が提案されている(例えば、特許文献1参照。)。この構造の終端接続部では、抵抗層の一端がケーブル高電圧導体に接続され、他端が大地電位であるケーブル外部半導電層に接続されることで、電界緩和層が形成される。この電界緩和層上にストレスコーンが取り付けられる。
 更に、150kVを超える上位の電圧クラスの終端接続部として、補強絶縁体とコンデンサーコーンとの組み合わせからなる、油浸式終端接続部が提案されている。補強絶縁体は、磁器碍管の内部にシリコーン油などの絶縁媒体を封入し、電界緩和を目的に適切なストレスコーンの形状になるよう絶縁紙又はポリエチレンなどからなる絶縁シート及び半導電性テープを、ケーブル絶縁体上に施工現場で巻き付けて形成する。コンデンサーコーンは、絶縁紙及び金属箔を積層することで、予め工場等で製造される。
 上述の構造の終端接続部においては、ケーブル絶縁体の体積抵抗率に対して補強絶縁体の体積抵抗率が高い場合がある。このような場合に、直流電圧を印加した時には、電界分布が抵抗分担となることから、ストレスコーンの絶縁紙やポリエチレンシートの絶縁シートに高い電圧が加わる。これによりストレスコーン内に高電界が発生し、ストレスコーン内で絶縁破壊が起き易くなる。
 このような絶縁破壊を防止する目的で、ストレスコーンをケーブル絶縁体と同じXLPEで形成し、ストレスコーンの体積抵抗率をケーブル絶縁体と同じ体積抵抗率とした終端接続部が提案されている(例えば、特許文献2参照。)。
国際公開WO00/74191A1号 実公平1-35538号公報
 上述のように、特許文献1には、ケーブル絶縁体上に電界緩和層を設けた構造が開示されている。電界緩和層は、例えば抵抗層を構成する材料をテープ状に加工し、終端接続部を組み立てる際に現場でケーブル絶縁体上に巻きつける方法で形成することができる。あるいは、予め工場でケーブル絶縁体の外径より小さな内径を有するモールド絶縁チューブに成型し、そのモールド絶縁チューブを施工現場で拡げながらケーブル絶縁体上に装着する方法もある。しかし、いずれの方法においても、終端接続部の材料のコストアップとなり、かつ現場作業が増えて施工に時間がかかるという問題がある。
 また、特許文献1に記載の終端接続部を、例えば電圧が200kVを超える超高圧ケーブル用終端接続部に適用するのは難しい。また、特許文献1に記載の終端接続部を、塩害などの汚損度合の高い環境における屋外設備に設置される前述の乾式終端接続部に適用するのは難しい。すなわち、上述のような場合には、必要な耐電圧性能に応じた長大な表面漏洩距離を有するゴムモールド絶縁チューブが必要となり、このようなゴムモールド絶縁チューブの内径を拡張してケーブルに装着する作業は極めて困難となるためである。
 一方、コンデンサーコーンを使用する油浸式終端接続部の場合、前述のとおり施工現場でケーブル絶縁体上に絶縁シートや半導電性テープを用いて適切な形状となるよう補強絶縁体を形成する。あるいは、特許文献2で開示されているようなストレスコーンのみを事前にモールドにより成型し、更に施工現場でケーブル絶縁体上に装着して、その上にコンデンサーを取り付けるといった作業が必要である。
 このため、絶縁シートや半導電性テープの手巻き作業を行なうことができる、高度なスキルを持った熟練した作業者が必要である。また、絶縁シートや半導電性テープの手巻き作業には、多大な作業時間を必要となる。さらに、巻き付け部にトラップされたエアを抜くための絶縁油封入の前に、巻き付け部内の部の真空引き作業が必要となり、作業時間がさらに長くなる。あるいはコンデンサーコーンなどの部品製造に時間がかかり、終端接続部の製造コストが増大するといった問題がある。
 したがって、本発明の目的は、高い電圧クラスの直流ケーブルに適用できる直流ケーブル用終端接続部を提供することである。本発明の他の目的は、添付の図面を参照しながら発明の詳細な説明を読むことで、より明瞭となるであろう。
 本発明の一実施態様によれば、ケーブル絶縁体で被覆された直流ケーブル端末部に接続されるよう構成された直流ケーブル用終端接続部であって、絶縁体部と半導電体部とを有して一体に成型され、該絶縁体部は、高圧側先端部と大径部との間に高圧側テーパ部を有し、該絶縁体部の体積抵抗率とケーブル絶縁体の体積抵抗率との比率が、0.01~0.5の範囲となるような体積抵抗率を有し、該高圧側先端部の厚さが6mm以下であるストレスコーンと、表面にひだを有する筒状の絶縁碍管と、該絶縁碍管の下側開口を塞ぐ下部金具と、該絶縁碍管の上側開口を塞ぐ上部金具とを備え、該直流ケーブル用終端接続部が該直流ケーブル端末部に接続された状態において、該ストレスコーンの該高圧側先端部が該上部金具側に位置するように、該ストレスコーンは該ケーブル絶縁体上に装着され、該ストレスコーンを含む該直流ケーブル端末部が、該絶縁碍管、該下部金具及び該上部金具で覆われ、該絶縁碍管の内部に絶縁媒体が封入されることを特徴とする直流ケーブル用終端接続部が提供される。
