WO2012168544A1 - Circuit de réfrigération à multiples évaporateurs - Google Patents

Circuit de réfrigération à multiples évaporateurs Download PDF

Info

Publication number
WO2012168544A1
WO2012168544A1 PCT/FI2012/050513 FI2012050513W WO2012168544A1 WO 2012168544 A1 WO2012168544 A1 WO 2012168544A1 FI 2012050513 W FI2012050513 W FI 2012050513W WO 2012168544 A1 WO2012168544 A1 WO 2012168544A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
refrigeration circuit
evaporator
suction
receiver
Prior art date
Application number
PCT/FI2012/050513
Other languages
English (en)
Inventor
Sergio Girotto
Original Assignee
Huurre Group Oy
Enex Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IT000077A external-priority patent/ITTV20110077A1/it
Priority claimed from IT000141A external-priority patent/ITTV20110141A1/it
Priority claimed from IT000010A external-priority patent/ITTV20120010A1/it
Application filed by Huurre Group Oy, Enex Srl filed Critical Huurre Group Oy
Priority to DK12796452.6T priority Critical patent/DK2718642T3/en
Priority to AU2012266219A priority patent/AU2012266219B2/en
Priority to EP12796452.6A priority patent/EP2718642B1/fr
Priority to ES12796452.6T priority patent/ES2602169T3/es
Priority to LTEP12796452.6T priority patent/LT2718642T/lt
Priority to CA2868441A priority patent/CA2868441C/fr
Publication of WO2012168544A1 publication Critical patent/WO2012168544A1/fr
Priority to HRP20161607TT priority patent/HRP20161607T1/hr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2521On-off valves controlled by pulse signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the present invention relates to a multi-evaporator refrigeration circuit, deployed both in low pressure and intermediate pressure receiver versions, adapted to use carbon dioxide as a refrigerant.
  • the refrigeration circuit comprises at least a compressor; a condenser/gas cooler; a first throttling valve; a liquid/vapour separator; a pressure limiting valve; a liquid level sensing device; at least one evaporator; and a suction receiver, wherein the refrigeration circuit is adapted to feed the liquid refrigerant to the at least one evaporator from said separator through a second throttling device.
  • the present invention also relates to the extension of the above circuit to a booster concept, where two different evaporation levels are made available, comprising the booster concept, beside the above components, at least a low temperature compressor; at least one evaporator; and a regenerative heat exchanger; wherein the method comprises feeding the liquid refrigerant to the at least one evaporator from said separator through the regenerative heat exchanger and a second throttling device.
  • TV201 1 A000141 present a mode of embodiment of a refrigeration system of this type that is characterized by a degree of overfeeding of the evaporators, but without the use of a circulation pump and without direct control of the superheating, that is the difference between refrigerant temperature at evaporator outlet and saturated temperature at evaporating pressure. It can thus obtain a greater efficiency of heat transfer in the evaporators without the complication of using a circulation pump, as well as a higher saturated suction temperature for a given temperature of fluid or body to be cooled, and consequently a higher efficiency of the whole system.
  • One of the key points of the invention as described in the aforementioned patent applications is a circuit arrangement such as to allow the transfer of excess of liquid, i.e. the flow rate circulated in evaporators, but not evaporated, from the low pressure receiver into the liquid / vapour separator at medium pressure.
  • the refrigeration system described in the two patent applications mentioned above provides for use of a single cold temperature.
  • usage of both medium temperatures MT, i.e. temperatures in the neighborhood of 0 ° C, and low temperatures BT, i.e. temperatures in the neighborhood of -30 ° C are present. It is therefore appropriate to extend the scope of the previously described refrigeration system also to the case where two temperature levels are present, possibly with the most economical and efficient way available when using CO 2 as a refrigerant, i.e. the configuration called "booster".
  • This configuration using the two levels of evaporation temperatures is made with two different compressors or groups of compressors.
  • a refrigeration circuit adapted to use carbon dioxide as a liquid refrigerant.
  • the refrigeration circuit is primarily characterized in that the refrigeration circuit further comprises at least one ejector comprising a suction port, in parallel to the first throttling valve; and that the refrigeration circuit is adapted to drive cold liquid from the suction receiver to the suction port of said at least one ejector, being activated for direct charge transfer, for maintaining a sufficient liquid level in the liquid/vapour separator even if the mass flow circulating in the at least one evaporator is higher than the mass flow evaporated, through an opening of a first control valve in the line from the suction receiver to the suction port of the at least one ejector, based on a maximum level signal generated by the liquid level sensing device, whenever the level of liquid refrigerant in said suction receiver is above a set maximum level.
  • a method in a multi-evaporator refrigeration circuit adapted to use carbon dioxide as a liquid refrigerant.
  • the method is primarily characterized in that the refrigeration circuit further comprises at least one ejector comprising a suction port included in parallel to the first throttling valve; wherein the method further comprises direct driving of cold liquid from the suction receiver to the suction port of said at least one ejector for maintaining a sufficient liquid level in the liquid/vapour separator even if the mass flow circulating in the at least one evaporator is higher than the mass flow evaporated, through an opening of one valve in the line from the low pressure receiver to the suction port of the ejector, based on a maximum level signal generated by the liquid level sensing device, whenever the level of liquid in said suction receiver is above a set maximum level.
  • a refrigeration circuit of low pressure receiver type primarily characterized in that the refrigeration circuit further comprises at least one ejector, comprising a suction port, in parallel to the first throttling valve; and that the refrigeration circuit is adapted to drive cold liquid from the suction receiver to the suction port of said at least one ejector, being activated for the charge transfer for maintaining a sufficient liquid level in the liquid/vapour separator even if the mass flow circulating in the at least one evaporator is higher than the mass flow evaporated, through an opening of a first control valve in the line from the suction receiver to the suction port of the at least one ejector, based on a minimum level signal generated by the liquid level sensing device, whenever the level of liquid refrigerant in said liquid vapour separator is below a set minimum level.
  • the refrigeration circuit further comprises at least one ejector comprising a suction port included in parallel to the first throttling valve; wherein the method further comprises direct driving of cold liquid from the suction receiver to the suction port of said at least one ejector for maintaining a sufficient liquid level in the liquid/vapour separator even if the mass flow circulating in the at least one evaporator is higher than the mass flow evaporated, through an opening of a first control valve in the line from the low pressure receiver to the suction port of the at least one ejector, based on a minimum level signal generated by the liquid level sensing device, whenever the level of liquid refrigerant in said liquid vapour separator is below a set minimum level.
  • a further mean of a charge transfer between the suction receiver and the liquid/vapour separator, of indirect type, is considered.
  • FIG. 1 illustrates a diagram of a refrigeration system for medium temperature with recirculation flow according to an example embodiment using an indirect charge transfer method
  • Fig. 2 illustrates a diagram of a refrigeration system for medium temperature with recirculation flow according to an example embodiment using a direct charge transfer method
  • Fig. 3 illustrates another example embodiment of a refrigeration system for medium temperature with recirculation flow comprising a charge transfer device
  • Fig. 4 illustrates another example embodiment of a refrigeration system for medium temperature with recirculation flow comprising a charge transfer device
  • Fig. 5 shows a diagram of a system booster type according to an example embodiment
  • Fig. 6 illustrates an example of connection and control means of an evaporator with relative supply valve and its control device
  • Fig. 7 is an example of a control algorithm of a feeding valve to the evaporator referred to in Fig. 6;
  • Fig. 8a illustrates an example of the algorithm for adjusting the valve to control the pressure difference with a level switch as a level detection device on the suction receiver
  • Fig. 8b illustrates an example of the algorithm for adjusting the valve to control the pressure difference with a level detection device on the suction receiver comprising a continuous level measurement and analog output
  • Fig. 8c illustrates an example of the algorithm for adjusting the valve to control the pressure difference with a level detection device on the liquid/vapour separator comprising a continuous level measurement and analog output.
  • - 19 a low temperature compressor or compressors
  • a liquid / vapour separator 5 Downstream of the valve 4 is present a liquid / vapour separator 5 having the function of separating the flash vapour, produced by the first expansion through the valve 4, from the liquid intended to supply the evaporators.
  • the refrigerant leaving the condenser / gas cooler 2 is entered, prior to entry to the valve 4, in a regenerative exchanger 3 in which the refrigerant is cooled by heat exchange with the fluid contained in the suction receiver 8.
  • a certain flow rate of refrigerant liquid contained in said receiver 8 will circulate due to the density difference in the primary heat exchanger 3, connected for thermosiphon-like circulation, and return to the form of vapour at the top of the suction receiver 8 itself.
  • the resulting cooling of the fluid in one circuit of heat exchanger 3 will produce a reduction of the amount of injected vapour in the liquid / vapour separator 5 and, at the same flow rate ml output from the liquid / vapour separator 5 will result in an increase of the liquid fraction in the separator 5 itself.
  • a virtual transfer of charge from the receiver 8 to the liquid/vapour separator 5 is obtained in this way.
  • a pressure-regulating valve 9 will limit the absolute or differential pressure in the separator 5 by draining a vapour flow rate in the suction receiver 8, and the difference in pressure between the liquid/vapour separator 5 and the suction receiver 8 will be adjusted so as to have a pressure differential sufficient to circulate the refrigerant in the evaporators.
  • the refrigerant leaving the condenser / gas cooler 2 is entered to the valve 4 and to at least one ejector 14, these components being installed in parallel. Downstream of the valve 4 and ejector 14 is present the liquid / vapour separator 5 having the function of separating the flash vapour, produced by the first expansion through the valve 4, from the liquid intended to feed the evaporators.
  • the pressure-regulating valve 9 will limit the absolute or differential pressure in the liquid/vapour separator 5 by draining a vapour flow rate in the suction receiver 8, and the difference in pressure between the liquid/vapour separator 5 and the suction receiver 8 will be adjusted so as to have a pressure differential sufficient to circulate the refrigerant in the evaporators.
  • a certain flow rate of liquid contained in said suction receiver 8 will return into the liquid/vapour separator 5 through a port 15 of an ejector 14. A direct transfer of charge from the suction receiver 8 to the liquid/vapour separator 5 is obtained in this way.
  • the interface of the regulating and charge transfer device of X can be traced to a single module of a block diagram with three inputs and two outputs, as shown in fig. 3.
  • the three input pipes are identified as inlet pipe of the fluid coming from the heat exchanger 2 and indicated with a), the inlet pipe of the flash vapour from the liquid/vapour separator 5 and indicated with b), the inlet pipe of the liquid from the suction receiver 8 and denoted by c) while the outlet pipes are those of release of the fluid to the separator 5 and the input of the flash vapour to the suction receiver 8, respectively indicated with d) and e).
  • FIG. 5 A possible configuration of the booster according to an embodiment of the invention is shown in Figure 5.
  • the medium temperature compressor (compressors) 1 sucks refrigerant vapour from the suction receiver 8 and compress it to the high pressure of the cycle in the heat exchanger condenser / gas cooler 2, in which the refrigerant is cooled with the external air or other fluid.
  • the pressure in this heat exchanger 2 is either directly or indirectly controlled by both the flow rate and the temperature of the cooling fluid and via a regulating valve 4 located on the pipe downstream of the heat exchanger 2 and included in the regulating and charge transfer device X.
  • Said device X also performs the fine adjustment of the high pressure, the control of pressure in the liquid/vapour separator 5 and the transfer of the flow rate of refrigerant not evaporated from the suction receiver 8 into the liquid/vapour separator 5 according to the technique described above.
  • a low temperature regenerative heat exchanger 16 Downstream of the liquid/vapour separator 5 is installed a low temperature regenerative heat exchanger 16, one circuit of which, defined as the primary circuit, is configured for the circulation of the entire liquid flow ml , intended to supply both the medium temperature evaporators 7, m1_MT, and the low temperature evaporators 18, m1_BT.
  • the adjustment of the flow rate through the evaporators will be made, for example but not exclusively with a controller Rp that regulates the opening of valves 6 and 17 according to the temperature TA of air or fluid to be cooled, always as an example, as shown in Fig. 5 and 6, relating to a generic group feeding valve / evaporator MT indicated with 6n and 7n.
  • the controller Rp adjust the ratio Time ON/Time cycle D to maintain it proportional to the offset of T compared to set SO of the medium.
  • a larger deviation of the value T-SO, provided T>S0, will give a higher ratio Time ON/Time cycle D.
  • feeding valves 6 and 17 can simply be adjusted in ON / OFF and a balancing valve located downstream of said valves 6 and 17 can be used to limit the maximum flow rate.
  • the refrigerant leaving the primary circuit of the low temperature regenerative heat exchanger 16 is partially directed in the liquid line of supply of the medium temperature evaporators 7 through the valves 6, and indicated with m1_MT, and in part is placed in the liquid line of the evaporators 18 through the BT supply valves of the low temperature evaporators 17, and indicated with m1_BT.
  • Both in the medium temperature evaporators 7 and in the low temperature evaporators 18 a fraction of the fluid, if not all, will evaporate extracting heat from substance or fluid to be cooled.
  • the fluid flow which may not have been evaporated in the medium temperature evaporators, ml__MT, will be drained together with the vapour flow rate mV_MT in the receiver 8 through the suction pipe.
  • m1_MT ml__MT + mV_MT.
  • the fluid flow which may not have been evaporated in the low temperature evaporators 18, ml__BT, will be drained together with the vapour flow rate mV_BT in the secondary circuit of the heat exchanger 16 toward the suction of the low temperature compressor or compressors 19.
  • m1_BT ml__BT + mV_BT.
  • the ability to evaporate the amount ml__BT would be at any event sufficient due to the high temperature difference, of the order of 30K, between the liquid in the primary circuit of the exchanger 16 and the mixture liquid / vapour in the secondary circuit of the same and said temperature difference makes it possible, without risk of suction of liquid into the low temperature compressor 19, a circulation ratio RC in the evaporators of BT section of about 1 .25.
  • the low temperature compressor 19 will send the flow of refrigerant compressed in the suction receiver 8.
  • a further problem to be solved with the present invention is to define a method of protection to prevent an excessive amount of liquid to flow through the medium temperature evaporators 7 in the case where the flow rate regulation in these medium temperature evaporators 7 is not optimized due to inaccurate setting of the control system of the valves 6, or due to other unforeseen situations.
  • suction receiver 8 or liquid/vapour separator 5 is used for containment of liquid charge not active in the refrigeration circuit.
  • a level switch 22 or other device is installed on the suction receiver 8 which allows to detect an excessive accumulation of liquid refrigerant. If the refrigerant level detection device 22, e.g. a switch detects an excess of refrigerant in said suction receiver 8, an indication of an unsuitable flow regulation in the evaporators 7 is provided, wherein the pressure regulating valve 9, as shown in fig. 4, said pressure regulating valve 9 being included in the charge transfer device X and shown in both fig. 8a and fig. 8b, limits the differential pressure between the liquid/vapour separator 5 and the suction receiver 8 to a value lower than that normally regulated.
  • valve 9 when the switch or the signal level 22 on the suction receiver 8 detects the presence of excess liquid the valve 9 will act directly or indirectly on the relevant signal.
  • the pressure regulating valve 9 may either be mechanically or electrically operated.
  • the pressure regulating valve 9, through a proper control system, shown schematically in Fig.
  • an increase in liquid level in the suction receiver 8 is detected by the refrigerant level detection device 22 and via a regulator RL will control the opening degree of the valve 9 to decrease the pressure difference between the suction receiver 8 and the liquid/vapour separator 5 from the value ⁇ 1 to the value ⁇ 2.
  • Fig. 8b which refers to an alternative to the previous embodiment
  • an increase in the level of liquid in the suction receiver 8 is detected by the refrigerant level detection device 22, which will send a signal proportional to the level to the controller RL which will control the opening degree of the valve 9 so as to vary the pressure difference between the suction receiver 8 and the liquid/vapour separator 5, for example but not exclusively, according to the function represented in fig. 8b which graphically shows a proportional correspondence of differential pressure between upstream and downstream of the valve 9 with liquid level in the suction receiver 8, the upper limit of differential pressure ⁇ 1 obtained with liquid level less than or equal to L M IN, and with the lower limit of differential pressure ⁇ 2, obtained with a level equal to or greater than L M AX-
  • the pressure in the liquid/vapour separator 5 is adjusted approximately to approximately 34 bar while the suction pressure, and then the pressure existing in the suction receiver 8 is of about 29 bar.
  • the pressure difference between the liquid/vapour separator 5 and the suction receiver 8, ⁇ 1 is therefore of 5 bar, and on the basis of this design value are calculated by the valve 6 is selected to provide 100% of the maximum required flow.
  • a level switch 23 or other device will be on the liquid/vapour separator 5 which allows to detect a too low level of liquid refrigerant which may bring to starving of the system. If the refrigerant level detection device 23, e.g. a switch detects a shortage of refrigerant in said liquid/vapour separator 5, which is an indication of excess of mass flow through evaporators 7, the valve 9 will reduce the pressure difference using a control logic reversed to that previously described, in the sense that a lower level will bring to a lower pressure difference between the liquid/vapour separator 5 and the suction receiver 8. The above logic is shown in fig. 8c.
  • One valve 10 can be used to stop the charge transfer in case both ⁇ and liquid level in the liquid/vapour separator 5 are at their maximum, and a valve 13 can be arranged to open as a further protection means.
  • An example embodiment comprising valve 13 is shown in fig. 1 .
  • the present invention is not limited solely to the above described embodiments but it can be varied within the scope of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

L'invention se rapporte à un circuit de réfrigération à multiples évaporateurs du type récepteur basse-pression conçu pour utiliser du dioxyde de carbone comme fluide frigorigène, comprenant au moins un compresseur (1) ; un condenseur/refroidisseur de gaz (2) ; un premier robinet d'étranglement (4) ; un séparateur de liquide/vapeur (5) ; une soupape de limitation de pression (9) ; un dispositif de détection de niveau de liquide (22) ; au moins un évaporateur (7) ; et un récepteur d'aspiration (8). Le circuit de réfrigération est conçu pour acheminer le fluide frigorigène liquide jusqu'à l'évaporateur ou aux évaporateurs (7) depuis ledit séparateur (5) par l'intermédiaire d'un second dispositif d'étranglement (6). Dans le circuit de réfrigération, au moins un éjecteur (14) comprenant un orifice d'aspiration (15) est placé parallèlement au premier robinet d'étranglement (4). Le circuit de réfrigération est conçu pour entraîner un liquide froid depuis le récepteur d'aspiration (8) jusqu'à l'orifice d'aspiration (15) dudit ou desdits injecteurs (14), servant de transfert de charge activé par le transfert d'écoulement, pour maintenir un niveau de liquide suffisant dans le séparateur (5) même si le débit massique circulant dans les évaporateurs (7) est supérieur au débit massique évaporé, par une ouverture d'une soupape (10) sur la ligne partant du récepteur d'aspiration (8) jusqu'à l'orifice d'aspiration (15) de l'éjecteur (14), sur la base d'un signal de niveau maximum produit par le dispositif de détection de niveau de liquide (22), chaque fois que le niveau de liquide dans ledit récepteur d'aspiration (8) est supérieur à un niveau maximum défini. La présente invention se rapporte également à un procédé dans un circuit de réfrigération amplificateur comprenant un circuit basse-température, où le débit massique de liquide quittant le ou les évaporateurs s'évapore dans un premier circuit d'un premier échangeur thermique (16), ledit autre circuit étant conçu pour la circulation de l'intégralité du débit massique de liquide alimentant à la fois les évaporateurs MT et LT.
PCT/FI2012/050513 2011-06-06 2012-05-28 Circuit de réfrigération à multiples évaporateurs WO2012168544A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK12796452.6T DK2718642T3 (en) 2011-06-06 2012-05-28 Multi-evaporator cooling circuits
AU2012266219A AU2012266219B2 (en) 2011-06-06 2012-05-28 A multi-evaporator refrigeration circuit
EP12796452.6A EP2718642B1 (fr) 2011-06-06 2012-05-28 Circuit de réfrigération à multiples évaporateurs
ES12796452.6T ES2602169T3 (es) 2011-06-06 2012-05-28 Circuito de refrigeración de multievaporador
LTEP12796452.6T LT2718642T (lt) 2011-06-06 2012-05-28 Daugiakomponenčio garintuvo šaldymo kontūras
CA2868441A CA2868441C (fr) 2011-06-06 2012-05-28 Circuit de refrigeration a multiples evaporateurs
HRP20161607TT HRP20161607T1 (hr) 2011-06-06 2016-12-01 Rashladni krug s više isparivača

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
IT000077A ITTV20110077A1 (it) 2011-06-06 2011-06-06 Sistema frigorifero a compressione di vapore e espansione diretta con elevato rapporto di circolazione negli evaporatori.
ITTV2011A000077 2011-06-06
ITTV2011A000141 2011-10-14
IT000141A ITTV20110141A1 (it) 2011-10-14 2011-10-14 Sistema frigorifero con refrigerante r744 con elevato rapporto di circolazione negli evaporatori.
ITTV2012A000010 2012-01-19
IT000010A ITTV20120010A1 (it) 2012-01-19 2012-01-19 Sistema frigorifero di tipo booster con refrigerante r744.

Publications (1)

Publication Number Publication Date
WO2012168544A1 true WO2012168544A1 (fr) 2012-12-13

Family

ID=47295543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2012/050513 WO2012168544A1 (fr) 2011-06-06 2012-05-28 Circuit de réfrigération à multiples évaporateurs

Country Status (11)

Country Link
EP (1) EP2718642B1 (fr)
AU (1) AU2012266219B2 (fr)
CA (1) CA2868441C (fr)
DK (1) DK2718642T3 (fr)
ES (1) ES2602169T3 (fr)
HR (1) HRP20161607T1 (fr)
HU (1) HUE032488T2 (fr)
LT (1) LT2718642T (fr)
PL (1) PL2718642T3 (fr)
PT (1) PT2718642T (fr)
WO (1) WO2012168544A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791651A (zh) * 2013-12-23 2014-05-14 滁州安兴环保彩纤有限公司 直纺短丝余汽综合利用装置
WO2015039688A1 (fr) * 2013-09-19 2015-03-26 Carrier Corporation Circuit de réfrigération avec module de récupération de chaleur
WO2015144627A1 (fr) * 2014-03-27 2015-10-01 Carrier Corporation Dispositif et procédé permettant de déterminer la hauteur de remplissage d'un liquide dans un récipient
WO2017067860A1 (fr) * 2015-10-20 2017-04-27 Danfoss A/S Procédé de commande de système de compression de vapeur en mode d'éjecteur pendant une période prolongée
WO2017067863A1 (fr) 2015-10-20 2017-04-27 Danfoss A/S Procédé de commande d'un système de compression de vapeur dans un état noyé
US9897363B2 (en) 2014-11-17 2018-02-20 Heatcraft Refrigeration Products Llc Transcritical carbon dioxide refrigeration system with multiple ejectors
DE102017117565A1 (de) * 2017-08-02 2019-02-07 Wurm Gmbh & Co. Kg Elektronische Systeme Kälteanlage und verfahren zur regelung einer kälteanlage
CN110425780A (zh) * 2018-05-08 2019-11-08 约克(无锡)空调冷冻设备有限公司 制冷系统和用于控制制冷系统的方法
RU2705696C2 (ru) * 2017-01-26 2019-11-11 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Многоступечатая теплонасосная установка
CN110573810A (zh) * 2017-03-28 2019-12-13 丹佛斯有限公司 具有吸入管线液体分离器的蒸气压缩系统
US10816245B2 (en) 2015-08-14 2020-10-27 Danfoss A/S Vapour compression system with at least two evaporator groups
US10830499B2 (en) 2017-03-21 2020-11-10 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature
US11221163B2 (en) 2019-08-02 2022-01-11 Randy Lefor Evaporator having integrated pulse wave atomizer expansion device
US11231209B2 (en) * 2016-05-16 2022-01-25 Epta S.P.A. Refrigeration plant with multiple evaporation levels and method of managing such a plant
US11333449B2 (en) 2018-10-15 2022-05-17 Danfoss A/S Heat exchanger plate with strengthened diagonal area
EP4008637A1 (fr) * 2020-12-04 2022-06-08 Honeywell International Inc. Circuit de sous-refroidissement de contrôle de surtension
US11460230B2 (en) 2015-10-20 2022-10-04 Danfoss A/S Method for controlling a vapour compression system with a variable receiver pressure setpoint

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575192B2 (ja) * 2012-08-06 2014-08-20 三菱電機株式会社 二元冷凍装置
CN107850224B (zh) * 2015-08-03 2019-11-08 株式会社电装 集成阀
US11493247B2 (en) * 2019-05-13 2022-11-08 Heatcraft Refrigeration Products Llc Cooling system with additional receiver
EP3862657A1 (fr) 2020-02-10 2021-08-11 Carrier Corporation Système de réfrigération comportant plusieurs échangeurs de chaleur absorbant la chaleur
FR3139889B1 (fr) * 2022-09-15 2024-09-06 Electricite De France Installation frigorifique.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178359B2 (en) * 2004-02-18 2007-02-20 Denso Corporation Ejector cycle having multiple evaporators
WO2008039204A1 (fr) * 2006-09-29 2008-04-03 Carrier Corporation Système de compression de vapeur réfrigérante avec un récepteur de réservoir de détente
US20100199707A1 (en) 2009-02-11 2010-08-12 Star Refrigeration Limited Refrigeration system
US7841193B2 (en) * 2006-02-16 2010-11-30 Denso Corporation Refrigerant flow-amount controlling device and ejector refrigerant cycle system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178359B2 (en) * 2004-02-18 2007-02-20 Denso Corporation Ejector cycle having multiple evaporators
US7841193B2 (en) * 2006-02-16 2010-11-30 Denso Corporation Refrigerant flow-amount controlling device and ejector refrigerant cycle system using the same
WO2008039204A1 (fr) * 2006-09-29 2008-04-03 Carrier Corporation Système de compression de vapeur réfrigérante avec un récepteur de réservoir de détente
US20100199707A1 (en) 2009-02-11 2010-08-12 Star Refrigeration Limited Refrigeration system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2718642A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659679C2 (ru) * 2013-09-19 2018-07-03 Кэррие Корпорейшн Холодильный контур с модулем регенерации тепла
WO2015039688A1 (fr) * 2013-09-19 2015-03-26 Carrier Corporation Circuit de réfrigération avec module de récupération de chaleur
CN105556220A (zh) * 2013-09-19 2016-05-04 开利公司 具有热回收模块的制冷回路
EP3086057A1 (fr) * 2013-09-19 2016-10-26 Carrier Corporation Circuit de réfrigération avec module de récupération de chaleur
CN105556220B (zh) * 2013-09-19 2019-01-22 开利公司 具有热回收模块的制冷回路
CN103791651B (zh) * 2013-12-23 2016-01-20 滁州安兴环保彩纤有限公司 直纺短丝余汽综合利用装置
CN103791651A (zh) * 2013-12-23 2014-05-14 滁州安兴环保彩纤有限公司 直纺短丝余汽综合利用装置
WO2015144627A1 (fr) * 2014-03-27 2015-10-01 Carrier Corporation Dispositif et procédé permettant de déterminer la hauteur de remplissage d'un liquide dans un récipient
CN106461301A (zh) * 2014-03-27 2017-02-22 开利公司 用于确定容器内液体的填充高度的装置和方法
US9897363B2 (en) 2014-11-17 2018-02-20 Heatcraft Refrigeration Products Llc Transcritical carbon dioxide refrigeration system with multiple ejectors
US10816245B2 (en) 2015-08-14 2020-10-27 Danfoss A/S Vapour compression system with at least two evaporator groups
WO2017067860A1 (fr) * 2015-10-20 2017-04-27 Danfoss A/S Procédé de commande de système de compression de vapeur en mode d'éjecteur pendant une période prolongée
CN108139130B (zh) * 2015-10-20 2020-06-09 丹佛斯有限公司 用于控制处于满液状态的蒸气压缩系统的方法
CN108139130A (zh) * 2015-10-20 2018-06-08 丹佛斯有限公司 用于控制处于满液状态的蒸气压缩系统的方法
US11460230B2 (en) 2015-10-20 2022-10-04 Danfoss A/S Method for controlling a vapour compression system with a variable receiver pressure setpoint
US20180320944A1 (en) * 2015-10-20 2018-11-08 Danfoss A/S Method for controlling a vapour compression system in a flooded state
WO2017067863A1 (fr) 2015-10-20 2017-04-27 Danfoss A/S Procédé de commande d'un système de compression de vapeur dans un état noyé
US10775086B2 (en) 2015-10-20 2020-09-15 Danfoss A/S Method for controlling a vapour compression system in ejector mode for a prolonged time
US10508850B2 (en) 2015-10-20 2019-12-17 Danfoss A/S Method for controlling a vapour compression system in a flooded state
US11231209B2 (en) * 2016-05-16 2022-01-25 Epta S.P.A. Refrigeration plant with multiple evaporation levels and method of managing such a plant
RU2705696C2 (ru) * 2017-01-26 2019-11-11 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Многоступечатая теплонасосная установка
US10830499B2 (en) 2017-03-21 2020-11-10 Heatcraft Refrigeration Products Llc Transcritical system with enhanced subcooling for high ambient temperature
CN110573810A (zh) * 2017-03-28 2019-12-13 丹佛斯有限公司 具有吸入管线液体分离器的蒸气压缩系统
EP3601907B1 (fr) 2017-03-28 2022-04-20 Danfoss A/S Système de compression de vapeur doté d'un séparateur de liquide de conduite d'aspiration
DE102017117565A1 (de) * 2017-08-02 2019-02-07 Wurm Gmbh & Co. Kg Elektronische Systeme Kälteanlage und verfahren zur regelung einer kälteanlage
CN110425780A (zh) * 2018-05-08 2019-11-08 约克(无锡)空调冷冻设备有限公司 制冷系统和用于控制制冷系统的方法
US11333449B2 (en) 2018-10-15 2022-05-17 Danfoss A/S Heat exchanger plate with strengthened diagonal area
US11221163B2 (en) 2019-08-02 2022-01-11 Randy Lefor Evaporator having integrated pulse wave atomizer expansion device
EP4008637A1 (fr) * 2020-12-04 2022-06-08 Honeywell International Inc. Circuit de sous-refroidissement de contrôle de surtension
US12078397B2 (en) 2020-12-04 2024-09-03 Honeywell International Inc. Surge control subcooling circuit

Also Published As

Publication number Publication date
CA2868441C (fr) 2018-07-10
HRP20161607T1 (hr) 2017-01-13
PT2718642T (pt) 2016-12-20
AU2012266219A1 (en) 2015-06-11
AU2012266219B2 (en) 2016-09-08
HUE032488T2 (en) 2017-09-28
EP2718642A1 (fr) 2014-04-16
PL2718642T3 (pl) 2017-07-31
EP2718642B1 (fr) 2016-09-14
CA2868441A1 (fr) 2012-12-13
DK2718642T3 (en) 2016-12-19
EP2718642A4 (fr) 2015-04-01
LT2718642T (lt) 2016-11-25
ES2602169T3 (es) 2017-02-17

Similar Documents

Publication Publication Date Title
EP2718642B1 (fr) Circuit de réfrigération à multiples évaporateurs
US9869499B2 (en) Method for detection of loss of refrigerant
CN102734971B (zh) 冷冻装置
US9353976B2 (en) Refrigerating apparatus
US20080229782A1 (en) Refrigerating Apparatus
CA2997662A1 (fr) Procede de commande d'un systeme de compression de vapeur dans un etat noye
CN102165194A (zh) 运输制冷系统上的压缩机排放控制
CN107003046A (zh) 用于控制在蒸气压缩系统中的阀安排的方法
WO2008002048A1 (fr) Système de réfrigération économe en énergie et son procédé de commande
JP2011133204A (ja) 冷凍装置
EP3163219B1 (fr) Système de refroidisseur
JP6563374B2 (ja) 水素ガス冷却装置
JP4082435B2 (ja) 冷凍装置
CN111623545B (zh) 一种制冷系统及其控制方法
JP7496817B2 (ja) 冷却システム
CN110573810A (zh) 具有吸入管线液体分离器的蒸气压缩系统
EP3628942B1 (fr) Procédé permettant de commander un système de compression de vapeur à une pression d'aspiration réduite
JP4334818B2 (ja) 冷却装置
CN214333088U (zh) 一种多通道节能型制冷加热控温系统
US9086232B1 (en) Refrigeration system having supplemental refrigerant path
JP7455214B2 (ja) 空気調和装置
EP3628940B1 (fr) Procédé pour commander un système de compression de vapeur sur la base de flux estimé
JP2008032391A (ja) 冷凍装置
WO2022224304A1 (fr) Ensemble source de chaleur
US20240167741A1 (en) Refrigeration apparatus, control method of refrigeration apparatus, and temperature control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012796452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012796452

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2868441

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012266219

Country of ref document: AU

Date of ref document: 20120528

Kind code of ref document: A