WO2012164888A1 - 真空断熱材及びこれを使用した断熱箱 - Google Patents

真空断熱材及びこれを使用した断熱箱 Download PDF

Info

Publication number
WO2012164888A1
WO2012164888A1 PCT/JP2012/003420 JP2012003420W WO2012164888A1 WO 2012164888 A1 WO2012164888 A1 WO 2012164888A1 JP 2012003420 W JP2012003420 W JP 2012003420W WO 2012164888 A1 WO2012164888 A1 WO 2012164888A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
core material
fiber
Prior art date
Application number
PCT/JP2012/003420
Other languages
English (en)
French (fr)
Inventor
修一 岩田
京子 野村
中野 秀明
俊雄 篠木
司 高木
尚平 安孫子
章弘 難波
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013517857A priority Critical patent/JP5627773B2/ja
Priority to SG2013079322A priority patent/SG194627A1/en
Priority to CN201280026297.8A priority patent/CN103562613B/zh
Priority to TW101119059A priority patent/TWI466992B/zh
Publication of WO2012164888A1 publication Critical patent/WO2012164888A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/026Mattresses, mats, blankets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • the present invention relates to a vacuum heat insulating material and a heat insulating box such as a refrigerator using the same.
  • urethane foam has been used as a heat insulating material used in a heat insulating box such as a refrigerator.
  • a heat insulating material used in a heat insulating box such as a refrigerator.
  • a vacuum heat insulating material is used not only for a refrigerator but also for a heat insulating box of a cooling device such as a heat storage, a vehicle air conditioner, and a water heater.
  • the vacuum heat insulating material is configured by inserting powder, foam, fiber, etc. as a core material in an outer packaging material made of a plastic laminate film using an aluminum foil or the like for the gas barrier layer. A vacuum of several Pa (Pascal) or less is maintained. Furthermore, an adsorbent that adsorbs gas and moisture is disposed in the outer packaging material in order to suppress the deterioration of the degree of vacuum, which is a cause of lowering the heat insulating performance of the vacuum heat insulating material.
  • the core material of such a vacuum heat insulating material powders such as silica, foams such as urethane, and fiber bodies are used, but at present, inorganic fibers such as glass fibers and ceramic fibers that are excellent in heat insulating performance are mainly used.
  • inorganic fibers such as glass fibers and ceramic fibers that are excellent in heat insulating performance are mainly used.
  • glass fiber can be irritated when dust scatters and adheres to the skin, mucous membrane, etc. of workers during the manufacture of vacuum insulation, and its handling and workability are problematic.
  • each product is pulverized in a recycling factory, and glass fiber is mixed with urethane scraps and used for thermal recycling. There is a drawback that recyclability is not good.
  • organic fibers such as polypropylene fiber, polylactic acid fiber, aramid fiber, LCP (liquid crystal polymer) fiber, polyethylene terephthalate fiber, polyester fiber, polyethylene fiber, cellulose fiber, and polystyrene fiber are used as the core material other than glass fiber.
  • LCP liquid crystal polymer
  • those using these fibers have a fibrous shape, such as cotton, laminated sheets (for example, see Patent Document 3 and Patent Document 4), and sheets as fibers. There is a laminate in which the orientations are alternated (see, for example, Patent Document 5 and Patent Document 6).
  • the heat conductivity of the vacuum heat insulating material which used the fiber as the core material is about 0.002 [W / mK].
  • the organic fiber is a valuable resource when a product such as a refrigerator incorporating the same is dismantled by equipment of a recycling center. Tangled with iron scraps. This is because the current crushing equipment for refrigerator insulation boxes at recycling centers is designed and manufactured on the assumption of conventional insulation boxes made only of urethane insulation, so the length of resins such as tough and flexible resins is long. The fiber nonwoven fabric is caused by the fact that crushing may be insufficient. For this reason, the quality of the recovered product is lowered.
  • JP-A-8-028776 (page 2-3) JP 2002-188791 A (page 4-6, FIG. 1) Japanese Patent Laying-Open No. 2005-344832 (page 3-4, FIG. 1) JP 2006-307921 A (page 5-6, FIG. 2) JP 2006-017151 A (3rd page, FIG. 1) Japanese Examined Patent Publication No. 7-103955 (2nd page, Fig. 3-4) JP 2006-283817 A (page 4-5) Japanese Patent Laying-Open No. 2005-344870 (page 7, FIG. 2) JP 2000-283634 (Abstract, FIG. 1) Japanese Utility Model Publication No. 62-156793 (Fig. 1)
  • the present invention has been made in order to solve the above-mentioned problems, and has as its first object to improve the friability during recycling of the product applied with a vacuum heat insulating material.
  • the vacuum heat insulating material core material is difficult to get entangled with valuable scraps of iron, etc., which can improve recyclability, and at the time of production, the core material is difficult to disperse and the productivity can be improved.
  • An object of the present invention is to provide a heat insulating material and a heat insulating box using the heat insulating material.
  • the present invention is a vacuum heat insulating material in which a core material in which sheet-like fiber assemblies are laminated is enclosed in a gas barrier outer packaging material, and the inside is decompressed, The sheet-like fiber assembly is perforated.
  • the heat insulation box according to the present invention is one in which the vacuum heat insulating material is disposed between the outer box and the inner box.
  • the fiber assembly constituting the core material is perforated, a vacuum that can improve handling at the time of manufacture and crushability at the home appliance recycling center without impairing the heat insulating performance.
  • a heat insulating material and a heat insulating box using the heat insulating material can be obtained.
  • FIG. 2 is an exploded perspective view of FIG. 1.
  • FIG. 4 is an enlarged plan view of a single sheet-like long-fiber nonwoven fabric constituting the core material of FIG.
  • FIG. 4 is a top view which shows the sheet-like fiber assembly which comprises the core material for demonstrating the specification example 1 of the perforation process of FIG.
  • the vacuum heat insulating material 1 is a bag-shaped gas barrier container 2 (hereinafter referred to as an outer packaging material) having air barrier properties, It consists of a core material 3 and an adsorbent 4 enclosed in the outer packaging material 2.
  • the adsorbent 4 is a moisture adsorbent or a gas adsorbent, and adsorbs moisture in the outer packaging material 2 that causes a decrease in heat insulation performance.
  • FIG. 3 is a perspective view showing details of the core material 3.
  • the core material 3 is composed of a laminated body 5 and is obtained by continuously winding several hundreds of long fiber nonwoven fabrics 6 that are sheet-like fiber assemblies from the inner side toward the outer side as indicated by an arrow b.
  • the substantially cylindrical laminated body 5 is pulled and folded in the winding direction and crushed up and down.
  • this laminated body 5 is a bent portion obtained by bending a portion connecting the upper surface side flat plate portion 5a and the lower surface side flat plate portion 5b with the upper surface side flat plate portion 5a and the lower surface side flat plate portion 5b which are flat when folded. That is, the laminated body 5 is formed into a single flat plate formed by the bent portions 5c and 5d serving as end portions in the winding direction.
  • this laminated body 5 as the core material 3, one flat vacuum heat insulating material 1 having a substantially uniform thickness is manufactured.
  • an arrow a indicates the insertion direction of the core material 3 into the outer packaging material 2.
  • FIG. 4 is an enlarged plan view of a sheet-like long-fiber nonwoven fabric 6 constituting the laminate 5 of FIG.
  • the long-fiber non-woven fabric 6 is composed of a large number of fibers 7. However, since the large number of fibers 7 are not connected to each other as they are, they are broken apart just by being lifted and cannot constitute a sheet. .
  • Reference numeral 8 denotes a hot embossed portion where the fibers 7 are welded by hot embossing, and the region other than the hot embossed portion 8 is in the state of the fiber 7.