 本発明の他の目的、効果、利点は、添付の図面を参照しながら発明の詳細な説明を読むことで、より明瞭となるであろう。
 本発明によれば、高い電圧クラスの直流ケーブルにも適用できる直流ケーブル用終端接続部を提供することができる。
従来の交流XLPEケーブル用終端接続部の一般的な構造を示す上半分切断断面図である。 本発明の第1の実施の形態による直流ケーブル用終端接続部を直流XLPEケーブルに装着した状態を示す右半分切断断面図である。 第1の実施の形態に係る直流ケーブル用終端接続部のストレスコーンの上半分断面図である。 本発明による直流ケーブル用終端接続部に用いられるストレスコーンの絶縁体部/ケーブル絶縁体の体積抵抗比率と接続部の破壊電圧との関係を示す電気特性図である。 第2の実施の形態による直流ケーブル用終端接続部のストレスコーンの上半分断面図である。
 本発明の実施形態について図面を参照しながら説明する。なお、各図中、実質的に同一の機能を有する構成部品には同一の符号を付し、その重複した説明を省略する。
[第1の実施の形態]
 図2は、本発明の第1の実施の形態に係る直流ケーブル用終端接続部を直流XLPEケーブルに装着した状態を示す。
 直流ケーブル用終端接続部10は、いわゆる差込式絶縁構造を有する終端接続部である。直流ケーブル用終端接続部10は、絶縁性を有する絶縁碍管11と、ストレスコーン12と、絶縁碍管11の下側開口を塞ぐ下部金具13と、絶縁碍管11の上側開口を塞ぐ上部金具14とを有する。ストレスコーン12は、電界ストレスを緩和するために設けられる部材であり、段剥き処理された直流ケーブル端末部1A上に配設される。直流ケーブル端末部1Aは、絶縁碍管11、下部金具13及び上部金具14で覆われ、絶縁碍管11の内部に絶縁媒体15が封入される。段剥き処理とは、中心から外周に向かって何層かの層構造になっているケーブルを、外側から1層ずつ段状に剥くことで、中心の導体を露出させる処理である。
 絶縁碍管11は、碍管本体部11aと、碍管本体部11aの外周表面に一定の間隔で形成された複数のひだ11b、11cとを備える。絶縁碍管11は、絶縁性を有する材料、例えば、磁器、ゴム、プラスチック等から形成される。本実施の形態では、碍管本体部11aと複数のひだ11b、11cとは、シリコーンゴムを用いて一体成型され、単一構造が形成されている。絶縁碍管11は、繊維強化プラスチック(FRP)からなる絶縁筒の表面にシリコーンゴム等の高分子絶縁材料からなる外皮となる複数のひだを被覆した複合構造の複合碍管としてもよい。
 ストレスコーン12は、絶縁体部120と半導電体部121とが工場で一体にモールド成型により形成された部材である。ストレスコーン12の詳細な構成は、後述する。
 下部金具13の中央部分には、直流ケーブル1の直流ケーブル端末部1Aを挿通させるための開口13aが形成されている。下部金具13は、複数の支持碍子16を介して架台17に固定される。上部金具14は、シールドカバー18で覆われている。
 直流ケーブル1は、例えばXLPEケーブルである。直流ケーブル1の直流ケーブル端末部1Aは段剥き処理が施されることによって、導体1a、ケーブル絶縁体1b、外部半導電層1c、遮蔽層1dがケーブルシース1eから露出されている。
(ストレスコーンの詳細)
