WO2012169598A1 - カバーおよびカバー用圧延材の製造方法 - Google Patents

カバーおよびカバー用圧延材の製造方法 Download PDF

Info

Publication number
WO2012169598A1
WO2012169598A1 PCT/JP2012/064712 JP2012064712W WO2012169598A1 WO 2012169598 A1 WO2012169598 A1 WO 2012169598A1 JP 2012064712 W JP2012064712 W JP 2012064712W WO 2012169598 A1 WO2012169598 A1 WO 2012169598A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
arithmetic average
average roughness
rolling
hard disk
Prior art date
Application number
PCT/JP2012/064712
Other languages
English (en)
French (fr)
Inventor
中村 剛
淳 舌間
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to CN201280027191.XA priority Critical patent/CN103596705A/zh
Publication of WO2012169598A1 publication Critical patent/WO2012169598A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B25/00Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
    • G11B25/04Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
    • G11B25/043Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs

Definitions

  • the present invention relates to a cover used for a hard disk device or the like and a method for manufacturing a rolled material for the cover.
  • hard disk devices have been used in precision equipment that performs information processing such as computers.
  • this hard disk device has been mounted not only as an external storage device of a computer but also in home appliances such as a television and a video, and an electronic device for automobiles.
  • a conventional hard disk drive has a drive mechanism housed in a casing body covered with a cover.
  • Conventional covers require that scratches and dirt are inconspicuous at least on the external surface, and in response to this requirement, at least the external surface has specifications that make scratches and dirt inconspicuous (dull finish).
  • a cover is used. Further, as a required characteristic, a high cleanliness is desired on the inner surface facing the drive mechanism.
  • a resin composite type stainless steel damping steel plate for precision equipment cover in which two stainless steel plates are laminated via a viscoelastic resin has been disclosed as satisfying the above two required characteristics (for example, see Patent Document 1). .
  • This stainless steel damping steel plate is laminated so that the outer surface has a dull finish where scratches and dirt are not noticeable, and the inner surface has a bright annealing (BA) finish with high cleanliness.
  • Patent Document 1 has a problem in that a plurality of steel sheets are laminated, so that the number of work processes is large and complicated.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a cover and a method for manufacturing a rolled material for a cover, which can be simplified by reducing work steps.
  • a cover according to the present invention is provided on a precision instrument and covers at least a drive mechanism of the precision instrument, and includes an outer surface and an inner surface. It is formed using rolled materials having different arithmetic average roughness, and the arithmetic average roughness of the inner surface is smaller than the arithmetic average roughness of the outer surface.
  • the cover according to the present invention is characterized in that, in the above invention, the arithmetic mean roughness of the inner surface is 0.1 ⁇ m or less.
  • the cover according to the present invention is characterized in that, in the above invention, the arithmetic mean roughness of the outer surface is 0.2 ⁇ m or more.
  • a method for manufacturing a rolled material for a cover according to the present invention is a method for manufacturing a rolled material for a cover that is provided in a precision instrument and is used for a cover that covers at least a drive mechanism of the precision instrument.
  • the method for manufacturing a rolled material for a cover according to the present invention is the above-described invention, wherein the strip material subjected to the bright annealing process in the bright annealing step is lightly rolled with a smaller load than the multi-stage mill rolling step.
  • the method further includes a skin pass step for performing processing.
  • a dull process having an arithmetic average roughness of 0.2 ⁇ m or more is performed on one surface depending on the surface of a work roll at the time of rolling.
  • gloss processing with an arithmetic average roughness of 0.1 ⁇ m or less is performed, the working process can be reduced and simplified.
  • FIG. 1 is a perspective view showing a schematic configuration of a hard disk device according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing a configuration of a main part of the hard disk device shown in FIG.
  • FIG. 3 is a perspective view showing a configuration of a main part of the hard disk device shown in FIG.
  • FIG. 4 is a flowchart showing an example of a method for manufacturing the rolled material for the cover of the casing body according to the embodiment of the present invention.
  • Drawing 5 is a mimetic diagram showing the outline of the manufacture processing of the rolling material for the cover of the casing body concerning the embodiment of the invention.
  • FIG. 6 is a chart showing the cleanliness test according to the embodiment of the present invention.
  • FIG. 7 is a graph showing a cleanliness test according to the embodiment of the present invention.
  • FIG. 1 is a perspective view showing a schematic configuration of a hard disk device according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing a schematic configuration of the hard disk device according to the embodiment of the present invention.
  • a drive mechanism is accommodated in the casing body 2.
  • the casing body 2 includes a storage portion 2a having a substantially rectangular shape that stores the drive mechanism, and a cover 2b that has a substantially rectangular shape that matches the opening of the storage portion 2a and covers the opening of the storage portion 2a.
  • the drive mechanism supports a hard disk 3 that is a recording medium, a spindle 4 that rotationally drives the hard disk 3, and a magnetic head 50 that records information on and reads information from the hard disk 3, and a carriage that rotates on the surface of the hard disk 3. 5, a VCM 6 that drives the carriage 5 with a force generated by a current flowing through the coil and a magnetic field, precisely rotates the carriage 5 to control scanning of the magnetic head 50, and a carriage fixed to the casing body 2. 5 and a substantially columnar pivot shaft 7 having a bearing configuration.
  • the storage portion 2a is formed using a material having high heat dissipation such as aluminum, and the upper portion is opened to form a substantially rectangular space in which the drive mechanism can be stored.
  • the cover 2b is formed using plate-like stainless steel, which is a rolled material, and is provided with a hole 20 that penetrates in the plate thickness direction so as to connect with a hole 21 provided in the storage portion 2a along the outer edge. Yes. By inserting a screw 22 between the holes 20 and 21 and fastening them, the storage portion 2a and the cover 2b are fixed. At this time, the outer surface S1 of the cover 2b shown in FIG. 2, which is the outer side when connected to the storage portion 2a, has an arithmetic average roughness (Ra) of 0.2 to 0.3 ⁇ m. 2D) Processing is applied.
  • the arithmetic average roughness of the outer surface S1 may be 0.2 ⁇ m or more.
  • FIG. 3 is a perspective view showing a cover of the hard disk device according to the present embodiment.
  • FIG. 3 is a view in which the cover 2b shown in FIG. 2 is turned upside down, and the inner surface S2 faces the storage portion 2a, that is, the drive mechanism.
  • the inner surface S2 is subjected to gloss (2B) processing with an arithmetic average roughness (Ra) of 0.08 to 0.09 ⁇ m, for example.
  • Ra arithmetic average roughness
  • the arithmetic mean roughness of the surface of the inner side surface S2 should just be 0.1 micrometer or less.
  • the cover 2b formed of plate-like stainless steel is composed of two surfaces (external surface S1, internal surface S2) having different roughness. Therefore, scratches and dirt on the external surface of the hard disk device 1 can be made inconspicuous, and the cleanliness can be increased on the internal surface.
  • the carriage 5 has an arm 51 that extends on the surface of the hard disk 3 and holds the magnetic head 50 at the tip.
  • the magnetic head 50 is provided at an end on a side different from the side connected to the arm 51, and performs information recording and information reading.
  • the arm 51 has a suspension that can float on the surface of the hard disk 3 by an air flow caused by the rotation of the hard disk 3 at an end, which is different from the end connected to the pivot shaft 7. This suspension has elasticity capable of reciprocating in a direction perpendicular to the surface of the hard disk 3 and supports the magnetic head 50 at the end.
  • FIG. 4 is a flowchart showing an example of a method for manufacturing the rolled material for the cover of the casing body according to the embodiment of the present invention.
  • a multi-stage mill rolling process by cold rolling is performed on the hot-rolled strip-shaped material (hot coil) (step S102).
  • a strip-shaped material wound in a coil shape as a hot coil is rolled to a desired plate thickness stepwise using a work roll, and surface processing is performed on the plate surface.
  • dull processing with an arithmetic average roughness of 0.2 ⁇ m or more is performed on one surface
  • gloss processing with an arithmetic average roughness of 0.1 ⁇ m or less is performed on the other surface.
  • a band-shaped material processed to have a predetermined plate thickness and a surface having different arithmetic average roughness is obtained.
  • FIG. 5 is a schematic diagram showing an outline of the multi-stage mill rolling process.
  • the multi-stage mill rolling process as shown in FIG. 5, when the strip member 100 passes between the first work roll 101a and the second work roll 102a, the first work roll 101a and the second work roll 102a It is rolled to a thickness corresponding to the distance between them. Further, in the multi-stage mill rolling process, intermediate rolls 101b and 102b and backup rolls 101c and 102c are arranged along each work roll, respectively, and bending of the roll of each work roll in the axial direction is suppressed.
  • the strip member 100 reciprocates between the first work roll 101a and the second work roll 102a. At this time, the separation distance between the first work roll 101a and the second work roll 102a is gradually reduced as the strip member 100 is reciprocated, and finally becomes equal to a desired plate thickness. Thereby, the strip-shaped member 100 is molded so as to have a desired plate thickness.
  • the surfaces of the first work roll 101a and the second work roll 102a on the side to be rolled are processed so as to have a predetermined arithmetic average roughness.
  • the surface of the first work roll 101a is subjected to dull processing with an arithmetic average roughness of the surface of 0.2 to 0.3 ⁇ m, for example.
  • the second work roll 102a is subjected to a glossy process with an arithmetic average roughness of the surface of, for example, 0.08 to 0.09 ⁇ m.
  • the plate thickness is gradually reduced using a set of work rolls.
  • the belt-like member 100 is gradually passed between a plurality of sets of work rolls. It may be rolled and formed to a desired plate thickness. At this time, the separation distance between each pair of work rolls becomes smaller in accordance with the traveling direction of the belt-like member 100, and the separation distance between the last-stage work rolls becomes equal to a desired plate thickness.
  • a bright annealing (BA) process is performed (step S104).
  • the material subjected to the multi-stage mill rolling treatment is annealed in a non-oxidizing atmosphere.
  • a skin pass is performed to prevent stretcher strain during press drawing (step S106).
  • the material subjected to the bright annealing process is subjected to a rolling process (light rolling process) by applying a smaller load than the multi-stage mill rolling process.
  • Surface treatment is performed using a roll.
  • the rolled material that has been rolled to a predetermined plate thickness and subjected to surface processing by the processing in steps S102 to S106 described above is wound into a coil as a coil after cold rolling.
  • the cover 2b is obtained by shaping from the coil after this cold rolling.
  • the strip material used for rolling is a material used for a product that does not require press drawing, the skin pass may not be performed.
  • the material used as a work roll should just be a material whose hardness to roll is higher than a strip
  • the strip member 100 can be rolled to adjust the plate thickness and at the same time be subjected to surface processing. Thereby, the number of processes is reduced by using one device (one production line) without moving and rearranging the belt-like member 100 between a plurality of devices, and the rolled material for cover is manufactured in a simplified manner. be able to.
  • the surface of the work roll during rolling is subjected to a dull processing with an arithmetic average roughness of 0.2 ⁇ m or more on one surface, and the arithmetic average roughness on the other surface.
  • a dull processing with an arithmetic average roughness of 0.2 ⁇ m or more on one surface, and the arithmetic average roughness on the other surface.
  • the cleanliness of the inner side surface S2 (gloss processed surface) of the cover 2b according to the present embodiment and the inner side surface (dull processed surface) of the conventional cover will be described.
  • a cover according to the present embodiment a cover formed from a rolled material for a cover produced by the above-described manufacturing method was used for the cleanliness test.
  • the glossy processed surface to be subjected to the cleanliness test is, for example, glossy processed with an arithmetic average roughness of 0.081 ⁇ m on the surface.
  • the cleanliness test was performed on each of the five covers having the same shape formed using SUS430.
  • the conventional cover having a dull processed surface on the inner side surface which is a cleanliness comparison target
  • a dull processing having an arithmetic average roughness of 0.273 ⁇ m is performed on the dull processed surface.
  • the cleanliness test was performed on each of the five covers having the same shape formed using SUS430.
  • the shape of the cover is the same shape as the cover according to the present embodiment having the glossy processed surface described above, and the area of the dull processed surface that is the test target surface is the same as the area of the glossy processed surface. It is.
  • the test surface of the cover is washed away with a certain amount of pure water, the washed pure water is collected, and the amount of dust in the pure water is measured.
  • FIG. 6 is a chart showing the results of the cleanliness test.
  • FIG. 7 is a graph showing the average (black squares), maximum value and minimum value of cleanliness based on the cleanliness test results.
  • the average cleanliness of the glossy processed surface was about 1703, and the average cleanliness of the dull processed surface was 31020.
  • the maximum value of cleanliness on the glossy processed surface is 4347, which is less than 25500 which is the minimum value of cleanliness on the dull processed surface. Thereby, it can be confirmed that the glossy processed surface is higher in cleanliness than the dull processed surface.
  • the above-described glossy processed surface (inner side surface S2) satisfies this condition and satisfies the required performance as a cover used for precision equipment.
  • the method for manufacturing a cover and a rolled material for a cover according to the present invention is useful for simplifying by reducing work steps.

Landscapes

  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

 作業工程を削減して簡略化することができるカバーおよびカバー用圧延材の製造方法を提供すること。ハードディスク装置(1)に設けられ、少なくともハードディスク装置(1)の駆動機構の上面を覆うカバー(2b)であって、圧延処理と同時に表面加工が施され、外側と内側とで算術平均粗さが異なり、内側の算術平均粗さが外側の算術平均粗さより小さい圧延材を用いて成形することによって、作業工程を削減して簡略化することができる。

Description

カバーおよびカバー用圧延材の製造方法
 本発明は、ハードディスク装置等に用いられるカバーおよびカバー用圧延材の製造方法に関するものである。
 従来より、コンピュータ等の情報処理を行う精密機器において、ハードディスク装置が使用されている。このハードディスク装置は、近年に到っては、コンピュータの外部記憶装置としてばかりではなく、テレビやビデオ等の家電製品、自動車用の電子機器類に搭載されるようになってきている。
 従来のハードディスク装置は、カバーに覆われたケーシング本体内に駆動機構が収納されている。従来のカバーでは、少なくとも外部側の表面で傷や汚れが目立たないことが要求されており、この要求に対応して少なくとも外部側の表面が傷や汚れが目立たない仕様(ダル仕上げ)となっているカバーが用いられている。さらに要求される特性としては、駆動機構に対向する内部側の表面では清浄度が高いことが望まれている。
 上述した2つの要求特性を満たすものとして、粘弾性樹脂を介して2枚のステンレス鋼板を積層した精密機器カバー用樹脂複合型ステンレス制振鋼板が開示されている(例えば、特許文献1を参照)。このステンレス制振鋼板では、外部側の表面が傷や汚れが目立ちにくいダル仕上げ、内部側の表面が清浄度の高い光輝焼鈍(BA)仕上げとなるように積層されている。
特許第3956346号公報
 しかしながら、特許文献1で開示されているステンレス制振鋼板では、複数の鋼板を積層させるため、作業工程が多く、煩雑になるという問題があった。
 本発明は、上記に鑑みてなされたものであって、作業工程を削減して簡略化することができるカバーおよびカバー用圧延材の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるカバーは、精密機器に設けられ、少なくとも該精密機器の駆動機構を覆うカバーであって、外側の表面と内側の表面とで算術平均粗さが異なる圧延材を用いて成形され、前記内側の表面の算術平均粗さが前記外側の表面の算術平均粗さより小さいことを特徴とする。
 また、本発明にかかるカバーは、上記の発明において、前記内側の表面の算術平均粗さは、0.1μm以下であることを特徴とする。
 また、本発明にかかるカバーは、上記の発明において、前記外側の表面の算術平均粗さは、0.2μm以上であることを特徴とする。
 また、本発明にかかるカバー用圧延材の製造方法は、精密機器に設けられ、少なくとも該精密機器の駆動機構を覆うカバーに用いられるカバー用圧延材の製造方法であって、帯状材料に対して、所望の板厚に圧延するとともに、一方の表面の算術平均粗さが他方の表面の算術平均粗さより小さい表面加工を施す多段ミル圧延ステップと、前記多段ミル圧延ステップ後、前記圧延および前記表面加工が施された前記帯状材料に対して光輝焼鈍処理を施す光輝焼鈍ステップと、を含むことを特徴とする。
 また、本発明にかかるカバー用圧延材の製造方法は、上記の発明において、前記光輝焼鈍ステップで光輝焼鈍処理が施された前記帯状材料に対して、前記多段ミル圧延ステップより小さい荷重によって軽圧延処理を施すスキンパスステップをさらに含むことを特徴とする。
 本発明にかかるカバーおよびカバー用圧延材の製造方法は、圧延時のワークロールの表面によって、一方の表面に対して算術平均粗さが0.2μm以上のダル加工が施され、他方の表面に対して算術平均粗さが0.1μm以下の光沢加工が施されるようにしたので、作業工程を削減して簡略化することができるという効果を奏する。
図1は、本発明の実施の形態にかかるハードディスク装置の概略構成を示す斜視図である。 図2は、図1に示すハードディスク装置の要部の構成を示す分解斜視図である。 図3は、図1に示すハードディスク装置の要部の構成を示す斜視図である。 図4は、本発明の実施の形態にかかるケーシング本体のカバー用圧延材の製造方法の一例を示すフローチャートである。 図5は、本発明の実施の形態にかかるケーシング本体のカバー用圧延材の製造処理の概要を示す模式図である。 図6は、本発明の実施の形態にかかる清浄度試験を示す図表である。 図7は、本発明の実施の形態にかかる清浄度試験を示すグラフである。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。なお、以下の説明では、カバーの例として精密機器であるハードディスク装置の構成を用いて説明する。
 図1は、本発明の実施の形態にかかるハードディスク装置の概略構成を示す斜視図である。また、図2は、本発明の実施の形態にかかるハードディスク装置の概略構成を示す分解斜視図である。ハードディスク装置1は、ケーシング本体2内に駆動機構が収納されている。ケーシング本体2は、駆動機構を収納する略矩形状をなす収納部2aと、収納部2aの開口に一致する略矩形形状をなし、収納部2aの開口を覆うカバー2bと、を有する。駆動機構は、記録メディアであるハードディスク3と、ハードディスク3を回転駆動するスピンドル4と、ハードディスク3への情報記録および情報読み出しを行う磁気ヘッド50を支持し、ハードディスク3の面上を回動するキャリッジ5と、コイルに流れる電流と磁場とによって発生する力でキャリッジ5を駆動して、キャリッジ5を精密に回動させて磁気ヘッド50の走査を制御するVCM6と、ケーシング本体2に固定されてキャリッジ5と連結し、ベアリングの構成を有する略柱状のピボット軸7と、を有する。
 収納部2aは、アルミニウム等、放熱性の高い材料を用いて形成され、上部が開口し、駆動機構を収納可能な略長方体の空間を形成する。
 カバー2bは、圧延材である板状のステンレスを用いて成形され、外縁に沿って収納部2aに設けられた穴部21と連結するために板厚方向に貫通する穴部20が設けられている。この穴部20,21間にねじ22を挿通してねじ止めすることにより、収納部2aとカバー2bとが固定される。このとき、図2に示すカバー2bの、収納部2aと連結した際に外部側となる外部側表面S1は、表面の算術平均粗さ(Ra)が例えば0.2~0.3μmのダル(2D)加工が施されている。なお、外部側表面S1の表面の算術平均粗さは、0.2μm以上であればよい。
 図3は、本実施の形態にかかるハードディスク装置のカバーを示す斜視図である。図3は、図2に示すカバー2bの上下を反転させて見た図であり、内部側表面S2が、収納部2a側、すなわち駆動機構と対向する。内部側表面S2は、表面の算術平均粗さ(Ra)が例えば0.08~0.09μmの光沢(2B)加工が施されている。なお、内部側表面S2の表面の算術平均粗さは、0.1μm以下であればよい。
 板状のステンレスで形成されるカバー2bは、異なる粗さを有する2つの表面(外部側表面S1、内部側表面S2)からなる。したがって、ハードディスク装置1の外部側の面で傷、汚れを目立ちにくくし、内部側の面で清浄度を高くすることができる。
 キャリッジ5は、ハードディスク3の面上に延び、先端で磁気ヘッド50を保持するアーム51を有する。磁気ヘッド50は、アーム51に連なる側と異なる側の端部に設けられ、情報記録および情報読み出しを行う。アーム51は、端部であって、ピボット軸7との連結側と異なる端部側に、ハードディスク3の回転による空気流によって、ハードディスク3の面に対して浮上可能なサスペンションを有する。このサスペンションは、ハードディスク3の面に対して垂直な方向に往復動可能な弾性を有し、端部において磁気ヘッド50を支持している。
 図4は、本発明の実施の形態にかかるケーシング本体のカバー用圧延材の製造方法の一例を示すフローチャートである。まず、熱間圧延された帯状材料(ホットコイル)に対して冷間圧延による多段ミル圧延処理を行う(ステップS102)。多段ミル圧延処理では、ホットコイルとしてコイル状に巻かれた帯状材料を、ワークロールを用いて段階的に所望の板厚に圧延するとともに、板面に対して表面加工を施す。この表面加工によって、一方の表面に対して算術平均粗さが0.2μm以上のダル加工が施され、他方の表面に対して算術平均粗さが0.1μm以下の光沢加工が施される。これにより、多段ミル圧延処理において、所定の板厚であって、算術平均粗さの異なる表面になるように加工された帯状材料が得られる。
 図5は、多段ミル圧延処理の概要を示す模式図である。多段ミル圧延処理では、図5に示すように、帯状部材100が、第1ワークロール101aおよび第2ワークロール102aの間を通過する際に、第1ワークロール101aと第2ワークロール102aとの間の離間距離に応じた板厚に圧延される。また、多段ミル圧延処理では、各ワークロールに沿ってそれぞれ中間ロール101b,102bおよびバックアップロール101c,102cがそれぞれ配設され、各ワークロールのロールの軸心方向の撓みが抑制されている。
 帯状部材100は、第1ワークロール101aと第2ワークロール102aとの間を往復する。このとき、第1ワークロール101aと第2ワークロール102aとの離間距離は、帯状部材100の往復に伴って段階的に狭められ、最終的に所望の板厚と同等となる。これにより、帯状部材100が所望の板厚となるように成形される。
 このとき、第1ワークロール101aおよび第2ワークロール102aにおける圧延を行う側の表面は、所定の算術平均粗さとなるように加工されている。例えば、第1ワークロール101aの表面は、表面の算術平均粗さが、例えば0.2~0.3μmのダル加工が施されている。また、第2ワークロール102aは、表面の算術平均粗さが、例えば0.08~0.09μmの光沢加工が施されている。これにより、多段ミル圧延処理において、算術平均粗さの異なる表面になるように加工される。
 なお、上述した多段ミル圧延処理では、一組のワークロールを用いて段階的に板厚を小さくするものとして説明したが、複数組のワークロール間を順次通過させて段階的に帯状部材100を圧延して所望の板厚に成形するものであってもよい。このとき、各組のワークロール間の離間距離は、帯状部材100の進行方向に従って小さくなり、最後段のワークロール間の離間距離が所望の板厚と同等となる。
 続いて、多段ミル圧延処理後、光輝焼鈍(BA)処理が施される(ステップS104)。光輝焼鈍処理では、無酸化性雰囲気にて、多段ミル圧延処理された材料の焼鈍を行う。
 その後、プレス絞り成形時のストレッチャーストレイン防止のため、スキンパスを行う(ステップS106)。このスキンパスは、光輝焼鈍処理が施された材料に対して、多段ミル圧延処理よりも小さな荷重を加えて圧延処理(軽圧延処理)を行うものであって、ひずみの除去のほか、上述したワークロールを用いて表面加工を施す。
 上述したステップS102~S106の処理によって、所定の板厚に圧延され、表面加工が施された圧延材は、冷延後コイルとしてコイル状に巻き取られる。カバー2bは、この冷延後コイルから形取りすることによって得られる。
 なお、圧延に用いる帯状材料が、プレス絞り成形を必要としない製品に使用する材料であれば、スキンパスは行わなくてもよい。また、ワークロールとして用いられる材料は、少なくとも圧延する表面が、帯状材料より硬度の高いものであればよい。
 上述したカバー用圧延材の製造方法では、帯状部材100を圧延して板厚を調整すると同時に表面加工を施すことができる。これにより、帯状部材100を、複数の装置間を移動および再配置を行うことなく、1つの装置(1つの製造ライン)を用いて工程数を削減し、簡略化してカバー用圧延材を製造することができる。
 ここで、カバー用圧延材の表面加工を施す方法として両面に対して光沢加工を施した後、研磨によってダル加工を施すことも考えられる。この場合、研磨装置が必要となるほか、1つの製造ライン上に組み込むことによって装置構成が複雑になるおそれがある。また、研磨によって、切り粉が発生するため、除去する機構も必要になり、製造にかかる工程数の削減は困難である。
 上述した本実施の形態によれば、圧延時のワークロールの表面によって、一方の表面に対して算術平均粗さが0.2μm以上のダル加工を施し、他方の表面に対して算術平均粗さが0.1μm以下の光沢加工を施すようにしたので、外表面と内表面に求められる特性を満足させることができるとともに、ハードディスク装置の製造にかかる工程を削減して簡略化し、コストを削減することが可能となる。
 ここで、図6,7を参照して本実施の形態にかかるカバー2bの内部側表面S2(光沢加工面)と従来のカバーの内部側表面(ダル加工面)の清浄度について説明する。まず、本実施の形態にかかるカバーとして、上述した製造方法によって作製されたカバー用圧延材から形取られたカバーを清浄度試験に用いた。清浄度試験対象の光沢加工面には、例えば、表面に対して算術平均粗さが0.081μmの光沢加工が施されている。清浄度試験では、SUS430を用いて形成された同一の形状をなす5つのカバーを用いて、それぞれに対して清浄度試験を行った。
 また、清浄度比較対象である内部側表面にダル加工面を有する従来のカバーは、例えば、ダル加工面に対して算術平均粗さが0.273μmのダル加工が施されている。また、清浄度試験では、SUS430を用いて形成された同一の形状をなす5つのカバーを用いて、それぞれに対して清浄度試験を行った。ここで、カバーの形状は、上述した光沢加工面を有する本実施の形態にかかるカバーと同一の形状をなしており、試験対象面であるダル加工面の面積は、光沢加工面の面積と同一である。
 清浄度試験は、カバーの試験対象面を一定量の純水で洗い流し、その洗い流した純水を集め、純水中のゴミの量を測定する。ゴミの量の測定には、液中パーティクルカウンター(Liquid Particle Counter、PMS社製、型番CLS-700)を用いた。この清浄度試験を、それぞれの5つのカバーに対して順次行い、粒径φ=0.5μm以上のパーティクル測定を行った。なお、この清浄度試験では、清浄度をゴミの量(個数)としている。
 図6は、清浄度試験の結果を示す図表である。また、図7は、清浄度試験結果による清浄度の平均(黒四角)、最大値および最小値を示すグラフである。上述した清浄度試験の結果、光沢加工面の平均清浄度は約1703個であり、ダル加工面の平均清浄度は31020個となった。また、光沢加工面における清浄度の最大値は4347個であり、ダル加工面における清浄度の最小値である25500個より少ない。これにより、光沢加工面は、ダル加工面と比して清浄度が高いことが確認できる。
 また、精密機器のカバーの内部側の清浄度として、上述した清浄度試験における面の面積で換算すると、おおよその大きさがφ=0.5μm以上のパーティクルが数千個以下であることが求められる。上述した光沢加工面(内部側表面S2)は、この条件を満たし、精密機器に用いるカバーとしての要求性能を満足する。
 以上のように、本発明にかかるカバーおよびカバー用圧延材の製造方法は、作業工程を削減して簡略化する場合に有用である。
 1 ハードディスク装置
 2 ケーシング本体
 2a 収納部
 2b カバー
 3 ハードディスク
 4 スピンドル
 5 キャリッジ
 6 VCM
 7 ピボット軸
 50 磁気ヘッド
 51 アーム
 S1 外部側表面
 S2 内部側表面

Claims (5)

  1.  精密機器に設けられ、少なくとも該精密機器の駆動機構を覆うカバーであって、
     外側の表面と内側の表面とで算術平均粗さが異なる圧延材を用いて成形され、前記内側の表面の算術平均粗さが前記外側の表面の算術平均粗さより小さいことを特徴とするカバー。
  2.  前記内側の表面の算術平均粗さは、0.1μm以下であることを特徴とする請求項1に記載のカバー。
  3.  前記外側の表面の算術平均粗さは、0.2μm以上であることを特徴とする請求項1または2に記載のカバー。
  4.  精密機器に設けられ、少なくとも該精密機器の駆動機構を覆うカバーに用いられるカバー用圧延材の製造方法であって、
     帯状材料に対して、所望の板厚に圧延するとともに、一方の表面の算術平均粗さが他方の表面の算術平均粗さより小さい表面加工を施す多段ミル圧延ステップと、
     前記多段ミル圧延ステップ後、前記圧延および前記表面加工が施された前記帯状材料に対して光輝焼鈍処理を施す光輝焼鈍ステップと、
     を含むことを特徴とするカバー用圧延材の製造方法。
  5.  前記光輝焼鈍ステップで光輝焼鈍処理が施された前記帯状材料に対して、前記多段ミル圧延ステップより小さい荷重によって軽圧延処理を施すスキンパスステップをさらに含むことを特徴とする請求項4に記載のカバー用圧延材の製造方法。
PCT/JP2012/064712 2011-06-08 2012-06-07 カバーおよびカバー用圧延材の製造方法 WO2012169598A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280027191.XA CN103596705A (zh) 2011-06-08 2012-06-07 盖及盖用轧制件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-128340 2011-06-08
JP2011128340 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169598A1 true WO2012169598A1 (ja) 2012-12-13

Family

ID=47296153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064712 WO2012169598A1 (ja) 2011-06-08 2012-06-07 カバーおよびカバー用圧延材の製造方法

Country Status (3)

Country Link
JP (1) JPWO2012169598A1 (ja)
CN (1) CN103596705A (ja)
WO (1) WO2012169598A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150302897A1 (en) * 2014-04-17 2015-10-22 Intri-Plex Technologies, Inc. Hard disk drive cover and methods of manufacturing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9202483B1 (en) * 2015-01-02 2015-12-01 HGST Netherlands B.V. Iron-oxidized hard disk drive enclosure cover
CN115116486A (zh) * 2018-03-30 2022-09-27 Hoya株式会社 退火处理用板材、退火处理用板材的制造方法以及基板的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205576A (ja) * 2001-11-09 2003-07-22 Nippon Steel Corp 樹脂複合型ステンレス制振鋼板およびこれを用いたプレス成形体ならびにハードディスクドライブ用ケースカバー
JP2004130352A (ja) * 2002-10-10 2004-04-30 Jfe Steel Kk 星目を発生しにくいプレス加工用薄板鋼板
JP2005211975A (ja) * 2004-01-30 2005-08-11 Jfe Steel Kk ステンレス冷延鋼板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100051B1 (ko) * 2006-12-18 2011-12-29 제이에프이 스틸 가부시키가이샤 강대의 조질 압연 방법 및 고장력 냉연 강판의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205576A (ja) * 2001-11-09 2003-07-22 Nippon Steel Corp 樹脂複合型ステンレス制振鋼板およびこれを用いたプレス成形体ならびにハードディスクドライブ用ケースカバー
JP2004130352A (ja) * 2002-10-10 2004-04-30 Jfe Steel Kk 星目を発生しにくいプレス加工用薄板鋼板
JP2005211975A (ja) * 2004-01-30 2005-08-11 Jfe Steel Kk ステンレス冷延鋼板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150302897A1 (en) * 2014-04-17 2015-10-22 Intri-Plex Technologies, Inc. Hard disk drive cover and methods of manufacturing
WO2015160891A1 (en) * 2014-04-17 2015-10-22 Intri-Plex Technologies, Inc. Hard disk drive cover and methods of manufacturing
US9595302B2 (en) * 2014-04-17 2017-03-14 Intri-Plex Technologies, Inc. Hard disk drive cover with differential inner and outer surface roughness

Also Published As

Publication number Publication date
JPWO2012169598A1 (ja) 2015-02-23
CN103596705A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
WO2012169598A1 (ja) カバーおよびカバー用圧延材の製造方法
US20090162703A1 (en) Glass Substrate for Information Recording Medium, and Method of Manufacturing Glass Substrate for Magnetic Recording Medium and Information Recording Medium
CN113362863B (zh) 磁盘用基板和磁盘
JP2006092722A (ja) 磁気ディスク用基板および磁気ディスクの製造方法
US20200211591A1 (en) Substrate for magnetic recording medium, magnetic recording medium, hard disk drive
JP6284666B1 (ja) ハードディスク用スペーサー部品の製造方法
JP4762954B2 (ja) 圧延材料およびその製造方法、ならびにスクリーンメッシュ
JP4857571B2 (ja) 磁気記録媒体用ガラス基板の製造方法
JP5486039B2 (ja) 磁気ディスク装置に用いるスペーサーおよび磁気ディスク装置
US7933093B2 (en) Spindle motor, and recording and reproducing apparatus equipped with the same
WO2007034763A1 (en) Silicon substrate for magnetic recording medium and magnetic recording medium
JP2007087533A (ja) 磁気記録媒体用シリコン基板および磁気記録媒体
JP3960533B2 (ja) 磁気ディスク用アルミニウム合金基板の製造方法および磁気ディスク用アルミニウム合金基板。
JP6004129B1 (ja) 磁気記録媒体用ガラス基板、磁気記録媒体
US20140085747A1 (en) Base plate for hard disk drive, method for manufacturing the same, and hard disk drive including the same
WO2022183736A1 (zh) 一种手机边框及制造方法
Lee et al. Analysis of dynamic characteristics of stamped base for 2.5 inch HDD
JP2969323B2 (ja) ディスク駆動装置
JP5623591B2 (ja) ベースプレートとその製造方法およびそれを含むディスク駆動装置
US20240135971A1 (en) Magnetic disk device and method for manufacturing magnetic disk device
JP2006095678A (ja) 磁気記録媒体用ガラス基板の研磨方法
WO2019181925A1 (ja) 磁気ディスク用アルミニウム合金基板、ディスク駆動装置、磁気ディスク用アルミニウム合金基板の製造方法、及び磁気ディスク用アルミニウム合金基板の測定方法
JPH06302172A (ja) 磁気ディスク記録再生装置のフレーム構造
JP6738768B2 (ja) ディスク駆動装置
US20090110962A1 (en) System, method and apparatus for eliminating adhesion layers between substrates and soft underlayers in perpendicular media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797607

Country of ref document: EP

Kind code of ref document: A1