  • the handleability at the time of manufacture of the vacuum heat insulating material 1 improved significantly, since the crushability in a recycling center will deteriorate as mentioned above, the perforation process part which gave the perforation 9 is provided.
  • the long-fiber nonwoven fabric 6 is used as described later (FIGS.
  • slit-shaped processed part hereinafter, sometimes simply referred to as “processed part” 9a and non-processed part 9b alternately processed part of perforation 9, or half not completely cut in the thickness direction
  • processed part slit-shaped processed part
  • non-processed part 9b alternately processed part of perforation 9, or half not completely cut in the thickness direction
  • these are collectively referred to as a perforated portion or a perforated portion as described above. That is, the slit-shaped processed part includes a completely cut processed part or a half-cut half cut part.
  • Resin fibers are used for the fibers constituting the core material 3 of the vacuum heat insulating material 1, and polyester fibers, polypropylene fibers, polystyrene (hereinafter referred to as PS) fibers, polylactic acid fibers, aramid fibers, and liquid crystal polymers (hereinafter referred to as LCPs).
  • PS polystyrene
  • LCPs liquid crystal polymers
  • PPS polyphenylene sulfide
  • heat-resistant fibers such as LCP fiber and PPS fiber are used, the heat resistance of the core material 3 can be improved. If fibers having a large diameter are used, the compression creep characteristics of the core material 3 are improved. be able to. Furthermore, when it is desired to obtain both characteristics, a vacuum heat insulating material 1 having excellent compression creep characteristics, high heat resistance, and high heat insulation can be obtained by mixing heat-resistant fibers and large-diameter fibers. It is done.
  • the core material 3 of the vacuum heat insulating material 1 is made of the material itself.
  • PS resin pellets are conveyed to an extruder.
  • PS resin heated, kneaded and melted at 270 to 310 ° C by an extruder passes through a polymer filter for removing foreign matter, and then continuously from a nozzle with a large number of holes having a diameter of 0.2 to 0.6 mm by a gear pump. Pushed out.
  • the extruded PS resin is drawn with compressed air at a yarn speed of 2000 m / min to 6000 m / min while being cooled with cold air, and is collected on a mesh conveyor as continuous fibers having a desired fiber diameter.
  • a nozzle having about 4000 holes with a diameter of 0.4 mm was used, and spinning was performed at a yarn speed of 3800 m / min to obtain a fiber diameter of about 13 ⁇ m.
  • the average fiber diameter is measured from several to several hundreds (for example, 10) using a microscope, and the average value is used.
  • the fiber 7 heated and melt-spun from the PS resin pellets and collected on the mesh conveyor is collected as a fiber web that is a lump of fibers.
  • the fibers 7 are separated as they are, and are difficult to handle as the core material 3 in the operation of being accommodated in the outer packaging material 2.
  • the hot embossed portion 8 has a substantially circular shape with a diameter of about 0.5 to 1 mm, is provided at intervals of about 1 to 3 mm, and the proportion of the hot embossed portion 8 in the sheet is about 6%.
  • the heat insulation performance is not impaired as compared with the conventional resin fiber cotton-like core material using the same material. It is possible to obtain the long-fiber nonwoven fabric 6 that is securely welded and has a strength that does not break even when stress is applied in the subsequent core material manufacturing process (fiber assembly laminating process).
  • the thickness of the nonwoven fabric represented by the weight per unit area can be adjusted by the speed of the conveyor.
  • the long fiber nonwoven fabric 6 subjected to the heat embossing in this way is wound up in a roll shape to obtain an original fabric roll.
  • FIG. 5 is a plan view showing a sheet-like fiber assembly constituting a core material for explaining the specification example 1 of the perforation processing of FIG.
  • the core material 3 according to the specification example 1 is composed of a laminated body 5 in which a plurality of sheet-like fiber assemblies 3a are laminated.
  • the core material 3 is formed with a single perforation 9 in each of the sheet-like fiber assemblies 3a in which every other non-processed part 9b and slit-like processed part 9a penetrating the sheet are continuous.
  • the perforation 9 is formed from one end of the longitudinal direction to the other end along the center line extending in the longitudinal direction of the sheet-like fiber assembly 3a.
  • the length of the non-processed portion 9b is set in the range of 1 to 5 [mm]
  • the length of the slit-shaped processed portion 9a is set to 3 [mm] or more.
  • the experiment was performed by forming perforations with a cutter on a polyester sheet-like organic fiber assembly having a basis weight of 18 [g / m 2 ] as the core material 3.
  • polyester fiber here, other than that, for example, polystyrene fiber, polypropylene fiber, polylactic acid fiber, aramid fiber, LCP (liquid crystal polymer) fiber, polyethylene fiber, and cellulose fiber may be used.
  • a sample was prepared by fixing the length of the slit-shaped processed part 9a to 4 [mm] and changing the length of the non-processed part 9b.
  • the sample size is 25 [mm] wide and 100 [mm] long.
  • a tensile tester both ends in the length direction of the sample were sandwiched between chucks, pulled in the length direction, and measured for elongation.
  • the distance between chucks is 15 [mm] at a pulling speed of 50 [mm / min].
  • the elongation percentage is obtained by dividing the elongation at the time of breaking the sample (nonwoven fabric) by the distance between chucks. The measurement results are shown in FIG.
  • FIG. 6 is a graph showing the relationship between the length of the non-processed portion and the elongation at the perforation of the sheet-like fiber assembly constituting the core material, with the horizontal axis representing the length of the non-processed portion and the vertical axis representing the elongation. It is a thing. As is apparent from FIG. 6, the elongation rate decreases as the length of the non-processed portion 9b decreases.
  • the length of the non-processed portion 9b is 6 to 8 [mm] is compared with the elongation value when the length is 3 to 5 [mm] is compared with the elongation value when the length is 3 to 5 [mm], the length of the non-processed portion 9b is It can be seen that the value of the elongation at 5 [mm] or less is greatly reduced. However, if the length of the non-processed portion 9b is less than 1 [mm], the perforation 9 is likely to be cut and the handleability is deteriorated. From the above, the length of the non-processed portion 9b is appropriately 1 to 5 [mm].
  • FIG. 7 is a graph showing the relationship between the length of the slit-like processed part and the elongation at the perforation of the sheet-like fiber assembly constituting the core material, the horizontal axis is the length of the slit-like processed part, and the vertical axis is It is the rate of growth.
  • the elongation rate decreases as the length of the slit-like processed portion 9a increases.
  • the slit-shaped processed portion 9a is compared. It can be seen that the elongation value when the length of the portion 9a is cut by 3 [mm] or more is greatly reduced. Therefore, the length of the slit-shaped processed part 9a is suitably 3 [mm] or more.
  • a sheet-like organic fiber assembly 3a having a perforation 9 in which the length of the non-processed portion 9b is 5 [mm] and the length of the slit-shaped processed portion 9a is 3 [mm] is used as a core material 3
  • the material 2 it was made to dry at 100 degreeC, adsorbent was put, and vacuum packing was performed at several Pa, and the vacuum heat insulating material 1 was produced.
  • the thermal conductivity was 0.0023 [W / mK], which is the same as that without perforations. That is, it was found that the friability can be improved while maintaining the heat insulation performance.
  • the core material 3 can be made difficult to separate during production, and can be easily crushed during recycling.
  • the core material 3 is less likely to be entangled with iron scraps during recycling, and the purity of the iron scraps can be improved.
  • the recycling rate was able to be improved because purity, such as iron scrap, went up.
  • FIG. 8 is a plan view showing a sheet-like fiber assembly constituting the core material for explaining the specification example 2 of the perforation processing of FIG. 4, and parts corresponding to the specification example 1 are given the same reference numerals. It is. In the description, reference is made to FIGS. 1 to 4 described above.