 図3は、図2に示されたストレスコーン12の断面図である。ストレスコーン12の絶縁体部120に抵抗分担により高電圧が印加され、絶縁体部120の電界値が許容値を越えると、ストレスコーン12の絶縁破壊を引き起こす原因となり得る。このような絶縁破壊を防止するためには、絶縁体部120の体積抵抗率をケーブル絶縁体1bの体積抵抗率よりも、常に相対的に小さく抑えておくことが重要である。ここで、発明者らの検討により、ストレスコーンの絶縁体部の体積抵抗率とケーブル絶縁体の体積抵抗率の差が大きすぎると、接続部全体としての破壊電圧に悪影響を及ぼすことが分かった。この理由は、ケーブル絶縁体とストレスコーンの絶縁体部との界面に蓄積する空間電荷によるものと考えられる。体積抵抗率を常に相対的に小さく抑え、空間電荷を蓄積させないというこれらの条件を満たすためには、絶縁体部120を構成する材料の体積抵抗率は、ケーブル絶縁体1bの体積抵抗率に対する体積抵抗率比(絶縁体部120の体積抵抗率/ケーブル絶縁体部1bの体積抵抗率)が、0.01~0.5の範囲であることが望ましいことがわかた。なお、ケーブル絶縁体の体積抵抗率とストレスコーンの絶縁体部の体積抵抗率は、いずれも温度の影響を受けるため、常温~90℃の範囲で、上記関係が維持される絶縁材料を選定することが重要である。ここで 常温とは、例えば外気温度がとり得る温度を意味し、一般的に-30℃~40℃の範囲の温度である。
 絶縁体部120の体積抵抗率は、ケーブル絶縁体1bとの相対的な関係であるため、個々のケースで必要な体積抵抗率は異なる。本発明者らが良好な特性を確認したケースでは、絶縁体部120は、ケーブル絶縁体1bの体積抵抗率に対する体積抵抗率比(絶縁体部の体積抵抗率/ケーブル絶縁体の体積抵抗率)が、0.01~0.5の範囲である体積抵抗率を有することが有効であった。例えば、ケーブル絶縁体1bの体積抵抗率が1×1015Ωcmであるとき、絶縁体部120の体積抵抗率が1×1013~5×1014Ωcmであることが有効であった。
 絶縁体部120の体積抵抗率を上述のような体積抵抗率とすることにより、直流電圧印加時に、ストレスコーン12での電圧分担が軽減され、印加電圧の大部分がケーブル絶縁体1bに分担される。
 一方、ケーブル絶縁体1bの体積抵抗率と絶縁体部120の体積抵抗率の差が2桁以下の数値となると、ケーブル絶縁体1bとストレスコーン12の絶縁体部120との間の界面の空間電荷の蓄積特性が破壊電圧に悪影響を及ぼすことがなくなる。
 これらの条件を満たす材料としてエチレンプロピレンジエンゴム(EPDM)を用いて成型したストレスコーンを用いて、試料1~試料5を作成し、これら試料に電気試験を実施した。その結果、表1および図4に示すような結果が得られた。表1及び図4から分るように、ケーブル絶縁体1bとストレスコーン12の絶縁体部120の体積抵抗率比が0.01~0.5である試料2、試料3および試料4の破壊電圧は740kV以上であり、良好な結果が得られた。
 なお、試料1の破壊電圧は650kVであり、ケーブル絶縁体1bと絶縁体部120の体積抵抗率の差が大きいことによる空間電荷の蓄積等により、本発明の実施形態の試料2、3、4よりも650kVと電気性能が低下することがわかった。試料5については、ストレスコーンの絶縁体部への電圧分担が大きくなったため、破壊電圧が540kVまで低下したものと考えられる。
Figure JPOXMLDOC01-appb-T000001
 
 なお、絶縁体部120は、エチレンプロピレンジエンゴム(EPDM)の他に、例えばシリコーンゴムなどの合成エラストマーを用いて成型することができる。
 また、絶縁体部120は、高圧側先端部120aと、低圧側基端部120bと、大径部120cと、高圧側先端部120aと大径部120cとの間に形成された高圧側テーパ部120dと、低圧側基端部120bと大径部120cとの間に形成された低圧側テーパ部120eとを有する。絶縁体部120は、直流ケーブル端末部1Aに接続されたときに、図2に示すように高圧側先端部120aが上を向いて上部金具14側に配設されるように、ケーブル絶縁体1b上に装着される。
 半導電体部121は、低圧側テーパ部120eに収容される(埋め込まれる)ように絶縁体部120に一体に成形される。半導電体部121は、例えば、エチレンプロピレンジエンゴム
(EPDM)やシリコーンゴム等の半導電性ゴムにより成形される。
(ストレスコーンの高圧側先端部の厚さの検討)
 高圧側先端部120aには、ストレスコーン12が直流ケーブル1に装着された状態において、ケーブル絶縁体1b、絶縁媒体15及び高圧側テーパ部120dという3種類の絶縁材料による境界部が形成される。これらの3種類の絶縁材料による境界部(以下、「3重点部」という。)に直流電圧が印加されると、それぞれの選定材料の材料特性に基づく抵抗値の違いから、3重点部あるいはその近傍に空間電荷が蓄積する。これにより、3重点部への抵抗分担で決まるような電界分布が生成される。
