WO2012172864A1 - 複合磁気材料の製造方法 - Google Patents

複合磁気材料の製造方法 Download PDF

Info

Publication number
WO2012172864A1
WO2012172864A1 PCT/JP2012/060486 JP2012060486W WO2012172864A1 WO 2012172864 A1 WO2012172864 A1 WO 2012172864A1 JP 2012060486 W JP2012060486 W JP 2012060486W WO 2012172864 A1 WO2012172864 A1 WO 2012172864A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
keyhole
alloy element
magnetic material
manufacturing
Prior art date
Application number
PCT/JP2012/060486
Other languages
English (en)
French (fr)
Inventor
貴也 長濱
北畑 浩二
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Publication of WO2012172864A1 publication Critical patent/WO2012172864A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a method for producing a composite magnetic material.
  • Japanese Patent Application Laid-Open No. 5-237678 discloses a technique in which a nickel foil is wound around a steel member that is a ferromagnetic material, and that portion is irradiated with a laser to form an alloy. By this method, the laser irradiated portion can be modified to austenite (nonmagnetic material or weak magnetic material).
  • This invention is made in view of such a situation, and it aims at providing the manufacturing method of the composite magnetic material which can carry out the magnetic modification reliably from the surface of a base material to the back surface. .
  • the method for producing a composite magnetic material of the present invention includes a keyhole forming step of forming a keyhole by melting a base material formed of a magnetic material or a non-magnetic material by heating from the front surface to the back surface of the base material. And an element disposing step of disposing an alloy element in a molten pool around the keyhole, and a portion melted by heating in the base material is weakened or non-magnetic if the base material is a magnetic substance. If the base material is non-magnetic, it is magnetized.
  • a keyhole is formed by heating the base material, and the alloy element is supplied to the molten pool around the keyhole.
  • the alloy element convects in the molten pool, diffuses in the depth (thickness) direction of the base material, and reaches the back surface of the base material. That is, according to the present invention, in the portion of the base material melted by the laser (including the portion where the keyhole is formed), the alloy element is surely diffused to a deep portion of the base material, and from the surface of the base material Magnetic modification is performed up to the back surface.
  • the alloy element may be supplied to the base material before, during, or after the keyhole formation. That is, in the present invention, it is only necessary that the alloy element is arranged in the molten pool as a result.
  • the keyhole is formed by melting from the front surface to the back surface of the base material by heating.
  • the alloy element can be supplied more reliably in the depth direction of the base material, and the magnetic modification to the back surface of the base material can be performed more reliably.
  • alloy elements may be supplied from both sides of the base material to the molten pool around the keyhole. According to this, the magnetic modification can be performed more uniformly in the thickness direction of the base material.
  • a keyhole is formed by heating from the surface of the base material, and in the element arranging step, an alloy element is supplied to the molten pool around the keyhole from the back surface of the base material.
  • the base material can be magnetically modified by diffusion from the back surface to the front surface of the alloy metal.
  • the back surface side of the base material is far from the heating side (front surface), and the alloy elements from the surface are difficult to diffuse, but by supplying the alloy elements from the back surface, diffusion on the back surface side can be promoted.
  • a preparatory process for implanting the alloy element into the base material may be further provided.
  • the base material when forming a keyhole in the base material, the base material can be magnetically modified more easily by forming the keyhole so that the alloy element is arranged in the molten pool around the keyhole. it can.
  • the alloy element is more easily diffused in the depth direction when forming the keyhole than simply arranging the alloy element in the base material.
  • the preparation step may include a step of placing the alloy element in a site to be modified of the base material and a step of pressing the base material.
  • an alloy element can be previously arrange
  • the preparation step may include a step of forming a recess in a portion to be modified of the base material, a step of placing the alloy element in the recess, and a step of pushing the alloy metal into the recess.
  • an alloy element can be arrange
  • At least one of a step of forming a recess in a modification target portion of the base material, and a powder, paste, fine particle, and thin film of the alloy element in the recess You may further provide the process of arrange
  • the keyhole may be formed with a laser having a power density of 1 ⁇ 10 6 W / cm 2 or more. According to this, it is possible to reliably generate convection by the molten pool, and more reliably to alloy (magnetize or demagnetize) uniformly in the depth direction.
  • the method of manufacturing a composite magnetic material according to the first embodiment mainly includes a keyhole forming step S1 and an element arranging step S2, and the magnetic base material 1 has a keyhole. 3 and the alloy element 4 is arranged in the molten pool 5 formed around the keyhole 3 to form the nonmagnetic portion 12.
  • the surface on the heating side of the base material 1 is referred to as the front surface, and the surface opposite to the heating side (that is, the surface opposite to the surface) is referred to as the back surface.
  • the keyhole forming step S1 is a step of forming a keyhole 3 by irradiating a single base material 1 made of a magnetic material (here, steel) with a laser 2. is there.
  • the keyhole 3 means a circular hole formed by irradiation of the laser 2 from the front surface to the back surface of the base material 1 irradiated with the laser 2.
  • evaporated metal is generated, and a molten pool 5 is formed around the keyhole 3.
  • the wire 40 formed of the alloy element 4 (manganese, chromium, nickel, or the like) is arranged around the laser 2 irradiation position on the surface of the base material 1. .
  • the alloy element 4 is supplied to the molten pool 5 formed around the keyhole 3.
  • the power density of the laser 2 is 1 ⁇ 10 6 W / cm 2 or more.
  • the thickness of the base material 1 is approximately 1 mm.
  • the laser 2 irradiation position with respect to the base material 1 is relatively moved, and the wire 40 is also relatively moved in accordance with the laser 2 irradiation position.
  • the keyhole 3 at the previous irradiation position is filled with the molten base material 1.
  • a heat-affected zone A affected by heat is formed around the molten pool 5.