  • the core material 3 according to the specification example 2 is formed by arranging a plurality of perforations 9 in one direction in the sheet-like fiber assembly 3a as shown in FIG. 6 [mm] or less. Other configurations are the same as those of the first embodiment.
  • a plurality of lines of perforations 9 are arranged in one direction on the sheet-like fiber assembly 3a, and an interval 9c between the perforations 9 is set to 6 [mm] or less.
  • this value is also determined based on the characteristics of the sheet-like fiber assembly 3a obtained as a result of experiments by the present inventors.
  • FIG. 9 is a graph showing the relationship between the spacing between the perforations and the elongation rate of the sheet-like fiber assembly, with the horizontal axis representing the spacing between the perforations and the vertical axis representing the elongation rate.
  • the interval 9c between the perforations becomes 6 [mm] or less, no significant change is observed in the decrease in the elongation rate. . Therefore, it was found that the interval 9c between the perforations is 6 [mm] or less. That is, it was found that the friability can be improved while maintaining the heat insulation performance.
  • FIG. 10 is a plan view showing a sheet-like fiber assembly constituting the core material for explaining the specification example 3 of the perforation processing of FIG. 4, and parts corresponding to the specification example 1 described above are denoted by the same reference numerals. It is. In the description, reference is made to FIGS. 1 to 4 described above.
  • the core material 3 according to the specification example 3 is formed by arranging a plurality of perforations 9A and 9B in two directions (orthogonal directions) on the sheet-like fiber assembly 3a as shown in FIG. Other configurations are the same as those of the first embodiment.
  • the perforated lines 9A and 9B are arranged in parallel in two directions (orthogonal directions) on the sheet-like fiber assembly 3a, the elongation of the sheet-like fiber assembly 3a is increased. The rate can be further reduced, and crushing can be facilitated. That is, the friability can be further improved while maintaining the heat insulation performance.
  • FIG. 11 is an explanatory view of a specification example 4 of the perforation processing of FIG.
  • the core material 3 according to the specification example 4 is processed by completely cutting the perforation 9 in the sheet-like fiber assembly 3a as shown in FIG. 11 (cut through the nonwoven fabric 6 from the upper surface to the lower surface in the thickness direction).
  • the portions 9a and the non-processed portions 9b are alternately continuous with a predetermined length, and are formed, for example, in the form of a dotted line and a lattice perforation.
  • FIG. 12 is an explanatory diagram of a specification example 5 of the perforation processing of FIG.
  • the core material 3 according to the specification example 5 is formed in the sheet-like fiber assembly 3a only by the half-cut portion 9d that is a cut that does not penetrate the sheet-like fiber assembly 3a.
  • the non-processed portion 9b is eliminated and formed in a lattice shape by a continuous linear shape.
  • FIG. 13 is an explanatory diagram of a specification example 6 of the perforation processing of FIG.
  • the core material 3 according to the specification example 6 is provided adjacent to the sheet-like fiber assembly 3a as shown in FIG. 13 with the cut portions 9a that are completely cut with respect to the production direction C of the nonwoven fabric 6 diagonally and in a staggered manner.
  • a non-processed part 9b is formed between the processed parts 9a.
  • the perforation processing step can be incorporated into the above-described nonwoven fabric manufacturing step.
  • the core material 3 on which the non-woven fabric 6 is laminated may be processed by perforation by pressing.
  • the perforation is performed after the nonwoven fabric 6 is laminated in the form of the core material 3, it is not necessary to consider the handling strength of each nonwoven fabric 6 in a later step, so that the crushability is better. Perforation can be performed.
  • FIG. 14 is an operation explanatory view of the raw roll 101 and the winding frame 111 constituting the laminating apparatus for the core material 3 of the vacuum heat insulating material 1, and shows the core material manufacturing process of the vacuum heat insulating material 1.
  • FIG. 14A shows a winding start step of the nonwoven fabric 6 (hereinafter referred to as a fiber assembly).
  • a fiber assembly the continuous sheet-like fiber assembly 6 subjected to the heat embossing process is several times.
  • a web roll 101 having a predetermined width formed by being wound and a winding frame 111 having a predetermined width for winding the fiber assembly 6 wound around the web roll 101 are provided.
  • the fiber assembly 6 wound around the original fabric roll 101 is started to be wound around the winding frame 111.
  • the end of the fiber assembly 6 pulled out from the raw fabric roll 101 is clamped by the clamp mechanism of the winding frame 111 so that the fiber assembly 6 is cut in the middle of winding or stretched to become narrow in width. It winds with the predetermined tension which there is nothing.
  • the original fabric roll 101 and the reel 111 are shown in contact with each other, but may be separated from each other.
  • FIG. 14B shows the winding end step of the fiber assembly 6.
  • FIG. 14C shows a cutting step of the fiber assembly 6.
  • the fiber assembly 6 is wound around the winding frame 111 by a predetermined number of rotations by the winding end step, and after the rotation of the original fabric roll 101 and the winding frame 111 is stopped, the fiber assembly 6 is moved to the original fabric roll 101 and the winding frame 111. At a predetermined cutting point between the two, the cutting is performed with the front and back clamped, and the original fabric roll 101 is separated from the reel 111.
  • FIG. 14D shows a fixing step of the core material 3.
  • FIG. 14 (e) shows a reel deformation step.
  • the circumferential member holding shafts 114a and 114b of the winding frame 111 are moved toward the center side so as to be contracted in the radial direction.
  • the circumferential members 115a and 115b connected to the circumferential member holding shafts 114a and 114b are moved in the direction of contracting in the radial direction toward the center. In this way, the winding frame 111 is deformed, and the winding tension of the cylindrical fiber assembly 6 wound around the winding frame 111 is relaxed.
  • FIG. 14 (f) is a winding frame separation step, in which the substantially cylindrical fiber assembly 6 whose tension has been loosened is extracted from the winding frame 111 in the axial direction of the rotary shaft 116.
  • FIG. 14G shows the core material forming step.
  • the substantially cylindrical fiber assembly 6 extracted from the winding frame 111 in a state of being clamped by the two clamp members 113a and 113b is pulled to the two clamp members 113a and 113b, respectively, on the opposite side to the substantially linear direction of the winding direction.
  • the substantially cylindrical fiber assembly 6 is folded at the clamp positions of the clamp members 113a and 113b, so that the bent portions (folded portions) 5c and 5d in the winding direction, the upper surface side flat plate portion 5a, and the lower surface side flat plate portion.
  • the laminated body 5 of the flat-plate-like (sheet-like) nonwoven fabric 6 having 5b, that is, the flat-plate-like (sheet-like) core material 3 is formed.
  • the core material 3 composed of the laminated body 5 formed in a flat plate shape is moved onto the conveyor with the bent portions 5c and 5d clamped by the clamp members 113a and 113b, and then the clamp members 113a and 113b are moved. By removing, the core material 3 as shown in FIG. 14 (h) is manufactured.
  • Reference numeral 10 denotes a central portion of the substantially cylindrical fiber assembly 6 when the winding frame 111 is pulled out.
  • the laminated body forming the upper surface side flat plate portion 5a and the laminated body forming the lower surface side flat plate portion 5b are separated. However, it is closed by removing the clamp members 113a and 113b. By the above, it becomes the structure where the nonwoven fabric 6 was wound continuously toward the outer side from the inner side, and the laminated body 5 which was less scattered and excellent in handleability can be obtained.
  • the core material 3 having a predetermined size and thickness produced by the core material manufacturing process is inserted into the bag-shaped outer packaging material 2 having the opening 2a, and the opening 2a is formed. It is fixed so that it does not close, and is dried for about 0.5 to 2 hours at a temperature of 60 to 80 ° C. in a thermostatic bath.