 また、直流ケーブル1の高電位部である導体1aから注入された電荷は、接地されたストレスコーン12の半導電体部121の延在方向に絶縁媒体15中を移動する。ストレスコーン12の絶縁体部120の高圧側先端部120aの厚さtが厚く、面積が大きいほど電荷移動の妨げとなる壁が形成される。そのため、3重点部あるいはその近傍に電荷がトラップされて蓄積される。
 3重点部付近に蓄積された電荷は、回路の開閉操作や極性反転時やサージ電圧の侵入時などの急激な電圧変動時には電界強調をもたらし、3重点部で絶縁破壊が起き易くなる。このように蓄積されると悪影響を及ぼす電荷をスムーズに移動させるためには、ストレスコーン12の高圧側先端部120aの厚さtを6mm以下と薄くすることが有効である。これにより、直流電圧印加時に懸念される電荷の蓄積を抑制することができる。
 ただし、高圧側先端部120aの厚さtを極端に薄くした場合、直流ケーブル用終端接続部10の内径を拡げてケーブル絶縁体1b上に装着すると、ストレスコーン12には常に引っ張り応力が働くこととなる。このため、直流ケーブル用終端接続部10の装着時あるいは装着後の使用中に薄肉部に機械的な割れが発生し、電気的に致命傷となるおそれがある。したがって、高圧側先端部120aの最大厚さのみを規定しておき、高圧側先端部120aの最小厚さは設計時に適宜選定することが好ましい。
 なお、本発明者等が行なった実験では、高圧側先端部120aの厚さtが20mmのストレスコーンを用いた直流ケーブル用終端接続部10に逆極性サージ電圧を印加したところ、3重点部近傍を起点とした内部絶縁破壊が発生した。また、高圧側先端部120aの厚さtを6mm以下にしたところ、絶縁破壊電圧が上昇することが確認された。以下の表2は、250kV直流ケーブルに直流ケーブル用終端接続部10を装着し、ストレスコーンの高圧側先端部の厚さtを変えて行なった試験結果を示す。
Figure JPOXMLDOC01-appb-T000002
(絶縁媒体の材料の検討)
 絶縁媒体15として、使用される温度(常温~90℃)において、ケーブル絶縁体1bよりも小さい体積抵抗率を有する液状の絶縁媒体、例えばシリコーン油などを用いることができる。絶縁媒体15としてシリコーン油を用いることにより、ケーブル絶縁体1bへの電圧分担比率が大きくなり、前述の3重点部への空間電荷蓄積を低減するのに有効である。逆にSF6ガスのような高い抵抗率を有する気体状の絶縁媒体を用いると、ストレスコーン12の周囲に高抵抗領域が形成されることから、ストレスコーン12の接地電極である半導電体部121近傍に電界が集中して内部絶縁破壊を引き起こし易くなる。
 絶縁碍管11の内部に体積抵抗率の低い(低抵抗)の絶縁媒体15を封入することにより、交流電圧印加時にはストレスコーン12周囲の絶縁碍管11の外表面に電界が集中する差込式終端接続部であっても、直流印加時には絶縁碍管11の外表面の電界分布が高電位部の上部金具14から低電圧部である下部金具13に向けて比較的なだらかな分布となり、ストレスコーン12周囲の絶縁碍管11の外表面の局部集中による低電圧フラッシュオーバーを防止する効果を得ることができる。
(直流ケーブル用終端接続部の形成方法)
 次に、直流ケーブル用終端接続部10の形成方法の一例について説明する。
 まず、直流ケーブル端末部1Aの段剥き処理を行い、ケーブルシース1eから導体1a、ケーブル絶縁体1b、外部半導電層1c及び遮蔽層1dを露出させる。次に、直流ケーブル1の導体1aに導体引出棒2をかしめるように圧縮して接続する。
 次に、直流ケーブル端末部1Aのケーブルシース1eから露出させたケーブル絶縁体1bと外部半導電層1cとに跨り、それらを取り囲むようにストレスコーン12を主たる補強絶縁体として装着する。更にしかるべく遮蔽処理、下部金具13の取り付け、絶縁碍管11を被せ、上部金具14を取り付けて直流ケーブル端末部1Aを密封するように覆い、絶縁碍管11の内部に絶縁媒体15としてシリコーン油を封入する。このようにして直流ケーブル用終端接続部10が形成される。
(第1の実施の形態の効果)
 本実施の形態による直流ケーブル用終端接続部10によれば、ストレスコーン12の体積抵抗率をケーブル絶縁体1bの体積抵抗率よりも数桁小さな値を有する絶縁材料とし、絶縁体部120の高圧側先端部120aの厚さtを6mm以下とし、更に高圧側先端部120aにケーブル絶縁体1b、絶縁媒体15及び高圧側テーパ部120dのストレスコーン12の3種類の絶縁材料からなる3重点部を形成する。これにより以下のような効果を得ることができる。
(1)3重点部での電荷蓄積が低減できるので破壊電圧を上昇させることが可能となり、高い電圧クラスの直流ケーブルにも適用できる。
(2)絶縁シート、半導電性テープ等の手巻き作業を省略でき、長大な絶縁スリーブや絶縁チューブ状の抵抗層をケーブル絶縁体1b上に内径を拡張しながら装着するといった作業が不要となり、これにより、直流ケーブル用終端接続部の現場での施工時間を短縮できる。
(3)現場作業者に求められる技量の軽減を図ることができる。
[第2の実施の形態]
 次に、本発明の第2の実施の形態について説明する。
 上述の3重点部への電荷蓄積を低減する構造として、ケーブル絶縁体1bの体積抵抗率より小さい体積抵抗率を有する絶縁紙やポリエチレンシートなどの絶縁シートを3重点部に巻き付けて低抵抗層すなわち導電率の高い層を形成することも有効である。すなわち、導体1aから注入された電荷が局部に滞留することなく接地電極に向けてスムーズに移動できる構造として、3重点部への電荷蓄積を低減する。
 図5は本発明の第2の実施の形態による直流ケーブル用終端接続部に設けられたストレスコーン12Aの断面図である。図5に示すストレスコーン12Aは、図3に示すストレスコーン12と同様に、一体に形成された絶縁体部120及び半導電体部121を有する。絶縁体部120の高圧側、すなわちケーブル絶縁体1b、並びに絶縁体部120の高圧側先端部120a、大径部120c及び高圧側テーパ部120dを覆うように、絶縁体部120に低抵抗絶縁シート122を巻き付けることにより、複合補強絶縁体が形成されている。
 低抵抗絶縁シート122として、例えばケーブル絶縁体1bの通電時の膨張収縮の挙動に追従でき、亀裂やしわなどが生じないようケーブル絶縁体1bの膨張係数とほぼ同レベルの膨張係数を有するポリエチレンなどのプラスチックを用いることが好ましい。あるいは、直流ケーブル1の膨張に追従できる高い伸びを有する高伸度絶縁紙なども用いることができる。本実施の形態では、例えば幅10cm程度の等幅のポリエチレンシートを低抵抗絶縁シート122として用い、ポリエチレンシートをストレスコーン12の形状に沿って巻き付けて低抵抗層を形成する。
 なお、低抵抗絶縁シート122は、絶縁体部120の大径部120cには巻き付けずに、高圧側先端部120aと高圧側テーパ部120dとの全部又は一部に巻き付けてもよい。低抵抗絶縁シート122を高圧側先端部120a及び高圧側テーパ部120dの一部に巻き付ける場合は、その巻き付けた外径は、絶縁体部120の大径部120cの外径と等しくてもよい。あるいは低抵抗絶縁シート122を大径部120cの外径よりも厚く巻き付けてもよい。また、低抵抗絶縁シート122を絶縁体部120の高圧側先端部120a、高圧側テーパ部120d及び大径部120cだけでなく、低圧側テーパ部120eに巻き付けてもよく、更には低圧側基端部120bに巻き付けてもよい。さらに、低抵抗絶縁シート122の直流ケーブル1に対する長手方向の巻き付け長さは、絶縁体部120から露出したケーブル絶縁体1b全体に渡る長さでもよい。
 第2の実施の形態による直流ケーブル用終端接続部によれば、上記した第1の実施の形態による効果と同様の効果を得ることができる。
 上述の第1、第2の実施の形態では絶縁媒体15として絶縁油を使用しているが、絶縁ガスを使用する場合にも本発明を適用することも可能である。
 なお、本発明は、上述の直流ケーブル用終端接続部の実施例に限定されること無く、本発明の範囲を逸脱することなく、種々の変形例、改良例が可能である。
 本出願は、2011年6月13日出願の優先権主張日本国特許出願第2011-131659号に基づくものであり、その全内容は本出願に援用される。
 本発明は直流ケーブル用終端接続部に適用可能である。
1  直流ケーブル
1A 直流ケーブル端末部
1a 導体
1b ケーブル絶縁体
1c 外部半導電層
1d 遮蔽層
1e ケーブルシース
2  導体引出棒
10 直流ケーブル用終端接続部
11 碍管
11a 碍管本体部
11b、11c ひだ
12 ストレスコーン
13 下部金具
13a 開口
14 上部金具
15 絶縁媒体
16 支持碍子
17 架台
18 シールドカバー
100 終端接続部
110 絶縁スリーブ
111 小径部
111a、111b ひだ
112 大径部
113 半導電体部
120 絶縁体部
120a 高圧側先端部
120b 低圧側基端部
120c 大径部
