WO2012165573A1 - 超音波プローブ - Google Patents
超音波プローブ Download PDFInfo
- Publication number
- WO2012165573A1 WO2012165573A1 PCT/JP2012/064144 JP2012064144W WO2012165573A1 WO 2012165573 A1 WO2012165573 A1 WO 2012165573A1 JP 2012064144 W JP2012064144 W JP 2012064144W WO 2012165573 A1 WO2012165573 A1 WO 2012165573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric vibrator
- groove
- ultrasonic probe
- layer
- grooves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/002—Devices for damping, suppressing, obstructing or conducting sound in acoustic devices
Definitions
- Embodiments of the present invention relate to an ultrasonic probe.
- an ultrasonic diagnostic apparatus that scans the inside of a subject with ultrasonic waves and images the internal state of the subject based on a reception signal that is a reflected wave from the inside of the subject.
- Such an ultrasonic diagnostic apparatus transmits an ultrasonic wave from an ultrasonic probe into a subject, receives a reflected wave caused by an acoustic impedance mismatch inside the subject, and generates a reception signal.
- the direction orthogonal to the transmission / reception direction of ultrasonic waves may be referred to as a lens direction, a slice direction, or an elevation direction.
- the direction orthogonal to the ultrasonic transmission / reception direction and the lens direction may be referred to as an array direction.
- the ultrasonic probe has a piezoelectric vibrator that generates an ultrasonic wave by vibrating based on a transmission signal and generates a reception signal by receiving a reflected wave.
- a piezoelectric vibrator having a plurality of elements arranged in the array direction is called a one-dimensional array ultrasonic vibrator.
- the weighting technique may be referred to as a weighting technique.
- the weighting technique if the groove processing is performed on a brittle piezoelectric vibrator such as a ceramic that is not sufficiently strong, the reliability of the piezoelectric element 3 such that the piezoelectric vibrator is damaged is reduced. Yes. Further, there are problems that the cost is increased due to the processability of the piezoelectric vibrator and that the groove processing is limited, so that sufficient and ideal weighting is difficult.
- This embodiment is to solve the above-described problem, and an object thereof is to provide an ultrasonic probe that is inexpensive and weighted with high reliability.
- the ultrasonic probe of the embodiment includes a piezoelectric vibrator and a layer, and the piezoelectric vibrator transmits and receives ultrasonic waves.
- the layer is bonded to the back surface of the piezoelectric vibrator on the side opposite to the ultrasonic wave transmitting / receiving surface, has a larger acoustic impedance than the piezoelectric vibrator, and is arranged so that the groove opening faces the back surface of the piezoelectric vibrator.
- the plurality of grooves are formed so as to increase the ratio of the groove volume to the layer volume in the direction from the center to the end of the back surface of the piezoelectric vibrator.
- the ultrasonic probe includes the piezoelectric vibrator 3 and the intermediate layer 8 having an acoustic impedance larger than that, thereby having a structure in which the thickness of the piezoelectric vibrator 3 is 1 ⁇ 4 of the wavelength ⁇ of the ultrasonic wave (hereinafter, referred to as “ultrasonic probe”). ⁇ / 4 vibration structure).
- the intermediate layer 8 is also referred to as a hard back.
- the transmission / reception sensitivity is weighted by grooving the intermediate layer 8 having higher strength and excellent workability.
- the back surface of the intermediate layer 8 is a surface located opposite to the surface of the intermediate layer 8 on the piezoelectric vibrator 3 side.
- a groove 9 having a depth from the surface on the piezoelectric vibrator 3 side to the middle of the thickness of the intermediate layer 8 is formed (see FIG. 1).
- a groove 9 having a depth from the back surface of the intermediate layer 8 to the end surface on the piezoelectric vibrator 3 side is formed (see FIG. 4).
- a groove 9 having a depth from the back surface of the intermediate layer 8 to the middle of the thickness of the piezoelectric vibrator 3 is formed (see FIG. 5). At this time, the depth of the groove 9 of the piezoelectric vibrator 3 may be shallower than the depth of the groove 9 of the comparative example (see FIG. 7).
- FIG. 1 is a cross-sectional view when the ultrasonic probe is cut from the lens direction
- FIG. 2 is a cross-sectional view when the ultrasonic probe is cut in the array direction.
- a one-dimensional sector array probe will be described as a typical example of the ultrasonic probe.
- the ultrasonic probe has a backing material 1, a signal extraction substrate 2, a piezoelectric vibrator 3, an acoustic matching layer, an acoustic lens 7, and an intermediate layer 8.
- the signal drawing board 2 may be referred to as FPC (FlexibleFlexPrint Circuit).
- a plurality of piezoelectric vibrators 3 are provided on a known back material (not shown), a known acoustic matching layer is provided on the piezoelectric vibrator 3, and an FPC (not shown) is further provided on the acoustic matching layer.
- a known acoustic lens 7 is provided. That is, the backing material 1, the piezoelectric vibrator 3, the acoustic matching layer, the FPC, and the acoustic lens 7 are laminated in this order.
- the surface on which the acoustic matching layer is provided is the ultrasonic radiation surface side, and the surface opposite to the surface (the surface on which the back material 1 is provided) is the back surface side.
- a common (GND) electrode is connected to the radiation surface side of the piezoelectric vibrator 3, and a signal electrode is connected to the back surface side.
- An intermediate layer 8 is provided on the back side of the piezoelectric vibrator 3, an FPC 2 is provided below the intermediate layer 8, and a back material 1 is provided below the FPC 2. Details of the intermediate layer 8 will be described later.
- an acoustic / electric reversible conversion element such as a piezoelectric ceramic
- a ceramic material such as lead titanate zirconate Pb (Zr, Ti) O 3 , lithium niobate (LiNbO 3 ), barium titanate (BaTiO 3 ), or lead titanate (PbTiO 3 ) is preferably used.
- the acoustic matching layer is provided to improve the acoustic matching between the acoustic impedance of the ultrasonic transducer and the acoustic impedance of the subject.
- the acoustic matching layer may be only one layer or two layers, and the first acoustic matching layer 4, the second acoustic matching layer 5, and the third acoustic matching layer 6 as in the present embodiment. Three or more layers may be used.
- Back material 1 prevents the propagation of ultrasonic waves from the ultrasonic transducer to the rear.
- the backing material 1 also attenuates and absorbs ultrasonic vibration components that are not necessary for image extraction of an ultrasonic diagnostic apparatus (not shown) among ultrasonic vibrations oscillated from the piezoelectric wave vibrator 3 and ultrasonic vibrations at the time of reception.
- a material obtained by mixing inorganic particles such as tungsten, ferrite, and zinc oxide into synthetic rubber, epoxy resin, urethane rubber, or the like is used for the backing material 1.
- an intermediate layer 8 is disposed between the back surface of the piezoelectric vibrator 3 and the FPC 2.
- the intermediate layer 8 is made of a material having an acoustic impedance larger than that of the piezoelectric vibrator 3 (about 30 Mrayl) and a Young's modulus larger than that of the piezoelectric vibrator 3 (about 50 GPa), that is, a harder material.
- the intermediate layer 8 As an example of a material used for the intermediate layer 8, gold, lead, tungsten, sapphire, cemented carbide or the like is used. By forming the intermediate layer 8 from these materials, it becomes easy to form the grooves 9 in the intermediate layer 8.
- the intermediate layer 8 is provided with a conductive member.
- a conductive member As an example of the member having conductivity, gold, lead, tungsten, cemented carbide or the like is used.
- the conductive member can connect the lower electrode of the piezoelectric vibrator 3 and the FPC 2 through the intermediate layer 8.
- the intermediate layer 8 is provided with a plurality of grooves 9 for weighting.
- the plurality of grooves 9 are arranged so that the groove openings face the back surface of the piezoelectric vibrator 3.
- the plurality of grooves 9 is a direction in which the volume of the grooves 9 occupies the volume of the intermediate layer 8 from the center to the end of the back surface of the piezoelectric vibrator 3 (lens direction, slice direction). Formed to increase.
- the plurality of grooves 9 are formed based on any of the following specific examples.
- the intermediate layer 8 is assumed to have a certain thickness.
- the width refers to the length in the lens direction.
- the depth refers to the length in the direction orthogonal to the lens direction and the array direction (transmission / reception direction of ultrasonic waves).
- Example 4 The plurality of grooves 9 are formed by a combination of any two or more of Examples 1 to 3.
- a groove 9 that does not penetrate the intermediate layer 8 is formed by machining.
- the surface of the intermediate layer 8 on which the groove 9 is formed and the back surface of the piezoelectric vibrator 3 are laminated. Further, the FPC 2 and the back material 1 are bonded to the back surface of the intermediate layer 8.
- a general example of bonding is adhesive bonding using an epoxy adhesive or the like.
- the epoxy resin is filled between the grooves 9 of the intermediate layer 8. Since the intermediate layer 8 grooved independently is joined to the FPC 2 thereafter, it is easy to process. Further, since the groove 9 is filled with the epoxy resin agent, the adhesive strength of the intermediate layer 8 is improved by the anchor effect in the groove 9.
- an acoustic matching layer (first acoustic matching layer 4, second acoustic matching layer 5, and third acoustic matching layer 6) is laminated on the acoustic radiation surface side of the piezoelectric vibrator 3. After this laminated structure is made into an element array by dicing from the acoustic matching layer side, an acoustic lens 7 is joined to complete the ultrasonic probe.
- FIG. 3 is a diagram illustrating a result of acoustic simulation of the ultrasonic probe (maximum transmission sound pressure value).
- the maximum value of the transmitted sound pressure on the surface of the third matching layer when the piezoelectric vibrator 3 is vibrated with an impulse waveform and the medium is water is plotted.
- the groove 9 is formed as shown in Example 1.
- the vertical axis indicates decibel [dB]
- the horizontal axis indicates the position [mm] from the center to the end in the lens direction.
- the position of the central portion is represented by 0 [mm]
- the positions of the end portions are represented by 6 [mm] and ⁇ 6 [mm].
- the depth value of the groove 9 with respect to the thickness of the intermediate layer 8 is represented by “0”, “1/7”, “1/2”, “9/10”.
- FIG. 4 is a cross-sectional view of the ultrasonic probe according to the second embodiment when cut in the lens direction.
- the basic configuration of the ultrasonic probe is the same as that of the first embodiment.
- the groove 9 of the intermediate layer 8 is formed so as not to penetrate the thickness of the intermediate layer 8 from the piezoelectric vibrator 3 side, but here, a case of penetration will be described.
- the predetermined groove 9 is formed from the intermediate layer 8 side after the piezoelectric vibrator 3 and the intermediate layer 8 are bonded first, or the predetermined groove is formed from the intermediate layer 8 side after the FPC 2 and the intermediate layer 8 are bonded first. 9 is formed.
- the subsequent manufacturing method is the same as in the first embodiment.
- the value of the depth of the groove 9 with respect to the thickness of the intermediate layer 8 is shown as “1/1”.
- the influence by the groove 9 processed so as to penetrate the thickness of the intermediate layer 8 was confirmed.
- the sensitivity at the end (5 [mm], ⁇ 5 [mm]) in the lens direction with respect to the center (0 [mm]) decreases, and the effect of weighting the transmission sensitivity increases.
- FIG. 5 is a cross-sectional view of the ultrasonic probe cut in the lens direction.
- the basic configuration of the ultrasonic probe according to the third embodiment is the same as that of the first embodiment.
- the groove 9 is formed only in the intermediate layer 8, but here the groove 9 including the piezoelectric vibrator 3 is formed.
- a predetermined groove 9 is formed from the intermediate layer 8 after the piezoelectric vibrator 3 and the intermediate layer 8 are bonded first.
- the subsequent manufacturing method is the same as in the first embodiment.
- FIG. 6 is a diagram illustrating a result of acoustic simulation of the ultrasonic probe (maximum transmission sound pressure value).
- the vertical axis indicates decibel [dB]
- the horizontal axis indicates the position from the center to the end in the lens direction.
- the center position is represented by 0, and the end positions by 6 and -6.
- the values of the depth of the groove 9 of the piezoelectric vibrator 3 with respect to the thickness of the piezoelectric vibrator 3 are represented by “1/20”, “1/4”, “1/2”, and “1/1”.
- FIG. 7 is a cross-sectional view of an ultrasonic probe as a comparative example cut in the lens direction.
- the configuration of the comparative example is different from the above embodiment in that the intermediate layer 8 is not provided and the groove 9 is processed only in the piezoelectric vibrator 3.
- the groove 9 to be processed into the piezoelectric vibrator 3 has an end in the lens direction from the center of the piezoelectric vibrator 3 by changing the width, depth, and pitch of the groove 9.
- the groove 9 is formed so as to increase the proportion of the volume of the groove 9 with respect to the volume of the piezoelectric vibrator 3. Thereby, the piezoelectric vibrator 3 can be weighted in the slice direction (lens direction).
- FIG. 8 is a diagram illustrating an acoustic simulation result of the ultrasonic probe according to the comparative example.
- the maximum value of the transmitted sound pressure on the surface of the third acoustic matching layer 6 when the piezoelectric vibrator 3 is driven to an impulse waveform and the medium is water is plotted. From the acoustic simulation result, the influence of the depth of the groove 9 was confirmed.
- the vertical axis represents decibel [dB]
- the horizontal axis represents the position [mm] from the center to the end in the lens direction.
- the position of the central portion is represented by 0 [mm]
- the end portion is represented by 6 [mm] -6 [mm].
- the depth value of the groove 9 with respect to the thickness of the piezoelectric vibrator 3 is represented by “1/20”, “1/4”, “1/2”, and “1/1”.
- the depth of the groove 9 formed in the piezoelectric vibrator 3 according to the embodiment is, for example, “9/10” (first embodiment), “1/1” (second embodiment). ),
- the transmission sensitivity at the end portions (5 [mm], ⁇ 5 [mm]) is about ⁇ 4.5 [dB], respectively.
- the depth of the groove 9 formed in the piezoelectric vibrator 3 of the comparative example is “1/1”, for example, end portions (5 [mm], ⁇ 5 [mm])
- the transmission sensitivity is about ⁇ 5.5 [dB].
- the piezoelectric vibrator 3 is not damaged and the reliability of the piezoelectric vibrator 3 can be improved. Moreover, since the restrictions on workability with respect to the piezoelectric vibrator 3 are relaxed, the cost can be reduced.
- the transmission sensitivities are about -4 [dB] and -5 [dB], respectively.
- the depth of the groove 9 formed in the piezoelectric vibrator 3 of the comparative example is “1/1”, for example, end portions (5 [mm], ⁇ 5 [mm])
- the transmission sensitivity is about ⁇ 5.5 [dB].
- the depth of the groove 9 formed in the piezoelectric vibrator 3 may be shallow, so that the piezoelectric vibrator 3 is damaged. Therefore, it is possible to increase the reliability of the piezoelectric vibrator 3. Moreover, since the restrictions on workability with respect to the piezoelectric vibrator 3 are relaxed, the cost can be reduced.
- the piezoelectric vibrator 3 is not grooved, and the piezoelectric vibrator 3 is not damaged by the groove machining, so that the reliability of the piezoelectric vibrator 3 can be improved. It becomes possible. Moreover, since the restriction of the groove processing is relaxed, the intermediate layer 8 can be grooved with a narrower pitch than the groove processing of the comparative example, so that sufficient weighting is possible.
- the depth of the groove 9 formed in the piezoelectric vibrator 3 is shallower than the depth of the groove 9 formed in the piezoelectric vibrator 3 of the comparative example, it is equivalent to the comparative example.
- the weighting effect can be obtained and the groove 9 can be shallow, so that the piezoelectric vibrator 3 is prevented from being damaged when the groove is machined, and the reliability of the piezoelectric vibrator 3 can be improved.
- the depth of the groove 9 to be formed is constant.
- the depth is not necessarily limited.
- the depth of the groove 9 formed at the center portion and the end portion of the intermediate layer 8 is different. Also good.
- the transmission intensity is described as the acoustic simulation result.
- the reception sensitivity is weighted similarly to the transmission sensitivity. It is thought that will be done.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Mechanical Engineering (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201280004054.4A CN103298409B (zh) | 2011-06-02 | 2012-05-31 | 超声波探头 |
| US13/885,897 US9566612B2 (en) | 2011-06-02 | 2012-05-31 | Ultrasonic probe |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011123922A JP5725978B2 (ja) | 2011-06-02 | 2011-06-02 | 超音波プローブ |
| JP2011-123922 | 2011-06-02 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012165573A1 true WO2012165573A1 (ja) | 2012-12-06 |
Family
ID=47259425
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2012/064144 Ceased WO2012165573A1 (ja) | 2011-06-02 | 2012-05-31 | 超音波プローブ |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US9566612B2 (enExample) |
| JP (1) | JP5725978B2 (enExample) |
| CN (1) | CN103298409B (enExample) |
| WO (1) | WO2012165573A1 (enExample) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR3026734B1 (fr) * | 2014-10-02 | 2023-01-06 | Commissariat Energie Atomique | Structure mecanique comprenant un actionneur et des moyens d'amplification mecanique et procede de fabrication |
| WO2020079855A1 (ja) | 2018-10-19 | 2020-04-23 | オリンパス株式会社 | 超音波プローブ及び超音波内視鏡 |
| JP7367360B2 (ja) * | 2019-07-17 | 2023-10-24 | コニカミノルタ株式会社 | 超音波プローブ、超音波プローブの製造方法および超音波診断装置 |
| JP7415785B2 (ja) * | 2020-05-14 | 2024-01-17 | コニカミノルタ株式会社 | 超音波探触子及び超音波診断装置 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03151948A (ja) * | 1989-11-10 | 1991-06-28 | Terumo Corp | 超音波探触子 |
| JPH0730999A (ja) * | 1993-06-15 | 1995-01-31 | Hewlett Packard Co <Hp> | 超音波プローブ |
| JPH1170111A (ja) * | 1997-05-07 | 1999-03-16 | General Electric Co <Ge> | 超音波トランスデューサ・アレイ及び超音波イメージング・システム |
| JP2006313977A (ja) * | 2005-05-06 | 2006-11-16 | Sumitomo Electric Ind Ltd | 複合圧電材料およびその製造方法 |
| JP2010502297A (ja) * | 2006-09-01 | 2010-01-28 | ゼネラル・エレクトリック・カンパニイ | 低輪郭音響トランスデューサ組立体 |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2615132B2 (ja) * | 1988-05-19 | 1997-05-28 | 富士通株式会社 | 超音波探触子 |
| US5212671A (en) * | 1989-06-22 | 1993-05-18 | Terumo Kabushiki Kaisha | Ultrasonic probe having backing material layer of uneven thickness |
| JP2917473B2 (ja) * | 1990-09-19 | 1999-07-12 | 富士電機株式会社 | 電子写真用感光体 |
| JP2000271116A (ja) * | 1999-03-23 | 2000-10-03 | Aloka Co Ltd | 超音波探触子 |
| JP4610790B2 (ja) * | 2001-05-30 | 2011-01-12 | セイコーインスツル株式会社 | 圧電トランスデューサの製造方法 |
| US6859984B2 (en) * | 2002-09-05 | 2005-03-01 | Vermon | Method for providing a matrix array ultrasonic transducer with an integrated interconnection means |
| JP4338568B2 (ja) * | 2004-03-30 | 2009-10-07 | アロカ株式会社 | 超音波探触子及び超音波診断装置 |
| JP4795707B2 (ja) * | 2004-04-16 | 2011-10-19 | 株式会社東芝 | 超音波プローブおよび超音波診断装置 |
| JP2005328507A (ja) * | 2004-04-16 | 2005-11-24 | Toshiba Corp | 超音波プローブ及び超音波診断装置 |
| US7348712B2 (en) * | 2004-04-16 | 2008-03-25 | Kabushiki Kaisha Toshiba | Ultrasonic probe and ultrasonic diagnostic apparatus |
| CN1969763A (zh) | 2004-06-15 | 2007-05-30 | 株式会社东芝 | 吸声衬垫组合物、超声波探针及超声波诊断装置 |
| US20080238259A1 (en) * | 2007-04-02 | 2008-10-02 | Fujifilm Corporation | Ultrasonic probe and production method thereof |
| JP2009082612A (ja) * | 2007-10-02 | 2009-04-23 | Toshiba Corp | 超音波探触子及び圧電振動子 |
| KR101269459B1 (ko) * | 2011-12-13 | 2013-05-30 | 삼성전자주식회사 | 초음파 프로브 및 그 제조방법 |
| KR101354604B1 (ko) * | 2012-01-16 | 2014-01-23 | 삼성메디슨 주식회사 | 초음파 프로브 및 그 제조방법 |
-
2011
- 2011-06-02 JP JP2011123922A patent/JP5725978B2/ja active Active
-
2012
- 2012-05-31 US US13/885,897 patent/US9566612B2/en active Active
- 2012-05-31 WO PCT/JP2012/064144 patent/WO2012165573A1/ja not_active Ceased
- 2012-05-31 CN CN201280004054.4A patent/CN103298409B/zh active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03151948A (ja) * | 1989-11-10 | 1991-06-28 | Terumo Corp | 超音波探触子 |
| JPH0730999A (ja) * | 1993-06-15 | 1995-01-31 | Hewlett Packard Co <Hp> | 超音波プローブ |
| JPH1170111A (ja) * | 1997-05-07 | 1999-03-16 | General Electric Co <Ge> | 超音波トランスデューサ・アレイ及び超音波イメージング・システム |
| JP2006313977A (ja) * | 2005-05-06 | 2006-11-16 | Sumitomo Electric Ind Ltd | 複合圧電材料およびその製造方法 |
| JP2010502297A (ja) * | 2006-09-01 | 2010-01-28 | ゼネラル・エレクトリック・カンパニイ | 低輪郭音響トランスデューサ組立体 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130241350A1 (en) | 2013-09-19 |
| CN103298409A (zh) | 2013-09-11 |
| JP2012249777A (ja) | 2012-12-20 |
| US9566612B2 (en) | 2017-02-14 |
| JP5725978B2 (ja) | 2015-05-27 |
| CN103298409B (zh) | 2016-03-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3556582B2 (ja) | 超音波診断装置 | |
| KR102044705B1 (ko) | 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법 | |
| JP3625564B2 (ja) | 超音波探触子及びその製造方法 | |
| CN101909230A (zh) | 金属与压电陶瓷和聚合物复合材料宽带水声换能器 | |
| WO2012157769A1 (ja) | 超音波トランスデューサ、超音波プローブおよび超音波トランスデューサの製造方法 | |
| EP1728563B1 (en) | Ultrasonic probe and ultrasonic probe manufacturing method | |
| CN102727252A (zh) | 超声波探头以及超声波探头的制造方法 | |
| JP5725978B2 (ja) | 超音波プローブ | |
| JP2009082612A (ja) | 超音波探触子及び圧電振動子 | |
| WO2012169568A1 (ja) | 超音波プローブ | |
| JP2012249777A5 (enExample) | ||
| US8717848B2 (en) | Ultrasound probe | |
| KR20220097531A (ko) | 다중 주파수 트랜스듀서 어레이 제조를 위한 방법들 및 시스템들 | |
| JP4134911B2 (ja) | 超音波送受波器、及びその製造方法 | |
| JP4764057B2 (ja) | 超音波プローブ及びその製造方法 | |
| US6359375B1 (en) | Method to build a high bandwidth, low crosstalk, low EM noise transducer | |
| KR20070056987A (ko) | 초음파 프로브와 그 제조 방법 | |
| US6333590B1 (en) | Ultrasonic transducer having laminate structure, ultrasonic probe and production method thereof | |
| JP2024141458A (ja) | 超音波探触子 | |
| JP4291500B2 (ja) | 広帯域送受波器 | |
| KR101898312B1 (ko) | 글라스-세라믹 레이어를 음향 매칭 레이어로 포함하는 초음파 트랜스듀서 어레이 | |
| EP4620582A1 (en) | Ultrasound probe | |
| JPH11146492A (ja) | 超音波探触子 | |
| KR20170064830A (ko) | 상이한 음향 임피던스의 물질들로 구성된 후면층을 갖는 초음파 변환자 및 그 제조 방법 | |
| JP2007124220A (ja) | 超音波探触子及び超音波診断装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201280004054.4 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12794097 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13885897 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 12794097 Country of ref document: EP Kind code of ref document: A1 |