  • a hot air circulation type drying furnace is used, but a drying furnace using dry air dehumidified in advance may be used.
  • drying temperature and time can be set lower than materials having hygroscopicity such as polyethylene terephthalate.
  • materials having hygroscopicity such as polyethylene terephthalate.
  • An adsorbent 4 such as a gas adsorbent or a moisture adsorbent is inserted into 2 and evacuated (depressurized) by, for example, a Kashiwagi-type vacuum packaging machine. The vacuuming is performed until the degree of vacuum in the chamber becomes about 1 to 10 Pa, and the vacuum insulating material 1 is manufactured by heat-sealing the opening 2a of the outer packaging material 2 in the chamber as it is.
  • the outer packaging material 2 of the vacuum heat insulating material 1 is a laminate film having a thickness of 5 ⁇ m to 100 ⁇ m, for example, nylon (thickness 15 ⁇ m), alumina-deposited PET (polyethylene terephthalate) (thickness 12 ⁇ m) Then, an aluminum-deposited EVOH (plastic laminate film having gully barrier properties composed of ethylene vinyl alcohol copolymer resin (thickness 15 ⁇ m) and polyethylene (thickness 50 ⁇ m) was used.
  • the heat insulating property of the vacuum heat insulating material 1 obtained in this way was evaluated by measuring the thermal conductivity using, for example, a thermal conductivity meter HC-074 manufactured by Eihiro Seiki Co., Ltd.
  • the crushability can be reduced by introducing the heat insulation box of the refrigerator in which the obtained vacuum heat insulating material 1 is disposed in the heat insulation wall with urethane foam into the recycling process of the recycling center and mixing it into the metal recovery route. evaluated.
  • Examples and Comparative Examples> Next, the specifications and evaluation of the perforation in the examples (Examples 1 to 5) of the vacuum heat insulating material 1 according to Embodiment 1 of the present invention and the comparative examples (Comparative Examples 1 to 4) will be described. The perforation is performed over the entire width and the entire length direction of the nonwoven fabric 6. The evaluation results are shown in Table 1.
  • the processed part 9a of the perforation 9 of the core material 3 of the vacuum heat insulating material 1 of Example 1 is based on the specification example 4 shown in FIG. 11, and the length of the processed part 9a is 3 mm and the length of the non-processed part 9b is. 1 mm, the processed part 9a is a complete cut with a cut through, and the processed part ratio of the perforation 9 (the ratio of the processed part 9a to the total length of the processed part 9a and the non-processed part 9b) is 75%. .
  • the processed part 9a of the perforation 9 of the core material 3 of Example 2 has the same specifications as in Example 1, the processed part 9a is completely cut, its length is 4 mm, and the length of the non-processed part 9b is At 2 mm, the processed part ratio is 67%.
  • the comparative example 1 has the same specifications, the length of the processed part 9a is 8 mm, the length of the non-processed part 9b is 2 mm, the processing ratio is 83%, and the comparative example 2 also has the same specification, the processed part 9a and the non-processed part.
  • Each of the lengths of 9b is 3 mm, and the processing portion ratio is 50%.
  • the laminating workability in the laminating process and the crushability in the recycling center were good as shown in Table 1.
  • the core material 3 of Comparative Example 1 had no problem with crushability, but the nonwoven fabric 6 was broken during lamination. This is presumably because the processed portion ratio was as large as 83% and the nonwoven fabric 6 could not withstand the winding tension.
  • the perforation 9 processed part 9a of the core material 3 of Example 3 is based on the specification of FIG. 12, and the half cut part 9d is formed in a continuous grid shape with a length of 30 mm, and the non-processed part 9b is eliminated. is there.
  • the half-cut portion 9d withstands the lamination process of the nonwoven fabric 6 and is in a state where the fibers are crushed and hardened to such an extent that they can be shredded by impact during crushing. In this embodiment, both lamination processability and crushability were good as shown in Table 1.
  • Example 4 The perforated portion of Example 4 and Comparative Example 3 is according to the specifications of FIG. 12, and the size of the lattice is changed.
  • the half-cut portion 9d has a length of 50 mm
  • Comparative Example 3 the half-cut portion 9d has a length of 100 mm.
  • both lamination processability and crushability were good as shown in Table 1.
  • the comparative example 3 since the size of the nonwoven fabric 6 after crushing was too large, the amount of the nonwoven fabric 6 mixed into the metal recovery process increased. From this, it was found that the lattice size by perforation is preferably less than 100 mm 2 .
  • the basis weight is preferably 26 g / m 2 or more.
  • Example 5 is based on the specification of the perforation processing of FIG. 13, and the cuts of the completely cut processed portion 9 a are provided obliquely and staggered with respect to the manufacturing direction C of the nonwoven fabric 6.
  • the length L of the processed portion 9a is 6 mm
  • the clearance S 1 (non-processed portion 9b) between the processed portion 9a and the processed portion 9a is 2 mm
  • the longitudinal length of the former processed portion 9a is 2 mm. is provided with offset from the center, also the clearance S 2 between the tip portion of the working portion 9a perpendicular and processing unit 9a and which was 2.8 mm.
  • the lamination workability of the core material 3 in this embodiment is good as shown in Table 1, and the fibers of the nonwoven fabric 6 are strongly oriented in the production direction, so that the cut of the processed portion 9a is shifted. By doing so, the fiber can be divided, so that the elongation of the fiber during crushing can be suppressed, and the crushability is improved.
  • the nonwoven fabric 6 is not provided with the perforation 9, and there is no problem in the laminating workability, but the crushability is remarkably inferior as described above.
  • FIG. 15 is an explanatory view of a heat insulation box according to Embodiment 2 of the present invention, schematically showing a refrigerator.
  • the refrigerator 20 includes an outer box 21 made of a coated steel plate and an inner box 22 made of a resin molded product installed inside the outer box 21 with a gap therebetween, and is formed between the outer box 21 and the inner box 22.
  • a heat insulating wall 23 described later is provided in the gap.
  • the inner box 22 is provided with a refrigeration unit (not shown) for supplying cold air, and the outer box 21 and the inner box 22 are respectively formed with openings on a common surface.
  • the part is provided with an open / close door (both not shown).
  • the vacuum heat insulating material 1 (shown exaggeratedly) according to the first embodiment is disposed and filled with polyurethane foam 25, and the heat insulating wall 23. Is supposed to form.
  • the outer packaging material 2 of the vacuum heat insulating material 1 includes an aluminum foil, there is a risk of generating a heat bridge between the outer box 21 and heat that passes through the aluminum foil.
  • the vacuum heat insulating material 1 is disposed away from the outer box 21 using a spacer 24 of a non-conductive resin molded product.
  • the spacer 24 is appropriately provided with a hole for not inhibiting the flow so that a void does not remain in the polyurethane foam 25 injected into the gap between the outer box 21 and the inner box 22 in a later step.
  • the heat insulating wall 23 including the vacuum heat insulating material 1, the spacer 24, and the polyurethane foam 25 according to the first embodiment is formed between the outer box 21 and the inner box 22.
  • the range in which the heat insulating wall 23 is provided is not limited, and may be the entire range of the gap formed between the outer box 21 and the inner box 22 or a part thereof. Further, it may be provided between the outer box 21 and the vacuum heat insulating material 1 and / or between the inner box 22 and the vacuum heat insulating material 1. Moreover, you may provide in the opening-and-closing door of an opening part.
  • the refrigerator 20 when the refrigerator is used up, it is dismantled and recycled at various recycling centers in accordance with the Home Appliance Recycling Law.
  • the refrigerator 20 according to the present invention since the refrigerator 20 according to the present invention has the vacuum heat insulating material 1 containing the core material 3 made of the fiber assembly 6, it can be crushed without removing the vacuum heat insulating material 1. Recyclability is good because there is no reduction in combustion efficiency or residue.
