WO2012165112A1 - 動力工具 - Google Patents
動力工具 Download PDFInfo
- Publication number
- WO2012165112A1 WO2012165112A1 PCT/JP2012/061950 JP2012061950W WO2012165112A1 WO 2012165112 A1 WO2012165112 A1 WO 2012165112A1 JP 2012061950 W JP2012061950 W JP 2012061950W WO 2012165112 A1 WO2012165112 A1 WO 2012165112A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thrust
- power tool
- roller
- ring
- transmission ring
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B21/00—Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25F—COMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
- B25F5/00—Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
- B25F5/001—Gearings, speed selectors, clutches or the like specially adapted for rotary tools
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H15/00—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
- F16H15/48—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
- F16H15/50—Gearings providing a continuous range of gear ratios
- F16H15/52—Gearings providing a continuous range of gear ratios in which a member of uniform effective diameter mounted on a shaft may co-operate with different parts of another member
Definitions
- the present invention relates to a power tool having an electric motor as a drive source.
- the present invention relates to a disk grinder, a screw tightening tool, or an electric drill for drilling.
- a power tool generally includes a reduction gear train for decelerating (shifting) the output rotational speed of a drive motor or a gear train for changing the output direction.
- a continuously variable transmission mechanism (CVT: Continuously Variable Variable Transmission) is also known as a drive motor transmission mechanism.
- a conventional continuously variable transmission mechanism using a so-called traction drive mechanism is known.
- Electric tools incorporating a continuously variable transmission mechanism are disclosed in JP-A-6-190740, JP-A-2002-59370, and JP-B-3-73411. The use of the continuously variable transmission mechanism is not limited to a power tool.
- the traction drive type continuously variable transmission mechanism has a plurality of conical planetary rollers supported by a holder and a sun roller that is rotated by a drive motor.
- the planetary roller is pressed against the sun roller, rotates using the rolling contact generated between the planetary roller, and revolves around the output shaft together with the holder. Thereby, rotational force is transmitted from the drive motor to the output shaft.
- Each planetary roller is brought into pressure contact with the inner peripheral portion of the annular transmission ring.
- the contact position of the transmission ring with the planetary roller is displaced between the small-diameter region and the large-diameter region of the planetary roller.
- the revolution speed of the planetary roller relative to the rotation of the planetary roller is determined, and the output rotational speed is determined.
- the output rotational speed can be changed steplessly.
- the transmission ring is provided so that it can be displaced in the axial direction in a state where displacement and elastic deformation in the direction perpendicular to the axis are allowed within a certain range.
- the centering function of the continuously variable transmission mechanism is achieved by allowing displacement of the transmission ring in the direction perpendicular to the axis (displacement that generates a radial component) and elastic deformation.
- the centering function substantially aligns the center by allowing misalignment due to accumulation of processing errors and assembly errors of the respective constituent members. Thereby, the pressure contact force with respect to each planetary roller of the transmission ring can be made uniform.
- the continuously variable transmission mechanism requires a member that supports the transmission ring so that it can be displaced in the direction perpendicular to the axis. Further, it is necessary to secure a space on the outer peripheral side of the transmission ring in order to arrange the members and the like. For this reason, the power tool with a continuously variable transmission mechanism is relatively large and is mainly large in the radial direction of the transmission ring. Therefore, there is a need for a power tool that is small in the radial direction of the transmission ring, that is, a power tool that can move the transmission ring only in the axial direction.
- the power tool has a continuously variable transmission mechanism.
- the continuously variable transmission mechanism changes the rotation output of the drive motor continuously and outputs it to the spindle to which the tip tool is attached.
- the continuously variable transmission mechanism includes a sun roller, a plurality of planetary rollers, a transmission ring, and a thrust generator.
- the sun roller is rotated by a drive motor.
- the plurality of planetary rollers are supported around the holder and are conical. A conical surface of a plurality of planetary rollers is inscribed in the transmission ring.
- the thrust generation unit generates a thrust force that presses the plurality of planetary rollers against the sun roller and the transmission ring, and transmits the rotation output to the spindle.
- the continuously variable transmission mechanism moves the transmission ring in the axial direction and displaces the pressure contact position of the transmission ring with respect to the planetary roller between the small-diameter region and the large-diameter region of the conical surface to change the rotational output of the drive motor continuously. And output to the spindle through the thrust generator.
- the thrust generating unit includes a configuration that exhibits a centering function by being displaced in a direction perpendicular to the axis of the transmission ring.
- a centering function for allowing misalignment between the members constituting the continuously variable transmission mechanism is provided in the thrust generating portion instead of the conventional transmission ring.
- the transmission ring is supported so as to be movable only in the axial direction, a conventionally required member for supporting the transmission ring so as to be displaceable in the direction perpendicular to the axis is unnecessary.
- the support structure of the transmission ring is simplified, and a space for providing the support structure can be omitted.
- the power tool can be miniaturized in the radial direction of the transmission ring.
- FIG. 4 is a vertical cross-sectional view of a thrust generation section taken along line IV-IV in FIG. 3.
- FIG. 5 is a side view of the thrust plate taken along line VV in FIG. 3.
- FIG. 6 is a developed cross-sectional view of a cam groove taken along line VI-VI in FIG. 5.
- the power tool 1 is a rechargeable drill driver.
- the power tool 1 includes a generally cylindrical tool body 2, a handle part 3 projecting sideways from the side of the tool body 2, and a battery pack 4 attached to the tip of the handle part 3.
- the tool body 2 includes a drive motor 6, a continuously variable transmission mechanism 7, a gear transmission mechanism 8, and a spindle 9 in order from the rear in the housing 5 as shown in FIG. 1.
- the tip of the spindle 9 is equipped with a chuck 10 for attaching a tip blade.
- the rotational output of the drive motor 6 is steplessly shifted by the continuously variable transmission mechanism 7 and further decelerated at a constant reduction ratio by the gear transmission mechanism 8 and output to the spindle 9.
- a trigger type switch lever 11 is disposed that is pulled by the fingertip of the hand held by the user as shown in FIG.
- the drive motor 6 is activated and the spindle 9 rotates.
- the drive motor 6 is activated using the battery pack 4 as a power source.
- the battery pack 4 can be repeatedly used by removing it from the tip of the handle portion 3 and charging it with a separately prepared charger.
- a gear transmission mechanism 8 is disposed on the downstream side of the continuously variable transmission mechanism 7 in the torque transmission path.
- the gear transmission mechanism 8 has a planetary gear train.
- the continuously variable transmission mechanism 7 is a three-point press-contact traction drive mechanism as shown in FIGS.
- the continuously variable transmission mechanism 7 includes a planetary roller 20, a sun roller 21, a pressing roller 22, and a transmission ring 26.
- the plurality of (for example, six) planetary rollers 20 each have a conical circumferential surface (conical surface 20a).
- the six planetary rollers 20 are rotatably supported at six peripheral positions around the holder 24. Each planetary roller 20 is pressed against the sun roller 21, the pressure roller 22, and the transmission ring 26.
- the sun roller 21 is attached to the output shaft 6a of the drive motor 6 and rotates integrally with the output shaft 6a.
- the sun roller 21 is rotatably supported by the housing 5 via a bearing 28.
- the sun roller 21 is pressed against the neck of each planetary roller 20.
- the pressing roller 22 is pressed against the neck of each planetary roller 20 on the side opposite to the sun roller 21 in the axial direction (on the side opposite to the rotational force transmission direction, the right side in FIG. 2).
- the pressing roller 22 is one component member of the thrust generating unit 25.
- the transmission ring 26 has an annular shape as shown in FIGS.
- the conical surface 20 a of each planetary roller 20 is pressed against the inner peripheral surface of the transmission ring 26.
- the transmission ring 26 is fixed along the inner surface of the ring holder 27.
- the ring holder 27 is supported so as to be displaceable within a certain range in the axial direction with respect to the housing 5.
- the transmission ring 26 is supported so as to be displaceable only in the axial direction of the intermediate shaft 30 (spindle 9). That is, the transmission ring 26 is supported so as not to be displaced in the direction perpendicular to the axis. Therefore, the transmission ring 26 does not have a centering function between the constituent members such as the revolution center of the planetary roller 20.
- the transmission ring 26 moves in the spindle axial direction (left and right in FIG. 2) by the axial movement of the ring holder 27 as shown in FIGS. As a result, the transmission ring 26 is displaced between the small diameter region and the large diameter region of the conical surface 20a of each planetary roller 20. As a result, the gear ratio of the continuously variable transmission mechanism 7 is changed steplessly.
- Each planetary roller 20 rotates as the sun roller 21 rotates.
- the pressure roller 22 is rotated by the rotation of each planetary roller 20.
- Each planetary roller 20 revolves by contacting the transmission ring 26.
- the rotation direction of the pressing roller 22 and the revolution direction of the planetary roller 20 are opposite directions. Therefore, when the revolution speed of the planetary roller 20 is high, the rotation speed of the pressing roller 22 is reduced.
- the revolution speed of the planetary roller 20 is reduced.
- the rotation speed of the pressing roller 22 increases, and the rotation speed of the intermediate shaft 30 increases (small reduction ratio).
- the revolution speed of the planetary roller 20 is increased.
- the rotation speed of the pressing roller 22 is reduced, and the rotation speed of the intermediate shaft 30 is reduced (large reduction ratio).
- the intermediate shaft 30 is steplessly changed by changing the pressure contact position between the transmission ring 26 and each planetary roller 20. A rotational force is output to the spindle 9 through the intermediate shaft 30 and the gear transmission mechanism 8.
- the rear part of the intermediate shaft 30 is rotatably supported by a bearing 29 attached to the sun roller 21 as shown in FIGS.
- the sun roller 21 and the intermediate shaft 30 are arranged coaxially with the output shaft 6 a of the drive motor 6.
- a front portion of the intermediate shaft 30 is rotatably supported by the housing 5 by a bearing 31.
- the thrust generating unit 25 is supported on the intermediate shaft 30.
- a boss portion 22 a is provided on the rear surface of the pressing roller 22 of the thrust generating portion 25.
- a holder 24 is supported by the boss 22a so as to be relatively rotatable.
- a gear portion 30a is formed in the front portion of the intermediate shaft 30.
- the gear part 30 a functions as a sun gear of the gear transmission mechanism 8.
- Three planetary gears 8a are meshed with the gear portion 30a.
- the three planetary gears 8a are rotatably supported by the carrier 8b.
- the three planetary gears 8a are meshed with the inner peripheral surface of the internal gear 8c.
- the rear end portion of the spindle 9 is coupled to the carrier 8b.
- the spindle 9 is rotatably supported on the housing 5 by bearings 12 and 13.
- the spindle 9 is also arranged coaxially with the output shaft 6 a of the drive motor 6 as with the intermediate shaft 30.
- the rotational force of the intermediate shaft 30 is decelerated at a constant reduction ratio by the gear transmission mechanism 8 constituting the planetary gear train and is output to the spindle 9.
- the thrust generating unit 25 includes a pressing roller 22, a fixed plate 32, a thrust plate 33, and a compression spring 34.
- the fixed plate 32 is fixed on the intermediate shaft 30 so as not to be axially displaceable and rotatable about the axis.
- the thrust plate 33 is disposed behind the fixed plate 32 (upstream with respect to the direction of transmission of rotational force).
- the thrust plate 33 is supported on the intermediate shaft 30 so as to be axially displaceable and relatively rotatable about the axis.
- a compression spring 34 is interposed between the thrust plate 33 and the fixed plate 32.
- the thrust plate 33 overlaps and contacts the front surface of the pressing roller 22.
- the thrust plate 33 is pressed against the pressing roller 22 by the urging force of the compression spring 34, and the pressing roller 22 is pressed against the planetary roller 20.
- each planetary roller 20 is pressed against the sun roller 21 and the transmission ring 26.
- Rotational force of the drive motor 6 is transmitted to the planetary roller 20 through the sun roller 21 as shown in FIG.
- the pressing roller 22 is rotated by the rotation and revolution (rotation of the holder 24) of each planetary roller 20, and the rotational force is transmitted to the thrust generating unit 25.
- the rotation of the pressing roller 22 is transmitted to the intermediate shaft 30 through the fixed plate 32.
- a support hole 22c is formed at the axial center of the boss portion 22a as shown in FIG.
- the support hole 22c has an inner diameter (clearance) that allows the pressing roller 22 to be displaced with respect to the intermediate shaft 30 in a slight range in the radial direction. Therefore, the pressing roller 22 is displaced in the radial direction with respect to the intermediate shaft 30, and the center of rotation (alignment) of the planetary roller 20 with respect to the transmission ring 26 and the like is performed.
- the alignment is performed by the thrust generated by the thrust generator 25.
- FIGS. 3 and 4 there is provided a structure that restricts the rotation of the intermediate shaft 30 around the axis while allowing the radial displacement of the pressing roller 22 within a certain range.
- four alignment shafts 35 are attached to the thrust plate 33.
- the four alignment shafts 35 are fixed to the thrust plate 33 and protrude rearward (left side in FIG. 3) from the rear surface of the thrust plate 33.
- the four alignment shafts 35 are arranged at four equal positions on the same circumference.
- Each alignment shaft 35 enters an alignment hole 22b provided in the pressing roller 22 as shown in FIG.
- Each alignment hole 22 b has an inner diameter sufficiently larger than the diameter of the alignment shaft 35, and forms a clearance between the alignment hole 22 b and the alignment shaft 35.
- the clearance is set smaller than the clearance between the support hole 22c and the intermediate shaft 30.
- the pressing roller 22 can be displaced in all radial directions of the intermediate shaft 30 with respect to the thrust plate 33 within a range in which the alignment shaft 35 can be relatively displaced in each alignment hole 22b.
- the pressing roller 22 is displaced within a predetermined range in an arbitrary radial direction, and the center of revolution of the planetary roller 20 is aligned. As a result, processing errors and assembly errors of the constituent members are offset, and the pressure contact between the members becomes uniform and smooth.
- annular elastic member 36 is interposed in the clearance between each alignment shaft 35 and each alignment hole 22b.
- Each alignment shaft 35 is held at the center position of each alignment hole 22b by the urging force of the elastic member 36.
- the revolving of the planetary roller 20 causes the pressing roller 22 to rotate around the intermediate shaft 30.
- each aligning shaft 35 contacts the end of the aligning hole 22b, and the pressing roller 22 and the thrust plate 33 rotate integrally around the axis of the intermediate shaft 30.
- the pressing roller 22 is provided so as to be displaceable in the radial direction of the intermediate shaft 30 with respect to the thrust plate 33 on the downstream side and to transmit a rotational force. Therefore, a centering function that allows misalignment between the members of the continuously variable transmission mechanism 7 is provided between the pressing roller 22 and the thrust plate 33, that is, in the thrust generating unit 25.
- a cam mechanism 40 is interposed between the fixed plate 32 and the thrust plate 33 as shown in FIG.
- the cam mechanism 40 separates the thrust plate 33 in the axial direction from the fixed plate 32 when torque or rotational force is generated between the fixed plate 32 and the thrust plate 33.
- the cam mechanism 40 has four steel balls 41 and cam grooves 32a and 33a.
- the cam groove 33 a is provided on the front surface of the thrust plate 33.
- the cam groove 32a is provided on the rear surface of the fixed plate 32 and faces the cam groove 33a.
- the steel ball 41 is sandwiched between cam grooves 32a and 33a facing each other.
- the four steel balls 41 are held at equal intervals around the axis of the intermediate shaft 30 as shown in FIGS.
- the cam grooves 32a and 33a are located on a circumference having the same diameter with respect to the axis of the intermediate shaft 30, and are located at equal intervals (quadrant positions).
- the cam grooves 32a and 33a have different depths in the rotational direction (arrow direction in FIG. 6).
- the thrust generating unit 25 generates a thrust including an axial force by the cam mechanism 40 and an urging force by the compression spring 34.
- the thrust causes the sun roller 21, the pressure roller 22, and the transmission ring 26 to be uniformly pressed against the planetary roller 20 (three-point pressure contact). Further, the thrust generating unit 25 transmits a rotational force from the pressing roller 22 to the intermediate shaft 30 through the fixed plate 32.
- each planetary roller 20 rotates by the sun roller 21.
- Each planetary roller 20 is pressed against the transmission ring 26 and revolves around the intermediate shaft 30 together with the holder 24.
- the rotation of the planetary roller 20 causes the pressing roller 22 to rotate in the opposite direction to the sun roller 21.
- the aligning shaft 35 engages with the aligning hole 22b, and the thrust plate 33 rotates integrally with the pressing roller 22.
- the cam mechanism 40 the thrust plate 33, the fixed plate 32, and the intermediate shaft 30 rotate integrally.
- the rotational force of the drive motor 6 is transmitted to the intermediate shaft 30 via the continuously variable transmission mechanism 7.
- the transmission ring 26 is fixed to the ring holder 27 as shown in FIG.
- the ring holder 27 is displaced in the axial direction by the rotation operation of the operation ring 45 provided in the housing 5.
- the transmission ring 26 is displaced in the axial direction by the ring holder 27, and the transmission ring 26 moves between the small diameter region and the large diameter region of the conical surface 20 a of the planetary roller 20.
- the rotational force of the drive motor 6 is steplessly changed and transmitted to the intermediate shaft 30. Thereafter, the rotational force is output to the spindle 9 via the gear transmission mechanism 8.
- the alignment function of the continuously variable transmission mechanism 7 is also provided in the thrust generating unit 25. Therefore, the transmission ring 26 is supported so as to be displaceable only in the axial direction of the intermediate shaft 30 and does not have a centering function. Therefore, the support structure of the transmission ring 26 can be greatly simplified as compared with the conventional structure.
- the power tool 1 has the continuously variable transmission mechanism 7 as shown in FIG.
- the continuously variable transmission mechanism 7 includes a sun roller 21, a plurality of planetary rollers 20, a transmission ring 26, and a thrust generator 25.
- the sun roller 21 is rotated by the drive motor 6.
- the plurality of planetary rollers 20 are supported around the holder 24 and have a conical shape.
- a conical surface 20 a of a plurality of planetary rollers 20 is inscribed in the transmission ring 26.
- the thrust generating unit 25 generates a thrust that presses the plurality of planetary rollers 20 against the sun roller 21 and the transmission ring 26 and transmits the rotational output to the spindle 9.
- the continuously variable transmission mechanism 7 moves the transmission ring 26 in the axial direction and displaces the pressure contact position of the transmission ring 26 with respect to the planetary roller 20 between the small diameter area and the large diameter area of the conical surface 20a, and outputs the rotational output of the drive motor 6.
- the thrust generating unit 25 has a configuration that exhibits a centering function by being displaced in a direction perpendicular to the axis of the transmission ring 26.
- a centering function for allowing misalignment between the members constituting the continuously variable transmission mechanism 7 is provided in the thrust generating unit 25 instead of the conventional transmission ring 26. Therefore, since the transmission ring 26 is supported so as to be movable only in the axial direction, a member that is conventionally required to support the transmission ring 26 so that it can be displaced in the direction perpendicular to the axial direction is unnecessary. Thereby, the support structure of the transmission ring 26 is simplified, and the space for providing the support structure can be omitted. As a result, the power tool 1 can be downsized in the radial direction of the transmission ring 26.
- the power tool 1 includes a thrust generating unit 25 that performs the aligning action of the planetary roller 20 in the continuously variable transmission mechanism 7.
- the transmission ring 26 is supported so as to be displaceable only in the axial direction of the intermediate shaft 30. Therefore, there is no need for a member or a space for supporting the transmission ring 26 so as to be displaceable in the direction perpendicular to the axis.
- the structure for supporting the transmission ring 26 can be greatly simplified as compared with the prior art.
- the power tool 1 can be made compact in the radial direction (the direction perpendicular to the axis of the transmission ring 26).
- the thrust generator 25 is located downstream of the rotational force transmission path (thrust plate 33 and the like), and is positioned upstream of the downstream member and displaced in the radial direction of the transmission ring 26 with respect to the downstream member. It has a possible upstream member (such as the pressure roller 22). Therefore, when the upstream member is displaced in the direction perpendicular to the axis of the transmission ring 26 with respect to the downstream member, alignment between members such as the planetary roller 20 constituting the continuously variable transmission mechanism 7 is performed.
- the thrust generating unit 25 has a centering hole 22 b provided in the upstream member (pressing roller 22) and a centering shaft 35 provided in the downstream member (thrust plate 33).
- the alignment shaft 35 is inserted into the alignment hole 22b so that rotation output can be transmitted from the upstream member to the downstream member, and the upstream member is displaced in the radial direction of the transmission ring 26 with respect to the downstream member, whereby the holder 24 is shifted. Align to 26.
- the upstream member of the thrust generating portion 25 changes in the direction perpendicular to the axis of the transmission ring 26 with respect to the downstream member within a range in which the alignment shaft 35 can be displaced in the alignment hole 22b. Thereby, alignment between each structural member is made.
- the rotational power can be transmitted from the upstream member to the downstream member of the rotational force transmission path.
- the power tool 1 includes an elastic member 36 that is interposed between the alignment hole 22 b and the alignment shaft 35 and centers the alignment hole 22 b and the alignment shaft 35. Therefore, the alignment shaft 35 is centered with respect to the alignment hole 22b by the urging force of the elastic member 36. Thereby, the upstream member and the downstream member of the thrust generating unit 25 are centered.
- the thrust generation part 25 can be assembled
- the continuously variable transmission mechanism 7 has a three-point press contact structure as shown in FIG.
- the three-point pressure contact structure includes a pressing roller 22 that is pressed against the planetary roller 20, a sun roller 21 that is pressed against the planetary roller 20, and a transmission ring 26 that is pressed against the planetary roller 20.
- the thrust generating unit 25 has a structure that allows the pressing roller 22 to be displaced in the radial direction of the transmission ring 26. Accordingly, the pressing roller 22 is displaced in the direction perpendicular to the axis of the transmission ring 26 so that the components are aligned with each other.
- the thrust generating unit 25 is fixed to a fixed plate 32 fixed to the spindle 9 in the axial direction and the rotational direction, a thrust plate 33 supported to the spindle 9 so as to be displaceable in the axial direction and the rotational direction, A compression spring 34 is provided between the plate 32 and the thrust plate 33.
- the thrust generation unit 25 is configured to generate a pressure contact force between the sun roller 21 and the transmission ring 26 with respect to the plurality of planetary rollers 20 by the urging force of the compression spring 34, and to transmit a rotation output from the drive motor 6 to the spindle 9. The Therefore, the sun roller 21 and the transmission ring 26 are pressed against the planetary roller 20 by the urging force of the compression spring 34, and the rotation output can be transmitted.
- a cam mechanism 40 is provided between the fixed plate 32 and the thrust plate 33 to separate the thrust plate 33 in the axial direction with respect to the fixed plate 32 when a rotational force is generated in the fixed plate 32 and the thrust plate 33. It is done.
- the thrust generating unit 25 can generate a large pressure contact force by a force pressing the thrust plate 33 in the axial direction in addition to the pressure contact force due to the urging force of the compression spring 34.
- the power tool 1 includes a housing 5 and a ring holder 27 provided on the housing 5 so as to be movable only in the axial direction of the spindle 9.
- the transmission ring 26 is fixed along the inner periphery of the ring holder 27. Therefore, since the support structure of the transmission ring 26 is simple, the housing 5 can be made small.
- the power tool 1 has an operation ring 45 provided in the housing 5 so as to be rotatable around the spindle 9 as shown in FIG.
- the ring holder 27 is supported by the operation ring 45 in the operation ring 45 and is displaced in the axial direction by the rotation operation of the operation ring 45, so that the transmission ring 26 abuts on a small diameter region of the conical surfaces 20 a of the plurality of planetary rollers 20.
- the position is moved between the position and the position contacting the large diameter region. Therefore, the rotation output of the drive motor 6 can be steplessly shifted and output to the spindle 9 by rotating the operation ring 45.
- the power tool 1 may include the gear transmission mechanism 8 as shown in FIG. 1 or may not include the gear transmission mechanism 8.
- the thrust generating unit 25 may have an elastic member 36 between each alignment shaft 35 and each alignment hole 22b as shown in FIG. 4, or the elastic member 36 may be omitted.
- the thrust generating unit 25 may have a cam mechanism 40 between the fixed plate 32 and the thrust plate 33 as shown in FIG. 2, or the cam mechanism 40 may be omitted.
- the cam mechanism 40 When the cam mechanism 40 is not provided, the sun roller 21, the transmission ring 26, and the pressing roller 22 are pressed against each planetary roller 20 mainly by the urging force of the compression spring 34.
- the alignment shaft 35 may be provided in the thrust plate 33 on the downstream side of the power transmission path, and the alignment hole 22b may be provided in the pressure roller 22 on the upstream side.
- the pressing roller 22 may be provided with a centering shaft, and the thrust plate 33 may be provided with a centering hole.
- the power tool 1 may be a rechargeable driver drill as shown in FIG. 1, or may be another electric tool such as a disc grinder or a cutting machine.
- the power tool 1 may be an electric tool having an electric motor as a drive source as shown in FIG. 1, an air tool having an air motor, or a power tool having an internal combustion engine (engine) as a power source.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Friction Gearing (AREA)
- Portable Power Tools In General (AREA)
Abstract
動力工具(1)は、無段変速機構(7)を有する。無段変速機構(7)は、太陽ローラ(21)と複数の遊星ローラ(20)と変速リング(26)と推力発生部(25)を有する。太陽ローラ(21)は、駆動モータ(6)により回転する。複数の遊星ローラ(20)は、ホルダ(24)の周囲に支持されかつ円錐形である。変速リング(26)には、複数の遊星ローラ(20)の円錐面(20a)が内接される。推力発生部(25)は、複数の遊星ローラ(20)を太陽ローラ(21)と変速リング(26)に圧接させる推力を発生しかつ回転出力をスピンドル(9)に伝達する。無段変速機構(7)は、変速リング(26)を軸方向に移動させて変速リング(26)の遊星ローラ(20)に対する圧接位置を円錐面(20a)の小径領域と大径領域の間で変位させて駆動モータ(6)の回転出力を無段階で変速して推力発生部(25)を経てスピンドル(9)に出力する構成を有する。推力発生部(25)は、変速リング(26)の軸直角方向に変位することで調心機能を奏する構成を備える。
Description
本発明は、駆動源である電動モータを内装する動力工具に関する。例えば本発明は、ディスクグラインダ、ねじ締め工具あるいは孔明け用の電気ドリル等に関する。
動力工具は、一般に駆動モータの出力回転数を減速(変速)するための減速歯車列あるいは出力方向を変換するための歯車列を備える。駆動モータの変速機構として、上記の歯車列の他に減速比を無段階で変化させる無段変速機構(CVT:Continuously Variable Trans-mission)も公知になっている。従来の無段変速機構は、いわゆるトラクションドライブ機構を利用したものが公知になっている。無段変速機構を内装した電動工具が特開平6-190740号公報、特開2002-59370号公報、特公平3-73411号公報に開示されている。無段変速機構の使用は、動力工具に限らない。
トラクションドライブ式の無段変速機構は、ホルダに支持された複数の円錐形の遊星ローラと、駆動モータにより回転する太陽ローラを有する。遊星ローラは、太陽ローラに圧接され、太陽ローラとの間に生じる転がり接触を利用して自転し、かつホルダとともに出力軸回りに公転する。これにより駆動モータから出力軸に回転力が伝達される。各遊星ローラは、円環形状の変速リングの内周部に圧接される。変速リングが軸方向に変位することで、変速リングの遊星ローラに対する当接位置が遊星ローラの小径領域と大径領域の間で変位する。これにより遊星ローラの自転に対する遊星ローラの公転速度が決定されて出力回転数が定まる。かくして出力回転数が無段階で変速され得る。
変速リングは、その軸直角方向への変位及び弾性変形が一定の範囲で許容される状態で軸方向に変位可能に設けられる。変速リングの軸直角方向への変位(径方向成分を生ずる変位)及び弾性変形が許容されることで、無段変速機構の調心機能が奏される。調心機能は、各構成部材の加工誤差や組み付け誤差等の累積による芯ずれを許容して実質的に芯合わせする。これにより変速リングの各遊星ローラに対する圧接力が均一され得る。
しかし調心機能を持たせるために、無段変速機構は、変速リングを軸直角方向に変位可能に支持する部材等が必要である。また該部材等を配置するために変速リングの外周側にスペースを確保する必要がある。そのため無段変速機構を内装した電動工具は、比較的大きく、主として変速リングの径方向に大きい。したがって変速リングの径方向に小さい動力工具、すなわち変速リングを軸方向にのみ移動可能な動力工具が必要とされている。
本発明の1つの特徴によると動力工具は、無段変速機構を有する。無段変速機構は、駆動モータの回転出力を無段階で変速して先端工具が取り付けられるスピンドルに出力する。無段変速機構は、太陽ローラと複数の遊星ローラと変速リングと推力発生部を有する。太陽ローラは、駆動モータにより回転する。複数の遊星ローラは、ホルダの周囲に支持されかつ円錐形である。変速リングには、複数の遊星ローラの円錐面が内接される。推力発生部は、複数の遊星ローラを太陽ローラと変速リングに圧接させる推力を発生しかつ回転出力をスピンドルに伝達する。無段変速機構は、変速リングを軸方向に移動させて変速リングの遊星ローラに対する圧接位置を円錐面の小径領域と大径領域の間で変位させて駆動モータの回転出力を無段階で変速して推力発生部を経てスピンドルに出力する構成を有する。推力発生部は、変速リングの軸直角方向に変位することで調心機能を奏する構成を備える。
したがって無段変速機構を構成する各部材相互の芯ずれを許容するための調心機能は、従来の変速リングではなく推力発生部に設けられる。そのため変速リングは、軸方向にのみ移動可能に支持されるため、変速リングを軸直角方向に変位可能に支持する従来必要であった部材が不要である。これにより変速リングの支持構造が簡略化され、支持構造を設けるためのスペースも省略され得る。その結果、動力工具は、変速リングの径方向に小型化され得る。
本発明の実施形態を図1~6に基づいて説明する。動力工具1は、充電式のドリルドライバである。動力工具1は、概ね円柱体形の工具本体部2と、工具本体部2の側部から側方へ突き出すハンドル部3と、ハンドル部3の先端に装着されたバッテリパック4を備える。
工具本体部2は、図1に示すようにハウジング5内に後ろから順番に駆動モータ6、無段変速機構7、ギヤ変速機構8およびスピンドル9を備える。スピンドル9の先端には、先端刃具装着用のチャック10が装備される。駆動モータ6の回転出力は、無段変速機構7により無段階で変速され、さらにギヤ変速機構8で一定の減速比で減速され、スピンドル9に出力される。
ハンドル部3の基部付近には、図1に示すように使用者が把持した手の指先で引き操作するトリガ形式のスイッチレバー11が配置される。スイッチレバー11を引き操作すると、駆動モータ6が起動してスピンドル9が回転する。駆動モータ6は、バッテリパック4を電源として起動する。バッテリパック4は、ハンドル部3の先端から取り外して、別途用意した充電器で充電することにより繰り返し使用できる。
図1に示すように回転力の伝達経路において無段変速機構7の下流側にギヤ変速機構8が配置される。ギヤ変速機構8は、遊星歯車列を有する。
無段変速機構7は、図2,3に示すように3点圧接式のトラクションドライブ機構である。無段変速機構7は、遊星ローラ20、太陽ローラ21、押圧ローラ22および変速リング26を備える。複数(例えば6つ)の遊星ローラ20は、それぞれ円錐形の周面(円錐面20a)を有する。6つの遊星ローラ20は、ホルダ24の周囲6等分位置に回転自在に支持される。各遊星ローラ20は、太陽ローラ21と押圧ローラ22と変速リング26に圧接される。
太陽ローラ21は、図2,3に示すように駆動モータ6の出力軸6aに取り付けられ、出力軸6aと一体に回転する。太陽ローラ21は、軸受28を介してハウジング5に回転可能に支持される。太陽ローラ21は、各遊星ローラ20の首部に圧接される。
押圧ローラ22は、太陽ローラ21と軸方向反対側(回転力伝達方向反対側、図2において右側)において各遊星ローラ20の首部に圧接される。押圧ローラ22は、推力発生部25の1構成部材である。
変速リング26は、図2,3に示すように円環形状である。変速リング26の内周面に各遊星ローラ20の円錐面20aが圧接される。変速リング26は、リングホルダ27の内面に沿って固定される。リングホルダ27は、ハウジング5に対して軸方向に一定の範囲で変位可能に支持される。変速リング26は、中間軸30(スピンドル9)の軸方向にのみ変位可能に支持される。すなわち変速リング26は、軸直角方向には変位不能に支持される。したがって変速リング26は、遊星ローラ20の公転中心等の各構成部材相互間の調心機能を備えていない。
変速リング26は、図2,3に示すようにリングホルダ27の軸方向の移動によってスピンドル軸方向(図2において左右方向)に移動する。これにより変速リング26は、各遊星ローラ20の円錐面20aの小径領域と大径領域の間で変位する。その結果、無段変速機構7の変速比が無段階で変化される。
太陽ローラ21の回転によって各遊星ローラ20が自転する。各遊星ローラ20の自転によって押圧ローラ22が回転する。各遊星ローラ20は、変速リング26に対して当接することで公転する。押圧ローラ22の回転方向と遊星ローラ20の公転方向は、逆方向である。したがって遊星ローラ20の公転速度が大きいと、押圧ローラ22の回転速度が小さくなる。
変速リング26が遊星ローラ20の小径領域に当接している場合、遊星ローラ20の公転速度が小さくなる。その結果、押圧ローラ22の回転速度が大きくなり、中間軸30の回転速度が大きくなる(小さな減速比)。変速リング26が遊星ローラ20の大径領域に当接している場合、遊星ローラ20の公転速度が大きくなる。その結果、押圧ローラ22の回転速度が小さくなり、中間軸30の回転速度が小さくなる(大きな減速比)。変速リング26と各遊星ローラ20の圧接位置が変化することで中間軸30が無段階で変速される。中間軸30とギヤ変速機構8を経てスピンドル9に回転力が出力される。
中間軸30の後部は、図2,3に示すように太陽ローラ21に取り付けられた軸受29によって回転自在に支持される。太陽ローラ21と中間軸30は、駆動モータ6の出力軸6aと同軸に配置される。中間軸30の前部は、軸受31によってハウジング5に回転自在に支持される。中間軸30上に推力発生部25が支持される。推力発生部25の押圧ローラ22の後面にボス部22aが設けられる。ボス部22aにホルダ24が相対回転可能に支持される。
図1,2に示すように中間軸30の前部にギヤ部30aが形成される。ギヤ部30aは、ギヤ変速機構8の太陽ギヤとして機能する。ギヤ部30aに3つの遊星ギヤ8aが噛み合わされる。3つの遊星ギヤ8aは、キャリア8bに回転自在に支持される。3つの遊星ギヤ8aは、インターナルギヤ8cの内周面に噛み合わされる。キャリア8bにスピンドル9の後端部が結合される。スピンドル9は、軸受12,13によってハウジング5に回転自在に支持される。スピンドル9も、中間軸30と同じく駆動モータ6の出力軸6aに同軸に配置される。遊星歯車列を構成するギヤ変速機構8により中間軸30の回転力が一定の減速比で減速されてスピンドル9に出力される。
遊星ローラ20に対する太陽ローラ21、押圧ローラ22及び変速リング26の各圧接状態は、推力発生部25によって発生する圧接力(推力)により実現される。推力発生部25は、図2に示すように押圧ローラ22、固定板32、推力板33および圧縮ばね34を備える。固定板32は、中間軸30上に軸方向変位不能かつ軸回りに回転不能に固定される。固定板32の後ろ側(回転力の伝達方向について上流側)に、推力板33が配置される。
推力板33は、図3に示すように中間軸30上に軸方向変位可能かつ軸回りに相対回転可能に支持される。推力板33と固定板32との間に圧縮ばね34が介装される。推力板33は、押圧ローラ22の前面に重なり当接される。推力板33は、圧縮ばね34の付勢力によって押圧ローラ22に押し付けられ、押圧ローラ22が遊星ローラ20に圧接される。これにより各遊星ローラ20が太陽ローラ21及び変速リング26に圧接される。
駆動モータ6の回転力は、図2に示すように太陽ローラ21を経て遊星ローラ20に伝達される。各遊星ローラ20の自転と公転(ホルダ24の回転)によって押圧ローラ22が回転し、推力発生部25に回転力が伝達される。押圧ローラ22の回転が固定板32を経て中間軸30に伝達される。
ボス部22aの軸中心には、図2に示すように支持孔22cが形成される。支持孔22cは、中間軸30に対して押圧ローラ22が径方向に僅かな範囲で変位可能とする内径(クリアランス)を有する。そのため押圧ローラ22が中間軸30に対して径方向に変位して、遊星ローラ20の変速リング26等に対する公転中心の芯合わせ(調心)がなされる。該調心は、推力発生部25による推力によってなされる。
押圧ローラ22と推力板33の間には、押圧ローラ22の径方向の変位を一定の範囲で許容しつつ中間軸30の軸回りの回転を規制する構造が設けられる。図3,4に示すように推力板33には、4本の調心軸35が取り付けられる。4本の調心軸35は、推力板33に固定され、推力板33の後面から後方(図3において左側)に突き出す。4本の調心軸35は、同一円周上において4等分位置に配置される。
各調心軸35は、図4に示すように押圧ローラ22に設けた調心孔22bに進入する。各調心孔22bは、調心軸35の径よりも十分に大きな内径を有し、調心孔22bと調心軸35との間にクリアランスを形成する。クリアランスは、支持孔22cと中間軸30との間のクリアランスよりも小さく設定される。各調心孔22b内で調心軸35が相対変位可能な範囲で、押圧ローラ22が推力板33に対して、中間軸30の径方向全方向について変位可能である。押圧ローラ22が径方向任意の方向に所定範囲内で変位し、遊星ローラ20の公転中心の調心がなされる。これにより各構成部材の加工誤差や組み付け誤差が相殺され、各部材同士の圧接が均一かつ滑らかになる。
図4に示すように各調心軸35と各調心孔22bの間のクリアランスに円環形状の弾性部材36が介在される。弾性部材36の付勢力によって、各調心軸35が各調心孔22bの中心位置に保持される。
遊星ローラ20の公転(ホルダ24の回転)により押圧ローラ22が中間軸30の軸回りに回転する。この時、各調心軸35が調心孔22bの端部に当接して押圧ローラ22と推力板33が中間軸30の軸回りの一体に回転する。これにより回転力が中間軸30に伝達される。押圧ローラ22は、下流側の推力板33に対して中間軸30の径方向に変位可能かつ回転力伝達可能に設けられる。そのため押圧ローラ22と推力板33の間、すなわち推力発生部25内において、無段変速機構7の各部材間の芯ずれを許容する調心機能が設けられる。
固定板32と推力板33との間には、図2に示すようにカム機構40が介在される。カム機構40は、固定板32と推力板33間にトルク又は回転力が発生した時に推力板33を固定板32に対して軸方向に離間させる。カム機構40は、4つの鋼球41とカム溝32a,33aを有する。カム溝33aは、推力板33の前面に設けられる。カム溝32aは、固定板32の後面に設けられてカム溝33aに対向する。鋼球41は、相互に対向するカム溝32a,33aに挟まれる。
4つの鋼球41は、図4~6に示すように中間軸30の軸線回りに等間隔で保持される。カム溝32a,33aは、中間軸30の軸心に対して同じ径の円周上に位置し、かつ等間隔(四等分位置)に位置する。各カム溝32a,33aは、回転方向(図6矢印方向)に深さが徐々に異なる。
推力発生部25に付加された回転力が推力板33と固定板32の間に作用した際、推力板33と固定板32間に回転方向の相対変位が発生する。カム溝32a,33aの回転方向の傾斜面に鋼球41が乗り上げて、回転力の一部(軸方向分力)が推力板33を押圧ローラ22に押し付ける軸力になる。軸力は、押圧ローラ22を遊星ローラ20に押し付ける圧接力として回転力に比例して作用する。軸力は、変速リング26の弾性変形とともに押圧ローラ22を遊星ローラ20に押し付ける。
推力発生部25は、カム機構40による軸力と、圧縮ばね34による付勢力とを含む推力を発生する。推力は、遊星ローラ20に対して太陽ローラ21と押圧ローラ22と変速リング26を均一に圧接(3点圧接)させる。さらに推力発生部25は、押圧ローラ22から固定板32を経て中間軸30に回転力を伝達する。
駆動モータ6の起動によって太陽ローラ21が回転し、各遊星ローラ20が太陽ローラ21によって自転する。各遊星ローラ20は、変速リング26に圧接されて中間軸30回りにホルダ24とともに公転する。遊星ローラ20の自転により押圧ローラ22が太陽ローラ21と逆方向に回転する。押圧ローラ22が回転すると、調心孔22bに調心軸35が係合し、推力板33が押圧ローラ22と一体で回転する。カム機構40を介して推力板33と固定板32と中間軸30が一体で回転する。これにより駆動モータ6の回転力が無段変速機構7を経て中間軸30に伝達される。
中間軸30が回転すると、ギヤ変速機構8を経て一定の減速比でさらに変速され、スピンドル9に回転力が伝達される。スピンドル9の回転によって先端工具が回転する。
無段変速機構7の変速リング26が遊星ローラ20の小径領域に当接する場合、無段変速機構7の減速比は小さくなり、スピンドル9が高速回転する。変速リング26が遊星ローラ20の大径領域に当接する場合、無段変速機構7の減速比が大きくなり、スピンドル9が低速回転する。
変速リング26は、図4に示すようにリングホルダ27に固定される。ハウジング5に設けられた操作リング45の回転操作によりリングホルダ27が軸方向に変位する。リングホルダ27によって変速リング26が軸方向に変位し、変速リング26が遊星ローラ20の円錐面20aの小径領域と大径領域との間で移動する。これにより駆動モータ6の回転力が無段階で変速されて中間軸30に伝達される。その後、回転力は、ギヤ変速機構8を経てスピンドル9に出力される。
無段変速機構7の調心機能は、推力発生部25に併せ持たされる。そのため変速リング26は、中間軸30の軸方向のみに変位可能に支持され、調心機能を備えていない。したがって変速リング26の支持構造は、従来に比して大幅に簡略化され得る。
以上のように動力工具1は、図2に示すように無段変速機構7を有する。無段変速機構7は、太陽ローラ21と複数の遊星ローラ20と変速リング26と推力発生部25を有する。太陽ローラ21は、駆動モータ6により回転する。複数の遊星ローラ20は、ホルダ24の周囲に支持されかつ円錐形である。変速リング26には、複数の遊星ローラ20の円錐面20aが内接される。推力発生部25は、複数の遊星ローラ20を太陽ローラ21と変速リング26に圧接させる推力を発生しかつ回転出力をスピンドル9に伝達する。無段変速機構7は、変速リング26を軸方向に移動させて変速リング26の遊星ローラ20に対する圧接位置を円錐面20aの小径領域と大径領域の間で変位させて駆動モータ6の回転出力を無段階で変速して推力発生部25を経てスピンドル9に出力する構成を有する。推力発生部25は、変速リング26の軸直角方向に変位することで調心機能を奏する構成を備える。
したがって無段変速機構7を構成する各部材相互の芯ずれを許容するための調心機能は、従来の変速リング26ではなく推力発生部25に設けられる。そのため変速リング26は、軸方向にのみ移動可能に支持されるため、変速リング26を軸直角方向に変位可能に支持する従来必要であった部材が不要である。これにより変速リング26の支持構造が簡略化され、支持構造を設けるためのスペースも省略され得る。その結果、動力工具1は、変速リング26の径方向に小型化され得る。
動力工具1は、無段変速機構7において、遊星ローラ20の調心作用をする推力発生部25を有する。変速リング26は、中間軸30の軸方向にのみ変位可能に支持される。したがって変速リング26を軸直角方向に変位可能に支持するための部材やスペース等が不要である。これにより変速リング26を支持する構造を従来よりも大幅に簡略できる。その結果、動力工具1を径方向(変速リング26の軸直角方向)にコンパクトにできる。
推力発生部25は、図3に示すように回転力伝達経路の下流の下流部材(推力板33等)と、下流部材の上流に位置しかつ下流部材に対して変速リング26の径方向に変位可能な上流部材(押圧ローラ22等)を有する。したがって上流部材が下流部材に対して変速リング26の軸直角方向に変位することで、無段変速機構7を構成する遊星ローラ20等の部材相互間の調心がなされる。
推力発生部25は、図3に示すように上流部材(押圧ローラ22)に設けられる調心孔22bと、下流部材(推力板33)に設けられる調心軸35を有する。調心軸35が調心孔22bに挿入されて上流部材から下流部材に回転出力が伝達可能でかつ上流部材を下流部材に対して変速リング26の径方向に変位させることでホルダ24を変速リング26に対して調心する。
したがって調心孔22b内において調心軸35が変位可能な範囲内で、推力発生部25の上流部材が下流部材に対して変速リング26の軸直角方向に変化する。これにより各構成部材相互間の調心がなされる。調心軸35が調心孔22bの端縁に当接した場合は、回転力伝達経路の上流部材から下流部材に回転動力が伝達され得る。
動力工具1は、図3に示すように調心孔22bと調心軸35の間に介在されて調心孔22bと調心軸35を芯出しする弾性部材36を有する。したがって弾性部材36の付勢力によって、調心孔22bに対して調心軸35の芯出しがなされる。これにより推力発生部25の上流部材と下流部材の芯出しがなされる。かくして推力発生部25を組み付ける際に押圧ローラ22と推力板33がほぼ同心状態で組み付けられ得る。これにより推力発生部25を楽に組み付け得る。
無段変速機構7は、図3に示すように3点圧接構造を有する。3点圧接構造は、遊星ローラ20に圧接される押圧ローラ22と、遊星ローラ20に圧接される太陽ローラ21と、遊星ローラ20に圧接される変速リング26を有する。推力発生部25は、押圧ローラ22を変速リング26の径方向に変位許容する構造を有する。したがって押圧ローラ22が変速リング26の軸直角方向に変位することで各構成部材相互間の調心がなされる。
推力発生部25は、図3に示すようにスピンドル9に軸方向及び回転方向に固定された固定板32と、スピンドル9に軸方向及び回転方向に変位可能に支持された推力板33と、固定板32と推力板33の間に設けられる圧縮ばね34を有する。推力発生部25は、圧縮ばね34の付勢力により複数の遊星ローラ20に対する太陽ローラ21と変速リング26の圧接力を発生させ、かつ駆動モータ6からスピンドル9へ回転出力を伝達するように構成される。したがって圧縮ばね34の付勢力によって太陽ローラ21と変速リング26が遊星ローラ20に圧接されて回転出力が伝達され得る。
図2に示すように固定板32と推力板33に回転力が発生した時に推力板33を固定板32に対して軸方向に離間させるカム機構40が固定板32と推力板33の間に設けられる。
したがって回転力伝達経路の上流側である推力板33と下流側である固定板32の間に回転出力が伝達されると、回転出力の一部が推力板33を軸方向へ押す。これにより遊星ローラ20に対して太陽ローラ21と変速リング26を圧接させる圧接力が生じる。したがって推力発生部25は、圧縮ばね34の付勢力による圧接力に加えて推力板33を軸方向に押す力によって大きな圧接力を生じ得る。
動力工具1は、図2に示すようにハウジング5と、スピンドル9の軸方向のみに移動可能にハウジング5に設けられたリングホルダ27を有する。リングホルダ27の内周に沿って変速リング26が固定される。したがって変速リング26の支持構造が簡易であるため、ハウジング5を小さくし得る。
動力工具1は、図2に示すようにスピンドル9の軸回りに回転操作可能にハウジング5に設けられた操作リング45を有する。リングホルダ27は、操作リング45内において操作リング45に支持され、かつ操作リング45の回転操作により軸方向に変位して変速リング26を複数の遊星ローラ20の円錐面20aの小径領域に当接する位置と大径領域に当接する位置の間で移動させる。したがって操作リング45の回転操作により駆動モータ6の回転出力を無段階で変速させてスピンドル9に出力できる。
本発明の形態を上記構造を参照して説明したが、本発明の目的を逸脱せずに多くの交代、改良、変更が可能であることは当業者であれば明らかである。したがって本発明の形態は、添付された請求項の精神と目的を逸脱しない全ての交代、改良、変更を含み得る。例えば本発明の形態は、前記特別な構造に限定されず、下記のように変更が可能である。
動力工具1は、図1に示すようにギヤ変速機構8を備えていていも良いし、ギヤ変速機構8を備えていなくても良い。
推力発生部25は、図4に示すように各調心軸35と各調心孔22bの間に弾性部材36を有していても良いし、弾性部材36を省略しても良い。
推力発生部25は、図2に示すように固定板32と推力板33の間にカム機構40を有していても良いし、カム機構40を省略しても良い。カム機構40を有さない場合は、主として圧縮ばね34の付勢力によって各遊星ローラ20に対して太陽ローラ21、変速リング26及び押圧ローラ22が圧接される。
図2に示すように動力伝達経路の下流側の推力板33に調心軸35が設けられ、上流側の押圧ローラ22に調心孔22bが設けられても良い。これに代えて、押圧ローラ22に調心軸が設けられ、推力板33に調心孔が設けられても良い。
動力工具1は、図1に示すように充電式のドライバドリルでも良いし、ディスクグラインダや切断機等のその他の電動工具でも良い。動力工具1は、図1に示すように駆動源として電動モータを有する電動工具でも良いし、エアモータを有するエア工具、あるいは内燃機関(エンジン)を動力源とする動力工具でも良い。
Claims (9)
- 動力工具であって、
駆動モータの回転出力を無段階で変速して先端工具が取り付けられるスピンドルに出力する無段変速機構を有し、
前記無段変速機構は、前記駆動モータにより回転する太陽ローラと、ホルダの周囲に支持された複数の円錐形の遊星ローラと、前記複数の遊星ローラの円錐面が内接される変速リングと、前記複数の遊星ローラを前記太陽ローラと前記変速リングに圧接させる推力を発生しかつ前記回転出力を前記スピンドルに伝達する推力発生部と、前記変速リングを軸方向に移動させて前記変速リングの前記遊星ローラに対する圧接位置を前記円錐面の小径領域と大径領域の間で変位させて前記駆動モータの前記回転出力を無段階で変速して前記推力発生部を経て前記スピンドルに出力する構成を有し、
前記推力発生部は、前記変速リングの軸直角方向に変位することで調心機能を奏する構成を備える動力工具。 - 請求項1に記載の動力工具であって、
前記推力発生部は、回転力伝達経路の下流の下流部材と、前記下流部材の上流に位置しかつ前記下流部材に対して前記変速リングの径方向に変位可能な上流部材を有する動力工具。 - 請求項2に記載の動力工具であって、
前記推力発生部は、前記上流部材と前記下流部材の1つに設けられる調心孔と、他の1つに設けられる調心軸を有し、前記調心軸が前記調心孔に挿入されて前記上流部材から前記下流部材に前記回転出力が伝達可能でかつ前記上流部材を前記下流部材に対して前記変速リングの径方向に変位させることで前記ホルダを前記変速リングに対して調心する動力工具。 - 請求項3記載の動力工具であって、
前記調心孔と前記調心軸の間に介在されて前記調心孔と前記調心軸を芯出しする弾性部材を有する動力工具。 - 請求項1~4の何れか1つに記載の動力工具であって、
前記無段変速機構は、3点圧接構造を有し、前記3点圧接構造は、前記遊星ローラに圧接される押圧ローラと、前記遊星ローラに圧接される前記太陽ローラと、前記遊星ローラに圧接される前記変速リングを有し、
前記推力発生部は、前記押圧ローラを前記変速リングの径方向に変位許容する構造を有する動力工具。 - 請求項1~5の何れか1つに記載の動力工具であって、
前記推力発生部は、前記スピンドルに軸方向及び回転方向に固定された固定板と、前記スピンドルに軸方向及び回転方向に変位可能に支持された推力板と、前記固定板と前記推力板の間に設けられる圧縮ばねを有し、
前記推力発生部は、前記圧縮ばねの付勢力により前記複数の遊星ローラに対する前記太陽ローラと前記変速リングの圧接力を発生させ、かつ前記駆動モータから前記スピンドルへ回転出力を伝達するように構成された動力工具。 - 請求項6に記載の動力工具であって、
前記固定板と前記推力板に回転力が発生した時に前記推力板を前記固定板に対して軸方向に離間させるカム機構が前記固定板と前記推力板の間に設けられた動力工具。 - 請求項1~7の何れか1つに記載した動力工具であって、
ハウジングと、
前記スピンドルの軸方向のみに移動可能に前記ハウジングに設けられるリングホルダを有し、
前記リングホルダの内周に沿って前記変速リングが固定される動力工具。 - 請求項8記載の動力工具であって、
前記スピンドルの軸回りに回転操作可能に前記ハウジングに設けられた操作リングを有し、
前記リングホルダは、前記操作リング内において前記操作リングに支持され、かつ前記操作リングの回転操作により軸方向に変位して前記変速リングを前記複数の遊星ローラの円錐面の小径領域に当接する位置と大径領域に当接する位置の間で移動させる動力工具。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-124053 | 2011-06-02 | ||
JP2011124053A JP5620338B2 (ja) | 2011-06-02 | 2011-06-02 | 動力工具 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012165112A1 true WO2012165112A1 (ja) | 2012-12-06 |
Family
ID=47258976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061950 WO2012165112A1 (ja) | 2011-06-02 | 2012-05-10 | 動力工具 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5620338B2 (ja) |
WO (1) | WO2012165112A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110091235A (zh) * | 2019-04-23 | 2019-08-06 | 天津大学 | 一种公自转球形抛光工具 |
US11127398B2 (en) | 2018-04-11 | 2021-09-21 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method for voice controlling, terminal device, cloud server and system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145839A (en) * | 1979-05-01 | 1980-11-13 | Shinpo Kogyo Kk | Stepless friction transmission |
JPH05187500A (ja) * | 1992-01-08 | 1993-07-27 | Kubota Corp | 摩擦式無段変速装置 |
JPH06190740A (ja) * | 1992-12-22 | 1994-07-12 | Shimpo Ind Co Ltd | ねじ締め機 |
JP2006242302A (ja) * | 2005-03-04 | 2006-09-14 | Toyota Industries Corp | 摩擦式変速機 |
WO2010021252A1 (ja) * | 2008-08-21 | 2010-02-25 | 株式会社マキタ | 電動工具 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5523767B2 (ja) * | 2009-08-28 | 2014-06-18 | 株式会社マキタ | 動力工具 |
-
2011
- 2011-06-02 JP JP2011124053A patent/JP5620338B2/ja not_active Expired - Fee Related
-
2012
- 2012-05-10 WO PCT/JP2012/061950 patent/WO2012165112A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145839A (en) * | 1979-05-01 | 1980-11-13 | Shinpo Kogyo Kk | Stepless friction transmission |
JPH05187500A (ja) * | 1992-01-08 | 1993-07-27 | Kubota Corp | 摩擦式無段変速装置 |
JPH06190740A (ja) * | 1992-12-22 | 1994-07-12 | Shimpo Ind Co Ltd | ねじ締め機 |
JP2006242302A (ja) * | 2005-03-04 | 2006-09-14 | Toyota Industries Corp | 摩擦式変速機 |
WO2010021252A1 (ja) * | 2008-08-21 | 2010-02-25 | 株式会社マキタ | 電動工具 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11127398B2 (en) | 2018-04-11 | 2021-09-21 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method for voice controlling, terminal device, cloud server and system |
CN110091235A (zh) * | 2019-04-23 | 2019-08-06 | 天津大学 | 一种公自转球形抛光工具 |
Also Published As
Publication number | Publication date |
---|---|
JP2012251593A (ja) | 2012-12-20 |
JP5620338B2 (ja) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3677190B2 (ja) | ドライバドリルのクラッチ機構 | |
US10016881B2 (en) | Rotary tool | |
US11235444B2 (en) | Rotary impact tool | |
US7407460B2 (en) | Planetary gearbox | |
WO2017038846A1 (ja) | 動力工具 | |
MX2014014320A (es) | Transmision cicloidal de multiples velocidades. | |
WO2012165113A1 (ja) | 動力工具 | |
JP2015112712A (ja) | ドリリング装置およびドリルチャック | |
WO2012165112A1 (ja) | 動力工具 | |
US7568531B2 (en) | Gear transmission device for power tool | |
US20160121474A1 (en) | Handheld Machine-Tool Device | |
CN113692333B (zh) | 螺钉紧固工具 | |
CN111212993B (zh) | 变速器 | |
JP2016101617A (ja) | 作業機 | |
JP5471202B2 (ja) | ハイブリッド駆動機構、車両及びその制御方法 | |
JP7231329B2 (ja) | ネジ締め工具 | |
WO2015182513A1 (ja) | 打撃工具 | |
JP2010131740A (ja) | 工作機械の割出しテーブル | |
JP4723853B2 (ja) | トルク伝達装置 | |
EP3139057B1 (en) | Torque transmission mechanism | |
CN111757793B (zh) | 作业工具 | |
JP2009243603A (ja) | 無段変速機 | |
JP2007113749A (ja) | 無段変速装置 | |
JP2020067091A (ja) | 駆動装置 | |
JP2012228763A (ja) | 動力工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12793219 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12793219 Country of ref document: EP Kind code of ref document: A1 |