120d 高圧側テーパ部
120e 低圧側テーパ部
121 半導電体部
122 低抵抗絶縁シート

Claims (7)

  1.  ケーブル絶縁体で被覆された直流ケーブル端末部に接続されるよう構成された直流ケーブル用終端接続部であって、
     絶縁体部と半導電体部とを有して一体に成型され、前記絶縁体部は、高圧側先端部と大径部との間に高圧側テーパ部を有し、前記絶縁体部の体積抵抗率とケーブル絶縁体の体積抵抗率との比率が、0.01~0.5の範囲となるような体積抵抗率を有し、前記高圧側先端部の厚さが6mm以下であるストレスコーンと、
     表面にひだを有する筒状の絶縁碍管と、
     前記絶縁碍管の下側開口を塞ぐ下部金具と、
     前記絶縁碍管の上側開口を塞ぐ上部金具と
     を備え、
     前記直流ケーブル用終端接続部が前記直流ケーブル端末部に接続された状態において、前記ストレスコーンの前記高圧側先端部が前記上部金具側に位置するように、前記ストレスコーンは前記ケーブル絶縁体上に装着され、
     前記ストレスコーンを含む前記直流ケーブル端末部が、前記絶縁碍管、前記下部金具及び前記上部金具で覆われ、前記絶縁碍管の内部に絶縁媒体が封入されることを特徴とする直流ケーブル用終端接続部。
  2.  請求項1記載の直流ケーブル用終端接続部であって、
     前記ストレスコーンは、合成エラストマーにより形成されたことを特徴とする直流ケーブル用終端接続部。
  3.  請求項1又は2記載の直流ケーブル用終端接続部であって、
     前記ストレスコーンの前記絶縁体部の体積抵抗率は、常温~90℃において、1013Ωcm以上であることを特徴とする直流ケーブル用終端接続部。
  4.  請求項1乃至3のうちいずれか一項記載の直流ケーブル用終端接続部であって、
     前記絶縁媒体は、常温~90℃において、前記ケーブル絶縁体よりも小さい体積抵抗率を有する液状の絶縁媒体であることを特徴とする直流ケーブル用終端接続部。
  5.  請求項1乃至4のうちいずれか一項記載の直流ケーブル用終端接続部であって、
     前記絶縁碍管は、磁器又はシリコーンゴムから形成された単一構造又は複合構造を有することを特徴とする直流ケーブル用終端接続部。
  6.  請求項1乃至5のうちいずれか一項記載の直流ケーブル用終端接続部であって、
     前記ストレスコーンの前記絶縁体部は、前記直流ケーブル用終端接続部が前記直流ケーブル端末部に接続された状態において、前記高圧側先端部が上部金具側に位置するよう前記ケーブル絶縁体上に装着され、
     前記ストレスコーンの前記絶縁体部、及び、高圧側に向けて露出した前記ケーブル絶縁体の部分を覆うように、前記ケーブル絶縁体の体積抵抗率よりも小さい体積抵抗率を有する低抵抗層が形成されたことを特徴とする直流ケーブル用終端接続部。
  7.  請求項6記載の直流ケーブル用終端接続装置であって、
     前記ケーブル絶縁体の体積抵抗率よりも小さい体積抵抗率を有する絶縁シートを、前記ストレスコーンの絶縁体部の前記大径部、前記高圧側テーパ部、前記高圧側先端部、及び、高圧側に向けて露出した前記ケーブル絶縁体の部分に巻き付けて前記低抵抗層を形成したことを特徴とする直流ケーブル用終端接続部。
PCT/JP2012/064697 2011-06-13 2012-06-07 直流ケーブル用終端接続部 WO2012173041A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12799740.1A EP2720331B1 (en) 2011-06-13 2012-06-07 Terminal connecting section for dc cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011131659A JP5903701B2 (ja) 2011-06-13 2011-06-13 直流ケーブル用終端接続部
JP2011-131659 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012173041A1 true WO2012173041A1 (ja) 2012-12-20

Family

ID=47357030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064697 WO2012173041A1 (ja) 2011-06-13 2012-06-07 直流ケーブル用終端接続部

Country Status (3)

Country Link
EP (1) EP2720331B1 (ja)
JP (1) JP5903701B2 (ja)
WO (1) WO2012173041A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680773A (zh) * 2013-10-08 2014-03-26 江苏祥源电气设备有限公司 一种分段连接式绝缘子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183193B1 (ko) 2014-02-25 2020-11-26 엘에스전선 주식회사 종단접속부를 구비한 전력케이블
CN103985485B (zh) * 2014-05-08 2017-02-08 国家电网公司 一种应用于电力领域的高压瓷瓶
KR102505579B1 (ko) * 2017-04-11 2023-03-03 엘에스전선 주식회사 초고압 직류 전력케이블용 중간접속함 및 이를 포함하는 초고압 직류 전력케이블 시스템
EP3699602A1 (en) * 2019-02-22 2020-08-26 ABB Schweiz AG A voltage sensor for medium voltage or high voltage measurements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346691A (en) * 1976-10-08 1978-04-26 Sumitomo Electric Ind Ltd Termination of dc cable
JPH0135538Y2 (ja) 1984-04-14 1989-10-30
JPH02136434U (ja) * 1989-04-13 1990-11-14
WO2000074191A1 (en) 1999-05-28 2000-12-07 Abb Ab Control of electric field at direct voltage
JP2001218352A (ja) * 2000-01-28 2001-08-10 Hitachi Cable Ltd 直流用ストレスコーン
JP2006042421A (ja) * 2004-07-22 2006-02-09 Exsym Corp 電力ケーブルの終端接続部
JP2010016986A (ja) * 2008-07-03 2010-01-21 Exsym Corp がい管ユニット、気中終端接続部及びがい管ユニットの組立方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752106B1 (fr) * 1996-08-02 1998-09-04 Alcatel Cable Extremite auto-porteuse de cable d'energie
EP1326316B2 (en) * 2002-01-07 2019-03-13 PRYSMIAN Kabel und Systeme GmbH Outdoor termination for a high voltage cable
FR2883425B1 (fr) * 2005-03-21 2007-05-04 Nexans Sa Extremite synthetique de cable electrique pour tension continue

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346691A (en) * 1976-10-08 1978-04-26 Sumitomo Electric Ind Ltd Termination of dc cable
JPH0135538Y2 (ja) 1984-04-14 1989-10-30
JPH02136434U (ja) * 1989-04-13 1990-11-14
WO2000074191A1 (en) 1999-05-28 2000-12-07 Abb Ab Control of electric field at direct voltage