  • the vacuum heat insulating material 1 according to the present invention is used in a refrigerator as an example of a heat insulating box is not limited to this.
  • a heat insulation box for example, a heat insulation box, a vehicle air conditioner, a water heater, etc.
  • the vacuum heat insulating material 1 according to the present invention is also applied to a heat insulation bag (heat insulation container) including a deformable outer bag and an inner bag instead of a cooling device or a heating device, and further, a box having a predetermined shape. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

 シート状繊維集合体3aを複数積層した積層体で構成される芯材1と、芯材1を外包し、内部が減圧された外包材2とを備え、芯材3には、シート状繊維集合体3aのそれぞれに、非加工部9bとスリット状の加工部9aが一つ置きに連続するミシン目9を形成することで、真空断熱材適用製品のリサイクル時の破砕性を高め、真空断熱材1の芯材3が有価物である鉄屑等に絡まることがなく、リサイクル性を向上させることができ、かつ生産時には芯材3がばらけることなく、生産性も向上させることができるようにする。

Description

真空断熱材及びこれを使用した断熱箱
 本発明は、真空断熱材及びこれを使用した例えば冷蔵庫の如き断熱箱に関するものである。
 従来、例えば冷蔵庫などの断熱箱に使用される断熱材としては、ウレタンフォームが用いられていた。しかし、近年は、省エネルギーや少スペース大容量化に対する市場要請から、ウレタンフォームよりも断熱性能がよい真空断熱材を、ウレタンフォーム内に埋設して併用する形態が主流となっている。かかる真空断熱材は、冷蔵庫のほかに保温庫、車両用空調機、給湯器などの冷熱機器の断熱箱にも使用されるものである。
 真空断熱材は、ガスバリア層にアルミニウム箔などを使用したプラスチックラミネートフィルムからなる外包材の中に、芯材として粉末、発泡体、繊維体などを挿入して構成されており、内部の気圧は、数Pa(パスカル)以下の真空に保たれている。
 さらに、真空断熱材の断熱性能の低下要因となる真空度の劣化を抑制するために、ガスや水分を吸着する吸着剤が外包材の中に配置されている。
 このような真空断熱材の芯材としては、シリカなどの粉末、ウレタンなどの発泡体、繊維体などが用いられるが、現在は、断熱性能に優れるガラス繊維、セラミック繊維などの無機繊維が主流になっている(例えば、特許文献1及び特許文献8参照)。
 しかし、ガラス繊維は、真空断熱材の製造時に粉塵が飛び散り作業者の皮膚・粘膜などに付着すると刺激を受ける可能性があり、その取り扱い性、作業性が問題となっている。
 また、リサイクルの場面を考えた場合、例えば、冷蔵庫ではリサイクル工場で製品ごとに粉砕され、ガラス繊維はウレタン屑などに混じってサーマルリサイクルに供されるが、燃焼効率を落としたり、残渣となったりするなど、リサイクル性が良くないという難点がある。
 そこで、ガラス繊維以外の芯材の材料として、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレンテレフタレート繊維、ポリエステル繊維、ポリエチレン繊維、セルロース繊維、ポリスチレン繊維などの有機繊維を使用したものがある(例えば、特許文献2及び特許文献7参照)。
 そして、これら繊維を利用したものは断熱性能を向上させるために、繊維体の形状を、綿状のもの、シートを積層したもの(例えば、特許文献3及び特許文献4参照)や、シートを繊維配向が交互になるように積層したもの(例えば、特許文献5及び特許文献6参照)などがある。
 これにより、繊維を芯材とした真空断熱材の熱伝導率が0.002〔W/mK〕程度の断熱性能を実現している。
 しかし、このように例えばポリエステルなどの有機繊維を芯材とした真空断熱材にあっては、これを組み込んだ冷蔵庫などの製品を、リサイクルセンターの設備によって解体する際、有機繊維が有価物である鉄屑等に絡まる。これは、現在のリサイクルセンターの冷蔵庫断熱箱の破砕装置は、従来のウレタン断熱材のみの断熱箱を前提に設計され製造されたものであるため、靭性・柔軟性のあるポリエステルなどの樹脂の長繊維不織布は、破砕が不十分になる場合があることに起因している。このため、回収品の品質が低下する。
 このような、有機繊維が有価物である鉄屑等に絡まることによる回収品の品質低下の問題は、表層部分から内部に向かってスリット状の加工部を入れて破断し易くした芯材を使用することで解消できる(例えば、特許文献9,10参照)。
特開平8-028776号公報(第2-3頁) 特開2002-188791号公報(第4-6頁、図1) 特開2005-344832号公報(第3-4頁、図1) 特開2006-307921号公報(第5-6頁、図2) 特開2006-017151号公報(第3頁、図1) 特公平7-103955号公報(第2頁、第3-4図) 特開2006-283817号公報(第4-5頁) 特開2005-344870号公報(第7頁、図2) 特開2000-283643号公報(要約、図1) 実開昭62-156793号公報(第1図)
 しかしながら、表層部分から内部に向かってスリット状の加工部を入れた芯材を使用した真空断熱材にあっては、破断性は増すが、強度が極端に落ち、芯材がばらけ易くなり、真空断熱材の生産性も劣ってしまう。
 本発明は、上記の課題を解決するためになされたもので、真空断熱材適用製品のリサイクル時の破砕性を向上させることを第1の目的としている。また、加えて真空断熱材の芯材が有価物である鉄屑等に絡まりづらく、リサイクル性を向上させることができ、かつ生産時には芯材がばらけづらく、生産性も向上させることができる真空断熱材及びこれを使用した断熱箱を提供することを目的としたものである。
 本発明は、シート状の繊維集合体を積層した芯材をガスバリア性の外包材内に封入し、内部を減圧した真空断熱材であって、
 前記シート状の繊維集合体にミシン目加工を施したものである。
 また、本発明に係る断熱箱は、外箱と内箱との間に上記の真空断熱材を配設したものである。
 本発明によれば、芯材を構成する繊維集合体にミシン目加工を施したので、断熱性能を損うことなく、製造時の取扱性及び家電リサイクルセンターにおける破砕性を向上することのできる真空断熱材及びこれを使用した断熱箱を得ることができる。
本発明の実施形態1に係る真空断熱材の斜視図である。 図1の分解斜視図である。 図2の芯材の詳細図である。 図3の芯材を構成するシート状の1枚の長繊維不織布の拡大平面図及びそのA-A断面図である。 図4のミシン目加工の仕様例1を説明するための芯材を構成するシート状繊維集合体を示す平面図である。 芯材を構成するシート状繊維集合体のミシン目における非加工部の長さと伸び率の関係を示すグラフである。 芯材を構成するシート状繊維集合体のミシン目におけるスリット状の加工部の長さと伸び率の関係を示すグラフである。 図4のミシン目加工の仕様例2を説明するための芯材を構成するシート状繊維集合体を示す平面図である。 芯材を構成するシート状繊維集合体のミシン目間の間隔と伸び率の関係を示すグラフである。 図4のミシン目加工の仕様例3を説明するための芯材を構成するシート状繊維集合体を示す平面図である。 図4のミシン目加工の仕様例4の説明図である。 図4のミシン目加工の仕様例5の説明図である。 図4のミシン目加工の仕様例6の説明図である。 不織布の積層方法及び芯材の製造方法を示す工程図である。 本発明の実施形態2に係る断熱箱の模式的説明図である。
[実施形態1]
 本発明の実施形態1に係る真空断熱材を説明するための図1、図2において、真空断熱材1は、空気遮断性を有する袋状のガスバリア性容器2(以下、外包材という)と、外包材2内に封入された芯材3及び吸着剤4とからなっている。吸着剤4は水分吸着剤やガス吸着剤であって、断熱性能低下の原因となる外包材2内の水分を吸着する。
 外包材2の4辺のうち開口部2a以外の3辺はあらかじめヒートシールにより閉じられており、芯材3を矢印aで示すように、開口部2aから外包材2内に挿入し、外包材2内に芯材3が封入された状態で外包材2の内部を所定の真空度に減圧したのち、開口部2aをヒートシールにより閉じることによって、真空断熱材1が製作される。
 図3は芯材3の詳細を示す斜視図である。芯材3は積層体5からなり、シート状の繊維集合体である長繊維不織布6を矢印bで示すように、内側から外側に向って連続的に巻き付けて数百枚程度積層し、得られたほぼ円筒状の積層体5を巻き付け方向に引張って折り畳み、上下に押し潰した構造のものである。
 よって、この積層体5は、折り畳んだときに平板状とした上面側平板部5a及び下面側平板部5bと、上面側平板部5aと下面側平板部5bとをつなげる部分を折り曲げた折り曲げ部、すなわち、積層体5の巻き付け方向の端部となる折れ曲がり部5c,5dとによって構成された1枚の平板状に形成したものである。
 この積層体5を芯材3とすることにより、厚さがほぼ均一な1枚の平板状の真空断熱材1が製作される。なお、図3において、矢印aは芯材3の外包材2への挿入方向を示す。
 図4は図3の積層体5を構成するシート状の1枚の長繊維不織布6の拡大平面図及びそのA-A断面図である。
 長繊維不織布6は多数の繊維7によって構成されているが、これら多数の繊維7は、そのままでは繊維どうしがつながっていないため、持ち上げただけでバラバラに崩れてしまい、シートを構成することができない。
 これを防止するために、多数の繊維7がシート状に形成されたのち(これをウエブという)、熱エンボス加工によって繊維7どうしを溶着させ、繊維がばらけない長繊維不織布6を構成している。8は熱エンボス加工によって繊維7どうしを溶着させた熱エンボス加工部であり、熱エンボス加工部8以外の領域は繊維7の状態である。シート全体に対する熱エンボス加工部8の割合を調整することにより、繊維7が持つ断熱性能を損うことなく、シートとして取扱うことができるようにしている。
 これにより、真空断熱材1の製造時における取扱性が大幅に向上したが、反面、前述のようにリサイクルセンターにおける破砕性が悪化してしまうため、ミシン目9を施したミシン目加工部を設けることにより破砕時における長繊維不織布6の伸びを抑制し、取扱性と破砕性の向上を両立させている。なお、本発明においては、リサイクルセンターにおける破砕時の長繊維不織布6の伸びを抑制し取扱性、破砕性を向上させるために、長繊維不織布6に後述のように(図5~図13及びその説明)、スリット状の加工部(以下、単に「加工部」と言う場合もある)9aと非加工部9bを交互に繰り返したミシン目9の加工部、又は厚さ方向に完全にカットしないハーフカット部9dにより格子状の加工部を設けているが、以下の説明では、これらを総称して上記のようにミシン目加工部又はミシン目加工という。すなわち、スリット状の加工部とは、完全カットされた加工部又はハーフカットされたハーフカット部を含むものである。
<繊維の材質>
 真空断熱材1の芯材3を構成する繊維には樹脂繊維を用いており、ポリエステル繊維、ポリプロピレン繊維、ポリスチレン(以下、PSという)繊維、ポリ乳酸繊維、アラミド繊維、液晶ポリマー(以下、LCPという)繊維、ポリフェニレンスルファイド(以下、PPSという)繊維などを用いることができる。
 そして、LCP繊維やPPS繊維など、耐熱性を有する繊維を使用すれば芯材3の耐熱性を向上させることができ、また径の大きな繊維を使用すれば芯材3の圧縮クリープ特性を向上させることができる。さらに、その両方の特性を得たい場合は、耐熱性を有する繊維と径の大きな繊維を混合して使用すれば、圧縮クリープ特性に優れ、耐熱性が高く断熱性の高い真空断熱材1が得られる。
 ところで、PS繊維は、固体熱伝導率が小さく断熱材としての断熱性能の向上が期待でき、その上安価に製造できるので、以下の説明では、真空断熱材1の芯材3に、材質自体の伸びが小さく、リサイクルセンターにおける破砕性に有利であるPS繊維を使用した例について説明する。
<長繊維不織布の製造>
 次に、PS樹脂を加熱溶融紡糸してPS繊維を得、さらに、シート状の長繊維不織布とするまでの工程について説明する。
 先ず、PS樹脂ペレットを押出機に搬送する。押出機で270~310℃に加熱・混練溶融されたPS樹脂は、異物除去のためのポリマーフィルターを通したのち、ギアポンプにより、直径0.2~0.6mmの多数の孔のあいたノズルから連続的に押し出される。
 押し出されたPS樹脂は、冷風で冷却しながら圧縮エアで2000m/min~6000m/minの糸速度で延伸され、所望の繊維径の連続繊維として、メッシュコンベアの上に捕集される。
 本実施形態においては、径0.4mmの孔が約4000個あけられたノズルを使用し、糸速度3800m/minで紡糸を行い、約13μmの繊維径とした。なお、平均繊維径の測定は、マイクロスコープを用いて数箇所~数百箇所(例えば、10箇所)測定し、その平均値を使用する。
 以上のようにしてPS樹脂ペレットから加熱溶融紡糸し、メッシュコンベア上で捕集された繊維7は、繊維のかたまりである繊維ウエブとして捕集される。ただし、繊維ウエブの状態では繊維7はそのままの状態でばらばらであり、外包材2に収容する作業において芯材3として扱いにくい。
 よって、繊維のばらけを防止するために、40~120℃に加熱されたローラで押えたのち、40~120℃の加熱ローラで熱エンボス加工を施して繊維どうしを熱溶着し、図4のような長繊維不織布6に加工する。図4において、凹部が熱エンボス加工を行った熱エンボス加工部8であるが、最小限の面積で繊維7を加熱・加圧溶着させ、繊維7がばらばらになるのを防止している。
 本実施形態においては、熱エンボス加工部8は直径0.5~1mm程度のほぼ円形とし、1~3mm程度の間隔で設け、シートに占める熱エンボス加工部8の割合を6%程度とした。このように、シートに占める熱エンボス加工部8の割合を6%程度とすることにより、同じ材料を使用した従来の樹脂繊維の綿状芯材と比較して断熱性能が損なわれず、繊維どうしの熱溶着が確実に行われ、後の芯材製造工程(繊維集合体の積層工程)で応力がかかっても破れない程度の強度を有する長繊維不織布6を得ることができる。なお、通常、重量目付け(1mあたりの繊維の重量(g))で表わされる不織布の厚みは、コンベアの速度で調整できる。このようにして熱エンボス加工を施した長繊維不織布6はロール状に巻き取られ、原反ロールが得られる。
<長繊維不織布に設けるミシン目>
 次に、長繊維不織布6(以下、単に不織布という)に設けるミシン目の仕様例について、図5~図13により説明する。
仕様例1.
 図5は図4のミシン目加工の仕様例1を説明するための芯材を構成するシート状繊維集合体を示す平面図である。この仕様例1に係る芯材3は、図1~図4のように、シート状繊維集合体3aを複数積層した積層体5で構成されている。また、芯材3には、シート状繊維集合体3aのそれぞれに、非加工部9bとシートを貫通するスリット状の加工部9aが一つ置きに連続する一本のミシン目9が形成されている。すなわち、ミシン目9は、シート状繊維集合体3aの長手方向に延びる中心線上に沿うように長手方向の一端から他端にかけて形成されている。また、ミシン目9は、その非加工部9bの長さが1~5[mm]の範囲に設定され、さらにスリット状の加工部9aの長さが3[mm]以上に設定されている。これらの値は、本発明者等による以下の実験の結果得られたシート状繊維集合体3aの特性に基づいて決定されたものである。
 実験は、芯材3である目付18[g/m]のポリエステルのシート状有機繊維集合体にカッターでミシン目を形成することにより行った。なお、ここではポリエステル繊維で実施したが、それ以外の例えばポリスチレン繊維、ポリプロピレン繊維、ポリ乳酸繊維、アラミド繊維、LCP(液晶ポリマー)繊維、ポリエチレン繊維、セルロース繊維でも良い。
 課題は鉄屑等への絡みつきであるが、これは伸び率が高いために生じるものと考えられる。そこで、伸び率に注目した。
 まず、スリット状の加工部9aの長さを4[mm]に固定し、非加工部9bの長さを変えた試料を作製した。試料サイズは幅25[mm]、長さ100[mm]である。引張試験機を用いて試料の長さ方向の両端をチャックで挟み、長さ方向に引張り、伸び率を測定した。引張速度50[mm/min]で、チャック間距離は15[mm]である。ここで、伸び率とは、試料(不織布)破断時の伸びをチャック間距離で割ったものである。測定結果を図6に示す。
 図6は芯材を構成するシート状繊維集合体のミシン目における非加工部の長さと伸び率の関係を示すグラフであり、横軸に非加工部の長さ、縦軸に伸び率をとったものである。図6から明らかなように、非加工部9bの長さは短いほど伸び率は減少する。特に、非加工部9bの長さが6~8[mm]の場合の伸び率の値と、3~5[mm]の場合の伸び率の値を比べると、非加工部9bの長さが5[mm]以下の場合の伸び率の値が大幅に下がっていることが判る。ただし、非加工部9bの長さが1[mm]未満だとミシン目9の加工の際に切れ易くなり、取り扱い性が悪くなる。以上より、非加工部9bの長さは1~5[mm]が適切である。
 次に、非加工部9bの長さを2[mm]に固定し、スリット状の加工部9aの長さを変えて、伸び率を測定した。測定結果を図7に示す。
 図7は芯材を構成するシート状繊維集合体のミシン目におけるスリット状の加工部の長さと伸び率の関係を示すグラフであり、横軸にスリット状の加工部の長さ、縦軸に伸び率をとったものである。図7から明らかなように、スリット状の加工部9aの長さが長いほど伸び率は下がる。特に、スリット状の加工部9aの長さが1~2[mm]の場合の伸び率の値と、3[mm]以上切り込みを入れた場合の伸び率の値を比べると、スリット状の加工部9aの長さが3[mm]以上切り込みを入れた場合の伸び率の値が大幅に下がっていることが判る。よって、スリット状の加工部9aの長さは3[mm]以上が適切である。
 次に、非加工部9bの長さが5[mm]、スリット状の加工部9aの長さが3[mm]のミシン目9を施したシート状有機繊維集合体3aを芯材3として外包材2内に入れ、100℃で乾燥させ、吸着剤を入れ、数Paで真空パックを行い、真空断熱材1を作製した。断熱性能を測定するとミシン目なしと同じ熱伝導率0.0023[W/mK]であった。つまり、断熱性能を維持したまま、破砕性を向上させることが可能であることが判った。これにより、生産時には芯材3をばらけ難くすることができ、かつリサイクル時には破砕し易くすることができた。その結果、リサイクル時に芯材3が鉄屑等に絡まり難くなり、鉄屑等の純度を向上させることができた。そして、鉄屑等の純度が上がることで、再資源化率を向上させることができた。
仕様例2.
 図8は図4のミシン目加工の仕様例2を説明するための芯材を構成するシート状繊維集合体を示す平面図であり、前述の仕様例1に相当する部分には同一符号を付してある。なお、説明に当たっては前述の図1~図4を参照するものとする。この仕様例2に係る芯材3は、図8のようにシート状繊維集合体3aに、ミシン目9を一方向に複数ライン並設して形成するとともに、各ミシン目9間の間隔9cを6[mm]以下としたものである。それ以外の構成は前述の実施形態1のものと同一である。
 この仕様例2に係る芯材3は、シート状繊維集合体3aにミシン目9を一方向に複数ライン並設し、各ミシン目9間の間隔9cを6[mm]以下としたものであるが、この値も、本発明者等による実験の結果得られたシート状繊維集合体3aの特性に基づいて決定されたものである。
 すなわち、前述の実施形態1で用いたのと同様の試料(但し、ここではミシン目を一方向に複数並設した不織布)と引張試験機を使用し、ミシン目9間の間隔9cを変えて伸び率を測定した。測定結果を図9に示す。
 図9はそのシート状繊維集合体のミシン目間の間隔と伸び率の関係を示すグラフであり、横軸にミシン目間の間隔、縦軸に伸び率をとったものである。図9から明らかなように、ミシン目9間の間隔9cが短い程、伸び率が下がるが、ミシン目間の間隔9cが6[mm]以下になると、伸び率低下に大きな変化はみられない。よって、ミシン目間の間隔9cは6[mm]以下が適切であることが判った。つまり、断熱性能を維持したまま、破砕性を向上させることが可能であることが判った。
仕様例3.
 図10は図4のミシン目加工の仕様例3を説明するための芯材を構成するシート状繊維集合体を示す平面図であり、前述の仕様例1に相当する部分には同一符号を付してある。なお、説明に当たっては前述の図1~図4を参照するものとする。この仕様例3に係る芯材3は、図10のようにシート状繊維集合体3aに、ミシン目9A,9Bを二方向(直交方向)に複数ライン並設して形成したものである。それ以外の構成は前述の実施形態1のものと同一である。
 この仕様例3に係る芯材3においては、シート状繊維集合体3aに、ミシン目9A,9Bを二方向(直交方向)に複数ライン並設しているので、シート状繊維集合体3aの伸び率をさらに下げることができ、破砕し易くすることができる。つまり、断熱性能を維持したまま、破砕性を一層向上させることができる。
仕様例4.
 図11は図4のミシン目加工の仕様例4の説明図である。この仕様例4に係る芯材3は、図11のようにシート状繊維集合体3aに、ミシン目9を完全カット(不織布6の厚さ方向の上面から下面まで貫通してカットする)の加工部9aと、非加工部9bとがそれぞれ所定長さで交互に連続し、例えば点線状をなして格子状のミシン目を形成したものである。
仕様例5.
 図12は図4のミシン目加工の仕様例5の説明図である。この仕様例5に係る芯材3は、図12のようにシート状繊維集合体3aに、ミシン目9がシート状繊維集合体3aを貫通しない切込みであるハーフカット部9dのみにより形成されており、例えば連続した直線状により、非加工部9bをなくして格子状に形成したものである。
仕様例6.