  • the base material 1 may be disposed on a pedestal or the like that supports only the end, and the space below the keyhole 3 and the molten pool 5 (around the keyhole 3 on the back surface) may be a space.
  • Element arrangement step S2 is a step of arranging the alloy element 4 in the molten pool 5 around the keyhole 3. As described above, the element arranging step S2 is automatically executed by arranging the wire 40 around the laser irradiation position on the base material 1 and forming the keyhole 3 in the keyhole forming step S1.
  • the wire 40 contacts the molten pool 5 and melts, and the molten wire 40 (that is, the alloy element 4) is mixed into the molten pool 5 and diffused. Convection is likely to occur in the molten pool 5 (see arrow in FIG. 2). As a result, the alloy element 4 diffuses in the depth direction of the base material 1 and is supplied to the back surface of the base material 1. The part melted by the laser 2 in the base material 1 is alloyed and changes from the front surface to the back surface into a non-magnetic material or a magnetic material weaker than the magnetic material of the base material 1. That is, as shown in FIG. 3, the composite magnetic material 10 includes a magnetic part 11 and a nonmagnetic part (or a weak magnetic part weaker than the magnetic part 11) 12.
  • a keyhole is formed by heating a single base material 1, and the alloy element is disposed in the molten pool around the keyhole, so that the alloy element is disposed in the depth direction of the base material 1 ( Convection and diffusion in the thickness direction).
  • the magnetic modification can be reliably performed up to the back surface of the base material 1 in the depth direction.
  • the nonmagnetic portion 12 (modified portion) having substantially the same width can be formed from the front surface to the back surface of the base material 1. Depending on the amount of alloy element 4 to be supplied, it can be adjusted whether it is made non-magnetic or weaker than the base material 1.
  • the power density of the laser 2 is 1 ⁇ 10 6 W / cm 2 or more, convection is more reliably generated in the molten pool 5.
  • a base material having a thickness of 1 mm or more can be uniformly alloyed to the back surface in the depth direction, and can be made non-magnetic.
  • the heating diameter (spot diameter) of the laser 2 is 0.5 mm
  • the melting depth is 4.46 mm
  • the melting width is 0.94 mm.
  • keyhole melting for forming a keyhole in the base material is performed, which is different from surface heating melting in which the back surface of the base material is not melted.
  • surface heating melting for example, when the spot diameter is 1.8 mm and the power density is 1 ⁇ 10 5 W / cm 2 (the same output as above), the melting depth is 0.89 mm and the melting width is 2. It became 32 mm.
  • Such heating does not correspond to keyhole melting in the present embodiment in which the base material 1 has a thickness of about 1 mm.
  • the laser power density is preferably 1 ⁇ 10 6 W / cm 2 or more from the viewpoint of uniform alloying in the depth direction or from the viewpoint of certainty thereof.
  • the manufacturing method of the composite magnetic material of the second embodiment mainly includes a preparation step S0, a keyhole formation step S1, and an element arrangement step S2.
  • the second embodiment prepares for placing the alloy element 4 in the base material 1 and placing the alloy element 4 in the base material 1 as a pre-process of the keyhole forming step S1 with respect to the first embodiment.
  • step S0 is added.
  • the preparation step S0 is a step before the keyhole formation step S1 and is a step of implanting the alloy element 4 into the surface of the base material 1 when the base material 1 is pressed as shown in FIG.
  • the composite magnetic material is used in various applications, for example, as a motor component such as a rotor. In this way, the composite magnetic material is molded by press working, for example, depending on the application such as automobile parts. In this press working, the alloy element 4 is disposed in a portion (a portion to be modified) on the surface of the base material 1 to be magnetically modified, and is punched into the base material 1 by the punch 6.
  • the keyhole forming step S1 is a step of forming the keyhole 3 by irradiating the laser 2 to the portion where the alloy element 4 on the surface of the base material 1 is implanted.
  • the keyhole 3 is formed in the base material 1 so that the alloy element 4 is disposed in the molten pool 5 around the keyhole 3.
  • the element arranging step S2 is a step of arranging the alloy element 4 in the molten pool 5, and in the second embodiment, when the keyhole forming step S1 is executed as described above, the element arranging step S2 is automatically executed.
  • the alloy element 4 is mixed and diffused in the molten pool 5 and supplied to the back surface by convection of the molten pool 5 or the like.
  • the effect similar to 1st embodiment is exhibited.
  • the alloy element 4 is driven from the front surface to the back surface of the base material 1 by pressing, the alloy element 4 is likely to be mixed and diffused in the depth direction of the base material 1 when the keyhole 3 is formed. Therefore, the magnetic modification can be more easily performed to the back surface of the base material 1.
  • a pre-process for manufacturing parts it is not necessary to provide new facilities and processes, which is effective in terms of manufacturing efficiency and cost.
  • the alloy element 4 may be pressed only on the back surface of the base material 1 or may be pressed on both the front surface and the back surface of the base material 1.
  • the manufacturing method of the composite magnetic material of the third embodiment mainly includes a preparation step S0, a keyhole formation step S1, and an element arrangement step S2.
  • the third embodiment is different from the first embodiment in that the powder of the alloy element 4 is arranged on the surface of the base material 1 before the keyhole forming step S1.
  • the powder of the alloy element 4 is placed on the part of the surface of the base material 1 where magnetic modification is desired.
  • the alloy element 4 is irradiated with the laser 2, and then the keyhole 3 is formed in the base material 1.
  • the element arranging step S2 is a step of arranging the alloy element 4 in the molten pool 5 around the keyhole 3, and is automatically executed when the keyhole forming step S1 is executed. Thereby, the alloy element 4 mixes in the molten pool 5 and diffuses. The effect similar to 1st embodiment is exhibited also by 3rd embodiment.
  • the alloy element 4 can be easily arranged on the surface of the base material 1, and the arrangement position can be easily controlled.
  • the preparation step S0 at least one of a paste, fine particles, and a thin film may be arranged instead of the alloy element 4 powder.
  • the method of manufacturing the composite magnetic material according to the fourth embodiment mainly includes a preparation step S0, a keyhole formation step S1, and an element arrangement step S2.
  • the preparation step S0 includes a recess forming step S01 and a pushing step S02.
  • a recess forming step S01 in which the recesses 13 and 14 are formed in the site to be modified of the base material 1, and the alloy element 4 is disposed in the formed recesses 13 and 14 to form the recess 13 , 14 is different from the second embodiment in that it includes the pressing step S02 for pressing the alloy element 4 into the second step.
  • groove-shaped recesses 13 and 14 are formed in the modification target portions of the front surface and the back surface of the base material 1.
  • the recesses 13 and 14 are formed at positions corresponding to each other. That is, the front surface side concave portion 13 and the rear surface side concave portion 14 are formed at positions facing each other with the base material 1 interposed therebetween.
  • the cross-sectional shape orthogonal to the groove extending direction of the recesses 13 and 14 is a substantially U-shaped corner portion having an arc shape.
  • the alloy element 4 is disposed in the recesses 13 and 14, the alloy element 4 is pressed by pressing, and the alloy element 4 is pressed into the recesses 13 and 14 to be hardened.
  • the alloy element 4 may be disposed in both the recesses 13 and 14, and may be executed by a single press with the punch 6 and the die 7, or may be pressed with respect to either of the recesses 13 and 14.
  • the alloy element 4 may be pressed and solidified by pressing the other concave portion (13 or 14).
  • the recess forming step S01 and the pressing step S02 are executed as part of the press working (step).
  • the supply surface of the alloy element 4 in the base material 1 is both the front surface and the back surface.
  • the alloy element 4 is supplied from both sides to the base material 1, the alloy element 4 is arranged to be uniformly diffused in the thickness direction. That is, according to this method, the magnetic modification can be performed more uniformly in the thickness direction. Further, the nonmagnetic portion 12 (modified portion) having substantially the same width can be formed from the front surface to the back surface of the base material 1.
  • the alloy elements 4 are driven into the base material 1 by forming the recesses 13 and 14 and pushing the alloy elements 4 into the recesses 13 and 14.
  • the alloy element 4 can be easily and reliably arranged at the site to be modified.
  • the recesses 13 and 14 are formed on both the front and back surfaces of the base material 1, but the recess 13 may be formed only on the surface of the base material 1.
  • the alloy element 4 can be arrange
  • the alloy element 4 may be pushed into the recesses 13 and 14 by a method other than pressing.
  • the method of manufacturing the composite magnetic material according to the fourth embodiment mainly includes a preparation step S0, a keyhole formation step S1, and an element arrangement step S2.
  • the preparation step S0 includes a recess forming step S01 and a pushing step S02.
  • the fifth embodiment is different from the fourth embodiment in that the concave portion 14 is formed only on the back surface of the base material 1 in the concave portion forming step S01.
  • a groove-shaped recess 14 is formed in the modification target portion of the back surface of the base material 1 (the surface opposite to the heating side).
  • the concave portion 14 is formed in a groove shape as in the fourth embodiment.
  • the pressing step S02 the alloy element 4 is pressed into the concave portion 14 by pressing, and is pressed into the concave portion 14.
  • the laser 2 is irradiated to a predetermined portion of the surface corresponding to the recess 14, and the laser 2 irradiation position is moved relative to the base material 1 in the groove extending direction of the recess 14.
  • the base material 1 is supplied from the back surface opposite to the heating side, it is easily diffused uniformly in the thickness direction due to rising convection when the keyhole 3 is formed. Moreover, although the back surface side of the base material 1 is far from the heating side (front surface) and the alloy element 4 from the surface is difficult to diffuse, supplying the alloy element 4 from the back surface promotes diffusion on the back surface side. it can. Further, the nonmagnetic portion 12 (modified portion) having substantially the same width can be formed from the front surface to the back surface of the base material 1.
  • the base material 1 is a non-magnetic material (for example, stainless steel), it can be modified (magnetized) by the same method.
  • a thick base material 1 (thickness of 1 mm or more) is formed by forming a keyhole 3 and alloying a single base material 1.
  • the magnetic modification can be reliably performed from the front surface to the back surface.
  • the alloy elements 4 can be arranged more uniformly by effectively using the convection at the time of forming the keyhole 3.
  • the fourth and fifth embodiments have the alloy elements 4 arranged on the back surface, so that the nonmagnetic property of the same width from the front surface to the back surface of the base material 1 is obtained.
  • the part 12 (modified part) is easily formed.
  • the keyhole forming step S1 when the keyhole forming step S1 is performed with the front surface of the base material 1 positioned upward and the back surface positioned downward, the upward flow of bubbles generated by internal evaporation of the base metal Therefore, it is considered that the alloy element 4 arranged on the back surface side easily moves upward. Thereby, the arrangement
  • the laser 2 may be a high-density energy beam capable of forming the keyhole 3, and may be an electron beam.
  • the keyhole 3 should just be formed by a heating, and the said heating means is not restricted to a laser, For example, you may utilize arc discharge etc.
  • the power density of the laser necessary for forming the keyhole is generally about 1 ⁇ 10 5 to 1 ⁇ 10 6 W / cm 2 or more.
  • the present invention forms the keyhole 3 on the base material 1 and is uniform from the front surface to the back surface of the base material 1 regardless of the thickness of the base material 1. Is magnetically modified so that The “keyhole” in the present invention is formed by melting from the front surface to the back surface of the base material.
  • a keyhole is a deep and narrow hole generated during welding such as laser welding, electron beam welding, and arc welding in the technical field of welding.
  • welding a plurality of members
  • the one member and the other member are welded by forming a keyhole in one member.
  • a heat source such as a laser
  • a keyhole is formed in the one member, so that the back surface side of the one member and the surface side of the other member are welded.
  • the technical field of welding is completely different from the technical field of magnetic modification.
  • a keyhole is formed in order to modify a base material instead of welding a plurality of members.
  • the present invention is completely different from keyhole welding in the welding field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

 母材の表面から裏面に至るまで確実に磁性改質することができる複合磁気材料の製造方法を提供する。 本発明の複合磁気材料の製造方法は、磁性体または非磁性体により形成された母材に対し、加熱により母材の表面から裏面に向かって溶融させてキーホールを形成するキーホール形成工程と、キーホール周囲の溶融池に合金元素を配置する元素配置工程とを備える。母材のうちレーザで溶融された部位を、母材が磁性体であれば磁性を弱めまたは非磁性化し、母材が非磁性体であれば磁性化する。 

Description

複合磁気材料の製造方法
 本発明は、複合磁気材料の製造方法に関するものである。
 複合磁気材料の製造方法として、レーザを用いて合金化する方法がある。例えば、特開平5-237678号公報には、強磁性体である鋼製部材にニッケル箔を巻き付け、その部分にレーザを照射して合金化させる技術が開示されている。この方法により、レーザ照射部分をオーステナイト(非磁性体または弱磁性体)に改質することができる。
 しかしながら、上記合金化方法では、レーザ照射の加熱により主に母材表面だけが磁性改質され、母材の深い部分(裏面)にまでは十分に磁性改質できない。これは、厚肉の母材において特に顕著である。
 本発明は、このような事情に鑑みて為されたものであり、母材の表面から裏面に至るまで確実に磁性改質することができる複合磁気材料の製造方法を提供することを目的とする。
 本発明の複合磁気材料の製造方法は、磁性体または非磁性体により形成された母材に対し、加熱により前記母材の表面から裏面に向かって溶融させてキーホールを形成するキーホール形成工程と、前記キーホール周囲の溶融池に合金元素を配置する元素配置工程と、を備え、前記母材のうち加熱で溶融させた部位を、前記母材が磁性体であれば磁性を弱めまたは非磁性化し、前記母材が非磁性体であれば磁性化する。
 本発明によれば、母材に対して加熱によりキーホールを形成し、キーホール周辺の溶融池に合金元素が供給される。これにより、合金元素は、溶融池内で対流し、母材の深さ(厚さ)方向に拡散して母材裏面にまで達する。つまり、本発明によれば、母材のうちレーザで溶融した部位(キーホールが形成された部分を含む)において、母材の深い部分にまで確実に合金元素が拡散し、母材の表面から裏面に至るまで磁性改質が行われる。なお、母材への合金元素の供給は、キーホール形成前、形成中、又は形成後でも良い。つまり、本発明では、結果として、溶融池に合金元素が配置されていれば良い。
 また、前記キーホール形成工程では、加熱により前記母材の表面から裏面まで溶融させてキーホールを形成することが好ましい。これにより、より確実に母材の深さ方向に合金元素を供給でき、より確実に母材の裏面まで磁性改質することができる。
 また、前記元素配置工程では、前記キーホール周囲の溶融池に合金元素を前記母材の両面から供給しても良い。これによれば、母材の厚さ方向に、より均一に磁性改質することができる。
 また、前記キーホール形成工程では、前記母材の表面から加熱することでキーホールを形成し、前記元素配置工程では、前記キーホール周囲の溶融池に合金元素を前記母材の裏面から供給しても良い。これによれば、合金金属の裏面から表面への拡散により母材を磁性改質することができる。母材の裏面側は、加熱側(表面)から遠く、表面からの合金元素が拡散し難いが、合金元素を裏面から供給することで裏面側での拡散を促すことができる。
 また、前記キーホール形成工程の前工程として、前記母材に前記合金元素を打ち込む準備工程をさらに備えても良い。これによれば、母材にキーホールを形成するとき、キーホール周囲の溶融池に合金元素が配置されるようにキーホールを形成することで、母材をより容易に磁性改質することができる。また、単に母材に合金元素を配置するよりも、キーホール形成時に合金元素が深さ方向に拡散しやすくなる。
 また、前記準備工程は、前記合金元素を前記母材の改質対象部位に配置する工程と、前記母材をプレスする工程と、を含んでも良い。これによれば、キーホール形成工程の前工程であるプレス工程を利用して合金元素を予め配置することができる。つまり、合金元素の打ち込みに関して新たな設備を用いる必要がなくなり、製造作業が効率的となる上、製造コストの増大も抑制できる。
 また、前記準備工程は、前記母材の改質対象部位に凹部を形成する工程と、前記合金元素を前記凹部に配置する工程と、前記凹部に前記合金金属を押し込む工程と、を含んでも良い。これによれば、容易且つ確実に母材の改質対象部位に合金元素を配置することができる。また、凹部を形成することで、さらにキーホール形成時に合金元素が深さ方向に拡散しやすくなる。
 また、前記キーホール形成工程より前であって、前記母材の表面及び裏面の少なくとも一方に、前記合金元素の粉末、ペースト、微粒子、および、薄膜のうち少なくとも1つを配置する準備工程をさらに備えても良い。これによれば、母材の改質したい部位に容易に合金元素を配置することができる。また、配置位置の制御も容易である。また、合金元素に純材料を用いる際に有効である。
 また、前記キーホール形成工程より前であって、前記母材の改質対象部位に凹部を形成する工程と、前記凹部に前記合金元素の粉末、ペースト、微粒子、および、薄膜のうち少なくとも1つを配置する工程をさらに備えても良い。これによれば、改質対象部位への合金元素の配置が容易となる。また、合金元素が凹部に配置されていることで、キーホール形成時に合金元素が深さ方向に拡散しやすくなる。
 また、キーホール形成工程では、パワー密度が1×10W/cm以上であるレーザにより前記キーホールを形成しても良い。これによれば、溶融池により確実に対流を発生させ、より確実に、深さ方向に均一に合金化(磁性化又は非磁性化)することが可能となる。
第一実施形態の複合磁気材料の製造方法を説明するためのフローチャートである。 第一実施形態の複合磁気材料の製造方法を説明するための模式断面図である。 第一実施形態の複合磁気材料の製造方法を説明するための模式斜視図である。 第二実施形態の複合磁気材料の製造方法を説明するためのフローチャートである。 第二実施形態の複合磁気材料の製造方法を説明するための模式断面図である。 第三実施形態の複合磁気材料の製造方法を説明するための模式図である。 第四及び第五実施形態の複合磁気材料の製造方法を説明するためのフローチャートである。 第四実施形態の複合磁気材料の製造方法を説明するための模式断面図である。 第四実施形態の複合磁気材料の製造方法を説明するための模式断面図である。 第五実施形態の複合磁気材料の製造方法を説明するための模式断面図である。 非磁性化元素の供給量に対する母材の磁性の変化を説明するためのグラフである。
 次に、実施形態を挙げ、本発明をより詳しく説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 <第一実施形態>
 第一実施形態の複合磁気材料の製造方法は、図1に示すように、主に、キーホール形成工程S1と、元素配置工程S2と、を備えており、磁性体の母材1にキーホール3を形成し、キーホール3の周囲に形成される溶融池5に合金元素4を配置して、非磁性部12を形成するものである。なお、各実施形態において、母材1の加熱側の面を表面と称し、加熱側とは反対の面(すなわち表面と反対の面)を裏面と称する。
 キーホール形成工程S1は、図2および図3に示すように、磁性体(ここでは鋼)で形成された一層の母材1に対し、レーザ2を照射してキーホール3を形成する工程である。キーホール3とは、レーザ2の照射によって、レーザ2が照射される母材1の表面から裏面に向かって形成される円穴を意味する。そして、キーホール3形成時には蒸発金属が発生し、キーホール3の周囲には溶融池5が形成される。第一実施形態では、キーホール形成工程S1において、レーザ2照射中、合金元素4(マンガン、クロム、またはニッケル等)により形成されたワイヤ40を母材1表面のレーザ2照射位置周辺に配置する。これにより、キーホール3周囲に形成される溶融池5に合金元素4が供給される。レーザ2のパワー密度は、1×10W/cm以上である。母材1の厚さはおよそ1mmである。
 キーホール形成工程S1では、母材1に対するレーザ2照射位置を相対移動させ、レーザ2照射位置に合わせてワイヤ40も相対移動させる。レーザ2照射位置が相対移動すると、前照射位置のキーホール3は、溶融した母材1により埋められる。なお、溶融池5の周囲には熱影響を受けた熱影響部Aが形成される。母材1は、例えば端部のみを支持する台座等に配置され、キーホール3および溶融池5の下方(裏面のキーホール3周辺)は空間となっていてもよい。
 元素配置工程S2は、キーホール3周囲の溶融池5に合金元素4を配置する工程である。元素配置工程S2は、上記のように、キーホール形成工程S1においてワイヤ40を母材1上のレーザ照射位置周辺に配置し、キーホール3が形成されることで自動的に実行される。
 具体的に、ワイヤ40は、溶融池5に当接して溶融し、溶融したワイヤ40(すなわち、合金元素4)は、溶融池5内に混入し拡散する。溶融池5では、対流が発生しやすい(図2矢印参照)。これにより、合金元素4は、母材1の深さ方向に拡散し、母材1の裏面にまで供給される。母材1のうちレーザ2により溶融した部位は、合金化して、表面から裏面まで非磁性体または母材1の磁性より弱い磁性体に変化する。つまり、複合磁気材料10は、図3に示すように、磁性部11と、非磁性部(または磁性部11より磁性が弱い弱磁性部)12と、を備える。
 本実施形態によれば、一層の母材1に対して加熱によりキーホールを形成し、当該キーホール周囲の溶融池に合金元素を配置することで、合金元素を母材1の深さ方向(厚さ方向)に対流・拡散させることができる。これにより、本実施形態の方法では、母材1の深さ方向の裏面にまで確実に磁性改質することができる。また、母材1の表面から裏面にまで略同幅の非磁性部12(改質部)を形成することができる。供給する合金元素4の量などによって、非磁性化するかまたは母材1より弱い磁性にするかを調整できる。また、本実施形態では、レーザ2のパワー密度が1×10W/cm以上であるため、より確実に溶融池5で対流が発生する。これにより、本実施形態では、厚さ1mm以上の母材に対しても、深さ方向の裏面まで均一に合金化でき、非磁性化することができる。例えばレーザ2の加熱する径(スポット径)が0.5mmの場合、溶融深さが4.46mmで溶融幅が0.94mmとなった。
 なお、本実施形態のキーホール形成工程では、母材にキーホールを形成するキーホール溶融を行っており、母材裏面まで溶融しない表面加熱溶融とは異なる。表面加熱溶融を行った場合、例えばスポット径が1.8mmでパワー密度が1×10W/cmである場合(上記と同出力)、溶融深さが0.89mmで溶融幅が2.32mmとなった。このような加熱は、母材1の厚さがおよそ1mmである本実施形態において、キーホール溶融に該当しない。
 また、上記のようにパワー密度(1×10W/cm)で母材の裏面まで溶融した場合、パワー密度が小さく、本実施形態と比較して、母材1と合金元素4の混合のバラツキが大きくなってしまう。つまり、深さ方向に均一に合金化する観点又はその確実性の観点では、レーザのパワー密度は、1×10W/cm以上であることが好ましい。
 <第二実施形態>
 第二実施形態の複合磁気材料の製造方法は、図4に示すように、主に、準備工程S0と、キーホール形成工程S1と、元素配置工程S2と、を備えている。第二実施形態は、第一実施形態に対し、キーホール形成工程S1の前工程として、母材1の改質対象部位に合金元素4を配置して、母材1に合金元素4を打ち込む準備工程S0を追加したところが異なる。
 準備工程S0は、キーホール形成工程S1より前であって、図5に示すように、母材1のプレス加工の際に、母材1の表面に合金元素4を打ち込む工程である。複合磁気材料は、様々な用途で用いられ、例えばロータ等のモータ部品としても用いられる。このように、例えば自動車部品等の用途に応じて、複合磁気材料はプレス加工で成型される。このプレス加工において、母材1表面の磁性改質したい部位(改質対象部位)に合金元素4を配置し、パンチ6により母材1に打ち込む。
 キーホール形成工程S1は、母材1表面の合金元素4が打ち込まれた部位に対してレーザ2を照射してキーホール3を形成する工程である。そして、キーホール3の周囲の溶融池5に合金元素4が配置されるように、母材1にキーホール3を形成している。
 元素配置工程S2は、溶融池5に合金元素4を配置する工程であって、第二実施形態では上記のようにキーホール形成工程S1を実行すると元素配置工程S2は自動的に実行される。合金元素4は、溶融池5内に混入・拡散し、溶融池5の対流等により裏面にまで供給される。このように、第二実施形態によれば、第一実施形態と同様の効果が発揮される。
 また、プレス加工により合金元素4が母材1表面から裏面に向けて打ち込んであるため、合金元素4がキーホール3形成時において母材1深さ方向に混入・拡散しやすい。したがって、より容易に母材1裏面にまで磁性改質することができる。また、部品製造の前工程を利用するため、新たに設備や工程を設ける必要がなく、製造効率やコスト面でも有効である。また、第二実施形態によれば、ワイヤ40をレーザ2に即して移動させる必要がなく、より容易な制御で実現可能であり、大量生産にも適している。
 なお、プレス加工の際に、合金元素4を、母材1の裏面のみにプレスしても良いし、母材1の表面と裏面の両面にプレスしても良い。
 <第三実施形態>
 第三実施形態の複合磁気材料の製造方法は、図4に示すように、主に、準備工程S0と、キーホール形成工程S1と、元素配置工程S2と、を備えている。第三実施形態は、第一実施形態に対し、キーホール形成工程S1の前に、母材1の表面に合金元素4の粉末を配置したところが異なる。
 準備工程S0では、図6に示すように、母材1表面の磁性改質したい部位に合金元素4の粉末を配置する。そして、第二実施形態と同様に、キーホール形成工程S1では、合金元素4に対してレーザ2を照射し、その後母材1にキーホール3を形成する。元素配置工程S2は、キーホール3周囲の溶融池5に合金元素4を配置する工程であり、キーホール形成工程S1を実行すると自動的に実行される。これにより、合金元素4は、溶融池5内に混入し拡散する。第三実施形態によっても、第一実施形態同様の効果が発揮される。さらに、第三実施形態によれば、母材1表面に合金元素4を配置しやすく、また、配置位置の制御も容易である。なお、準備工程S0では、合金元素4の粉末の代わりに、ペースト、微粒子、および、薄膜のうち少なくとも1つを配置すれば良い。
 <第四実施形態>
 第四実施形態の複合磁気材料の製造方法は、図7に示すように、主に、準備工程S0と、キーホール形成工程S1と、元素配置工程S2と、を備えている。準備工程S0は、凹部形成工程S01と、押し込み工程S02と、を含んでいる。第四実施形態は、準備工程S0として、母材1の改質対象部位に凹部13、14を形成する凹部形成工程S01と、形成された凹部13、14に合金元素4を配置して凹部13、14に合金元素4を押し込む押し込み工程S02とを含んでいる点で、第二実施形態と異なる。
 凹部形成工程S01では、図8に示すように、母材1の表面および裏面の改質対象部位に溝形状の凹部13、14を形成する。凹部13、14は、互いに対応する位置に形成されている。つまり、表面側の凹部13と裏面側の凹部14は、母材1を介して対向する位置に形成されている。凹部13、14の溝延伸方向直交断面形状は、角部が円弧状の略コの字型である。
 押し込み工程S02では、凹部13、14に合金元素4を配置し、プレスにより合金元素4に圧をかけ、合金元素4を凹部13、14に押し込んで押し固める。押し込み工程S02では、凹部13、14両方に対して合金元素4を配置し、パンチ6とダイ7により1度のプレスで実行しても良く、あるいは凹部13、14の何れか一方に対してプレスにより合金元素4を押し固めた後、他方の凹部(13又は14)に対してプレスにより合金元素4を押し固めても良い。本実施形態において、凹部形成工程S01及び押し込み工程S02は、プレス加工(工程)の一環として実行される。
 第四実施形態の製造方法では、図9に示すように、母材1における合金元素4の供給面が表面と裏面の両面となっている。第四実施形態によれば、母材1に対して、両面から合金元素4が供給されるため、合金元素4が厚さ方向により均一に拡散されて配置される。つまり、本方法によれば、厚さ方向により均一に磁性改質することができる。また、母材1の表面から裏面にまで略同幅の非磁性部12(改質部)を形成することができる。
 また、第四実施形態によれば、凹部13、14を形成し当該凹部13、14に合金元素4を押し込むことで、母材1に合金元素4を打ち込んでいる。これにより、母材1及び合金元素4の属性(硬度や形状等)に関わらず、改質したい部位に容易且つ確実に合金元素4を配置することができる。また、第四実施形態の製造方法では、母材1の表面と裏面の両面に凹部13、14を形成したが、母材1の表面のみに凹部13を形成しても良い。これによっても、改質したい部位に容易且つ確実に合金元素4を配置することができる。また、押し込み工程S02では、プレス以外の方法で凹部13、14に合金元素4を押し込んでも良い。
 <第五実施形態>
 第四実施形態の複合磁気材料の製造方法は、図7に示すように、主に、準備工程S0と、キーホール形成工程S1と、元素配置工程S2と、を備えている。準備工程S0は、凹部形成工程S01と、押し込み工程S02と、を含んでいる。第五実施形態は、第四実施形態に対し、凹部形成工程S01において母材1の裏面のみに凹部14を形成したところが異なる。
 凹部形成工程S01では、図10に示すように、母材1の裏面(加熱側とは反対の面)の改質対象部位に溝形状の凹部14を形成する。凹部14は、第四実施形態同様、溝形状に形成されている。そして、押し込み工程S02において、プレスにより、合金元素4を凹部14に押し込み、凹部14内に押し固める。キーホール形成工程S1では、凹部14に対応する表面の所定部位にレーザ2を照射し、レーザ2照射位置を母材1に対して凹部14の溝延伸方向に相対移動させる。
 第五実施形態によれば、母材1に対して、加熱側とは反対の裏面から供給されるため、キーホール3形成時の上昇する対流により、厚さ方向に均一に拡散され易い。また、母材1の裏面側は、加熱側(表面)から遠く、表面からの合金元素4が拡散し難いが、合金元素4を裏面から供給することで当該裏面側での拡散を促すことができる。また、母材1の表面から裏面にまで略同幅の非磁性部12(改質部)を形成することができる。
 <その他>
 母材1が非磁性体(例えばステンレス等)である場合も、同方法で改質(磁性化)することができる。
 また、第一~第五実施形態のような本発明によれば、一層の母材1に対してキーホール3を形成し合金化することにより、厚肉(厚さ1mm以上)の母材1に対しても、表面から裏面にまで確実に磁性改質することができる。さらに、第四及び第五実施形態によれば、キーホール3形成時の対流を効果的に利用して、合金元素4のより均一な配置が可能となる。また、第一~第三実施形態に比べて第四及び第五実施形態のほうが、合金元素4が裏面に配置されていることで、母材1の表面から裏面にまで、同幅の非磁性部12(改質部)が形成され易くなる。
 また、第四及び第五実施形態において、母材1の表面を上方、裏面を下方に配置してキーホール形成工程S1を実施した場合、母材金属の内部蒸発により生じる泡の上方への流れにより、裏面側に配置された合金元素4が上方に移動しやすくなると考えられる。これにより、合金金属4の上下均等な配置がさらに促進される。
 また、レーザ2は、キーホール3を形成可能な高密度エネルギービームであればよく、電子ビームでもよい。また、キーホール3は、加熱により形成されれば良く、当該加熱手段はレーザに限らず、例えばアーク放電等を利用しても良い。なお、キーホール形成に必要なレーザのパワー密度は、一般に、およそ1×10~1×10W/cm以上である。
 また、本発明は、複数層を溶接するためのキーホール溶接とは異なり、母材1に対してキーホール3を形成し、母材1の厚みに関わらず、母材1表面から裏面まで均一になるように磁性改質するものである。本発明における「キーホール」は、母材の表面から裏面に向かって溶融させて形成されるものである。
 キーホールは、溶接の技術分野において、レーザ溶接、電子ビーム溶接、およびアーク溶接等の溶接中に生じる深く狭い穴のことである。複数の部材を溶接する際に、一方の部材にキーホールを形成することで、当該一方の部材と他方の部材とを溶接する。詳細には、一方の部材の表面にレーザなどの熱源を当てた場合に、当該一方の部材にキーホールを形成することで、当該一方の部材の裏面側と他方の部材の表面側とを溶接する。このように、溶接の技術分野は、磁性改質の技術分野と全く異なっている。
 本実施形態の複合磁気材料の製造方法は、複数の部材の溶接を行うのではなく、母材の改質を行うために、キーホールを形成している。本発明は、溶接分野におけるキーホール溶接とは全く異なるものである。
 また、非磁性化元素の供給量に対する母材の磁性の変化について説明する。図11の(a)に示すように、Fe-Mn合金の場合、母材(Fe)の非磁性化する部分に対し、合金元素(Mn)が18質量%以上供給(配置)されていれば、確実に当該部分を非磁性化することができる。同様に、図11の(b)に示すように、Fe-Ni合金の場合、母材(Fe)の非磁性化する部分に対し、合金元素(Ni)が8質量%以上供給(配置)されていれば良い。同様に、図11の(c)に示すように、Fe-Mn-Cr合金の場合、母材(Fe-Cr)の非磁性化する部分に対し、合金元素(Mn)が18質量%以上供給(配置)されていれば良い。同様に、図11の(d)に示すように、Fe-Ni-Cr合金の場合、母材(Fe-Cr)の非磁性化する部分に対し、合金元素(Ni)が6質量%以上供給(配置)されていれば良い。
1:母材、 10:複合磁気材料、 13、14:凹部、 2:レーザ、 3:キーホール、 4:合金元素、 40:ワイヤ、 5:溶融池、 6:パンチ、 7:ダイ、 A:熱影響部

Claims (10)

  1.  磁性体または非磁性体により形成された母材に対し、加熱により前記母材の表面から裏面に向かって溶融させてキーホールを形成するキーホール形成工程と、
     前記キーホール周囲の溶融池に合金元素を配置する元素配置工程と、
     を備え、
     前記母材のうち加熱で溶融させた部位を、前記母材が磁性体であれば磁性を弱めまたは非磁性化し、前記母材が非磁性体であれば磁性化する複合磁気材料の製造方法。
  2.  請求項1において、
     前記キーホール形成工程では、加熱により前記母材の表面から裏面まで溶融させてキーホールを形成する複合磁気材料の製造方法。
  3.  請求項1または2において、
     前記元素配置工程では、前記キーホール周囲の溶融池に合金元素を前記母材の両面から供給する複合磁気材料の製造方法。
  4.  請求項1または2において、
     前記キーホール形成工程では、前記母材の表面から加熱することでキーホールを形成し、
     前記元素配置工程では、前記キーホール周囲の溶融池に合金元素を前記母材の裏面から供給する複合磁気材料の製造方法。
  5.  請求項1~4のうちの一項において、
     前記キーホール形成工程の前工程として、前記母材に前記合金元素を打ち込む準備工程をさらに備える複合磁気材料の製造方法。
  6.  請求項5において、
     前記準備工程は、前記合金元素を前記母材の改質対象部位に配置する工程と、前記母材をプレスする工程と、を含む複合磁気材料の製造方法。
  7.  請求項5において、
     前記準備工程は、前記母材の改質対象部位に凹部を形成する工程と、前記合金元素を前記凹部に配置する工程と、前記凹部に前記合金金属を押し込む工程と、を含む複合磁気材料の製造方法。
  8.  請求項1または2において、
     前記キーホール形成工程より前であって、前記母材の表面及び裏面の少なくとも一方に、前記合金元素の粉末、ペースト、微粒子、および、薄膜のうち少なくとも1つを配置する準備工程をさらに備える複合磁気材料の製造方法。
  9.  請求項1または2において、
     前記キーホール形成工程より前であって、前記母材の改質対象部位に凹部を形成する工程と、前記凹部に前記合金元素の粉末、ペースト、微粒子、および、薄膜のうち少なくとも1つを配置する工程をさらに備える複合磁気材料の製造方法。
  10.  請求項1~9のうちの一項において、
     前記キーホール形成工程では、パワー密度が1×10W/cm以上であるレーザにより前記キーホールを形成する複合磁気材料の製造方法。
PCT/JP2012/060486 2011-06-13 2012-04-18 複合磁気材料の製造方法 WO2012172864A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-131302 2011-06-13
JP2011131302 2011-06-13

Publications (1)

Publication Number Publication Date
WO2012172864A1 true WO2012172864A1 (ja) 2012-12-20

Family

ID=47356862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060486 WO2012172864A1 (ja) 2011-06-13 2012-04-18 複合磁気材料の製造方法

Country Status (1)

Country Link
WO (1) WO2012172864A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219176A (ja) * 2012-04-09 2013-10-24 Denso Corp 磁気特性改質領域の形成方法
JP2014214351A (ja) * 2013-04-26 2014-11-17 株式会社ジェイテクト 複合磁気材料の製造方法
JP2014220321A (ja) * 2013-05-07 2014-11-20 株式会社ジェイテクト 複合磁気材料の製造方法
WO2017109886A1 (ja) * 2015-12-24 2017-06-29 日立オートモティブシステムズ株式会社 電磁弁及びその製造方法
US11220985B2 (en) 2015-07-07 2022-01-11 Hitachi Astemo, Ltd. Hollow composite magnetic member, process for producing same, and fuel ejection valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130927A (ja) * 1986-11-07 1988-06-03 ユナイテッド・テクノロジーズ・コーポレイション 福数の金属材料よりなる物品
JPH07189852A (ja) * 1993-12-28 1995-07-28 Mitsubishi Electric Corp 電磁アクチュエータおよびその製造方法
JP2001012636A (ja) * 1999-06-29 2001-01-16 Aisan Ind Co Ltd 複数のソレノイドと共通筒を有する燃料噴射装置
JP2001087875A (ja) * 1999-09-20 2001-04-03 Aisin Seiki Co Ltd 中空複合磁性部材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130927A (ja) * 1986-11-07 1988-06-03 ユナイテッド・テクノロジーズ・コーポレイション 福数の金属材料よりなる物品
JPH07189852A (ja) * 1993-12-28 1995-07-28 Mitsubishi Electric Corp 電磁アクチュエータおよびその製造方法
JP2001012636A (ja) * 1999-06-29 2001-01-16 Aisan Ind Co Ltd 複数のソレノイドと共通筒を有する燃料噴射装置
JP2001087875A (ja) * 1999-09-20 2001-04-03 Aisin Seiki Co Ltd 中空複合磁性部材の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219176A (ja) * 2012-04-09 2013-10-24 Denso Corp 磁気特性改質領域の形成方法
JP2014214351A (ja) * 2013-04-26 2014-11-17 株式会社ジェイテクト 複合磁気材料の製造方法
JP2014220321A (ja) * 2013-05-07 2014-11-20 株式会社ジェイテクト 複合磁気材料の製造方法
US11220985B2 (en) 2015-07-07 2022-01-11 Hitachi Astemo, Ltd. Hollow composite magnetic member, process for producing same, and fuel ejection valve
WO2017109886A1 (ja) * 2015-12-24 2017-06-29 日立オートモティブシステムズ株式会社 電磁弁及びその製造方法
JPWO2017109886A1 (ja) * 2015-12-24 2018-08-02 日立オートモティブシステムズ株式会社 電磁弁及びその製造方法
US20180363612A1 (en) * 2015-12-24 2018-12-20 Hitachi Automotive Systems, Ltd. Solenoid valve and method for manufacturing the same
US10883465B2 (en) 2015-12-24 2021-01-05 Hitachi Automotive Systems, Ltd. Solenoid valve and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2012172864A1 (ja) 複合磁気材料の製造方法
EP2219283A1 (en) Steel having non-magnetic portion, its producing method, and revolving electric core
CN103138446B (zh) 马达用转子及其制造方法
JP6913087B2 (ja) 二つのブランクを接合する方法、及び製品を形成する方法
JP2013115965A (ja) 回転機用ステータの製造方法および回転機用ステータ
JP6024122B2 (ja) 接合面の加工方法
JP2008534284A (ja) 金属部材を組み立てるための工具及び方法
JP6056385B2 (ja) 回転機用ロータおよび回転機用ロータの製造方法
JP2008099360A (ja) 鋼材の非磁性領域形成方法及び非磁性領域が形成された鋼材
JP5906694B2 (ja) 回転機用ロータの製造方法
JP6212851B2 (ja) 複合磁気材料の製造方法
JP6212924B2 (ja) 複合磁気材料の製造方法
JP2014220321A (ja) 複合磁気材料の製造方法
JP2014093802A (ja) 回転機用ロータ
JP5958495B2 (ja) 複合磁性部材およびその製造方法
JP2011097749A (ja) 非磁性改質相を備える鋼材の製造方法
JP6054274B2 (ja) 金属部材及びその製造方法
JP6269601B2 (ja) 回転機およびその製造方法
US10182889B2 (en) Magnet assembly for dental magnetic attachment
JP2001087875A (ja) 中空複合磁性部材の製造方法
JP2013219176A (ja) 磁気特性改質領域の形成方法
JP5012608B2 (ja) 永久磁石の生産方法
JP2009056499A (ja) レーザ溶接装置及びレーザ溶接方法
JP2005186093A (ja) 溶接物品及び金属部品の溶接方法
WO2023200515A1 (en) Methods for tailoring the magnetic permeability of soft magnets, and soft magnets obtained therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800012

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP