RU2705696C2 - Многоступечатая теплонасосная установка - Google Patents

Многоступечатая теплонасосная установка Download PDF

Info

Publication number
RU2705696C2
RU2705696C2 RU2017102563A RU2017102563A RU2705696C2 RU 2705696 C2 RU2705696 C2 RU 2705696C2 RU 2017102563 A RU2017102563 A RU 2017102563A RU 2017102563 A RU2017102563 A RU 2017102563A RU 2705696 C2 RU2705696 C2 RU 2705696C2
Authority
RU
Russia
Prior art keywords
stage
refrigerant
cavity
cooling cavity
separator
Prior art date
Application number
RU2017102563A
Other languages
English (en)
Other versions
RU2017102563A (ru
RU2017102563A3 (ru
Inventor
Юрий Александрович Антипов
Иван Касьянович Шаталов
Александр Викторович Силин
Кирилл Владимирович Шкарин
Евгений Васильевич Собенников
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН)
Priority to RU2017102563A priority Critical patent/RU2705696C2/ru
Publication of RU2017102563A publication Critical patent/RU2017102563A/ru
Publication of RU2017102563A3 publication Critical patent/RU2017102563A3/ru
Application granted granted Critical
Publication of RU2705696C2 publication Critical patent/RU2705696C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Изобретение относится к энергомашиностроению и может применяться в многоступенчатых теплонасосных установках, подогревающих рабочее тело от начальной температуры, равной начальной температуре низкопотенциального источника теплоты. Установка дополнительно содержит датчик уровня жидкой фракции хладагента сепаратора первой ступени и один исполнительный механизм, при этом выход датчика сообщен с входом исполнительного механизма, подключенного к дросселю первой ступени, и дроссели каждой ступени выполнены с возможностью обеспечения расходов хладагента, определяемых зависимостью
Figure 00000019
где W - расход рабочего тела, кг/с; ср - средняя изобарная теплоемкость рабочего тела в интервале температур от Ti-1 до Ti, кДж/(кг К); Ti - температура рабочего тела на выходе из греющей полости конденсатора i-ой ступени, K; Ti-1 - температура рабочего тела на входе в греющую полость переохладителя (i-1)-й ступени; h_(K_i))^'' - энтальпия хладагента на выходе из компрессора i-ой ступени, кДж/кг; h_(i-1)^' - энтальпия хладагента на выходе из охлаждающей полости переохладителя i-й ступени, кДж/кг; z - количество ступеней многоступенчатой теплонасосной установки; Gj - количество хладагента, проходящего через (i+1)-ю ступень, кг/с; h_i^'' - энтальпия паровой фазы хладагента на линии сухости х=1 i-й ступени, кДж/кг; h_i^' - энтальпия жидкой фазы хладагента на линии сухости х=0 i-ой ступени, кДж/кг; i - порядковый номер ступени. Техническим результатом является повышение эффективности. 2 ил.

Description

Изобретение относится к энергомашиностроению и может применяться в многоступенчатых теплонасосных установках, подогревающих рабочее тело от начальной температуры, равной начальной температуре низкопотенциального источника теплоты (НИТ).
Известна многоступенчатая теплонасосная установка, содержащая компрессор первой ступени, конденсатор с выполненными в нем охлаждающей полостью и греющей полостью с выходным патрубком нагреваемого рабочего тела, промежуточный конденсатор с охлаждающей и греющей полостями, переохладитель хладагента последней ступени с охлаждающей и греющей полостями, переохлодитель хладагента первой ступени с греющей полостью и охлаждающей полостью, последовательно сообщенной с дросселем первой ступени, испарителем, компрессором первой ступени и охлаждающей полостью промежуточного конденсатора первой ступени, а так же компрессор последней ступени, последовательно сообщенный через охлаждающую полость конденсатора с охлаждающей полостью переохладителя хладагента последней ступени, и дроссель последней ступени [Патент DE №3311505, Кл. F25B 30/02. 26.03.1983]. Недостатком данной многоступенчатой теплонасосной установки является относительная высокая суммарная работа компрессоров. Это вызвано тем, что, несмотря на снижение энергозатрат, связанных с подачей во входной патрубок каждой ступени компрессора хладагента с небольшим перегревом, суммарная работа двух компрессоров остается достаточно большой, что не позволяет поднять коэффициент преобразования μ=QPT/(AК1+AК2)=4-5.5, где QPT - теплота, ушедшая на нагрев рабочего тела, AК1 и AК2 - работа соответственно первого и второго компрессоров.
Наиболее близким техническим решением к заявленному изобретению является многоступенчатая теплонасосная установка, содержащая испаритель с греющей полостью, компрессор первой ступени, конденсатор первой ступени с выполненными в нем охлаждающей полостью и греющей полостью, сепаратор первой ступени, переохладитель хладагента первой ступени с греющей полостью, с второй охлаждающей полостью промежуточной ступени, с третей охлаждающей полостью последней ступени и с охлаждающей полостью первой ступени, компрессор промежуточной ступени, промежуточный конденсатор с охлаждающей и греющей полостями, сепаратор промежуточной ступени, переохладитель промежуточной ступени с греющей полостью, с первой охлаждающей полостью промежуточной ступени и с второй охлаждающей полостью последней ступени, компрессор последней ступени, конденсатор последней ступени с выполненными в нем охлаждающей полостью и греющей полостью, переохладитель хладагента последней ступени с греющей полостью и первой охлаждающей полостью, выход жидкой фракции хладагента сепаратора первой ступени последовательно сообщенный с охлаждающей полостью переохладителя первой ступени, с дросселем первой ступени, с греющей полостью испарителя, с компрессором первой ступени, с охлаждающей полостью конденсатора первой ступени и входом сепаратора первой ступени, выход паровой фракции хладагента сепаратора первой ступени, последовательно сообщенный с компрессором промежуточной ступени, с охлаждающей полостью промежуточного конденсатора, с входом промежуточного сепаратора, выход жидкой фракции хладагента промежуточного сепаратора, последовательно сообщенный с первой охлаждающей полостью переохладителя промежуточной ступени, с второй охлаждающей полостью переохладителя первой ступени, с дросселем промежуточной ступени и греющей полостью испарителя, а так же выход паровой фракции хладагента сепаратора промежуточной ступени, последовательно сообщенный с компрессором последней ступени, с охлаждающей полостью конденсатора последней ступени, с охлаждающей полостью переохладителей последней ступени, с второй охлаждающей полостью переохладителя промежуточной ступени, с третьей охлаждающей полостью переохлодителя первой ступени, с дросселем последней ступени и с греющей полостью испарителя. [Патент на полезную модель RU №140197, кл. F25B 30/00. 10.05.2014]. Недостатком данной многоступенчатой теплонасосной установки является низкая эффективность даже при незначительном изменении тепловой нагрузки рабочего тела. Это вызвано тем, что, уровень жидкой фазы хладагента в каждом сепараторе будет меняться, что приведет к снижению уровня жидкой фазы хладагента в конденсаторах и, как следствие, к снижению теплопередачи и снижению эффективности установки. С другой стороны, при изменении потребления тепловой нагрузки рабочего тела происходит разбалансировка соотношения расходов хладагента в компрессорах каждой ступени, что приводит к неравномерному изменению нагрузочных характеристик работы компрессоров и, как следствие, к снижению их КПД.
Техническим результатом заявленного изобретения является повышение эффективности многоступенчатой теплонасосной установки.
Технический результат достигается тем, что многоступенчатая теплонасосная установка, содержащая испаритель с греющей полостью, компрессор первой ступени, конденсатор первой ступени с выполненными в нем охлаждающей полостью и греющей полостью, сепаратор первой ступени, переохладитель хладагента первой ступени с греющей полостью, с второй охлаждающей полостью промежуточной ступени, с третей охлаждающей полостью последней ступени и с охлаждающей полостью первой ступени, компрессор промежуточной ступени, промежуточный конденсатор с охлаждающей и греющей полостями, сепаратор промежуточной ступени, переохладитель промежуточной ступени с греющей полостью, с первой охлаждающей полостью промежуточной ступени и с второй охлаждающей полостью последней ступени, компрессор последней ступени, конденсатор последней ступени с выполненными в нем охлаждающей полостью и греющей полостью, переохладитель хладагента последней ступени с греющей полостью и первой охлаждающей полостью, выход жидкой фракции хладагента сепаратора первой ступени последовательно сообщенный с охлаждающей полостью переохладителя первой ступени, с дросселем первой ступени, с греющей полостью испарителя, с компрессором первой ступени, с охлаждающей полостью конденсатора первой ступени и входом сепаратора первой ступени, выход паровой фракции хладагента сепаратора первой ступени, последовательно сообщенный с компрессором промежуточной ступени, с охлаждающей полостью промежуточного конденсатора, с входом промежуточного сепаратора, выход жидкой фракции хладагента промежуточного сепаратора, последовательно сообщенный с первой охлаждающей полостью переохладителя промежуточной ступени, с второй охлаждающей полостью переохладителя первой ступени, с дросселем промежуточной ступени и греющей полостью испарителя, а так же выход паровой фракции хладагента сепаратора промежуточной ступени, последовательно сообщенный с компрессором последней ступени, с охлаждающей полостью конденсатора последней ступени, с охлаждающей полостью переохладителей последней ступени, с второй охлаждающей полостью переохладителя промежуточной ступени, с третьей охлаждающей полостью переохлодителя первой ступени, с дросселем последней ступени и с греющей полостью испарителя, дополнительно содержит по меньшей мере один датчик уровня жидкой фракции хладагента сепаратора первой ступени и один исполнительный механизм, при этом выход датчика сообщен с входом исполнительного механизма, подключенного к дросселю первой ступени, и количество хладагента, проходящего через дроссели каждой ступени, выполнены с возможностью обеспечения расходов хладагента, определяемых зависимостью
Figure 00000001
где W - расход рабочего тела, [кг/с],
cp - средняя изобарная теплоемкость рабочего тела в интервале температур от Ti-1 до Ti, [кДж/(кг К)],
Ti - температура рабочего тела на выходе из греющей полости конденсатора i-ой ступени, [K],
Ti-1 - температура рабочего тела на входе в греющую полость переохладителя (i-1)-ой ступени,
Figure 00000002
- энтальпия хладагента на выходе из компрессора i-ой ступени, [кДж/кг],
Figure 00000003
- энтальпия хладагента на выходе из охлаждающей полости переохладителя i-ой ступени, [кДж/кг],
z - количество ступеней многоступенчатой теплонасосной установки,
Gj - количество хладагента, проходящего через (i+1) ступень, [кг/с],
Figure 00000004
- энтальпия паровой фазы хладагента на линии сухости х=1 i-ой ступени, [кДж/кг],
Figure 00000005
- энтальпия жидкой фазы хладагента на линии сухости х=0 i-ой ступени, [кДж/кг],
i - порядковый номер ступени.
Повышение эффективности многоступенчатой теплонасосной установки связано с тем, что поддержание уровня жидкой фазы хладагента в сепараторе каждой ступени путем установки датчика уровня жидкости, связанного с исполнительным механизмом, регулирующего положение дросселя, обеспечивает постоянный расчетный уровень жидкой фазы хладагента в конденсаторе. В этом случае конденсатор работает на расчетном режиме и обеспечивает высокий расчетный КПД установки. Для того, чтобы достичь высокую эффективность работы многоступенчатой теплонасосной установки необходимо обеспечить определенные расходы хладагента, проходящих через дроссели каждой ступени, которые были выполнены с возможностью обеспечения расходов хладагента, определяемых зависимостью
Figure 00000006
На фиг. 1 представлена p-h-диаграмма цикла, в частности, трехступенчатой теплонасосной установки, по которой для определения расхода хладагента через дроссель каждой ступени находим параметры состояния хладагента (cp, Ti, Ti-1,
Figure 00000007
,
Figure 00000008
,
Figure 00000009
,). Так, например, для трехступенчатой теплонасосной установки, где в качестве хладагента применен R600, и температура хладагента на выходе из испарителя равна T0=283 К, на выходе из конденсатора первой ступени - T1=308 К, второй ступени - T2=333 К и третей ступени - T3=353 К. Установка нагревает рабочее тело (воду) от T0=283 К до T3=353 К. Теплоемкость воды - cp=4.19 кДж/(кг К). Энтальпия хладагента на выходе из компрессора 1-ой, 2-ой и 3-ей ступени
Figure 00000010
соответственно равны 640 кДж/кг, 677 кДж/кг и 702 кдж/кг.Энтальпия хладагента на выходе из охлаждающей полости переохладителя 1-ой, 2-ой и 3-ей ступени
Figure 00000011
соответственно равны 223 кДж/кг, 284.2 кДж/кг и 347.17 кДж/кг. Энтальпия паровой фазы хладагента на линии сухости х=1 0-ой, 1-ой, 2-ой и 3-ей ступени,
Figure 00000012
соответственно равны 596.5 кДж/кг, 632 кДж/кг, 667.26 кДж/кг и 694 кДж/кг. Тогда расход хладагента через дроссели 1-ой, 2-ой и 3-ей ступени соответственно равны G1=0.1694W, G2=0.257W, G3=0.236W. Таким образом, расход хладагента через компрессор первой ступени равен G1+G2+G3=0.6624W, расход хладагента через компрессор второй ступени равен G2+G3=0.493W и расход хладагента через компрессор третей ступени равен G3=0.236 W. Тогда мощности компрессоров первой, второй и третей ступени соответственно равны:
Figure 00000013
,
Figure 00000014
,
Figure 00000015
.
Коэффициент преобразования трехступенчатой установки
Figure 00000016
.
Для сравнения коэффициент преобразования одноступенчатой установки при тех же равных условиях, что и трехступенчатая, μ1=3.92, что на 20% меньше по сравнению с предложенным техническим решением. Таким образом, коэффициент преобразования трехступенчатой теплонасосной установки в заявленном техническом решении будет больше коэффициент преобразования в сравнении с одноступенчатой установки с расходом хладагент (G1+G2+G3) и, как следствие, эффективность многоступенчатой теплонасосной установки, определяемая коэффициентом преобразовании μ повысится.
На фиг. 2 представлена схема трехступенчатой теплонасосной установки, где эта установка содержит испаритель 1 с греющей полостью 2, компрессор 3 первой ступени, конденсатор 4 первой ступени с выполненными в нем охлаждающей полостью 5 и греющей полостью 6, сепаратор 7 первой ступени, переохладитель 8 хладагента первой ступени с охлаждающей полостью 9 первой ступени, с второй охлаждающей полостью 10 промежуточной второй ступени, с третей охлаждающей полостью 11 последней третей ступени и с греющей полостью 12 первой ступени. Установка так же содержит компрессор 13 промежуточной ступени, промежуточный конденсатор 14 с охлаждающей полостью 15 и греющей полостью 16, сепаратор 17 промежуточной второй ступени, переохладитель 18 промежуточной ступени с греющей полостью 19, с первой охлаждающей полостью 20 промежуточной ступени и с второй охлаждающей полостью 21 последней ступени, компрессор 22 последней ступени, конденсатор 23 последней ступени с выполненными в нем охлаждающей полостью 24 и греющей полостью 25, переохладитель 26 хладагента последней ступени с греющей полостью 27 и первой охлаждающей полостью 28. Выход жидкой фракции хладагента сепаратора 7 первой ступени последовательно сообщен с охлаждающей полостью 9 переохладителя 8 первой ступени, с дросселем 29 первой ступени, с греющей полостью 2 испарителя 1, с компрессором 3 первой ступени, с охлаждающей полостью 5 конденсатора 4 первой ступени и входом сепаратора 7 первой ступени. Выход паровой фракции хладагента сепаратора 7 первой ступени, последовательно сообщен с компрессором 13 промежуточной ступени, с охлаждающей полостью 15 промежуточного конденсатора 14, с входом промежуточного сепаратора 17. Выход жидкой фракции хладагента промежуточного сепаратора 17, последовательно сообщен с первой охлаждающей полостью 20 переохладителя 18 промежуточной ступени, с второй охлаждающей полостью 10 переохладителя 8 первой ступени, с дросселем 30 промежуточной ступени и греющей полостью 2 испарителя 1. Выход паровой фракции хладагента сепаратора 17 промежуточной ступени, последовательно сообщен с компрессором 22 последней ступени, с охлаждающей полостью 24 конденсатора 23 последней ступени, с охлаждающей полостью 28 переохладителей 26 последней ступени, с второй охлаждающей полостью 21 переохладителя 18 промежуточной ступени, с третьей охлаждающей полостью 11 переохлодителя 8 первой ступени, с дросселем 31 последней ступени и с греющей полостью 2 испарителя 1. Установка дополнительно содержит датчики 32 и 33 уровня жидкой фракции хладагента сепараторов 7 и 17 соответственно первой и второй ступени и исполнительные механизмы 34 и 35. Выходы каждого датчика 32 и 33 сообщены соответственно с входами исполнительных механизмов 34 и 35, которые подключены соответственно к дросселю 29 первой ступени и к дросселю 30 второй ступени и регулируют их положение. При этом количество хладагента, проходящего через дроссели 29, 30 и 31 каждой ступени, были выполнены с возможностью обеспечения расходов хладагента, определяемых зависимостью
Figure 00000017
Трехступенчатая теплонасосная установка работает следующим образом. Хладагент с давлением P0 из греющей полости 2 испарителя 1 с суммарным расходом (G1+G2+G2) поступает в компрессор 3, который сжимает хладагент до давления P1 при этом за счет сжатия происходит нагрев хладагента до температуры Tк1. Далее хладагент поступает в охлаждающую полость 5 конденсатора 1, где за счет отвода теплоты рабочему телу, поступающему в греющую полость 6, происходит конденсация хладагента. Из охлаждающей полости 5 парожидкостная смесь поступает в сепаратор 7, где происходит разделение смеси на жидкую и паровую фракцию. Жидкую фракцию с расходом G1, прошедшую через охлаждающую полость 9 переохладителя 8 редуцируют до давления P0 и направляют в греющую полость 2 испарителя 1, где из-за низкого давления жидкая фракция хладагента переходит в паровую фракцию за счет охлаждения низкопотенциального источника в испарителе 1. Паровая фракция хладагента с расходом (G2+G3) из сепаратора 7 поступает в компрессор 13 второй ступени, который нагнетает хладагент до давления P2. Далее хладагент под давлением P2 и с температурой PК2 последовательно поступает в охлаждающую полость 15 конденсатора 14 и сепаратор 17, где парожидкостная смесь разделяют на жидкую и паровую фракции. Жидкая фракция с расходом G2 последовательно охлаждается в охлаждающих полостях 20 и 10 и поступает в редуктор 30, который редуцирует хладагент до давления P0, далее он попадает в охлаждающую полость 2 испарителя 1. Паровая фракция хладагента с расходом G3 из сепаратора 17 последовательно поступает в компрессор 22 и с давлением ,равным P3, в охлаждающую полость 24 конденсатора 35, где из паровой фракции хладагент переходит в жидкую фракцию, в охлаждающие полости 28, 21 и 11, в редуктор 31 и греющую полость 2 испарителя 1. Рабочее тело с расходом W кг/с и температурой TB1 последовательно проходя через греющие полости 12, 6, 19, 15, 27 и 24, нагревается до температуры TB2. Так для трехступенчатой теплонасосной установки, работающей на хладагенте R-600, как показано выше, при нагревании рабочего тела от TB1=10°C до TB2=80°C коэффициент преобразования будет равен μ=4,95, что по сравнению с одноступенчатым имеет выигрыш Δμ=20%.
Таким образом, высокий коэффициент преобразовании многоступенчатой теплонасосной установки в заявленном техническом решении приводит к снижению уровеня потребления энергии работы компрессоров, что обеспечивает повышение эффективности заявленного технического решения по сравнению с известным.
Из приведенных примеров видно, что предлагаемая многоступенчатая теплонасосная установка обладает высокой эффективностью и, в частности, составляет 20%.

Claims (13)

  1. Многоступенчатая теплонасосная установка, содержащая испаритель с греющей полостью, компрессор первой ступени, конденсатор первой ступени с выполненными в нем охлаждающей полостью и греющей полостью, сепаратор первой ступени, переохладитель хладагента первой ступени с греющей полостью, с второй охлаждающей полостью промежуточной ступени, с третьей охлаждающей полостью последней ступени и с охлаждающей полостью первой ступени, компрессор промежуточной ступени, промежуточный конденсатор с охлаждающей и греющей полостями, сепаратор промежуточной ступени, переохладитель промежуточной ступени с греющей полостью, с первой охлаждающей полостью промежуточной ступени и с второй охлаждающей полостью последней ступени, компрессор последней ступени, конденсатор последней ступени с выполненными в нем охлаждающей полостью и греющей полостью, переохладитель хладагента последней ступени с греющей полостью и первой охлаждающей полостью, выход жидкой фракции хладагента сепаратора первой ступени, последовательно сообщенный с охлаждающей полостью переохладителя первой ступени, с дросселем первой ступени, с греющей полостью испарителя, с компрессором первой ступени, с охлаждающей полостью конденсатора первой ступени и входом сепаратора первой ступени, выход паровой фракции хладагента сепаратора первой ступени, последовательно сообщенный с компрессором промежуточной ступени, с охлаждающей полостью промежуточного конденсатора, с входом промежуточного сепаратора, выход жидкой фракции хладагента промежуточного сепаратора, последовательно сообщенный с первой охлаждающей полостью переохладителя промежуточной ступени, с второй охлаждающей полостью переохладителя первой ступени, с дросселем промежуточной ступени и греющей полостью испарителя, а также выход паровой фракции хладагента сепаратора промежуточной ступени, последовательно сообщенный с компрессором последней ступени, с охлаждающей полостью конденсатора последней ступени, с охлаждающей полостью переохладителей последней ступени, с второй охлаждающей полостью переохладителя промежуточной ступени, с третьей охлаждающей полостью переохладителя первой ступени, с дросселем последней ступени и с греющей полостью испарителя, отличающийся тем, что установка дополнительно содержит по меньшей мере один датчик уровня жидкой фракции хладагента сепаратора первой ступени и один исполнительный механизм, при этом выход датчика сообщен с входом исполнительного механизма, подключенного к дросселю первой ступени, и дроссели каждой ступени выполнены с возможностью обеспечения расходов хладагента, определяемых зависимостью
  2. Figure 00000018
  3. где W - расход рабочего тела, кг/с,
  4. ср - средняя изобарная теплоемкость рабочего тела в интервале температур от Ti-1 до Ti, кДж/(кг К),
  5. Ti - температура рабочего тела на выходе из греющей полости конденсатора i-й ступени, K,
  6. Ti-1 - температура рабочего тела на входе в греющую полость переохладителя (i-1)-й ступени,
  7. h_(K_i))^'' - энтальпия хладагента на выходе из компрессора i-й ступени, кДж/кг,
  8. h_(i-1)^' - энтальпия хладагента на выходе из охлаждающей полости переохладителя i-й ступени, кДж/кг,
  9. z - количество ступеней многоступенчатой теплонасосной установки,
  10. Gj - количество хладагента, проходящего через (i+1)-ю ступень, кг/с,
  11. h_i^'' - энтальпия паровой фазы хладагента на линии сухости х=1 i-й ступени, кДж/кг,
  12. h_i^' - энтальпия жидкой фазы хладагента на линии сухости х=0 i-й ступени, кДж/кг,
  13. i - порядковый номер ступени.
RU2017102563A 2017-01-26 2017-01-26 Многоступечатая теплонасосная установка RU2705696C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017102563A RU2705696C2 (ru) 2017-01-26 2017-01-26 Многоступечатая теплонасосная установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017102563A RU2705696C2 (ru) 2017-01-26 2017-01-26 Многоступечатая теплонасосная установка

Publications (3)

Publication Number Publication Date
RU2017102563A RU2017102563A (ru) 2018-08-02
RU2017102563A3 RU2017102563A3 (ru) 2019-04-29
RU2705696C2 true RU2705696C2 (ru) 2019-11-11

Family

ID=63113193

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017102563A RU2705696C2 (ru) 2017-01-26 2017-01-26 Многоступечатая теплонасосная установка

Country Status (1)

Country Link
RU (1) RU2705696C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251698A (zh) * 2021-04-29 2021-08-13 太原理工大学 适用于回收电厂余热的大温差多级压缩混合工质热泵系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289693A (en) * 1993-01-22 1994-03-01 Major Thomas O Refrigerant recovery and purification apparatus with telecommunication monitoring facilitation device
US5463876A (en) * 1994-04-04 1995-11-07 General Electric Company Control system for refrigerant metering solenoid valve
RU2239131C1 (ru) * 2003-02-26 2004-10-27 Тульский государственный университет Способ получения холода и устройства для его осуществления (варианты)
RU60187U1 (ru) * 2006-04-28 2007-01-10 Александр Иванович Кузин Теплогенераторная установка
WO2012168544A1 (en) * 2011-06-06 2012-12-13 Huurre Group Oy A multi-evaporator refrigeration circuit
RU140197U1 (ru) * 2013-04-18 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Многоступенчатая теплонасосная установка

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289693A (en) * 1993-01-22 1994-03-01 Major Thomas O Refrigerant recovery and purification apparatus with telecommunication monitoring facilitation device
US5463876A (en) * 1994-04-04 1995-11-07 General Electric Company Control system for refrigerant metering solenoid valve
RU2239131C1 (ru) * 2003-02-26 2004-10-27 Тульский государственный университет Способ получения холода и устройства для его осуществления (варианты)
RU60187U1 (ru) * 2006-04-28 2007-01-10 Александр Иванович Кузин Теплогенераторная установка
WO2012168544A1 (en) * 2011-06-06 2012-12-13 Huurre Group Oy A multi-evaporator refrigeration circuit
RU140197U1 (ru) * 2013-04-18 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Многоступенчатая теплонасосная установка

Also Published As

Publication number Publication date
RU2017102563A (ru) 2018-08-02
RU2017102563A3 (ru) 2019-04-29

Similar Documents

Publication Publication Date Title
CN101226013B (zh) 分级压缩-分段取热型蒸汽压缩式热泵
WO2009147826A1 (ja) 冷凍サイクル装置
CN110986414B (zh) 一种采用喷射器增效的多温区和大温跨热泵循环系统
CN109736909A (zh) 多能联供的压缩空气储能系统
CN106568233B (zh) 第三类热驱动压缩式热泵
CN107763850B (zh) 制取不低于100℃沸水的方法
CN105466059A (zh) 一种跨临界热泵装置
Tarique et al. Performance and economic study of the combined absorption/compression heat pump
CN103206802B (zh) 一种脉管膨胀机
RU2705696C2 (ru) Многоступечатая теплонасосная установка
CN205261964U (zh) 一种跨临界热泵装置
CN108954884A (zh) 一种冷热双制螺杆压缩机组
CN1912496A (zh) 以水为工质的蒸汽压缩式热泵
CN113251698A (zh) 适用于回收电厂余热的大温差多级压缩混合工质热泵系统
CN112648733A (zh) 分级分压模块化热能提升系统及其控制方法
CN106352586A (zh) 一种双机头热源塔热泵机组
CN108626900A (zh) 一种带有膨胀增压的双级压缩制冷系统
CN110887265B (zh) 内循环叠加热泵系统、控制方法及热泵烘干机
CN213984122U (zh) 一种能势耦合超级热泵
CN205225742U (zh) 一种具有有机朗肯循环的螺杆压缩机系统
US20220341632A1 (en) Low compression ratio refrigeration system with low-pressure booster
CN109708337B (zh) 多级串联压缩式热泵机组
RU140197U1 (ru) Многоступенчатая теплонасосная установка
Doménech et al. Experimental energetic analysis of the liquid injection effect in a two-stage refrigeration facility using a compound compressor
CN203531985U (zh) 双级全流螺杆膨胀机有机朗肯循环系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200127