WO2012165239A1 - 液状樹脂組成物およびそれを用いた半導体装置 - Google Patents

液状樹脂組成物およびそれを用いた半導体装置 Download PDF

Info

Publication number
WO2012165239A1
WO2012165239A1 PCT/JP2012/063123 JP2012063123W WO2012165239A1 WO 2012165239 A1 WO2012165239 A1 WO 2012165239A1 JP 2012063123 W JP2012063123 W JP 2012063123W WO 2012165239 A1 WO2012165239 A1 WO 2012165239A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
liquid resin
epoxy resin
inorganic filler
group
Prior art date
Application number
PCT/JP2012/063123
Other languages
English (en)
French (fr)
Inventor
星児 深町
増田 剛
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2012165239A1 publication Critical patent/WO2012165239A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a liquid resin composition excellent in moldability and a semiconductor device using the same.
  • Patent Document 2 a technique that can cope with multiple IOs while keeping the package size small by performing rewiring by some method has been proposed (see Patent Document 2). Since the sealing material for WLP is used by being sealed on a pseudo wafer having a large area such as 8 inches or 12 inches, it is required to have a low warpage, and a larger amount than that of a normal liquid sealing material. Made by introducing filler (inorganic filler). However, when the filler amount is increased, the fluidity is deteriorated, and if the fluidity is not sufficient at the molding temperature, a flow mark is generated or peeling occurs.
  • filler inorganic filler
  • An object of the present invention is to provide a liquid sealing resin composition that simultaneously satisfies a sufficiently low viscosity at molding temperature and a high filler filling for warpage suppression, and a highly reliable semiconductor package using the same. is there.
  • the present invention is as follows.
  • a liquid resin composition containing (A) an alicyclic epoxy resin, (B) a curing agent for epoxy resin, (C) an inorganic filler, and (D) a curing accelerator as essential components, )
  • a liquid resin composition characterized in that an inorganic filler is contained in the total liquid resin composition in an amount of 80 wt% to 95 wt%, and the viscosity at 25 ° C. is 50 Pas to 500 Pas.
  • the liquid resin composition according to (1) comprising (C) an inorganic filler surface-treated with silazanes and then surface-treated with a silane coupling agent.
  • the silane coupling agent is one or more compounds having an active group selected from an amino group, a glycidyl group, a ureido group, a hydroxy group, an alkoxy group, and a mercapto group.
  • the liquid resin composition as described.
  • a rearranged wafer prepared by arranging a large number of semiconductor chips on a support and sealing them with the liquid resin composition according to any one of (1) to (4).
  • (6) The rearranged wafer according to (5), wherein the sealing is performed by compression molding.
  • a semiconductor package including a step of arranging a large number of semiconductor chips on a support, a step of applying the liquid resin composition according to any one of (1) to (4), and a step of molding by a mold Manufacturing method.
  • liquid resin composition of the present invention By using the liquid resin composition of the present invention, a highly reliable device can be obtained in a wafer level package, particularly a semiconductor device manufactured in a wafer level process formed into a wafer shape by compression molding.
  • the present invention is a liquid resin composition
  • a liquid resin composition comprising (A) an alicyclic epoxy resin, (B) a curing agent for epoxy resin, (C) an inorganic filler, and (D) a curing accelerator as essential components, C) A liquid resin composition characterized in that an inorganic filler is contained in the total liquid resin composition in an amount of 80 wt% to 95 wt%, and the viscosity at 25 ° C. is 50 Pas to 500 Pas, and
  • the present invention relates to a semiconductor device using.
  • the present invention will be described in detail.
  • the (A) alicyclic epoxy resin used in the present invention is not particularly limited as long as it has two or more alicyclic epoxy groups in one molecule, and its molecular weight and structure are not particularly limited.
  • cycloaliphatic epoxy resins such as vinylcyclohexene dioxide, dicyclopentadiene oxide, and alicyclic diepoxy-adipade. These may be used alone or in combination of two or more.
  • the epoxy resin is finally liquid at room temperature (25 ° C.). However, even an epoxy resin that is solid at room temperature is dissolved in the liquid epoxy resin at room temperature, resulting in a liquid at room temperature. Any state is acceptable.
  • an alicyclic epoxy resin having a structure of formulas (1) and (1A) is effective from the viewpoint of viscosity reduction, heat resistance, and mechanical properties.
  • R21 to R38 each independently represent a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 haloalkyl group, a C1-6 alkoxy group, or a C1-6 haloalkoxy group.
  • an alicyclic epoxy resin having the structure of the general formula (2) is effective from the viewpoint of further reducing the viscosity, improving heat resistance and mechanical properties.
  • the alicyclic epoxy resin of following formula (3) is mentioned, for example.
  • R 1 to R 18 may be the same or different and each represents a hydrogen atom, a halogen atom, or an organic group that may be substituted with a halogen atom. (A 1-6 alkyl group or a C1-C6 alkoxy group is preferred.)
  • the epoxy resin other than the above (A) alicyclic epoxy resin is not particularly limited in terms of molecular weight and structure as long as it has two or more epoxy groups in one molecule.
  • novolak type epoxy resins such as phenol novolac type epoxy resin and cresol novolak type epoxy resin, bisphenol F type epoxy resin, N, N-diglycidylaniline, N, N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aminophenol Aromatic glycidylamine type epoxy resin such as glycidylamine type, hydroquinone type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, triphenolpropane type epoxy resin, alkyl-modified triphenolmethane type epoxy Resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, Examples
  • an aromatic glycidyl ether type epoxy resin is preferred from the viewpoints of heat resistance, mechanical properties, and moisture resistance. It is preferable to limit the amount of the aliphatic glycidyl ether type epoxy resin used from the viewpoint of reliability, particularly adhesiveness. These may be used alone or in combination of two or more in addition to the alicyclic epoxy resin.
  • the content of the alicyclic epoxy resin is preferably 5 to 20% by weight, more preferably 8 to 15% by weight in the total liquid resin composition. When the content of the alicyclic epoxy resin is in the above range, the obtained liquid resin composition has good fluidity, heat resistance, and mechanical properties.
  • the epoxy resin curing agent (B) used in the present invention refers to monomers, oligomers and polymers generally having a functional group that reacts with epoxy in one molecule, and the molecular weight and molecular structure thereof are not particularly limited.
  • phenols such as phenol novolac resin, cresol novolac resin, dicyclopentadiene modified phenol resin, terpene modified phenol resin, triphenolmethane type resin, phenol aralkyl resin (having phenylene skeleton, diphenylene skeleton, etc.), phthalic anhydride , Maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, or 3-methyl-hexahydrophthalic anhydride and 4- Examples thereof include a mixture with methyl-hexahydrophthalic anhydride, and acid anhydrides such
  • An acid anhydride is preferred as the curing agent because curing at low temperature is fast and the glass transition temperature of the cured product is high. Moreover, since it is liquid at normal temperature (25 degreeC) and its viscosity is also low, it is more preferable to use the acid anhydride shown by Formula (4) as a hardening
  • the curing agent is not particularly limited, and may be used alone or in combination of two or more.
  • the content of the curing agent for epoxy resin is preferably 5 to 20% by weight, more preferably 8 to 15% by weight in the total liquid resin composition. When the content of the epoxy resin curing agent is in the above range, the resulting liquid resin composition has good fluidity, heat resistance, and mechanical properties.
  • an inorganic filler (C) used for this invention what is generally used for the sealing material can be used.
  • fused silica, crystalline silica, synthetic silica powder, talc, alumina, silicon nitride and the like may be mentioned, which may or may not be surface-treated. These may be used alone or in combination of two or more. There is no problem.
  • fused silica, crystalline silica, and synthetic silica powder are preferable because the heat resistance, moisture resistance, strength, and the like of the resin composition can be improved.
  • the shape of the inorganic filler is not particularly limited, but the shape is preferably spherical from the viewpoint of viscosity characteristics and flow characteristics.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 0.1 to 50 ⁇ m.
  • a fine product having an average particle size of 0.1 to 3 ⁇ m and a coarse product having an average particle size of 4 to 50 ⁇ m are used. You may use together.
  • the fine particles having an average particle size of 0.1 to 3 ⁇ m are preferably subjected to surface treatment. More preferably, it is surface-treated with silazanes and then surface-treated with a silane coupling agent.
  • the content of the inorganic filler (C) is required to be 80 to 95% by weight in the total epoxy resin composition, more preferably 85 to 92% by weight, from the balance between moldability and solder crack resistance. %.
  • the content of the inorganic filler is in the above range, the obtained liquid resin composition has good fluidity and solder crack resistance by suppressing water absorption.
  • the content of the inorganic filler surface-treated with silazanes and then surface-treated with a silane coupling agent is preferably 5 to 50% by weight in the total epoxy resin composition. . In the case of the above range, it has good dispensing properties.
  • the amount ratio of the silazanes to be used and the silane coupling agent is preferably such that the amount of silazanes used is 1/100 to 1/5 (weight ratio) of the amount of silane coupling agent used.
  • silazanes can react with the surface of the endless filler and give good organic affinity, and the reaction between the silane coupling material and the surface of the inorganic filler, that is, the metal oxide, should be carried out without excess or deficiency. I can do it.
  • the treatment method include a method in which an inorganic filler is put into a mixer and treated by spraying silazanes in a nitrogen stream while stirring and then spraying and adding a silane coupling agent.
  • silazanes used in the present invention include hexamethyldisilazane, hexaphenyldisilazane, tetramethyl-1,3-diphenyldisilazane, 1,1,3,3-tetramethyl-1,3-divinyldisilazane, 2,4,4,6,6-hexamethylcyclotrisilazane, octamethylcyclotetrasilazane and the like.
  • a compound selected from silazanes such as hexamethyldisilazane and hexaphenyldisilazane or a combination thereof is preferable.
  • HMDS hexamethyldisilazane
  • the silane coupling agent used in the present invention is a compound having an active group selected from an amino group, a glycidyl group, a mercapto group, a ureido group, a hydroxy group, an alkoxy group, and a mercapto group, or a combination thereof.
  • epoxy silanes such as ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxy, and the like as silane coupling agents.
  • Examples include aminosilanes such as silane and N-phenylaminopropyltrimethoxysilane, hydrophobic silane compounds such as phenyltrimethoxysilane, methyltrimethoxysilane, and octadecyltrimethoxysilane, and mercaptosilane.
  • a hardening accelerator (D) used for this invention what is necessary is just to accelerate
  • examples thereof include, but are not limited to, phosphonium salts, triphenylphosphine, imidazole compounds and the like. These curing accelerators may be used alone or in combination.
  • the phosphonium salt having the structure of the general formula (5) or the general formula (6), the triphenylphosphine having the structure of the formula (7), or the imidazole compound having the structure of the formula (8) or the formula (9) has a low viscosity. This is effective from the viewpoint of optimization.
  • a hardening accelerator of General formula (5) following formula (10), Formula (11), Formula (12) etc. are mentioned, for example.
  • R1, R2, R3, and R4 are an organic group or an aliphatic group having an aromatic or heterocyclic ring, and at least one of them is a proton capable of releasing out of the molecule.
  • the proton donor having at least one is a group formed by releasing one proton, and these may be the same as or different from each other.
  • Ar represents a substituted or unsubstituted aromatic group, and two oxygen atoms in the same molecule are located adjacent to the aromatic carbon position.
  • N represents an integer of 2 to 12.
  • examples of the curing accelerator of the general formula (6) include the following formula (13) and formula (14).
  • the content of the curing accelerator is preferably 0.01 to 0.30% by weight, more preferably 0.05 to 0.20% by weight in the total liquid resin composition.
  • the obtained liquid resin composition has good reactivity, storage stability, and insulation reliability.
  • components that can be used other than the above include mold release agents such as silicone compounds and waxes as antifoaming agents, low-stress materials, flame retardants, and the like, which can be added according to the desired characteristics. it can.
  • the viscosity at room temperature is a viscosity measured with an E-type viscometer, and the measurement conditions are as follows. That is, it is a viscosity when a 3 ° R7.7 type cone is attached to an E type viscometer and measurement is performed at 25 ° C. under the condition of 2.5 rpm.
  • the inventors have found that there is a relationship between the viscosity at room temperature and the result of good or bad compression moldability. If the viscosity is too high, application from a syringe is impossible or application accuracy is poor. Therefore, the viscosity needs to be 500 Pas or less. Further, the lower limit of the viscosity needs to be 50 Pas or more in order to prevent the resin from flowing and spilling from the end of the application surface during resin application.
  • the viscosity at room temperature is preferably 100 to 350 Pas.
  • the viscosity at the molding temperature is a viscosity measured with a rheometer, and the measurement conditions are as follows. That is, the minimum viscosity when the liquid sealing resin composition is sandwiched between 25 ⁇ plates and measured under a shear stress condition of 100 Pa at the molding temperature.
  • the inventors have found that there is a relationship between the viscosity at the molding temperature and the result of good and bad compression moldability. If the viscosity is too high, moldability problems such as unfilling and flow mark occur. The following is preferable.
  • the lower limit of the viscosity is preferably 0.5 Pas or more in order to prevent the resin from flowing too much during resin molding.
  • the viscosity at the molding temperature is more preferably 1.0 to 30 Pas.
  • each component, additive, etc. is dispersed and kneaded using an apparatus such as a planetary mixer, a triple roll, a two-heat roll, or a laika machine, and then removed under vacuum. Produced by foam treatment.
  • a method for manufacturing a semiconductor device of the present invention for example, there is the following method, but the method is not limited thereto. That is, on a carrier (support having a releasable adhesive layer), semiconductor chips that are known to operate in advance are arranged with their active surfaces facing downward, and the liquid sealing resin composition of the present invention is placed on the semiconductor chip. A required amount is applied with a dispenser or the like at room temperature, and after compression molding at a predetermined molding temperature using a molding die, the carrier is peeled off to obtain a semiconductor wafer-like resin cured product.
  • a polyimide resin is spin-coated on the surface of the obtained wafer-like resin cured product with a semiconductor and cured to form an insulating film layer, and then an electrode pad portion on the active surface of the semiconductor chip is opened by patterning. Rewiring processing and bump formation for mounting are performed from the opening portion to the polyimide resin surface by plating. After that, the semiconductor device is obtained by dividing it into a suitable size.
  • Example 1 (1) As alicyclic epoxy resin (A), 100 parts by weight of alicyclic epoxy resin represented by formula (3) (2) As curing agent for epoxy resin (B), methyltetrahydrophthalic anhydride MT- 500 New Nippon Rika Co., Ltd. 120 parts by weight (3) Inorganic filler 1 as inorganic filler (C) FB-74 (fused spherical silica, average particle size 30 ⁇ m) 1500 parts by weight manufactured by Denki Kagaku Kogyo Co., Ltd.
  • inorganic filler (C) 100 parts by weight of SO-E2 (fused spherical silica, average particle size 0.5 ⁇ m manufactured by Admatechs) was added to the mixer and stirred. Under a nitrogen stream, 0.1 parts by weight of hexamethyldisilazane (HMDS) was sprayed and treated, and then ⁇ -glycidoxypropyltrimethoxysilane (silane coupling agent, trade name KBM-403 Shin-Etsu Chemical Co., Ltd.) Manufactured) Inorganic filler 2 obtained by spraying 1 part by weight to obtain treated powder 700 parts by weight (5) Curing accelerator represented by formula (12) as curing accelerator (D) 7 parts by weight (6) Epoxysilane coupling agent: ⁇ -Glycidoxypropyltrimethoxysilane KBM-403E 7 parts by weight made by Shin-Etsu Chemical Co., Ltd.
  • SO-E2 fused silica, average particle size 0.5 ⁇ m manufactured
  • Viscosity measurement A 3 ° R7.7 cone was attached to an E-type viscometer, and measurement was performed at 25 ° C. under the condition of 2.5 rpm. The thixotropy was calculated as follows from the results measured at 2.5 and 0.5 rpm. That is, [viscosity at 0.5 rpm] ⁇ [viscosity at 2.5 rpm].
  • Viscosity measurement at 125 ° C . Using Haake's rheometer RS-150, sample 100 data for 5 minutes under the conditions of cone size 25 mm, temperature 125 ° C., stress 100 Pa constant, frequency 1 Hz, and read the lowest viscosity value. It is.
  • a semiconductor chip was mounted with a die mounter (DB200, manufactured by Kasuya Kogyo Co., Ltd.) so that the active surface on which the electrodes of the semiconductor chip were in contact with the thermally foamed film with a suitable space in the support substrate.
  • a support substrate with a semiconductor chip was set in a compression molding machine, an appropriate amount of the liquid resin composition was placed thereon, and cured at a molding pressure of 3 MPa or 1 MPa at 125 ° C. for 10 minutes to obtain a wafer.
  • the amount of the liquid resin composition was adjusted so that the resin thickness after molding was 600 ⁇ 10 ⁇ m. After the wafer is heat-treated in an oven at 150 ° C. for 1 hour and then cured, it is placed on a 200 ° C.
  • the molded sample was evaluated for the presence or absence of flow marks and peeling by appearance observation.
  • the flow mark is a white flow mark that remains radially outward from the center of the molded product.
  • Peeling means peeling at the interface between the molded product and the thermally foamed film. When peeling occurs, there is a concern that the wafer may be misaligned, dropped, or warped during conveyance. As a result of using the liquid resin composition of Example 1, neither flow mark nor peeling was found.
  • a resist (Sunfort 155, manufactured by Asahi Kasei E-Materials Co., Ltd.) was applied thereto, and the resist was exposed and developed using a rewiring circuit mask. Further, a copper layer having a thickness of 10 ⁇ m was formed on the whole by copper plating, and then the resist was peeled off. In this state, unnecessary copper and titanium layers remain on the buffer coat surface. After removing these by etching, a buffer coat layer is provided again by spin coating, and holes are opened at different positions after rewiring. The copper layer for this was exposed. Rewiring was performed according to the above procedure. The rearranged wafers that had been rewired were separated into 15 mm square sizes using a dicer. In this way, a semiconductor package device for reliability testing was assembled.
  • Example 2-15 [Comparative Example 1-5] According to the composition of Tables 1 and 2, a liquid resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2. The raw materials used other than Example 1 are shown below.
  • alicyclic epoxy resin (A) alicyclic epoxy resin represented by formula (1)
  • ⁇ As other epoxy resin bisphenol F type epoxy resin SB-403S manufactured by Nippon Kayaku Kogyo Co., Ltd.
  • SO-E2 fused silica, average particle size 0.5 ⁇ m, manufactured by Admatechs
  • Inorganic filler 3 obtained by processing powder
  • an inorganic filler (C) 100 parts by weight of SO-E2 (fused spherical silica, average particle size 0.5 ⁇ m, manufactured by Admatechs) was put into a mixer, and stirred under a nitrogen stream, hexamethyldisilazane ( (HMDS) 0.1 parts by weight of spray and then treated, then sprayed with 1 part by weight of 3-acryloxypropyltrimethoxysilane (silane coupling agent, trade name KBM-5103, Shin-Etsu Chemical Co., Ltd.)
  • Inorganic filler 4 obtained powder
  • Inorganic filler 5 obtained by spraying 1 part by weight of propyltrimethoxysilane (silane coupling agent, trade name KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder
  • an inorganic filler (C) 100 parts by weight of SO-E2 (fused spherical silica, average particle size 0.5 ⁇ m, manufactured by Admatechs) was charged into a mixer, and stirred under a nitrogen stream, hexaphenyldisilazane ( HFDS) was added by spraying 0.1 part by weight, and then 1 part by weight of ⁇ -glycidoxypropyltrimethoxysilane (silane coupling agent, trade name KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was added by spraying.
  • SO-E2 fused spherical silica, average particle size 0.5 ⁇ m, manufactured by Admatechs
  • HFDS hexaphen
  • Inorganic filler 6 from which treated powder was obtained ⁇ As inorganic filler (C), inorganic filler 7 SO-E2 (fused spherical silica, average particle size 0.5 ⁇ m) manufactured by Admatechs ⁇ Cure represented by formula (15) as curing accelerator (D) Accelerator
  • liquid resin composition of the present invention By using the liquid resin composition of the present invention, a highly reliable device can be obtained in a wafer level package, particularly a semiconductor device manufactured in a wafer level process formed into a wafer shape by compression molding. Therefore, the present invention is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明により、成形温度において十分低い粘度及び反り抑制の為のフィラー高充填化を同時に満たした液状封止用樹脂組成物、およびこれを用いた高信頼性な半導体パッケージが提供される。本発明の液状樹脂組成物は、(A)脂環式エポキシ樹脂、(B)エポキシ樹脂用硬化剤、(C)無機充填材、及び(D)硬化促進剤を必須成分とする液状樹脂組成物であって、(C)無機充填材が全液状樹脂組成物中に、80重量%以上95重量%以下含まれ、25℃での粘度が50Pas以上で500Pas以下である事を特徴とする。

Description

液状樹脂組成物およびそれを用いた半導体装置
本発明は、成形性に優れた液状樹脂組成物と、それを用いてなる半導体装置に関するものである。
本願は、2011年6月1日に、日本に出願された特願2011-123213号に基づき優先権を主張し、その内容をここに援用する。
近年の電子機器の小型化、軽量化、高集積化, 高速動作化の動向を反映して、半導体パッケージに占める半導体チップの面積、体積は大きくなり、半導体パッケージ内の配線は微細化、短小化している。従来、このような半導体チップを配線基板に電気的に接続して高速で動作させるために、半導体チップに突起電極(バンプ)を形成して、このバンプによって配線基板と一括接合するフリップチップ接続と呼ばれる実装方法がある。
 この方法では殆どの場合、半田バンプが付いただけの半導体チップの状態ではハンドリング性に問題がある為、半導体チップと配線基板のペアを接続してパッケージ化した状態にまで組み立てて、実装メーカーへ提供している。しかし、この様にすると、配線基板の厚みや大きさの分、大きくなってしまう為、より小さくする為の方法が求められている。
 そこで、より薄いパッケージを製造する為に、最近ではウエハーレベルパッケージ(WLP)と呼ばれる、半導体回路の形成されたウエハーを個別のチップに切断する前に、電気接続用のバンプを設け、ウエハー全体を封止する手法が考え出された(特許文献1参照)。
  しかし、増大する単位面積あたりのIO(入出力)数に対し、この手法では限界がある為、予め切断した半導体チップをキャリア上に並べ、それをウエハー状に樹脂で形成した後、半導体回路面に何らかの方法で再配線を行う事で、パッケージのサイズを小さく抑えつつ、多IOにも対応できる技術が提案されている(特許文献2参照)。
 このWLP用の封止材は、8インチや12インチといった大面積の擬似ウエハーに封止して用いられるため、低反りである事が求められ、通常の液状封止材に比べ、より多量のフィラー(無機充填剤)を導入して作られる。しかし、フィラー量を多くすると流動性が悪化し、成形温度で十分な流動性がないとフローマークが発生したり、剥離が発生したりする。
特許第3616615号公報 米国特許出願公開第2007/205513号公報
 この様に、ウエハーレベルパッケージでは、その封止面積が大きく、しかも片側封止であるために、低反り性と成形性の両立を図るのが困難であった。
本発明の目的は、成形温度において十分低い粘度及び反り抑制の為のフィラー高充填化を同時に満たした液状封止用樹脂組成物、およびこれを用いた高信頼性な半導体パッケージを提供することである。
 本発明は、以下の通りである。 
(1)(A)脂環式エポキシ樹脂、(B)エポキシ樹脂用硬化剤、(C)無機充填材、及び(D)硬化促進剤を必須成分とする液状樹脂組成物であって、(C)無機充填材が全液状樹脂組成物中に、80重量%以上95重量%以下含まれ、25℃での粘度が50Pas以上で500Pas以下である事を特徴とする液状樹脂組成物。
(2)(C)無機充填材がシラザン類で表面処理され次いでシランカップリング剤で表面処理されたものを含む(1)に記載の液状樹脂組成物。
(3)前記シラザン類は、ヘキサメチルジシラザンである(2)に記載の液状樹脂組成物。
(4)前記シランカップリング剤は、アミノ基、グリシジル基、ウレイド基、ヒドロキシ基、アルコキシ基、メルカプト基から選択される活性基を有する化合物の1種以上である(2)又は(3)に記載の液状樹脂組成物。
(5)半導体チップを支持体に多数個配置し、(1)~(4)のいずれかに記載の液状樹脂組成物を用いて封止して作製した再配置ウエハー。
(6)前記封止が圧縮成形によるものである(5)に記載の再配置ウエハー。
(7)(5)又は(6)に記載の再配置ウエハーを個片化して作製した半導体パッケージ。
(8)半導体チップを支持体に多数個配置する工程、この上に(1)~(4)いずれかに記載の液状樹脂組成物を塗布する工程、金型により成形する工程、を含む半導体パッケージの製造方法。
本発明の液状樹脂組成物を使用することによって、ウエハーレベルパッケージ、とりわけ圧縮成形でウエハー状に形成されたウエハーレベル工程で製造される半導体装置において、高信頼性な装置を得る事が出来る。
本発明は、(A)脂環式エポキシ樹脂、(B)エポキシ樹脂用硬化剤、(C)無機充填材、及び(D)硬化促進剤を必須成分とする液状樹脂組成物であって、(C)無機充填材が全液状樹脂組成物中に、80重量%以上95重量%以下含まれ、25℃での粘度が50Pas以上で500Pas以下である事を特徴とする液状樹脂組成物、およびこれを用いた半導体装置に関する。
以下、本発明を詳細に説明する。
 本発明に用いる(A)脂環式エポキシ樹脂としては、一分子中に脂環式エポキシ基を2個以上有するものであれば特に限定されず、特にその分子量や構造は限定されるものではないが、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ-アジペイドなどの脂環式エポキシ樹脂が挙げられる。
これらは単独でも2種以上混合して使用しても良い。本発明ではエポキシ樹脂として最終的に常温(25℃)で液状であることが好ましいが、常温で固体のエポキシ樹脂であっても常温で液状のエポキシ樹脂に溶解させ、結果的に常温で液状の状態であればよい。好ましくは式(1)、(1A)の構造を有する脂環式エポキシ樹脂が低粘度化、耐熱性、機械特性の観点から有効である。式(1A)中、R21~R38は、各々独立して、水素原子、ハロゲン原子、C1~6アルキル基、C1~6ハロアルキル基、C1~6アルコキシ基、または、C1~6ハロアルコキシ基を示す。更に好ましくは一般式(2)の構造を有する脂環式エポキシ樹脂が更なる低粘度化、耐熱性、機械特性の向上の観点から有効である。一般式(2)の脂環式エポキシ樹脂としては、例えば、下記式(3)の脂環式エポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002

( 式中、R 1 ~ R 1 8 は、同一でも異なっていてもよく、水素原子、ハロゲン原子、ハロゲン原子で置換されていてもよい有機基のいずれかを示す。有機基としては、炭素数1~6のアルキル基または炭素数1~6のアルコキシ基が好ましい。)
Figure JPOXMLDOC01-appb-C000003
上記の(A)脂環式エポキシ樹脂以外のエポキシ樹脂としては、一分子中にエポキシ基を2個以上有するものであれば、特に分子量や構造は限定されるものではない。
例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンのような芳香族グリシジルアミン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂などのエポキシ樹脂が挙げられる。
本発明では、芳香族グリシジルエーテル型エポキシ樹脂が耐熱性、機械特性、耐湿性という観点から好ましい。脂肪族グリシジルエーテル型エポキシ樹脂は信頼性、特に接着性という観点から使用する量を限定するほうが好ましい。これらは脂環式エポキシ樹脂に加えて単独でも2種以上混合して使用しても良い。 
(A)脂環式エポキシ樹脂の含有量としては、全液状樹脂組成物中に5~20重量%含まれることが好ましく、8~15重量%含まれることがより好ましい。脂環式エポキシ樹脂の含有量が上記の範囲の場合、得られる液状樹脂組成物は良好な流動性、耐熱性、機械特性を有する。
本発明に用いるエポキシ樹脂用硬化剤(B)としては、1分子内にエポキシと反応する官能基を有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではない。
例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ジフェニレン骨格等を有する)等のフェノール類や、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、あるいは3-メチル-ヘキサヒドロ無水フタル酸と4-メチル-ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸などの酸無水物が挙げられる。
低温での硬化が早いことと、硬化物のガラス転移温度が高くなることから、硬化剤としては酸無水物が好ましい。また、常温(25℃)で液状であり、且つ粘度も低い事から、式(4)で示される酸無水物を硬化剤として用いる事が、より好ましい。 硬化剤は、特にこれらに限定されるものではなく、単独で用いても2種以上用いても差し支えない。
(B)エポキシ樹脂用硬化剤の含有量としては、全液状樹脂組成物中に5~20重量%含まれることが好ましく、8~15重量%含まれることがより好ましい。エポキシ樹脂用硬化剤の含有量が上記の範囲の場合、得られる液状樹脂組成物は良好な流動性、耐熱性、機械特性を有する。
Figure JPOXMLDOC01-appb-C000004
 本発明に用いる無機充填材(C)としては、一般に封止材料に使用されているものを使用することができる。例えば、溶融シリカ、結晶シリカ、合成シリカ粉末、タルク、アルミナ、窒化珪素等が挙げられ、表面処理を施したものでも、施していないものでもよく、これらは単独でも2種類以上併用して用いても差し支えない。これらの中でも樹脂組成物の耐熱性、耐湿性、強度などを向上できることから溶融シリカ、結晶シリカ、合成シリカ粉末が好ましい。上記無機充填材の形状は、特に限定されないが、粘度特性や流動特性の観点から形状は球状であることが好ましい。
 無機充填剤の平均粒径は、特に限定されないが0.1~50μmであることが好ましく、平均粒径が0.1~3μmの微粒品と平均粒径が4~50μmの粗粒品とを併用してもよい。
平均粒径0.1~3μmの微粒品については表面処理を施したものが好ましい。さらに好ましくは、シラザン類で表面処理され次いでシランカップリング剤で表面処理されたものである。
(C)無機充填材の含有量としては、成形性と耐半田クラック性のバランスから、全エポキシ樹脂組成物中に80~95重量%使用することが必要であり、更に好ましくは85~92重量%である。無機充填材の含有量が上記の範囲の場合、得られる液状樹脂組成物は良好な流動性、吸水率抑制による耐はんだクラック性を有する。 
(C)無機充填剤の内、シラザン類で表面処理され次いでシランカップリング剤で表面処理された無機充填剤の含有量は、全エポキシ樹脂組成物中に5~50重量%であることが好ましい。上記範囲の場合、良好なディスペンス性を有する。
 シラザン類で表面処理され次いでシランカップリング剤で表面処理は、シラザン類を先に用いることにより、無機充填材に有機物親和性を与え、次のシランカップリング剤との処理を効果的にする。ここで、用いるシラザン類とシランカップリング剤の量比は、シラザン類の使用量が、シランカップリング剤使用量の1/100から1/5(重量比)であることが好ましい。上記範囲の場合、シラザン類が無期充填材表面に反応し、良好な有機物親和性を与えることができ、シランカップリング材と無機充填材表面、つまり金属酸化物との反応を過不足なく行うことが出来る。処理方法としては、無機充填材をミキサーに投入し、攪拌しながら窒素気流下で、シラザン類を噴霧添加して処理した後、シランカップリング剤を噴霧添加して処理する方法が挙げられる。
本発明に用いるシラザン類としては、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、テトラメチル-1,3-ジフェニルジシラザン、1,1,3,3-テトラメチル-1,3-ジビニルジシラザン、2,2,4,4,6,6-ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン等が挙げられる。このうち、ヘキサメチルジシラザン、ヘキサフェニルジシラザン等のシラザン類から選択される化合物またはその組み合わせであることが好ましい。またこの中で、ヘキサメチルジシラザン(HMDS)が、シリカの凝集を抑制し、酸性であるシリカを塩基性に傾け、有機物に対する親和性を向上させ均一性を向上させるとともに、脂環式エポキシのカチオン重合を抑制することで、エポキシ樹脂に対する安定性を向上させる等の点で好ましい。
本発明に用いるシランカップリング剤は、アミノ基、グリシジル基、メルカプト基、ウレイド基、ヒドロキシ基、アルコキシ基、メルカプト基から選択される活性基を有する化合物またはその組み合わせである。具体的には、シランカップリング剤として、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン等のアミノシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシラン等が例示される。
本発明に用いる硬化促進剤(D)としては、エポキシ基と硬化剤との反応を促進させるものであればよく、一般に封止用材料に用いられるものを広く使用できる。例えば、ホスホニウム塩、トリフェニルホスフィン、イミダゾール化合物等が挙げられるが、これらに限定されるものではない。これらの硬化促進剤は単独でも混合して用いても差し支えない。好ましくは一般式(5)または一般式(6)の構造を有するホスホニウム塩、式(7)の構造を有するトリフェニルホスフィン、式(8)または式(9)の構造を有するイミダゾール化合物が低粘度化の観点から有効である。一般式(5)の硬化促進剤としては、例えば、下記式(10)、式(11)、および式(12)などが挙げられる。
Figure JPOXMLDOC01-appb-C000005

(式(5)中、R1、R2、R3、及びR4は芳香族もしくは複素環を有する有機基または脂肪族基であって、それらの内の少なくとも1つは、分子外に放出しうるプロトンを少なくとも1個有するプロトン供与体がプロトンを1個放出してなる基であり、これらは互いに同一であっても異なっていても良い。
Figure JPOXMLDOC01-appb-C000006

(式(6)中、Arは置換または無置換の芳香族基を表し、同一分子内の二つの酸素原子は、芳香族炭素位の隣接に位置する。nは2~12の整数を表す。)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 また一般式(6)の硬化促進剤としては、下式(13)、および式(14)などが挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
その他、下式(15)で示す硬化促進剤が挙げられる。
Figure JPOXMLDOC01-appb-C000015

(D)硬化促進剤の含有量としては、全液状樹脂組成物中に0.01~0.30重量%含まれることが好ましく、0.05~0.20重量%含まれることがより好ましい。硬化促進剤の含有量が上記の範囲の場合、得られる液状樹脂組成物は良好な反応性、保存性、絶縁信頼性を有する。
 本発明において、上記以外に用いることができる成分としては、消泡剤としてのシリコーン化合物やワックスなどの離型剤や低応力材、難燃剤等が挙げられ、求める特性に応じて添加する事ができる。
 本発明において室温(25℃)における粘度とは、E型粘度計にて測定した粘度であり、測定条件は次の通りである。 即ち、E型粘度計に3°R7.7型コーンを装着し25℃で2.5rpmの条件で測定を実施した時の粘度である。
 室温での粘度と圧縮成形性の良し悪しの結果に関係が有る事が本発明者らの検討によりわかっており、粘度が高すぎるとシリンジからの塗布が不可能であったり、塗布精度が悪くなったりする不具合が生じるため、粘度は500Pas以下であることが必要である。又粘度の下限値は、樹脂塗布の際、塗布面の端部から樹脂が流動してこぼれるのを抑制するために、50Pas以上であることが必要である。 
室温における粘度は、好ましくは、100~350Pasである。
 本発明において成形温度における粘度とは、レオメータにて測定した粘度であり、測定条件は次の通りである。 即ち、25φプレート間に液状封止用樹脂組成物を挟み、成形温度において100Paのせん断ストレス条件で測定した時の、最低粘度である。
 成形温度における粘度と圧縮成形性の良し悪しの結果に関係が有る事が本発明者らの検討によりわかっており、粘度が高すぎると未充填やフローマークといった成形性の不具合が生じるため、50Pas以下であることが好ましい。又粘度の下限値は、樹脂成形の際、樹脂が流動しすぎることを抑制するために、0.5Pas以上であることが好ましい。成形温度における粘度は、更に好ましくは、1.0~30Pasである。
 前述の様に、無機充填剤の割合を増やすと常温での粘度上昇につながり、作業性が低下する。熱時の粘度についても同様である。熱時粘度を圧縮成形に適する粘度範囲に抑えようとすると、無機充填剤の含有量を80重量%以上にしたまま、成形性不良を回避する事が困難である。しかし、無機充填剤の種類、硬化剤の種類、微量添加物である硬化促進剤の種類によっても、熱時粘度を低く保ったまま、フィラー量を増やす事が可能である。
本発明の液状樹脂組成物の製造方法としては、各成分、添加物などをプラネタリーミキサー、三本ロール、二本熱ロール、ライカイ機などの装置を用いて分散混練したのち、真空下で脱泡処理して製造する。
 本発明の半導体装置の製造方法としては、例えば次の様な方法があるが、これに限るものではない。
即ち、キャリア(再剥離可能な粘着層を持つ支持体)の上に、予め動作する事が分かっている半導体チップを、その活性面を下向きに並べ、その上に本発明の液状封止樹脂組成物を常温でディスペンサーなどで必要量塗布し、成形金型を用いて所定の成形温度で圧縮成形後、キャリアを剥がして半導体つきウエハー状樹脂硬化物を得る。得られた半導体つきウエハー状樹脂硬化物の表面にポリイミド樹脂をスピンコートして硬化を行い絶縁膜層を形成した後、パターニング処理により半導体チップ活性面上の電極パッド部分を開孔する。開孔部分からポリイミド樹脂表面へ、メッキ処理を用いて再配線加工と実装用のバンプ形成を行う。その後、これを適当な大きさに個片化することで半導体装置を得る。
以下、実施例を用いて、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
(1)脂環式エポキシ樹脂(A)として、式(3)で表される脂環式エポキシ樹脂
                               100重量部
(2)エポキシ樹脂用硬化剤(B)として、メチルテトラヒドロフタル酸無水物
      MT-500 新日本理化社製           120重量部
(3)無機充填材(C)として、無機充填剤1
      FB-74(溶融球状シリカ、平均粒径 30μm)
 電気化学工業社製                1500重量部
(4)無機充填材(C)として、SO-E2(溶融球状シリカ、平均粒径0.5μmアドマテックス社製)100重量部をミキサーに投入し、攪拌しながら窒素気流下で、ヘキサメチルジシラザン(HMDS)0.1重量部を噴霧添加して処理した後、γ一グリシドキシプロピルトリメトキシシラン(シランカップリング剤、商品名KBM-403信越化学工業社製)1重量部を噴霧添加して処理紛体を得た無機充填材2
700重量部
(5)硬化促進剤(D)として、式(12)で表される硬化促進剤   7重量部
(6)エポキシシランカップリング剤:
γ一グリシドキシプロピルトリメトキシシラン
KBM-403E 信越化学工業社製          7重量部
 をビーカーに取りスパチュラで混ぜ合わせた後、三本ロールにて3回混錬したのち、ビーカーに入れて真空オーブン(常温、5mmHg)10分間脱泡処理を行い、液状樹脂組成物を得た。
(a)粘度測定:E型粘度計に3°R7.7型コーンを装着し25℃で2.5rpmの条件で測定を実施した。チキソ性は2.5および0.5rpmで測定した結果から次のように計算した。 即ち、[0.5rpmの粘度]÷[2.5rpmの粘度]である。
(b)125℃粘度測定:HaakeのレオメータRS-150を用い、コーンサイズ25mm,温度125℃,ストレス100Pa一定,周波数1Hzの条件で5分間に100データをサンプリングし、粘度が最低の値を読んだ。
(c)密着力:10mm角に切断した表面がミラータイプの625μm厚みのシリコンウエハーの裏面であるブライトエッチ面に、作製した液状樹脂組成物を塗布した。これを挟んで密着測定用の釘(銅製)を取り付け、125℃10分加熱硬化後、更に150℃1時間で後硬化を行い、測定サンプルを得た。釘の接着面積は10mmである。これを測定装置(Dage4000,Dage社製)に半導体チップ面を万力で固定して取り付け、25℃において垂直方向に持ち上げて密着力を測定した。
作製した液状樹脂組成物の25℃での粘度は、100Pa・s、チキソ性は1.0、125℃粘度は5Pa・s、密着力は30Nであった。
(d)成形性評価
半導体チップ上に回路配線された半導体ウエハー(Phase8、日立超LSI株式会社製,350μm厚)をダイシング装置で7mm角大に切断し、半導体チップを得た。次に8インチシリコンウエハー(725μm厚)をキャリアとし、剥離可能な熱発泡フィルム(リバアルファ、日東電工株式会社製)を、熱発泡フィルムの発泡面を常温で接着して支持基板を作った。支持基板に適当な間隔を空けて、半導体チップの電極がある活性面が熱発泡フィルムと接するように、ダイマウンター(DB200, 澁谷工業(株)製)で半導体チップを搭載した。半導体チップ付き支持基板を圧縮成形機にセットし、液状樹脂組成物を適量載せ、成形圧力3MPaもしくは1MPa,125℃10分で硬化を行い、ウエハーを得た。液状樹脂組成物の量は、成形後の樹脂厚みが600±10μmとなるように調整した。
ウエハーを150℃1時間オーブンで熱処理し後硬化を行った後、支持基板を剥がす為に、200℃の吸着可能な熱盤上に置いて熱発泡フィルムを発泡させ、支持基板のウエハー部を剥離し、次いで熱発泡フィルム自体をウエハーから剥離することで、表面に多数の半導体チップが露出した状態の再配置ウエハーを得た。
 成形後のサンプルは、外観観察によりフローマーク、剥離の有無を評価した。フローマークとは成形物の中心から外側に向かって放射状に残る白い流動痕のことをいう。フローマークが発生すると外観不良やシリカ不均一分散による硬化物物性のバラつきやそれに伴う信頼性の低下が懸念される。剥離とは成形物と熱発泡フィルム界面での剥離のことをいう。剥離が発生すると、ウエハーの搬送時に位置ずれや落下、また反りの増大が懸念される。実施例1の液状樹脂組成物を用いた結果ではフローマーク、剥離のいずれも見つからなかった。
[信頼性評価]
得られた再配置ウエハー全体に、感光性バッファコート材をスピンコート(DSPIN80A、(株)SOKUDO製、1500rpm、30秒)し、次いで同装置にてプリベーク(125℃5分)を行い、再配置ウエハー表面に再配線用の絶縁膜を形成した。半導体チップの各接続パッドの位置で絶縁膜を開孔するために、光照射(ブロードバンドアライナーMA-8、ズース・マイクロテック(株)製、500mJ/cm2)を行い、現像液(TMAH2.38%、23℃、62秒2回パドル)で現像、最終硬化(250℃ 1.5時間)した。次にスパッター(SPF-740H、キャノンアネルバエンジニアリング(株)製)にてバッファコート上に、チタン500Å、銅3000Å厚みとなる様、順に成膜した。ここにレジスト(サンフォート155、旭化成イーマテリアルズ(株)製)を塗布し、再配線回路用マスクを用いてレジストの露光と現像を行った。更に銅メッキ処理で、全体に10μm厚みの銅の層を形成した後、レジストを剥離した。この状態では、バッファコート面に不要な銅とチタン層が残っているので、これらをエッチングにより除去後、もう一度スピンコートにてバッファコート層を設け、再配線後の別位置に開孔しバンプ接続の為の銅層を露出させた。再配線は、以上の手順で行った。
再配線まで終わった再配置ウエハーは、ダイサーを用いて15mm角サイズに個片化した。この様にして、信頼性試験用の半導体パッケージ装置を組立てた。
(e)半田耐熱試験
 個片化した半導体装置を、125℃20時間処理し、次いで85℃85%RHの条件で168時間吸湿処理した。これを、最大温度260℃、255-260℃の時間が30-0+3秒となるように予め設定したリフローオーブンに3回通し、半田耐熱試験を行った。 
 試験後のサンプルは、超音波探傷装置(FineSAT FS300型,日立建機(株)製)にて25MHzのプローブを用いて、内部の剥離状態を無破壊で確認した。半導体チップの面積に対して、剥離面積の合計が凡そ10%以下の場合は微小剥離とし、それ以上の剥離面積では剥離として、その剥離がある半導体装置の数を数えた。実施例1の液状樹脂組成物を用いた結果では微小剥離・剥離ともに見つからなかった。
[実施例2-15]、[比較例1-5]
表1、2の配合に従い、実施例1と同様にして液状樹脂組成物を得て、実施例1と同様にして評価した。結果を表1、2に示す。
 実施例1以外で使用した原料を以下に示す。
・脂環式エポキシ樹脂(A)として、式(1)で表される脂環式エポキシ樹脂
・その他のエポキシ樹脂として、ビスフェノールF型エポキシ樹脂 
SB-403S 日本化薬工業社製
・エポキシ樹脂用硬化剤(B)として、フェノールノボラック樹脂:
MEH-8000 明和化成社製           
・無機充填材(C)として、SO-E2(溶融球状シリカ、平均粒径0.5μm アドマテックス社製)100重量部をミキサーに投入し、攪拌しながら窒素気流下で、ヘキサメチルジシラザン(HMDS)0.1重量部を噴霧添加して処理した後、N-フェニルー3-アミノプロピルトリメトキシシラン(シランカップリング剤、商品名KBM-573 信越化学工業社製)1重量部を噴霧添加して処理紛体を得た無機充填材3        
・無機充填材(C)として、SO-E2(溶融球状シリカ、平均粒径0.5μm アドマテックス社製)100重量部をミキサーに投入し、攪拌しながら窒素気流下で、ヘキサメチルジシラザン(HMDS)0.1重量部を噴霧添加して処理した後、3-アクリロキシプロピルトリメトキシシラン(シランカップリング剤、商品名KBM-5103 信越化学工業社製)1重量部を噴霧添加して処理紛体を得た無機充填材4
・無機充填材(C)として、SO-E2(溶融球状シリカ、平均粒径0.5μm アドマテックス社製)100重量部をミキサーに投入し、攪拌しながら窒素気流下で、γ一グリシドキシプロピルトリメトキシシラン(シランカップリング剤、商品名KBM-403 信越化学工業社製)1重量部を噴霧添加して処理紛体を得た無機充填材5
・無機充填材(C)として、SO-E2(溶融球状シリカ、平均粒径0.5μm アドマテックス社製)100重量部をミキサーに投入し、攪拌しながら窒素気流下で、ヘキサフェニルジシラザン(HFDS)0.1重量部を噴霧添加して処理した後、γ一グリシドキシプロピルトリメトキシシラン(シランカップリング剤、商品名KBM-403 信越化学工業社製)1重量部を噴霧添加して処理紛体を得た無機充填材6
・無機充填材(C)として、無機充填材7 SO-E2(溶融球状シリカ、平均粒径0.5μm)アドマテックス社製
・硬化促進剤(D)として、式(15)で表される硬化促進剤
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 本発明の液状樹脂組成物を使用することによって、ウエハーレベルパッケージ、とりわけ圧縮成形でウエハー状に形成されたウエハーレベル工程で製造される半導体装置において、高信頼性な装置を得る事が出来る。そのため、本発明は産業上極めて有用である。

Claims (8)

  1. (A)脂環式エポキシ樹脂、(B)エポキシ樹脂用硬化剤、(C)無機充填材、及び(D)硬化促進剤を必須成分とする液状樹脂組成物であって、(C)無機充填材が全液状樹脂組成物中に、80重量%以上95重量%以下含まれ、25℃での粘度が50Pas以上で500Pas以下である事を特徴とする液状樹脂組成物。
  2. (C)無機充填材がシラザン類で表面処理され次いでシランカップリング剤で表面処理されたものを含む請求項1記載の液状樹脂組成物。
  3. 前記シラザン類は、ヘキサメチルジシラザンである請求項2に記載の液状樹脂組成物。
  4. 前記シランカップリング剤は、アミノ基、グリシジル基、ウレイド基、ヒドロキシ基、アルコキシ基、メルカプト基から選択される活性基を有する化合物の1種以上である請求項2または3に記載の液状樹脂組成物。
  5. 半導体チップを支持体に多数個配置し、請求項1~4のいずれか一項に記載の液状樹脂組成物を用いて封止して作製した再配置ウエハー。
  6. 前記封止が圧縮成形によるものである請求項5に記載の再配置ウエハー。
  7. 請求項5又は6に記載の再配置ウエハーを個片化して作製した半導体パッケージ。
  8. 半導体チップを支持体に多数個配置する工程、この上に請求項1~4のいずれか一項に記載の液状樹脂組成物を塗布する工程、金型により成形する工程、を含む半導体パッケージの製造方法。
     
PCT/JP2012/063123 2011-06-01 2012-05-23 液状樹脂組成物およびそれを用いた半導体装置 WO2012165239A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011123213 2011-06-01
JP2011-123213 2011-06-01

Publications (1)

Publication Number Publication Date
WO2012165239A1 true WO2012165239A1 (ja) 2012-12-06

Family

ID=47259098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063123 WO2012165239A1 (ja) 2011-06-01 2012-05-23 液状樹脂組成物およびそれを用いた半導体装置

Country Status (3)

Country Link
JP (1) JP2013010940A (ja)
TW (1) TW201302907A (ja)
WO (1) WO2012165239A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3064521A4 (en) * 2014-01-08 2017-06-07 Shin-Etsu Chemical Co., Ltd Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
WO2017222151A1 (ko) * 2016-06-23 2017-12-28 삼성에스디아이 주식회사 고체상 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 포함하는 봉지재 및 반도체 패키지

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315170B2 (ja) * 2013-09-30 2018-04-25 ナガセケムテックス株式会社 半導体封止用エポキシ樹脂組成物、半導体実装構造体、およびその製造方法
JP6822651B2 (ja) * 2016-09-16 2021-01-27 ナミックス株式会社 シリカフィラーの表面処理方法、それにより得られたシリカフィラー、および、該シリカフィラーを含有する樹脂組成物
JP6915256B2 (ja) * 2016-10-18 2021-08-04 昭和電工マテリアルズ株式会社 封止用樹脂組成物、並びに、それを用いた再配置ウエハ、半導体パッケージ及び半導体パッケージの製造方法
JP7357195B2 (ja) * 2018-12-03 2023-10-06 パナソニックIpマネジメント株式会社 補強用樹脂組成物、電子部品、電子部品の製造方法、実装構造体及び実装構造体の製造方法
JP2021055108A (ja) * 2020-12-24 2021-04-08 ナミックス株式会社 シリカフィラーの表面処理方法、それにより得られたシリカフィラー、および、該シリカフィラーを含有する樹脂組成物
JP2022110920A (ja) * 2021-01-19 2022-07-29 味の素株式会社 樹脂組成物及び樹脂組成物充填済みシリンジ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253850A (ja) * 1988-08-18 1990-02-22 Nippon Kogyo Kk エポキシ樹脂組成物
JP2004059380A (ja) * 2002-07-30 2004-02-26 Toyota Motor Corp 金属酸化物粉体、その製造方法及び樹脂組成物
JP2005170771A (ja) * 2003-12-15 2005-06-30 Toyota Motor Corp 微塩基性シリカ粉体、その製造方法及び樹脂組成物
JP2008130796A (ja) * 2006-11-21 2008-06-05 Sumitomo Bakelite Co Ltd 多層プリント配線板用絶縁樹脂組成物、基材付き絶縁シート、多層プリント配線板及び半導体装置
JP2009215329A (ja) * 2008-03-06 2009-09-24 Denki Kagaku Kogyo Kk エネルギー線硬化性樹脂組成物とそれを用いた接着剤及び硬化体
JP2010168470A (ja) * 2009-01-22 2010-08-05 Ajinomoto Co Inc 樹脂組成物
JP2011052160A (ja) * 2009-09-04 2011-03-17 Sumitomo Bakelite Co Ltd 液状封止用樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253850A (ja) * 1988-08-18 1990-02-22 Nippon Kogyo Kk エポキシ樹脂組成物
JP2004059380A (ja) * 2002-07-30 2004-02-26 Toyota Motor Corp 金属酸化物粉体、その製造方法及び樹脂組成物
JP2005170771A (ja) * 2003-12-15 2005-06-30 Toyota Motor Corp 微塩基性シリカ粉体、その製造方法及び樹脂組成物
JP2008130796A (ja) * 2006-11-21 2008-06-05 Sumitomo Bakelite Co Ltd 多層プリント配線板用絶縁樹脂組成物、基材付き絶縁シート、多層プリント配線板及び半導体装置
JP2009215329A (ja) * 2008-03-06 2009-09-24 Denki Kagaku Kogyo Kk エネルギー線硬化性樹脂組成物とそれを用いた接着剤及び硬化体
JP2010168470A (ja) * 2009-01-22 2010-08-05 Ajinomoto Co Inc 樹脂組成物
JP2011052160A (ja) * 2009-09-04 2011-03-17 Sumitomo Bakelite Co Ltd 液状封止用樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3064521A4 (en) * 2014-01-08 2017-06-07 Shin-Etsu Chemical Co., Ltd Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
US9711378B2 (en) 2014-01-08 2017-07-18 Shin-Etsu Chemical Co., Ltd. Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
WO2017222151A1 (ko) * 2016-06-23 2017-12-28 삼성에스디아이 주식회사 고체상 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 포함하는 봉지재 및 반도체 패키지

Also Published As

Publication number Publication date
TW201302907A (zh) 2013-01-16
JP2013010940A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2012165239A1 (ja) 液状樹脂組成物およびそれを用いた半導体装置
TWI595042B (zh) 半導體封裝用環氧樹脂組成物、使用該組成物之半導體裝置,以及該半導體裝置之製造方法
KR101036728B1 (ko) 반도체장치, 버퍼 코트용 수지 조성물, 다이 본딩용 수지 조성물 및 봉지용 수지 조성물
JP5502268B2 (ja) システムインパッケージ型半導体装置用の樹脂組成物セット
JP5354753B2 (ja) アンダーフィル材及び半導体装置
JP2012209453A (ja) 液状樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法
JP2011195742A (ja) 液状樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法
WO2011074520A1 (ja) 電子装置の製造方法、電子装置、電子装置パッケージの製造方法および電子装置パッケージ
JP6090614B2 (ja) 半導体封止用液状エポキシ樹脂組成物及び樹脂封止半導体装置
WO2011064971A1 (ja) 電子装置の製造方法、電子装置、電子装置パッケージの製造方法、電子装置パッケージ
JP5116152B2 (ja) 半導体装置製造用の樹脂組成物
JPWO2011013326A1 (ja) 液状樹脂組成物、およびそれを用いた半導体装置
JP2009173744A (ja) アンダーフィル剤組成物
JP3925803B2 (ja) フリップチップ実装用サイドフィル材及び半導体装置
WO2020137610A1 (ja) 中空パッケージおよびその製造方法
WO1999040626A1 (fr) Dispositif a semi-conducteur et son procede de production, et composition de resine d'etancheite de semi-conducteur
JP2010111747A (ja) アンダーフィル剤組成物
JP2012129326A (ja) 電子装置の製造方法および電子装置パッケージの製造方法
JP2015054952A (ja) エポキシ樹脂組成物、電子部品装置及び電子部品装置の製造方法
JP2011116843A (ja) 液状封止用樹脂組成物およびそれを用いた半導体装置
WO2012070612A1 (ja) 電子装置の製造方法、電子装置、電子装置パッケージの製造方法、電子装置パッケージ、および半導体装置の製造方法
JP2010209266A (ja) 半導体封止用液状エポキシ樹脂組成物、及びそれをアンダーフィル材として用いて封止したフリップチップ型半導体装置
JPWO2005080502A1 (ja) アンダーフィル用液状エポキシ樹脂組成物および同組成物を用いて封止した半導体装置
JP2003238651A (ja) 液状樹脂組成物、半導体装置の製造方法及び半導体装置
JP2011052160A (ja) 液状封止用樹脂組成物、半導体パッケージ、および半導体パッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793171

Country of ref document: EP

Kind code of ref document: A1