JP2001218352A (ja) * 2000-01-28 2001-08-10 Hitachi Cable Ltd 直流用ストレスコーン
JP2006042421A (ja) * 2004-07-22 2006-02-09 Exsym Corp 電力ケーブルの終端接続部
JP2010016986A (ja) * 2008-07-03 2010-01-21 Exsym Corp がい管ユニット、気中終端接続部及びがい管ユニットの組立方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2720331A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680773A (zh) * 2013-10-08 2014-03-26 江苏祥源电气设备有限公司 一种分段连接式绝缘子

Also Published As

Publication number Publication date
EP2720331A1 (en) 2014-04-16
JP2013005500A (ja) 2013-01-07
EP2720331B1 (en) 2016-05-25
EP2720331A4 (en) 2015-04-22
JP5903701B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
EP2572421B1 (en) A high voltage direct current cable termination apparatus
US10355470B2 (en) Cable fitting for connecting a high-voltage cable to a high-voltage component
CA2799594C (en) A high voltage direct current cable termination apparatus
WO2012173041A1 (ja) 直流ケーブル用終端接続部
US8754329B2 (en) High voltage direct current cable termination apparatus
JP5137524B2 (ja) 電力ケーブル接続部
US9780549B2 (en) Cover assemblies and methods for covering electrical cables and connections
US10554034B2 (en) Cold shrinkable cable terminal, cold shrinkable terminal assembly and method of terminating cable
JP4751918B2 (ja) 気中終端接続部及び気中終端接続部の組立方法
KR20150101353A (ko) 종단접속부를 구비한 전력케이블
US8866014B2 (en) Dead front cable terminal with isolated shield
JP4615258B2 (ja) 電力ケーブルの終端接続部及び組み立て方法
US20200169074A1 (en) Cable termination system, termination assembly and method for installing such a termination assembly
JP2006042421A (ja) 電力ケーブルの終端接続部
CA2821281A1 (en) Stress control device
KR102304368B1 (ko) 접속함용 슬리브 삽입 장치 및 방법
EP2710683B1 (en) Dead front cable terminal with isolated shield
JP6712990B2 (ja) 電力ケーブル用終端接続部
CN115579656A (zh) 一种大型直线电机定子绕组出线铜棒连接方法
KR102350623B1 (ko) 전력케이블의 종단접속부
JPH08195129A (ja) 高圧ケーブル
JPH0470747B2 (ja)
JPH0470748B2 (ja)
JPH08163764A (ja) Cvケーブルの中間接続部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE