WO2012165563A1 - 酸化物超電導薄膜および超電導限流器 - Google Patents

酸化物超電導薄膜および超電導限流器 Download PDF

Info

Publication number
WO2012165563A1
WO2012165563A1 PCT/JP2012/064123 JP2012064123W WO2012165563A1 WO 2012165563 A1 WO2012165563 A1 WO 2012165563A1 JP 2012064123 W JP2012064123 W JP 2012064123W WO 2012165563 A1 WO2012165563 A1 WO 2012165563A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
intermediate layer
superconducting
substrate
oxide
Prior art date
Application number
PCT/JP2012/064123
Other languages
English (en)
French (fr)
Inventor
甫 笠原
則夫 松井
松井 正和
直人 江戸
健吾 中尾
俊弥 熊谷
高明 真部
貢 相馬
Original Assignee
古河電気工業株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 独立行政法人産業技術総合研究所 filed Critical 古河電気工業株式会社
Priority to US14/123,083 priority Critical patent/US9159898B2/en
Priority to EP12792464.5A priority patent/EP2717274A4/en
Priority to JP2013518168A priority patent/JP6090794B2/ja
Publication of WO2012165563A1 publication Critical patent/WO2012165563A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide
    • H10N60/858Multi-layered structures, e.g. superlattices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming superconductor layers
    • H10N60/0576Processes for depositing or forming superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to an oxide superconducting thin film and a superconducting fault current limiter.
  • the oxide superconductor to be deposited is represented by, for example, a composition formula of RE-based superconductor (RE: rare earth element) that exhibits a superconducting phenomenon at a liquid nitrogen temperature (77 K) or higher, particularly YBa 2 Cu 3 O 7- ⁇ .
  • RE rare earth element
  • YBCO Yttrium-based superconductor
  • Such oxide superconducting thin films using RE-based superconductors are expected to be applied to superconducting current limiters, cables, and SMES (superconducting energy storage devices), and RE-based superconductors and their manufacturing methods are attracting much attention. Collecting.
  • Jc characteristic critical current density characteristic
  • Japanese Patent Laid-Open No. 2003-37304 discloses a method for producing an oxide superconducting thin film formed on a sapphire substrate, in which a CeO 2 buffer layer is formed on an R-plane sapphire substrate, and then this CeO 2 buffer layer is formed. It is disclosed that the lattice mismatch between the oxide superconductor thin film and the buffer layer can be alleviated by forming LaAlO 3 as a graded layer and then forming an EBCO thin film on the graded layer.
  • Japanese Patent Laid-Open No. 2002-150855 discloses an oxide buffer layer formed on the surface of a polycrystalline metal substrate having a texture oriented in the ⁇ 100 ⁇ ⁇ 001> direction, and formed on the oxide buffer layer.
  • a superconducting wire comprising an oxide superconducting layer, wherein the oxide buffer layer is composed of two layers.
  • a second oxide buffer layer is formed on the physical buffer layer. It is described that an oxide superconducting film having stable crystallinity over the entire length can be realized by forming an oxide buffer layer by these two layers.
  • Japanese Patent Application Laid-Open No. 2003-188427 discloses that the first and second oxide superconducting layers forming a Josephson junction formed on the substrate and the wiring portions of the first and second oxide superconducting layers are separated.
  • the oxide interlayer insulating layer has an interlayer insulating layer having a thickness of about 300 nm or more and capable of flat epitaxial growth with the oxide superconducting layer, and having a relative dielectric constant ⁇ r of 40 or less at an operating temperature of about 40 K or less.
  • a superconducting element having a small wiring capacity and suitable for high-speed operation is disclosed.
  • the Jc characteristic tends to improve as the thickness of the intermediate layer is reduced, but when the average thickness of the intermediate layer is in a thin range of 20 nm or less.
  • FIG. 4A when the superconducting layer 136 is further formed on the surface of the intermediate layer 134 formed on the substrate 132, as shown in FIG. There was something to do.
  • the intermediate layer 134 is formed into an island shape, a hole 138 reaching the substrate is formed in the intermediate layer 134, and a reaction between the superconducting layer 136 and the substrate 132 occurs through the hole 138.
  • Jc of the oxide superconducting thin film is formed. The properties were significantly degraded.
  • the present invention has been made in view of the above facts, and even when the average film thickness of the intermediate layer is in the range of 20 nm or less, the oxide superconducting thin film having good Jc characteristics, and the superconducting provided with the oxide superconducting thin film The purpose is to provide a current limiting device.
  • a substrate an intermediate layer having an average film thickness of 10 nm or more and 20 nm or less and a surface roughness Ra of 0.5 nm or less on the substrate, and an oxide superconductor on the surface of the intermediate layer
  • An oxide superconducting thin film comprising, in this order, a superconducting layer containing as a main component.
  • ⁇ 2> The oxide superconducting thin film according to ⁇ 1>, wherein the intermediate layer includes CeO 2 , and a numerical value obtained by averaging a valence ratio of the Ce element is 3.7 or more and 3.95 or less.
  • the intermediate layer includes MgO having an NaCl-type crystal structure, and a numerical value obtained by averaging a valence ratio of the Mg element is 1.85 or more and 1.95 or less. Oxide superconducting thin film.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the intermediate layer is provided on a surface of the substrate, and has a location where dislocation occurs at an interface of the substrate with the intermediate layer. Oxide superconducting thin film.
  • the oxide superconductor is represented by a composition formula REBa 2 Cu 3 O 7- ⁇ (RE is a single rare earth element or a plurality of rare earth elements, and ⁇ is an oxygen nonstoichiometric amount).
  • RE is a single rare earth element or a plurality of rare earth elements
  • is an oxygen nonstoichiometric amount.
  • ⁇ 6> The oxide superconducting thin film according to any one of ⁇ 1> to ⁇ 5>, wherein the substrate is a sapphire substrate.
  • a superconducting fault current limiter comprising: a superconducting current limiting element configured by forming an electrode on the superconducting layer of the oxide superconducting thin film described above and connected to the current introduction / exit section in the sealed container.
  • the present invention it is possible to provide an oxide superconducting thin film having good Jc characteristics even when the average thickness of the intermediate layer is 20 nm or less, and a superconducting fault current limiter including the oxide superconducting thin film. it can.
  • FIG. 1 is a schematic configuration diagram of a superconducting fault current limiter 10 according to an embodiment of the present invention.
  • the superconducting fault current limiter 10 uses a superconducting-normal state transitions (S / N transition) of a superconductor, and normally has zero resistance and an overcurrent exceeding a critical current flows. This is a device with high resistance and a function to suppress overcurrent.
  • the superconducting fault current limiter 10 includes a sealed container 12 that is sealed by closing a container body 12A with a lid 12B.
  • a refrigerator 14 is connected to the container body 12 ⁇ / b> A, and liquid nitrogen is introduced into the sealed container 12 from the refrigerator 14.
  • the lid 12B is connected to a current introduction / extraction portion 16 that introduces and flows out current from the outside to the inside of the sealed container 12.
  • the current introduction / extraction unit 16 is configured by a three-phase AC circuit, and specifically includes three current introduction units 16A and three current outflow units 16B corresponding thereto.
  • Each of the current introduction portion 16A and the current outflow portion 16B includes a conducting wire 18 that penetrates the lid 12B and extends in the vertical direction, and a cylindrical body 20 that covers the conducting wire 18.
  • One end of the conducting wire 18 of the current introduction portion 16A exposed to the outside is connected to one end of the corresponding conducting wire 18 of the current outflow portion 16B exposed to the outside via an external resistor 22 as a shunt resistor.
  • An element storage container 24 is supported on an end portion of each cylindrical body 20 inside the container main body 12A.
  • the element storage container 24 is built in the sealed container 12 and cooled to the inside by liquid nitrogen filled in the sealed container 12.
  • a current limiting unit 26 composed of a plurality of thin film superconducting elements 30 is incorporated.
  • the current limiting unit 26 is configured by three sets in which the thin film superconducting elements 30 are arranged in four rows and two columns.
  • This current limiting unit 26 is supported by the other end inside the conducting wire 18 of the current introducing portion 16A, the other end inside the conducting wire 18 of the current outflow portion 16B, and the support column 28, and is a three-phase alternating current.
  • the other end inside the conducting wire 18 of the current introducing portion 16A and the other end inside the conducting wire 18 of the current outflow portion 16B are electrically connected via the thin film superconducting element 30 so as to constitute a circuit. It is connected to the.
  • FIG. 2 is a diagram showing a cross-sectional structure of the thin film superconducting element 30 according to the embodiment of the present invention.
  • the thin film superconducting element 30 has a laminated structure in which an intermediate layer 34, a superconducting layer 36, and a protective layer 38 are sequentially formed on a substrate 32.
  • a pair of electrodes 40 that are electrically connected to the conductive wire 18 described above are disposed.
  • the substrate 32, the intermediate layer 34, and the superconducting layer 36 in FIG. 2 constitute the oxide superconducting thin film 100 according to the embodiment of the present invention.
  • the intermediate layer 34 is a layer formed on the substrate 32 in order to achieve high in-plane orientation in the superconducting layer 36.
  • middle layer 34 is 10 nm or more and 20 nm or less, More preferably, it is 10 nm or more and 15 nm or less from a viewpoint of improving a Jc characteristic more.
  • the average film thickness of the intermediate layer 34 is measured by the following method. That is, the intermediate layer 34 is formed by vapor deposition or the like while a part of the surface of the substrate 32 is covered with a mask, and then the mask is removed, and a step gauge is used to measure the step between the masked portion and the unmasked portion. The film thickness can be obtained by using and measuring.
  • the film thickness of the intermediate layer 34 is very thin, it may be calculated by estimating the film thickness by proportional calculation from the film thickness of the intermediate layer formed by performing vapor deposition for several times the usual time.
  • the average film thickness is calculated as an average value of arbitrary 10 points measured by the above method.
  • the intermediate layer becomes a large number of small lumps. There was a case.
  • the intermediate layer became island-like, a hole reaching the substrate was formed in the intermediate layer, and a reaction between the superconducting layer and the substrate occurred through the hole, and as a result, the Jc characteristic of the oxide superconducting thin film was significantly lowered.
  • the average film thickness of the intermediate layer 34 is 10 nm or more and 20 nm or less as described above, and the surface roughness Ra of the surface opposite to the substrate 32, that is, the surface in contact with the superconducting layer 36 is 0. 5 nm or less. In addition, More preferably, it is 0.3 nm or less, Especially preferably, it is 0.2 nm or less. Further, the lower limit value of the surface roughness Ra of the surface of the intermediate layer 34 in contact with the superconducting layer 36 is preferably 0.03 nm or more, and more preferably 0.05 nm or more.
  • the surface roughness Ra of the intermediate layer 34 is extremely flattened to 0.5 nm or less, the contact area with the superconducting layer 36 formed on the surface is reduced, and the material constituting the intermediate layer 34 and the superconducting material can be reduced.
  • Reaction with the substances constituting the layer 36 for example, when CeO 2 is used as the intermediate layer 34 and YBCO is used as the superconducting layer 36, generation of BaCeO 3 which is a reaction product of Ce and Ba
  • the crystal structure constituting the intermediate layer 34 and the crystal structure constituting the superconducting layer 36 are firmly adhered to each other, and the substance constituting the intermediate layer 34 tends to form a small lump. It is presumed that the conversion will be suppressed.
  • the surface roughness Ra of the intermediate layer 34 is measured using an AFM (Atomic Force Microscope). Since the surface roughness Ra of the intermediate layer 34 is extremely small, it is necessary to measure in an environment in which mechanical vibration is sufficiently suppressed and charging is suppressed in measurement by AFM. Also, it is desirable to replace the AFM cantilever frequently in order to avoid wear.
  • AFM Anatomic Force Microscope
  • composition as the substance constituting the intermediate layer 34 is not particularly limited, include MgO with for example a crystal structure of CeO 2 and NaCl type.
  • the average value of the ratio of the valences of the Ce element is preferably 3.7 or more and 3.95 or less. Further, when MgO having a NaCl-type crystal structure is included, it is preferable that a numerical value obtained by averaging the valence ratio of the Mg element is 1.85 or more and 1.95 or less.
  • the valence (numerical value of the valence ratio) in the element is less than or equal to the upper limit, it is presumed that the bonds between the substances constituting the intermediate layer 34 do not become too large. As a result, the intermediate layer 34 It is possible to more effectively suppress island formation in which the substance constituting the material tends to become a small lump.
  • the crystal structure constituting the intermediate layer 34 and the superconducting layer 36 are constituted. It is inferred that the crystal structure to be firmly adhered to each other, and the island formation in which the substance constituting the intermediate layer 34 tries to become a small lump is more effectively suppressed.
  • the said valence (the numerical value which averaged the ratio of the valence) is measured using XPS (X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy).
  • XPS X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy
  • the peak position of the XPS spectrum varies depending on the valence due to the chemical shift, and the number of each atom is proportional to the area of the corresponding spectrum. Therefore, the ratio of the number of atoms of each valence is obtained from the shape of the spectrum, and a numerical value in which the ratio of valences is averaged is calculated based on the ratio of the numbers.
  • the intermediate layer 34 is formed on the substrate 32 and then heated (post-annealing).
  • the method of performing is mentioned. The heating (post-annealing) will be described in detail later.
  • middle layer 34 is the orientation which has the lattice matching of copper oxide superconductors, such as YBCO.
  • the orientation of CeO 2 preferably shows a (001) orientation.
  • the substrate 32 has a single crystal structure of metal oxide or ceramic. Various shapes can be adopted as the shape of the substrate 32 on the assumption that there is a main surface, but it is preferable to adopt a rectangular flat plate shape that is easy to handle. Although the thickness of the board
  • substrate 32 is not specifically limited, For example, it is 1 mm.
  • Al 2 O 3 aluminum oxide, particularly sapphire
  • Zr, Y yttria stabilized zirconia
  • LaAlO 3 lanthanum aluminate
  • SrTiO 3 titanium Strontium acid
  • (La x Sr 1-x ) Al x Ta 1-x ) O 3 (lanthanum strontium tantalum aluminum oxide)
  • NdGaO 3 neodymium gallate
  • YAlO 3 yttrium aluminate
  • MgO manganesium oxide
  • TiO 2 titanium
  • BaTiO 3 barium titanate
  • ceramics include silicon carbide and graphite. Among these, it is preferable to employ a sapphire substrate from the viewpoint of obtaining high strength and thermal conductivity when considering application to a superconducting fault current limiter.
  • the substrate 32 has dislocations (dislocations of crystal structure or lattice distortion as indicated by “H” in FIG. 5) at the interface with the intermediate layer 34. It is preferable to have a location.
  • the substrate 32 is formed of sapphire
  • the intermediate layer 34 is formed of CeO 2
  • the superconducting layer 36 is formed of YBCO.
  • the lattice constant of YBCO (average of a-axis and b-axis) is 3.85 ⁇ , while the spacing between Ce atoms in CeO 2 is 3.83 ⁇ , and the lattice mismatch between them is as small as about 0.5%. .
  • the lattice constant of sapphire is 3.49 angstroms, and there is a lattice mismatch of 10% between CeO 2 and sapphire. If there is no dislocation in the substrate 32, the CeO 2 lattice of the intermediate layer 34 is deformed in such a way that it is dragged by the sapphire lattice, and particularly when the intermediate layer 34 is a thin film, the deformation becomes significant. As a result, the lattice constant of CeO 2 is shortened, the lattice mismatch between YBCO and CeO 2 is increased, and the adhesion between the intermediate layer 34 and the superconducting layer 36 is weakened. As a result, island formation of the intermediate layer 34 is likely to occur.
  • the lattice distortion generated when the intermediate layer 34 is formed is smaller than when the substrate 32 has no dislocation. Therefore, the lattice mismatch between YBCO and CeO 2 is reduced. As a result, the crystal of the superconducting layer 36 formed on the intermediate layer 34 is also formed without causing lattice distortion, and the crystal structure constituting the intermediate layer 34 and the crystal structure constituting the superconducting layer 36 are firmly adhered. It is thought to do. As a result, it is presumed that island formation in which the substance constituting the intermediate layer 34 tends to become a small lump is more effectively suppressed.
  • crystal structure dislocation (lattice distortion) occurs at the interface of the substrate 32 with the intermediate layer 34 can be confirmed by cross-sectional observation with a TEM (Transmission Electron Microscope).
  • Superconducting layer 36 is formed on the surface of intermediate layer 34 and contains an oxide superconductor as a main component.
  • the “main component” means that the content is the largest among the constituent components contained in the superconducting layer 36, and preferably has a content of 50% or more.
  • the superconducting layer 36 is preferably composed of an oxide superconductor, more preferably a copper oxide superconductor.
  • the copper oxide superconductor can be configured by combining these crystal materials.
  • RE in REBa 2 Cu 3 O 7- ⁇ is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, Among these, Y is preferable because substitution with the Ba site does not occur and the superconducting transition temperature Tc is high.
  • is an oxygen nonstoichiometric amount, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint of a high superconducting transition temperature.
  • the oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.
  • ⁇ of the crystal material other than REBa 2 Cu 3 O 7- ⁇ represents an oxygen non - stoichiometric amount, for example, 0 or more and 1 or less.
  • the film thickness of the oxide superconducting layer 36 is not particularly limited, but is, for example, 200 nm.
  • the superconducting layer 36 preferably has a c-axis oriented crystal structure from the viewpoint of efficiently flowing current.
  • the c-axis orientation includes a case where the error angle is about ⁇ 5 degrees.
  • the protective layer 38 is made of silver or the like. Although the film thickness of the protective layer 38 is not specifically limited, For example, it is 200 nm.
  • the pair of electrodes 40 is composed of a conductive member such as a gold-silver alloy.
  • 3A to 3E are process diagrams of the method for manufacturing the oxide superconducting thin film 100 according to the embodiment of the present invention.
  • a pre-annealing step is performed as shown in FIG. 3A.
  • the polished substrate 32 is pre-annealed within a temperature range of, for example, 800 ° C. or more and 1200 ° C. or less.
  • the heating in the pre-annealing step is performed, for example, by heating the substrate 32 in an air atmosphere using a muffle furnace.
  • This pre-annealing step causes crystal dislocations at the interface of the substrate 32 (the interface on the side where the intermediate layer is formed in the intermediate layer forming step described later).
  • the temperature in the pre-annealing step is preferably 900 ° C. or higher and 1100 ° C. or lower, and the pre-annealing time is preferably 60 minutes or longer and 120 minutes or shorter.
  • an intermediate layer forming step is performed.
  • the method for forming the intermediate layer 34 include a PLD (Pulse Laser Deposition) method, a CVD (Chemical Vapor Deposition) method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, an IBAD (Ion Beam Assisted Deposition) method, and a TFA-MOD (Tri A Fluoro Acetates-Metal Organic Deposition) method, a sputtering method, an electron beam evaporation method, or the like can be used.
  • a PLD Pulse Laser Deposition
  • CVD Chemical Vapor Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • IBAD Ion Beam Assisted Deposition
  • TFA-MOD Tri A Fluoro Acetates-Metal Organic Deposition
  • an electron beam evaporation method in that a highly efficient film formation can be realized.
  • the intermediate layer forming step for example, when an electron beam evaporation method is used, plasma is generated in oxygen of 1 ⁇ 10 ⁇ 4 Pa to 1 ⁇ 10 ⁇ 1 Pa and the substrate 32 is heated to 700 ° C. or higher.
  • a film made of CeO 2 or the like is deposited on the substrate 32 in the range of 10 nm to 20 nm to form the intermediate layer 34.
  • a post-annealing process is performed.
  • the surface of the intermediate layer 34 is treated by heating the substrate 32 at any temperature within a temperature range of, for example, 700 ° C. or more and 1000 ° C. or less.
  • the heating in the post-annealing process is performed by heating the intermediate layer 34 in an air atmosphere or an oxygen atmosphere using a muffle furnace, for example.
  • the intermediate layer 34 is flattened, and the surface roughness Ra of the surface of the intermediate layer 34 on the side opposite to the substrate 32 is controlled within the aforementioned range.
  • the valence of the compound constituting the intermediate layer 34 (for example, the value obtained by averaging the valence ratio of the Ce element in the case of CeO 2 described above, the Mg element in the case of MgO having the NaCl-type crystal structure described above)
  • the numerical value obtained by averaging the ratios of the valences is controlled within the aforementioned range.
  • the temperature in the post-annealing step is further 800 ° C. or higher and 900 ° C. or lower from the viewpoint of more reliably controlling the roughness Ra of the surface of the intermediate layer 34 and the valence of the compound constituting the intermediate layer 34 within the aforementioned range.
  • the post-annealing time is preferably 60 minutes or more and 120 minutes or less.
  • a superconducting layer forming step is performed.
  • a method for forming (depositing) the superconducting layer 36 for example, a PLD (Pulse Laser Deposition) method, a CVD (Chemical Vapor Deposition) method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, a MOD (Metal Organic Deposition) method, or sputtering is used. Law.
  • a PLD Pulse Laser Deposition
  • CVD Chemical Vapor Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MOD Metal Organic Deposition
  • the superconducting layer forming step when the superconducting layer 36 made of YBCO is formed by using, for example, the MOD method, first, as shown in FIG. 3D, a solution 50 of yttrium, barium, and copper organic complex is spin-coated with the intermediate layer 34. A precursor film 36A is formed on the surface. Then, as shown in FIG. 3E, the precursor film 36A is temporarily fired at, for example, 300 ° C. or more and 600 ° C. or less in the air. After the organic solvent is removed by temporary baking, the film 36A is subjected to main baking at 700 ° C. or more and 900 ° C. or less to obtain a superconducting layer 36 composed of an oxide superconductor of YBCO from the film 36A.
  • baking can be performed first in an inert atmosphere, and the oxygen atmosphere can be switched from the middle. As a result, a superconducting layer 36 with good Jc characteristics that is well oxygen annealed is obtained.
  • the intermediate layer 34 may be formed on the substrate 32 via another layer.
  • the protective layer 38 can also be omitted as appropriate.
  • the oxide superconducting thin film 100 is used as the thin film type superconducting element 30 of the superconducting fault current limiter 10 .
  • a long substrate is used as the substrate 32 to obtain a superconducting wire, etc.
  • the oxide superconducting thin film 100 can be applied to various other devices. It is widely used in devices such as SMES (Superconducting Magnetic Energy Storage), superconducting transformers, NMR (nuclear magnetic resonance) analyzers, single crystal pulling devices, linear motor cars, and magnetic separation devices.
  • oxide superconducting thin film and the superconducting fault current limiter according to the present invention will be described with reference to examples, but the present invention is not limited to these examples.
  • a thin film superconducting element used for a superconducting fault current limiter was produced as an oxide superconducting thin film.
  • Example 1 ⁇ Preparation of sapphire substrate Pre-annealed commercially available polished R-plane sapphire substrate (Kyocera single-side polished sapphire substrate, size 210 mm ⁇ 30 mm ⁇ 1 mm) at 1000 ° C. in the atmosphere (heating device: high performance muffle furnace HPM 2N) to obtain a sapphire substrate having a flat surface.
  • heating device high performance muffle furnace HPM 2N
  • a cerium oxide (CeO 2 ) thin film was deposited to a thickness of 15 nm by EB (electron beam) deposition while heating the substrate at 800 ° C.
  • EB electron beam
  • oxygen partial pressure was 5 ⁇ 10 ⁇ 2 Pa
  • oxygen plasma was generated using RF.
  • the substrate was post-annealed at 800 ° C. in the atmosphere for 1.5 hours (heating device: high-performance muffle furnace HPM-2N manufactured by ASONE CORPORATION) to form an intermediate layer.
  • this intermediate layer (cerium oxide thin film) is coated with a solution of an organic complex of yttrium, barium, and copper with a spin coater, pre-baked in air at 500 ° C, and then in an inert atmosphere 800
  • the main baking was performed at 0 ° C. and the atmosphere was changed to an oxygen atmosphere in the middle to finally form a superconducting layer made of YBCO to obtain an oxide superconducting thin film.
  • the thickness of the superconducting layer (YBCO layer) was 150 nm.
  • the obtained substrate was subjected to cross-sectional observation by TEM. Even in this state, the intermediate layer (cerium oxide thin film) covered the entire sapphire substrate. Moreover, reaction products such as BaCeO 3 and BaAl 2 O 4 were not observed. Furthermore, it was observed that dislocations were generated on the sapphire substrate side at the interface between the intermediate layer (cerium oxide thin film) and the sapphire substrate.
  • a protective film made of a gold-silver alloy was formed on the obtained oxide superconducting thin film by sputtering, and an electrode was attached to produce a thin film superconducting element.
  • a gold-silver alloy having a composition of Ag-23 at% Au was used. When this element was subjected to critical current (Ic) measurement by an energization test, Ic120A was obtained.
  • the obtained thin film type superconducting element becomes a superconducting state by being cooled to the temperature of liquid nitrogen, but becomes a normal conducting state when a current of a certain level or more flows, and can perform current limiting.
  • Example 2 An oxide superconducting thin film and a thin film superconducting element were produced in the same manner as in Example 1 except that the post-annealing in Example 1 was performed in an oxygen atmosphere instead of in the air.
  • the obtained substrate was subjected to cross-sectional observation by TEM. Even in this state, the intermediate layer (cerium oxide thin film) covered the sapphire substrate. Moreover, reaction products such as BaCeO 3 and BaAl 2 O 4 were not observed. Furthermore, it was observed that dislocations were generated on the sapphire substrate side at the interface between the intermediate layer (cerium oxide thin film) and the sapphire substrate.
  • Jc critical current density
  • Ic120A was obtained.
  • the obtained thin film type superconducting element is brought into a superconducting state by being cooled to liquid nitrogen temperature.
  • a current exceeding a certain level flows, it becomes a normal conducting state and can be limited in current.
  • Example 3 An oxide superconducting thin film was produced in the same manner as in Example 1, except that the thickness of the intermediate layer (cerium oxide thin film) was 10 nm (Example 3) and 20 nm (Example 4).
  • Ic120A was obtained.
  • Example 1 An oxide superconducting thin film was produced in the same manner as in Example 1 except that the post-annealing was performed in the atmosphere at 500 ° C. in Example 1.
  • Example 1 an oxide superconducting thin film was produced in the same manner as in Example 1 except that the film thickness of the intermediate layer (cerium oxide thin film) was 5 nm.
  • reaction inhibition state Moreover, the evaluation criteria were provided as follows according to the reaction suppression state of the intermediate layer.
  • YBCO 006
  • the peak intensity was 10,000 cps or more.
  • -C Trace amount (over noise level by XRD) ) was detected, but the XRD intensity of the superconducting layer was 10000 cps or more at the YBCO (006) peak intensity.
  • Jc critical current density
  • the film formation state and reaction are compared with the case where these requirements are not satisfied. It can be seen that both the suppressed state and the superconducting properties are excellent and preferable. Further, in the embodiment using CeO 2 as the material of the intermediate layer, when the valence average is 3.7 or more and 3.95 or less, the film formation state is further improved as compared with the case where these requirements are not satisfied. It can be seen that the reaction suppression state and high superconducting properties are obtained, which is more preferable.
  • Example 1 An oxide superconducting thin film and a thin film superconducting element were produced in the same manner as in Example 1 except that the film thickness of the intermediate layer (cerium oxide thin film) was 40 nm in Example 1.
  • Ic90A was obtained.
  • Ic80A was obtained.

Abstract

 基板32と、基板32上に、平均膜厚が10nm以上20nm以下であり、表面の表面粗さRaが0.5nm以下である中間層34と、中間層34の表面に、酸化物超電導体を主成分として含有する超電導層36と、をこの順に備える酸化物超電導薄膜。

Description

酸化物超電導薄膜および超電導限流器
 本発明は、酸化物超電導薄膜および超電導限流器に関する。
 従来から、酸化物超電導材料を実用化するための技術として、基板上に酸化物超電導体を成膜して酸化物超電導薄膜を得る方法がある。
 成膜する酸化物超電導体としては、例えば、液体窒素温度(77K)以上で超電導現象を示すRE系超電導体(RE:希土類元素)、特にYBaCu7-δの組成式で表されるイットリウム系超電導体(以下、「YBCO」という)がよく用いられている。
 このようなRE系超電導体を用いた酸化物超電導薄膜は、超電導限流器やケーブル、SMES(超電導エネルギー貯蔵装置)への応用が期待されており、RE系超電導体およびその製法が大いに注目を集めている。
 ところが、RE系超電導体を含め、酸化物超電導材料(特に酸化物超電導薄膜)を実用化するための障害となっている1つの要因として、臨界電流密度特性(以下、「Jc特性」という)の向上が容易でないことが挙げられる。
 例えば、酸化物超電導薄膜を用いた超電導限流器の実用化には、できるだけ大きな電流を抵抗ゼロで流すことが求められ、そのためには、酸化物超電導薄膜のJc特性を向上させる必要がある。
 そこで、特開2003-37304号公報には、サファイア基板上に形成する酸化物超電導薄膜の製造方法として、R面のサファイア基板上にCeOバッファ層を形成し、次にこのCeOバッファ層上にLaAlOを傾斜層として形成し、次にこの傾斜層上にEBCO薄膜を形成することで、酸化物超電導体薄膜とバッファ層の格子ミスマッチを緩和することができることが開示されている。
 また、特開2002-150855号公報には、{100}<001>方位に配向した集合組織を有する多結晶金属基体の表面に形成された酸化物バッファ層と、この酸化物バッファ層上に形成された酸化物超電導層とを具備する超電導線材であって、前記酸化物バッファ層が2つの層から構成されていることが開示されている。前記酸化物バッファ層を構成する第1の酸化物バッファ層は、前記多結晶金属基体の表面酸化物層であるとともに、その表面粗さがRmax=0.15μm以下であり、この第1の酸化物バッファ層上に第2の酸化物バッファ層が形成されている。この2つの層によって酸化物バッファ層が構成されていることにより、長手方向全体にわたって安定した結晶性を有する酸化物超電導膜が実現できると記載されている。
 更に、特開2003-188427号公報には、基板上に形成された、ジョセフソン接合をなす第1および第2の酸化物超電導層と、第1および第2の酸化物超電導層の配線部分間に形成された、(Ca1-xSr)Sn(ここで、0≦x≦0.8、0.4≦y≦1.1、1.6≦z≦3.4である)で表される酸化物層間絶縁層とを有する超電導素子が開示されている。酸化物層間絶縁層の膜厚が約300nm以上で酸化物超電導層との平坦なエピタキシャル成長が可能であり、かつ約40K以下の動作温度において比誘電率εが40以下である層間絶縁層を有し、配線容量が小さく高速動作に適した超電導素子が開示されている。
 基板と中間層と超電導層とを有する酸化物超電導薄膜では、中間層の膜厚を薄くするほどJc特性が向上する傾向があるが、中間層の平均膜厚が20nm以下の薄い範囲になると、図4Aに示すように、基板132上に形成された中間層134の表面に、更に図4Bに示すように超電導層136を形成した際に中間層134が多数の小さい塊になって島状化することがあった。中間層134が島状化すると、該中間層134には基板にまで達する穴138が形成され、該穴138を通して超電導層136と基板132との反応が生じ、結果としてその酸化物超電導薄膜のJc特性は著しく低下した。
 本発明は上記事実に鑑みてなされたものであり、中間層の平均膜厚が20nm以下の範囲であっても、良好なJc特性を有する酸化物超電導薄膜、該酸化物超電導薄膜を備えた超電導限流器を提供することを目的とする。
 本発明の上記課題は下記の手段によって解決された。
<1>基板と、前記基板上に、平均膜厚が10nm以上20nm以下であり、表面の表面粗さRaが0.5nm以下である中間層と、前記中間層の表面に、酸化物超電導体を主成分として含有する超電導層と、をこの順に備える酸化物超電導薄膜。
<2>前記中間層は、CeOを含み、且つ前記Ce元素の価数の割合を平均した数値が3.7以上3.95以下である、前記<1>に記載の酸化物超電導薄膜。
<3>前記中間層は、NaCl型の結晶構造を持つMgOを含み、且つ前記Mg元素の価数の割合を平均した数値が1.85以上1.95以下である、前記<1>に記載の酸化物超電導薄膜。
<4>前記中間層が前記基板の表面に備えられ、且つ前記基板の前記中間層との界面に転位が生じている箇所を有する、前記<1>~<3>の何れか1項に記載の酸化物超電導薄膜。
<5>前記酸化物超電導体は、組成式REBaCu7-δ(REは単一の希土類元素または複数の希土類元素であり、前記δは酸素不定比量である)で表される、前記<1>~<4>の何れか1項に記載の酸化物超電導薄膜。
<6>前記基板は、サファイア基板である、前記<1>~<5>の何れか1項に記載の酸化物超電導薄膜。
<7>内部に液体窒素が充填される密閉容器と、前記密閉容器の外部から内部へ電流を導入して流出する電流導入出部と、前記<1>~<6>の何れか1項に記載の酸化物超電導薄膜の超電導層上に電極が形成されて構成され、前記密閉容器内で前記電流導入出部に接続される超電導限流素子と、を備える超電導限流器。
 本発明によれば、中間層の平均膜厚が20nm以下の範囲であっても、良好なJc特性を有する酸化物超電導薄膜、該酸化物超電導薄膜を備えた超電導限流器を提供することができる。
本発明の実施形態に係る超電導限流器の概略構成図である。 本発明の実施形態に係る薄膜型超電導素子の断面構造を示す断面図である。 本発明の実施形態に係る酸化物超電導薄膜の製造方法の工程図である。 本発明の実施形態に係る酸化物超電導薄膜の製造方法の工程図である。 本発明の実施形態に係る酸化物超電導薄膜の製造方法の工程図である。 本発明の実施形態に係る酸化物超電導薄膜の製造方法の工程図である。 本発明の実施形態に係る酸化物超電導薄膜の製造方法の工程図である。 従来における酸化物超電導薄膜において中間層の島状化が発生する状態を説明するための概略断面図である。 従来における酸化物超電導薄膜において中間層の島状化が発生する状態を説明するための概略断面図である。 基板の中間層との界面において転位が生じている超電導薄膜の断面画像である。
 以下、添付の図面を参照しながら、本発明の実施形態に係る酸化物超電導薄膜および超電導限流器について具体的に説明する。なお、図中、同一または対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。
<超電導限流器>
 図1は、本発明の実施形態に係る超電導限流器10の概略構成図である。
 本発明の実施形態に係る超電導限流器10は、超電導体のS/N転移(superconducting-normal state transitions)を利用して、通常時はゼロ抵抗で、臨界電流以上の過電流が流れた時には高抵抗となって過電流を抑制する機能を持つ機器である。
 この超電導限流器10は、容器本体12Aを蓋12Bで閉じて密閉される密閉容器12を備えている。
 容器本体12Aには、冷凍機14が接続され、冷凍機14から密閉容器12の内部に液体窒素が導入される。蓋12Bには、密閉容器12の外部から内部へ電流を導入して流出する電流導入出部16が接続されている。電流導入出部16は、3相交流回路で構成され、具体的には3つの電流導入部16Aと、これらに対応する3つの電流流出部16Bとを含んで構成されている。
 電流導入部16Aと電流流出部16Bは、それぞれ、蓋12Bに対して貫通して垂直方向に伸びた導線18と、当該導線18を被覆する筒体20とで構成される。
 電流導入部16Aの導線18のうち外部に露出した一端は、対応する電流流出部16Bの導線18のうち外部に露出した一端と、分流抵抗としての外部抵抗22を介して接続されている。
 各筒体20の容器本体12A内部にある端部には、素子収容容器24が支持されている。
 この素子収容容器24は、密閉容器12に内蔵され、密閉容器12に充填される液体窒素により内部まで冷却される。
 素子収容容器24には、複数の薄膜型超電導素子30で構成された限流ユニット26が内蔵されている。本発明の実施形態では、具体的に、薄膜型超電導素子30が4行2列で配列された組が3組で限流ユニット26を構成している。
 この限流ユニット26は、電流導入部16Aの導線18のうち内部にある他端と、電流流出部16Bの導線18のうち内部にある他端と、支柱28で支持されており、3相交流回路を構成するように、電流導入部16Aの導線18のうち内部にある他端と、電流流出部16Bの導線18のうち内部にある他端とが、薄膜型超電導素子30を介して電気的に接続されている。
<薄膜型超電導素子>
 次に、薄膜型超電導素子30の概略を説明する。
 図2は、本発明の実施形態に係る薄膜型超電導素子30の断面構造を示す図である。
 図2に示すように、薄膜型超電導素子30は、基板32上に中間層34、超電導層36、保護層38が順に形成された積層構造を有している。そして、保護層38上には、上述した導線18に電気的に接続される1対の電極40が配置されている。なお、図2における基板32と中間層34と超電導層36が、本発明の実施形態に係る酸化物超電導薄膜100を構成する。
 次いで、本発明の実施形態に係る酸化物超電導薄膜100の構成の詳細について説明する。
 (中間層)
 まず、中間層34について説明する
 中間層34は、超電導層36において高い面内配向性を実現するために基板32上に形成される層である。
 ・平均膜厚
 本発明の実施形態では、中間層34の平均膜厚が10nm以上20nm以下であり、Jc特性をより向上させる観点からより好ましくは10nm以上15nm以下である。
 尚、上記中間層34の平均膜厚は以下の方法により測定される。即ち、基板32表面の一部をマスクで被覆した状態で蒸着等の方法により中間層34を形成し、その後該マスクを除去し、マスクした部分とマスクしていない部分との段差を段差計を用いて測定することで膜厚が得られる。尚、中間層34の膜厚は極めて薄いため、通常の数倍の時間蒸着を行い形成された中間層の膜厚から比例計算で膜厚を推定することで算出してもよい。
 平均膜厚は、上記方法により測定した任意の10点の平均値として算出する。
 尚、従来においては、中間層の平均膜厚が20nm以下の薄い範囲になると、基板上に形成された中間層の表面に超電導層を形成した際に中間層が多数の小さい塊になって島状化することがあった。中間層が島状化すると、該中間層には基板にまで達する穴が形成され、該穴を通して超電導層と基板との反応が生じ、結果としてその酸化物超電導薄膜のJc特性は著しく低下した。
 ・表面粗さRa
 本発明の実施形態では、中間層34の平均膜厚が上記の通り10nm以上20nm以下であり、且つ基板32とは反対側の表面、即ち超電導層36と接する面の表面粗さRaが0.5nm以下である。尚、より好ましくは0.3nm以下であり、特に好ましくは0.2nm以下である。また、中間層34の超電導層36と接する面の表面粗さRaの下限値は、0.03nm以上であることが好ましく、0.05nm以上であることがより好ましい。
 中間層34表面の粗さRaが上記範囲であることにより、中間層34の表面に超電導層32を形成した際の島状化が抑制されて、中間層34における穴の形成が抑制され、結果として酸化物超電導薄膜では良好なJc特性が得られる。一方、表面粗さRaが上記範囲外であると、酸化物超電導薄膜におけるJc特性が低下する。
 尚、このメカニズムは明確ではないものの、以下のように推察される。即ち、中間層34の表面粗さRaが0.5nm以下と極めて平坦化されることで、その表面に形成される超電導層36との接触面積が低減され、中間層34を構成する物質と超電導層36を構成する物質との反応(例えば中間層34としてCeOを、超電導層36としてYBCOを用いる場合であれば、CeとBaとの反応物であるBaCeOの生成)が抑制される。上記の反応が抑制されることで、中間層34を構成する結晶構造と超電導層36を構成する結晶構造とが強固に密着し、中間層34を構成する物質が小さい塊になろうとする島状化が抑制されるものと推察される。
 上記中間層34の表面粗さRaは、AFM(原子間力顕微鏡:Atomic Force Microscope)を用いて測定される。尚、中間層34の表面粗さRaは極めて小さいため、AFMによる測定の際には機械的振動を充分に抑え、且つ帯電を抑えた環境で測定する必要がある。また、AFMのカンチレバーの消耗を避けるため、これをこまめに交換することが望ましい。
 中間層34の表面粗さRaを上記の範囲に制御する方法としては、基板32上に中間層34を形成した後、さらに加熱(ポストアニール)を行う方法が挙げられる。該加熱(ポストアニール)については後に詳述する。
 ・組成物
 この中間層34を構成する物質(組成物)としては、特に限定されないが、例えばCeOやNaCl型の結晶構造を持つMgOが挙げられる。
 ・価数
 中間層34が上記CeOを含む場合、前記Ce元素の価数の割合を平均した数値は3.7以上3.95以下であることが好ましい。また、NaCl型の結晶構造を持つMgOを含む場合、前記Mg元素の価数の割合を平均した数値が1.85以上1.95以下であることが好ましい。
 上記元素における価数(価数の割合を平均した数値)が上記上限値以下であることにより、中間層34を構成する物質同士の結合が大きくなり過ぎないものと推察され、その結果中間層34を構成する物質が小さい塊になろうとする島状化がより効果的に抑制される。また、上記下限値以上であることにより、中間層34を構成する物質と超電導層36を構成する物質との反応性が大きくなり過ぎず、中間層34を構成する結晶構造と超電導層36を構成する結晶構造とが強固に密着するものと推察され、中間層34を構成する物質が小さい塊になろうとする島状化がより効果的に抑制される。
 尚、上記価数(価数の割合を平均した数値)は、XPS(X線光電子分光装置:X-ray photoelectron spectroscopy)を用いて測定される。XPSスペクトルのピーク位置は化学シフトのために価数によって異なり、それぞれの原子数と対応するスペクトルの面積とは比例する。よって、スペクトルの形状から各価数の原子の個数の比が得られ、この個数の比により価数の割合を平均した数値が算出される。
 例えば、CeO原子におけるセリウム原子であれば3価セリウム原子と4価セリウム原子が存在し、XPSスペクトルの形状から3価セリウム原子と4価セリウム原子の個数の比が得られるので、得られた個数の比を用いて価数が算出される。
 中間層34を構成する物質における上記価数(価数の割合を平均した数値)を上記の範囲に制御する方法としては、基板32上に中間層34を形成した後、さらに加熱(ポストアニール)を行う方法が挙げられる。該加熱(ポストアニール)については後に詳述する。
 また、中間層34は、YBCO等の銅酸化物超電導体の格子整合を持つ配向であることが好ましい。特に、超電導体がYBCOで且つ中間層がCeOの場合、CeOの配向は(001)配向を示すことが好ましい。
 (基板)
 基板32は、金属酸化物やセラミックスの単結晶構造を有している。基板32の形状は、主面があることを前提として様々な形状を採用することができるが、取扱いが容易な矩形平板形状を採用することが好ましい。
 基板32の厚みは、特に限定されないが、例えば1mmとされている。
 ・組成物
 金属酸化物の具体例としては、Al(酸化アルミニウム、特にサファイア)、(Zr,Y)O(イットリア安定化ジルコニア)、LaAlO(ランタンアルミネート)、SrTiO(チタン酸ストロンチウム)、(LaSr1-x)(AlTa1-x)O(酸化ランタンストロンチウムタンタルアルミニウム)、NdGaO(ネオジムガレート)、YAlO(イットリウムアルミネート)、MgO(酸化マグネシウム)、TiO(チタニア)、BaTiO(チタン酸バリウム)等が挙げられる。セラミックスの具体例としては、炭化ケイ素、黒鉛等が挙げられる。
 特に、これらの中でも、超電導限流器への応用を考えた場合に高い強度と熱伝導率を得る面から、サファイア基板を採用することが好ましい。
 ・転位
 中間層34が基板32の表面に備えられる場合、基板32は中間層34との界面において転位(図5において「H」で示すような結晶構造の転位あるいは格子のひずみ)が生じている箇所を有することが好ましい。
 ここで、一例として、基板32がサファイア、中間層34がCeO、超電導層36がYBCOにより形成されている場合について検討する。YBCOの格子定数(a軸とb軸の平均)は3.85オングストロームであり、一方CeOのCe原子間の間隔は3.83オングストロームであり、両者の格子ミスマッチは0.5%程度と小さい。ところが、サファイアの格子定数は3.49オングストロームであり、CeOとサファイアの格子ミスマッチは10%存在する。仮に基板32に転位が無いとすると、中間層34のCeOの格子がサファイアの格子に引きずられる形で変形し、特に中間層34が薄膜の場合に該変形が顕著となる。その結果CeOの格子定数が短くなり、YBCOとCeOの格子ミスマッチが大きくなって、中間層34と超電導層36との密着が弱くなる。そして、結果的に中間層34の島状化が起こりやすくなる。
 これに対し、結晶構造の転位(結晶構造の転位あるいは格子のひずみ)が基板32に生じていると、中間層34の形成の際に生じる格子ひずみが、基板32に転位がない場合よりも小さくなるため、YBCOとCeOの格子ミスマッチが小さくなる。その結果、該中間層34上に形成される超電導層36の結晶も格子ひずみを生じることなく形成されて、中間層34を構成する結晶構造と超電導層36を構成する結晶構造とが強固に密着するものと考えられる。そして、結果的に中間層34を構成する物質が小さい塊になろうとする島状化がより効果的に抑制されるものと推察される。
 尚、基板32の中間層34との界面において結晶構造の転位(格子のひずみ)が生じているか否かは、TEM(透過型電子顕微鏡:Transmission Electron Microscope)による断面観察によって確認できる。
 基板32の中間層34との界面に結晶構造の転位(格子のひずみ)を生じさせる方法としては、基板32上に中間層34を形成する前に、加熱(プレアニール)を行う方法が挙げられる。該加熱(プレアニール)については後に詳述する。
 (超電導層)
 超電導層36は、中間層34の表面に形成され、且つ酸化物超電導体を主成分として含有する。尚、「主成分」とは、超電導層36に含まれる構成成分中で含有量が最も多いことを示し、好ましくは50%以上の含有量を有する。
 超電導層36は酸化物超電導体で構成されることが好ましく、より好ましくは銅酸化物超電導体で構成される。
 銅酸化物超電導体としては、REBaCu7-δ(RE-123と称す),BiSrCaCu8+δ(BiサイトにPb等をドープしたものも含む),BiSrCaCu10+δ(BiサイトにPb等をドープしたものも含む),(La,Ba)CuO4-δ,(Ca,Sr)CuO2-δ[CaサイトはBaであってもよい],(Nd,Ce)CuO4-δ,(Cu,Mo)Sr(Ce,Y)CuO[(Cu,Mo)-12s2と称し、s=1、2、3,4である],Ba(Pb,Bi)OまたはTlBaCan-1Cu2n+4(nは2以上の整数である)等の組成式で表される結晶材料を用いることができる。また、銅酸化物超電導体は、これら結晶材料を組み合わせて構成することもできる。
 上記REBaCu7-δ中のREは、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、YbやLuなどの単一の希土類元素または複数の希土類元素であり、これらの中でもBaサイトと置換が起きない、且つ超電導転移温度Tcが高い等の理由からYであることが好ましい。また、δは、酸素不定比量であり、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。
 また、REBaCu7-δ以外の結晶材料のδも酸素不定比量を表し、例えば0以上1以下である。
 酸化物超電導層36の膜厚は、特に限定されないが、例えば200nmとされている。
 超電導層36は、電流を効率的に流す観点から、結晶構造がc軸配向していることが好ましい。尚、c軸配向とは±5度程度の誤差角度を有する場合を含む。
 (保護層および電極)
 また、図2に示す保護層および電極について説明する。
 保護層38は、銀等で構成されている。保護層38の膜厚は、特に限定されないが、例えば200nmとされている。1対の電極40は、金銀合金等の導電部材で構成されている。
<酸化物超電導薄膜の製造方法>
 次に、酸化物超電導薄膜100の製造方法について具体的に説明する。
 図3A~図3Eは、本発明の実施形態に係る酸化物超電導薄膜100の製造方法の工程図である。
-プレアニール工程-
 本発明の実施形態に係る酸化物超電導薄膜100の製造方法では、まず図3Aに示すように、プレアニール工程を行う。プレアニール工程では、研磨済みの基板32を、例えば800℃以上1200℃以下の温度範囲内でプレアニールする。プレアニール工程での加熱は、例えば基板32に対し、マッフル(muffle)炉を用い大気雰囲気下で加熱することで行われる。
 このプレアニール工程によって、基板32の界面(後述の中間層形成工程において中間層が形成される側の界面)に、結晶の転位が生じる。尚、より確実に結晶の転位を生じさせる観点から、プレアニール工程での温度は更に900℃以上1100℃以下であることが好ましく、またプレアニールの時間は60分以上120分以下が好ましい。
-中間層形成工程-
 次に、図3Bに示すように、中間層形成工程を行う。中間層34の形成方法としては、例えばPLD(Pulse Laser Deposition)法、CVD(Chemical Vapor Deposition)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、IBAD(Ion Beam Assisted Deposition)法、TFA-MOD(Tri Fluoro Acetates-Metal Organic Deposition)法、スパッタ法、または電子ビーム蒸着法などを用いることができる。これらの中でも、高配向度を実現できるという点で、IBAD法を用いることが好ましい。また、高効率の成膜が実現できるという点で電子ビーム蒸着法を用いることが好ましい。
 中間層形成工程で、例えば電子ビーム蒸着法を用いる場合、1×10-4Pa以上1×10-1Pa以下の酸素中でプラズマを発生させ、700℃以上に基板32を加熱した状態で当該基板32上にCeO等からなる膜を10nm以上20nmの範囲で蒸着させて、中間層34を形成する。
-ポストアニール工程-
 次に、図3Cに示すように、ポストアニール工程を行う。ポストアニール工程では、基板32を例えば700℃以上1000℃以下の温度範囲内のうちいずれかの温度で加熱して中間層34表面の処理を行う。ポストアニール工程での加熱は、例えば中間層34に対し、マッフル炉を用い大気雰囲気下または酸素雰囲気下で加熱することで行われる。
 このポストアニール工程によって、中間層34が平坦化され、中間層34の前記基板32とは反対側の表面の表面粗さRaが前述の範囲に制御される。また、中間層34を構成する化合物の価数(例えば、前述のCeOであれば該Ce元素の価数の割合を平均した数値、前述のNaCl型の結晶構造を持つMgOであればMg元素の価数の割合を平均した数値)が前述の範囲に制御される。尚、中間層34表面の粗さRaおよび中間層34を構成する化合物の価数を、より確実に前述の範囲に制御する観点から、ポストアニール工程での温度は更に800℃以上900℃以下であることが好ましく、またポストアニールの時間は60分以上120分以下が好ましい。
-超電導層形成工程-
 次に、図3DおよびEに示すように、超電導層形成工程を行う。超電導層36の形成(成膜)方法としては、例えばPLD(Pulse Laser Deposition)法、CVD(Chemical Vapor Deposition)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、MOD(Metal Organic Deposition)法、またはスパッタ法などが挙げられる。これら成膜方法の中でも、高真空を必要としない、大面積、複雑な形状の基板32にも成膜可能、量産性に優れているという理由からMOCVD法を用いることが好ましい。また、高効率の成膜が実現できるという点でMOD法を用いることが好ましい。
 超電導層形成工程で、例えばMOD法を用いてYBCOからなる超電導層36を形成する場合、まず、図3Dに示すように、イットリウム、バリウム、銅の有機錯体の溶液50をスピンコーターで中間層34の表面上に塗布して前駆体の膜36Aを形成する。そして、図3Eに示すように、前駆体の膜36Aを例えば空気中において300℃以上600℃以下で仮焼成する。
 仮焼成で有機溶媒を除去した後、膜36Aを700℃以上900℃以下で本焼成して、膜36AからYBCOの酸化物超電導体で構成される超電導層36を得る。
 また、この本焼成において、最初に不活性雰囲気中で焼成を行ない、途中から酸素雰囲気に切り替えることもできる。これにより、よく酸素アニールされたJc特性の良い超電導層36が得られる。
<変形例>
 なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わせて実施可能である。また、以下の変形例同士を、適宜、組み合わせてもよい。
 例えば、基板32上に、他の層を介して中間層34を形成してもよい。
 また、保護層38も適宜省略することができる。
 また、本実施形態では、酸化物超電導薄膜100を超電導限流器10の薄膜型超電導素子30として用いる場合を説明したが、例えば基板32として長尺のものを用いて、超電導線材を得る等、酸化物超電導薄膜100は他の様々な機器に応用することができる。SMES(Superconducting Magnetic Energy Storage)、超電導トランス、NMR(核磁気共鳴:nuclear magnetic resonance)分析装置、単結晶引き上げ装置、リニアモーターカー、磁気分離装置等の機器に広く用いられている。
 なお、日本出願2011-122220の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 以下に、本発明に係る酸化物超電導薄膜および超電導限流器について、実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。
 実施例では、酸化物超電導薄膜として、超電導限流器に用いられる薄膜型超電導素子を作製した。
<実施例1>
 ・サファイア基板の準備
 市販の研磨済みR面のサファイア基板(京セラ製片面研磨サファイア基板、サイズ210mm×30mm×1mm)を大気中1000℃でプレアニール(加熱装置:アズワン株式会社製 高性能マッフル炉 HPM-2N)し、表面が平坦なサファイア基板を得た。
 ・中間層の形成
 次に、この基板を800℃で加熱しながら、EB(電子ビーム)蒸着により、酸化セリウム(CeO)の薄膜を15nm蒸着した。尚、成膜時には、酸素分圧が5×10-2Paとなるように少量の酸素を導入しさらにRFを用いて酸素プラズマをたてた。蒸着後、基板を大気中800℃で、1.5時間ポストアニール(加熱装置:アズワン株式会社製 高性能マッフル炉 HPM-2N)し、中間層を形成した。
 得られた中間層(酸化セリウム薄膜)をX線回折およびX線極点図により調べたところ、酸化セリウムは(001)方位に配向しており、他の配向成分は確認できなかった。
 また、得られた中間層(酸化セリウム薄膜)を、AFMを用いて形態観察を行ったところ、表面はきわめて平滑で、サファイア基板まで到達するような穴は見られなかった。さらに、AFMを用いて表面粗さRaの測定を行ったところ、表面粗さが0.15nmであると判明した。
 更に、得られた中間層(酸化セリウム薄膜)中の、セリウムの価数をXPSによって調べたところ、価数(価数の割合を平均した数値)は3.9であった。さらに、XPSではAlの信号は検出されず、サファイア基板全面が酸化セリウムにより被覆されていることが確かめられた。
 ・超電導層の形成
 この中間層(酸化セリウム薄膜)の表面に、イットリウム、バリウム、銅の有機錯体の溶液をスピンコーターで塗布し、500℃空気中で仮焼成を行ない、次いで不活性雰囲気中800℃で本焼成を行ない、途中から酸素雰囲気に切り替えて、最終的にYBCOからなる超電導層を形成し、酸化物超電導薄膜を得た。超電導層(YBCO層)の厚さは150nmであった。
 得られた超電導層(YBCO層)をX線回折およびX線極点図により調べたところ、YBCOはすべてc軸方向に配向しており、他の配向成分は確認できなかった。また、超電導層におけるYBCOと中間層におけるCeOとの反応生成物であるBaCeOや、YBCOと基板(サファイア)との反応生成物であるBaAlに起因する信号も確認できなかった。
 続いて、得られた基板をTEMによる断面観察を行った。この状態でも、中間層(酸化セリウム薄膜)はサファイア基板上をすべて覆っていた。また、BaCeOやBaAlといった反応生成物は観察されなかった。さらに、中間層(酸化セリウム薄膜)とサファイア基板との界面において、サファイア基板側に転位が生じているのが観察された。
 ・Jc特性
 この酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)の分布を、THEVA社製Cryoscanを用いて誘導法にて測定したところ、面内で2.8~3.2MA/cmの均一な分布が得られた。
 ・保護膜および電極の形成
 得られた酸化物超電導薄膜に金銀合金製保護膜をスパッタ法で成膜し、電極を取り付けることで薄膜型超電導素子を作製した。金銀合金としては、組成Ag-23at%Auのものを用いた。この素子について、通電試験による臨界電流(Ic)測定を行ったところ、Ic120Aが得られた。
 得られた薄膜型超電導素子は、液体窒素温度まで冷やすことで超電導状態になるが一定以上の電流が流れると常電導状態となり限流を行うことが可能となる。
<実施例2>
 前記実施例1において、ポストアニールを大気中ではなく、酸素雰囲気中で行った以外は、実施例1と同様にして酸化物超電導薄膜,薄膜型超電導素子を作製した。
 まず、得られた中間層(酸化セリウム薄膜)をX線回折およびX線極点図により調べたところ、酸化セリウムは(001)方位に配向しており、他の配向成分は確認できなかった。
 また、得られた中間層(酸化セリウム薄膜)を、AFMを用いて形態観察を行ったところ、表面はきわめて平滑で、サファイア基板まで到達するような穴は見られなかった。表面粗さRaは0.15nmであった。
 更に、得られた中間層(酸化セリウム薄膜)中の、セリウムの価数をXPSによって調べたところ、価数(価数の割合を平均した数値)は3.9であった。さらに、XPSではAlの信号は検出されず、サファイア基板全面が酸化セリウムにより被覆されていることが確かめられた。
 また、得られた超電導層(YBCO層)をX線回折およびX線極点図により調べたところ、YBCOはすべてc軸方向に配向しており、他の配向成分は確認できなかった。また、超電導層におけるYBCOと中間層におけるCeOとの反応生成物であるBaCeOや、YBCOと基板(サファイア)との反応生成物であるBaAlに起因する信号も確認できなかった。
 続いて、得られた基板をTEMによる断面観察を行った。この状態でも、中間層(酸化セリウム薄膜)はサファイア基板上を覆っていた。また、BaCeOやBaAlといった反応生成物は観察されなかった。さらに、中間層(酸化セリウム薄膜)とサファイア基板との界面において、サファイア基板側に転位が生じているのが観察された。
 ・Jc特性
 この酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)の分布を、THEVA社製Cryoscanを用いて誘導法にて測定したところ、面内で2.8~3.4MA/cmの均一な分布が得られた。
 さらに、得られた薄膜型超電導素子について、通電試験による臨界電流(Ic)測定を行ったところ、Ic120Aが得られた。
 得られた薄膜型超電導素子は、液体窒素温度に冷やすことで超電導状態になるが一定以上の電流が流れると常電導状態となり限流を行うことが可能となる。
<実施例3および4>
 前記実施例1において、中間層(酸化セリウム薄膜)の膜厚を10nm(実施例3),20nm(実施例4)とした以外は、実施例1と同様にして酸化物超電導薄膜を作製した。
 まず、得られた中間層(酸化セリウム薄膜)をX線回折およびX線極点図により調べたところ、酸化セリウムは(001)方位に配向しており、他の配向成分は確認できなかった。
 また、得られた中間層(酸化セリウム薄膜)を、AFMを用いて形態観察を行ったところ、表面はきわめて平滑で、サファイア基板まで到達するような穴は見られなかった。表面粗さRaは0.15nmであった。
 更に、得られた中間層(酸化セリウム薄膜)中の、セリウムの価数をXPSによって調べたところ、価数(価数の割合を平均した数値)は3.9であった。さらに、XPSではAlの信号は検出されず、サファイア基板全面が酸化セリウムにより被覆されていることが確かめられた。
 この酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)の分布を、THEVA社製Cryoscanを用いて誘導法にて測定したところ、面内で2.8~3.4MA/cmの均一な分布が得られた。
 さらに、得られた薄膜型超電導素子について、通電試験による臨界電流(Ic)測定を行ったところ、Ic120Aが得られた。
<比較例1>
 前記実施例1において、ポストアニールを大気中500℃で行った以外は、実施例1と同様にして酸化物超電導薄膜を作製した。
 まず、得られた中間層(酸化セリウム薄膜)をX線回折およびX線極点図により調べたところ、酸化セリウムは(001)方位に配向しており、他の配向成分は確認できなかった。
 また、得られた中間層(酸化セリウム薄膜)を、AFMを用いて形態観察を行ったところ、酸化セリウムの結晶粒が観察され、表面粗さRaは0.6nmであった。
 更に、得られた中間層(酸化セリウム薄膜)中の、セリウムの価数をXPSによって調べたところ、価数(価数の割合を平均した数値)は3.9であった。
 また、得られた超電導層(YBCO層)をX線回折およびX線極点図により調べたところ、YBCOはすべてc軸方向に配向していたものの、回折強度が実施例1の場合に比較して弱かった。また、超電導層におけるYBCOと中間層におけるCeOとの反応生成物であるBaCeOを示すピークが観察され、YBCOとCeOとが反応していることがわかった。
 この酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)を測定したところ、全面でJc=0となった。
<比較例2および3>
 前記比較例1において、中間層(酸化セリウム薄膜)の膜厚を10nm(比較例2),20nm(比較例3)とした以外は、比較例1と同様にして酸化物超電導薄膜を作製した。
 まず、得られた中間層(酸化セリウム薄膜)をX線回折およびX線極点図により調べたところ、酸化セリウムは(001)方位に配向しており、他の配向成分は確認できなかった
 また、得られた中間層(酸化セリウム薄膜)を、AFMを用いて形態観察を行ったところ、酸化セリウムの結晶粒が観察され、表面粗さRaは0.6nmであった。
 更に、得られた中間層(酸化セリウム薄膜)中の、セリウムの価数をXPSによって調べたところ、価数(価数の割合を平均した数値)は3.9であった。
 また、得られた超電導層(YBCO層)をX線回折およびX線極点図により調べたところ、YBCOはすべてc軸方向に配向していたものの、回折強度が実施例3および4の場合に比較して弱かった。また、超電導層におけるYBCOと中間層におけるCeOとの反応生成物であるBaCeOを示すピークが観察され、YBCOとCeOとが反応していることがわかった。
 この酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)を測定したところ、全面でJc=0となった。
<比較例4>
 前記実施例1において、中間層(酸化セリウム薄膜)の膜厚を5nmとした以外は、実施例1と同様にして酸化物超電導薄膜を作製した。
 まず、得られた中間層(酸化セリウム薄膜)をX線回折およびX線極点図により調べたところ、酸化セリウムは(001)方位に配向しており、他の配向成分は確認できなかった。
 また、得られた中間層(酸化セリウム薄膜)を、AFMを用いて形態観察を行ったところ、酸化セリウムが島状化しており、高低差が約5nmであり、サファイア基板が露出していることがわかった。
 更に、得られた中間層(酸化セリウム薄膜)中の、セリウムの価数をXPSによって調べたところ、価数(価数の割合を平均した数値)は3.9であった。
 また、得られた超電導層(YBCO層)をX線回折およびX線極点図により調べたところ、YBCOはすべてc軸方向に配向していたものの、回折強度が実施例1の場合に比較して弱かった。また、超電導層におけるYBCOと基板サファイアとの反応生成物であるBaAlを示すピークが観察され、YBCOとサファイアが反応していることがわかった。
 この酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)を測定したところ、全面でJc=0となった。
<実施例5~21および比較例5~7>
 中間層に関して、材料、平均膜厚、表面粗さRaおよび価数平均を表1に示すように制御し、それ以外は実施例1~4および比較例1~4と同様にして超電導素子を形成した。
〔評価試験〕
 得られた超電導素子に対して、実施例1~4および比較例1~4と同様の評価を行った。
 -膜生成状態の評価-
 中間層の膜生成の状態に応じて、次のように評価基準を設けた。
 ・A:表面粗さRaが0.5nm以下であり、中間層が基板全体を被覆している場合
 ・B:表面粗さRaが0.5nmよりも大きいが、中間層が基板全体を被覆している場合
 ・C:中間層に基板まで到達する穴が開いている場合
 -反応抑制状態の評価-
 また、中間層の反応抑制状態に応じて、次のように評価基準を設けた。
 ・A:X線回折(X-ray diffraction(XRD))では反応生成物が検出されず、TEM観察においても反応生成物が検出されず、且つ、超電導層のXRD強度が大きく、YBCO(006)ピークの強度で10000cps以上であった。
 ・B:XRDでは反応生成物が検出されないが、TEM観察にて基板表面の100分の1以上を反応生成物が被覆しているのが観察される状態
 ・C:XRDで微量(ノイズレベル以上)の反応生成物が検出されるが、超電導層のXRDの強度が、YBCO(006)ピークの強度で10000cps以上であった。
 ・D:XRDで反応生成物が検出され、且つ、超電導層のXRD強度が、YBCO(006)ピークの強度で1000cps以下であった。
 -超電導特性の評価-
 更に、超電導特性の評価について、酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)の分布をTHEVA社製Cryoscanを用いて誘導法にて測定し、次のように評価基準を設けた。
 ・A:Jc>2.5MA/cm
 ・B:2.5MA/cm≧Jc>1.0MA/cm
 ・C:1.0MA/cm≧Jc>0MA/cm
 ・D:Jc=0MA/cm
Figure JPOXMLDOC01-appb-T000001
 表1から判るように、中間層の平均膜厚が10nm以上20nm以下であり且つ表面粗さRaが0.5nm以下である場合、これらの要件を満たさない場合に比べて、膜生成状態、反応抑制状態、超電導特性のいずれもが優れ、好ましいことが判る。
 また、中間層の材料としてCeOを用いている態様においては価数平均が3.7以上3.95以下である場合に、これらの要件を満たさない場合に比べて、更に優れた膜生成状態と反応抑制状態、および高い超電導特性が得られ、より好ましいことが判る。また、中間層の材料としてMgOを用いている態様においては価数平均が1.85以上1.95以下である場合に、これらの要件を満たさない場合に比べて、更に優れた膜生成状態と反応抑制状態、および高い超電導特性が得られ、より好ましいことが判る。
<参考例1>
 前記実施例1において、中間層(酸化セリウム薄膜)の膜厚を40nmとした以外は、実施例1と同様にして酸化物超電導薄膜、薄膜型超電導素子を作製した。
 まず、得られた中間層(酸化セリウム薄膜)をX線回折およびX線極点図により調べたところ、酸化セリウムは(001)方位に配向しており、他の配向成分は確認できなかった。
 また、得られた中間層(酸化セリウム薄膜)を、AFMを用いて形態観察を行ったところ、表面はきわめて平滑で、サファイア基板まで到達するような穴は見られなかった。表面粗さRaは0.3nmであった。
 更に、得られた中間層(酸化セリウム薄膜)中の、セリウムの価数をXPSによって調べたところ、価数(価数の割合を平均した数値)は3.9であった。さらに、XPSではAlの信号は検出されず、サファイア基板全面が酸化セリウムにより被覆されていることが確かめられた。
 この酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)の分布を、THEVA社製Cryoscanを用いて誘導法にて測定したところ、面内で2.2~2.5MA/cmの均一な分布が得られた。
 さらに、得られた薄膜型超電導素子について、通電試験による臨界電流(Ic)測定を行ったところ、Ic90Aが得られた。
<参考例2>
 前記参考例1において、ポストアニール温度を700℃とした以外は、参考例1と同様にして酸化物超電導薄膜、薄膜型超電導素子を作製した。
 まず、得られた中間層(酸化セリウム薄膜)をX線回折およびX線極点図により調べたところ、酸化セリウムは(001)方位に配向しており、他の配向成分は確認できなかった。
 また、得られた中間層(酸化セリウム薄膜)を、AFMを用いて形態観察を行ったところ、表面はきわめて平滑で、サファイア基板まで到達するような穴は見られなかった。表面粗さRaは0.55nmであった。
 更に、得られた中間層(酸化セリウム薄膜)中の、セリウムの価数をXPSによって調べたところ、価数(価数の割合を平均した数値)は3.9であった。さらに、XPSではAlの信号は検出されず、サファイア基板全面が酸化セリウムにより被覆されていることが確かめられた。
 この酸化物超電導薄膜の液体窒素温度での臨界電流密度(Jc)の分布を、THEVA社製Cryoscanを用いて誘導法にて測定したところ、面内で2.0~2.4MA/cmの均一な分布が得られた。
 さらに、得られた薄膜型超電導素子について、通電試験による臨界電流(Ic)測定を行ったところ、Ic80Aが得られた。
Figure JPOXMLDOC01-appb-T000002
10 超電導限流器
12 密閉容器
16 電流導入出部
24 素子収容容器
30 薄膜型超電導素子(超電導限流素子)
32 基板
34 中間層
36A 前駆体の膜
36 超電導層
40 電極
100 酸化物超電導薄膜
 

Claims (7)

  1.  基板と、
     前記基板上に、平均膜厚が10nm以上20nm以下であり、表面の表面粗さRaが0.5nm以下である中間層と、
     前記中間層の表面に、酸化物超電導体を主成分として含有する超電導層と、
     をこの順に備える酸化物超電導薄膜。
  2.  前記中間層は、CeOを含み、且つ前記Ce元素の価数の割合を平均した数値が3.7以上3.95以下である、
     請求項1に記載の酸化物超電導薄膜。
  3.  前記中間層は、NaCl型の結晶構造を持つMgOを含み、且つ前記Mg元素の価数の割合を平均した数値が1.85以上1.95以下である、
     請求項1に記載の酸化物超電導薄膜。
  4.  前記中間層が前記基板の表面に備えられ、且つ前記基板の前記中間層との界面に転位が生じている箇所を有する、
     請求項1~請求項3の何れか1項に記載の酸化物超電導薄膜。
  5.  前記酸化物超電導体は、組成式REBaCu7-δ(REは単一の希土類元素または複数の希土類元素であり、前記δは酸素不定比量である)で表される、
     請求項1~請求項4の何れか1項に記載の酸化物超電導薄膜。
  6.  前記基板は、サファイア基板である、
     請求項1~請求項5の何れか1項に記載の酸化物超電導薄膜。
  7.  内部に液体窒素が充填される密閉容器と、
     前記密閉容器の外部から内部へ電流を導入して流出する電流導入出部と、
     請求項1~請求項6の何れか1項に記載の酸化物超電導薄膜の超電導層上に電極が形成されて構成され、前記密閉容器内で前記電流導入出部に接続される超電導限流素子と、
     を備える超電導限流器。
     
PCT/JP2012/064123 2011-05-31 2012-05-31 酸化物超電導薄膜および超電導限流器 WO2012165563A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/123,083 US9159898B2 (en) 2011-05-31 2012-05-31 Oxide superconductor thin film and superconducting fault current limiter
EP12792464.5A EP2717274A4 (en) 2011-05-31 2012-05-31 SUPERCONDUCTIVE OXIDE THIN FILM AND SUPERCONDUCTIVE ERROR CURRENT LIMITER
JP2013518168A JP6090794B2 (ja) 2011-05-31 2012-05-31 酸化物超電導薄膜および超電導限流器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-122220 2011-05-31
JP2011122220 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165563A1 true WO2012165563A1 (ja) 2012-12-06

Family

ID=47259415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064123 WO2012165563A1 (ja) 2011-05-31 2012-05-31 酸化物超電導薄膜および超電導限流器

Country Status (4)

Country Link
US (1) US9159898B2 (ja)
EP (1) EP2717274A4 (ja)
JP (1) JP6090794B2 (ja)
WO (1) WO2012165563A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210356A (zh) * 2014-12-22 2017-09-26 科技创新动量基金(以色列)参股有限公司 用于超导装置的电介质衬底和使用这种衬底的超导产品
WO2019224830A1 (en) * 2018-05-24 2019-11-28 Guy Deutscher Fault current limiter
US20220052249A1 (en) * 2020-06-05 2022-02-17 Ambature, Inc. A-axis Josephson Junctions with Improved Smoothness

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656581A (ja) * 1992-08-07 1994-03-01 Nippon Telegr & Teleph Corp <Ntt> 酸化物高温超伝導体単結晶薄膜形成方法並びに酸化物高温超伝導体単結晶薄膜形成用基板及びその形成方法
JP2002150855A (ja) 2000-11-15 2002-05-24 Furukawa Electric Co Ltd:The 酸化物超電導線材およびその製造方法
JP2003037304A (ja) 2001-07-24 2003-02-07 Japan Science & Technology Corp サファイア基板への酸化物超伝導薄膜の製造方法
JP2003188427A (ja) 2001-12-20 2003-07-04 Toshiba Corp 超電導素子およびその製造方法
JP2003526905A (ja) * 1999-07-23 2003-09-09 アメリカン スーパーコンダクター コーポレイション 多層体及びその製造方法
JP2004244263A (ja) * 2003-02-13 2004-09-02 National Institute Of Advanced Industrial & Technology 高臨界電流密度を有する超伝導酸化物薄膜の作製方法
JP2006027958A (ja) * 2004-07-16 2006-02-02 Sumitomo Electric Ind Ltd 薄膜材料およびその製造方法
JP2007311194A (ja) * 2006-05-18 2007-11-29 Sumitomo Electric Ind Ltd 超電導薄膜材料および超電導薄膜材料の製造方法
JP2011122220A (ja) 2009-12-11 2011-06-23 Mitsubishi Alum Co Ltd 接着性に優れた表面処理アルミニウム材の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262394A (en) * 1991-12-27 1993-11-16 The United States Of America As Represented By The United States Department Of Energy Superconductive articles including cerium oxide layer
KR100338250B1 (ko) * 1999-07-16 2002-05-27 이상영 고온초전도 YBa2Cu3O7-δ 박막 성장시 박막의 표면특성 향상법
US7261776B2 (en) * 2004-03-30 2007-08-28 American Superconductor Corporation Deposition of buffer layers on textured metal surfaces
JP5327772B2 (ja) * 2006-11-29 2013-10-30 独立行政法人産業技術総合研究所 サファイア基板上超電導酸化物多層薄膜及びその作製方法
US8664163B2 (en) * 2009-01-15 2014-03-04 Ramot At Tel-Aviv University Ltd. High temperature superconductive films and methods of making them

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656581A (ja) * 1992-08-07 1994-03-01 Nippon Telegr & Teleph Corp <Ntt> 酸化物高温超伝導体単結晶薄膜形成方法並びに酸化物高温超伝導体単結晶薄膜形成用基板及びその形成方法
JP2003526905A (ja) * 1999-07-23 2003-09-09 アメリカン スーパーコンダクター コーポレイション 多層体及びその製造方法
JP2002150855A (ja) 2000-11-15 2002-05-24 Furukawa Electric Co Ltd:The 酸化物超電導線材およびその製造方法
JP2003037304A (ja) 2001-07-24 2003-02-07 Japan Science & Technology Corp サファイア基板への酸化物超伝導薄膜の製造方法
JP2003188427A (ja) 2001-12-20 2003-07-04 Toshiba Corp 超電導素子およびその製造方法
JP2004244263A (ja) * 2003-02-13 2004-09-02 National Institute Of Advanced Industrial & Technology 高臨界電流密度を有する超伝導酸化物薄膜の作製方法
JP2006027958A (ja) * 2004-07-16 2006-02-02 Sumitomo Electric Ind Ltd 薄膜材料およびその製造方法
JP2007311194A (ja) * 2006-05-18 2007-11-29 Sumitomo Electric Ind Ltd 超電導薄膜材料および超電導薄膜材料の製造方法
JP2011122220A (ja) 2009-12-11 2011-06-23 Mitsubishi Alum Co Ltd 接着性に優れた表面処理アルミニウム材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717274A4

Also Published As

Publication number Publication date
EP2717274A4 (en) 2015-01-14
JP6090794B2 (ja) 2017-03-08
EP2717274A1 (en) 2014-04-09
US20140087951A1 (en) 2014-03-27
JPWO2012165563A1 (ja) 2015-02-23
US9159898B2 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
Jergel Synthesis of high-Tc superconducting films by deposition from an aerosol
JP4800740B2 (ja) 希土類系テープ状酸化物超電導体及びその製造方法
JP6422342B2 (ja) 酸化物超電導薄膜
JP5513154B2 (ja) 酸化物超電導線材及び酸化物超電導線材の製造方法
US11488746B2 (en) Superconductor with improved flux pinning at low temperatures
JP2008310986A (ja) テープ状酸化物超電導体
US20110105336A1 (en) Rare earth element oxide superconductive wire material and method of producing the same
EP2592632A1 (en) Superconducting thin film substrate and superconducting thin film, and superconducting thin film substrate manufacturing method
JP6090794B2 (ja) 酸化物超電導薄膜および超電導限流器
JP5939648B2 (ja) 酸化物超電導薄膜、超電導限流器及び酸化物超電導薄膜の製造方法
JP2012204189A (ja) 超電導線材の製造方法
JP2013012321A (ja) 酸化物超電導導体とその製造方法
US8673821B2 (en) Coated conductor with improved grain orientation
US20130137580A1 (en) Substrate for superconducting thin film, superconducting thin film, and method of producing superconducting thin film
JP5939995B2 (ja) 超電導線材及び超電導線材の製造方法
US9070495B2 (en) Superconducting wire material and method for manufacturing superconducting wire material
JP5380250B2 (ja) 希土類系酸化物超電導線材及びその製造方法
JP5764421B2 (ja) 酸化物超電導導体
JP2013008962A (ja) 超電導素子、超電導素子の製造方法および超電導限流器
JP2012204190A (ja) 酸化物超電導薄膜
JP2525842B2 (ja) 超電導線材とその製造方法
Yang et al. YBCO films buffered by pyrochlore Nd2Mo2O7 layer on YSZ substrates by chemical solution deposition
WO2002093590A1 (fr) Supraconducteur oxyde sous forme de ruban et son mode de fabrication
Ko et al. High $ J_ {\rm c} $${\hbox {GdBa}} _ {2}{\hbox {Cu}} _ {3}{\hbox {O}} _ {7-\delta} $ Coated Conductors on ${\hbox {CeO}} _ {2} $-Buffered IBAD MgO Template Fabricated by Pulsed Laser Deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518168

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123083

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012792464

Country of ref document: EP