 図13は図4のミシン目加工の仕様例6の説明図である。この仕様例6に係る芯材3は、図13のようにシート状繊維集合体3aに、不織布6の製造方向Cに対して完全カットの加工部9aを斜めにかつ千鳥状に設け、隣接する加工部9aの間に非加工部9bを形成したものである。
<不織布へのミシン目の加工方法>
 不織布6へのミシン目の加工にあたっては、一旦得た不織布6の原反ロールを巻き出し、不織布1枚の状態でミシン目の加工を行ったのち、再びロールに巻取る方法をとった。この方法によれば、1枚の不織布6にミシン目加工を行ったのちに多層積層を行うので、ミシン目が完全に重なることがなく、真空断熱材1の外観に悪影響を与えることがない。なお、ミシン目の仕様やカット方法(ダイロールとスリッターの組み合わせなど)によっては加工速度を高めることができるので、その場合には、ミシン目加工工程を前述の不織布製造工程に組み込むこともできる。
 さらに、後述の不織布積層工程ののち、不織布6が積層された芯材3をプレス加工によりミシン目を加工してもよい。この場合は、不織布6を芯材3の形態に積層したのちにミシン目加工を行うので、後の工程で不織布6の1枚ごとの取り扱い強度を考慮する必要がないため、より破砕性のよいミシン目加工を行うことができる。
<不織布の積層方法、芯材の製造方法>
 次に、不織布6の積層方法及び芯材3の製造方法について説明する。
 図14は真空断熱材1の芯材3の積層装置を構成する原反ロール101と巻枠111の作用説明図で、真空断熱材1の芯材製造工程を示すものである。
 図14(a)は不織布6(以下、繊維集合体という)の巻き始めステップであり、積層体5の製造工程において、熱エンボス加工が施された連続したシート状の繊維集合体6が数回巻付けられて形成された所定幅の原反ロール101と、原反ロール101に巻付けられた繊維集合体6を巻取る所定幅の巻枠111とを備え、原反ロール101と巻枠111を回転させることにより、原反ロール101に巻き付けられている繊維集合体6を巻枠111に巻き取り始める。
 このとき、原反ロール101から引き出された繊維集合体6の端部を巻枠111のクランプ機構でクランプし、繊維集合体6が巻取り途中で切断したり、伸びきって幅が狭くなるようなことがないような所定の張力で巻き取る。なお、図では、原反ロール101と巻枠111は接触している場合を示してあるが、離してもよい。
 図14(b)は繊維集合体6の巻き終わりステップである。巻き始めステップで原反ロール101から巻枠111に巻き付けられた繊維集合体6が、所定の厚さに相当する回転数分巻き付けられると、原反ロール101と巻枠111の回転を停止させ繊維集合体6の巻き取りを終了する。巻枠111に巻き付けられる所定の回転数、すなわち積層する枚数は、繊維集合体6の減圧パック時の厚さと、製造したい真空断熱材1の厚さを元に任意に設定する。
 図14(c)は繊維集合体6の切断ステップである。巻き終わりステップにより繊維集合体6が巻枠111に所定回転数分巻き付けられ、原反ロール101と巻枠111の回転を停止させたのち、繊維集合体6を原反ロール101と巻枠111との間の所定の切断箇所において、前後をクランプした状態で切断し、原反ロール101を巻枠111から切り離す。
 図14(d)は芯材3の固定ステップである。切断ステップにより繊維集合体6が切断されたのち、巻枠111に設けられたクランプ部材設置部112a,112bにクランプ部材113a,113bを挿入し、巻枠111に巻き付けられたほぼ円筒状の繊維集合体6をクランプする。
 図14(e)は巻枠変形ステップである。芯材3の固定ステップにより繊維集合体6がクランプ部材113a,113bによってクランプされたのち、巻枠111の円周部材保持軸114a,114bを中心側に向って半径方向に縮むように可動させ、円周部材保持軸114a,114bに接続された円周部材115a,115bを中心側に向って半径方向に縮む方向に可動させる。このようにして巻枠111を変形させ巻枠111に巻き付けられた円筒状の繊維集合体6の巻付け張力を緩める。
 図14(f)は巻枠分離ステップであり、張力が緩められたほぼ円筒状の繊維集合体6を巻枠111から回転軸116の軸心方向に抜き取る。
 図14(g)は芯材形成ステップである。2つのクランプ部材113a,113bによってクランプされた状態で巻枠111から抜き取られたほぼ円筒状の繊維集合体6を、2つのクランプ部材113a,113bを巻き付け方向のほぼ直線方向の反対側にそれぞれ引張ることにより、ほぼ円筒状の繊維集合体6がクランプ部材113a,113bのクランプ位置で折り畳まれるので、巻き付け方向に折れ曲り部(折り畳み部)5c,5dと、上面側平板部5a、下面側平板部5bとを有する平板状(シート状)の不織布6の積層体5、すなわち、平板状(シート状)の芯材3が形成される。
 平板状に形成された積層体5から構成された芯材3は、クランプ部材113a,113bで折れ曲り部5c,5dをクランプされた状態でコンベア上に移されたのち、クランプ部材113a,113bを取り除くことにより、図14(h)に示すような芯材3が製造される。なお、10は巻枠111を引き抜いたときのほぼ円筒状の繊維集合体6の中心部であり、上面側平板部5aを形成する積層体と、下面側平板部5bを形成する積層体を分けているが、クランプ部材113a,113bを取り除くことにより閉じられる。
 以上により、不織布6が内側から外側に向って連続的に巻き付けられた構造となり、ばらけることが少なく取り扱い性に優れた積層体5を得ることができる。
<真空断熱材の製造手順>
 真空断熱材1の製造にあたっては、先ず、開口部2aを有する袋状の外包材2に、芯材製造工程によって製作された所定の大きさと厚さの芯材3を挿入し、開口部2aが閉じないように固定して恒温槽により60~80℃の温度下で、0.5~2時間程度乾燥を行う。通常、熱風循環式の乾燥炉を使用するが、あらかじめ除湿された乾燥エアを用いる乾燥炉でもよい。
 本実施形態に係るポリスチレン(PS)は吸湿性が低いので、ポリエチレンテレフタレートなどの吸湿性を有する材料に比べると、乾燥の温度や時間を低めに設定することができる。そして、乾燥後、まだ残存する水分や真空包装後の残存ガス、経時的に放出される芯材3からのアウトガス、外包材2のシール層を通して侵入する透過ガスなどを吸収するために、外包材2内にガス吸着剤や水分吸着剤などの吸着剤4を挿入し、例えば柏木式真空包装機により真空引き(減圧処理)を行う。真空引きは、チャンバ内の真空度が1~10Pa程度になるまで行い、そのままチャンバ内で外包材2の開口部2aをヒートシールして真空断熱材1が製造される。
 本実施形態において、真空断熱材1の外包材2には、厚さ5μm以上100μm以下のラミネートフィルムであって、例えば、ナイロン(厚さ15μm)、アルミナ蒸着PET(ポリエチレンテレフタレート)(厚さ12μm)、アルミ蒸着EVOH(エチレンビニルアルコール共重合樹脂(厚さ15μm)、ポリエチレン(厚さ50μm)で構成されるガリバリア性を有するプラスチックラミネートフィルムを使用した。
 このようにして得られた真空断熱材1の断熱性は、例えば、英弘精機(株)製の熱伝導率計HC-074により熱伝導率を測定し、評価した。また、破砕性は、得られた真空断熱材1をウレタンフォームにより断熱壁内に配設した冷蔵庫の断熱箱を、リサイクルセンターのリサイクル工程に投入し、金属回収ルートへの混入程度で破砕性を評価した。
<実施例と比較例>
 次に本発明の実施形態1に係る真空断熱材1の実施例(実施例1~5)と、比較例(比較例1~4)とにおけるミシン目の仕様とその評価について説明する。なお、ミシン目加工は不織布6の全幅、全長さ方向にわたって行われる。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1の真空断熱材1の芯材3のミシン目9の加工部9aは、図11に示す仕様例4によるもので、加工部9aの長さが3mm、非加工部9bの長さが1mmで、加工部9aは切れ目が貫通した完全カットとなっており、ミシン目9の加工部比率(加工部9aと非加工部9bの合計長さに対する加工部9aの比率)は75%である。
 実施例2の芯材3のミシン目9の加工部9aは、実施例1の場合と同様の仕様であり、加工部9aは完全カットでその長さが4mm、非加工部9bの長さは2mmで、加工部比率は67%である。比較例1は同様の仕様で、加工部9aの長さが8mm、非加工部9bの長さが2mmで、加工比率は83%、比較例2も同様の仕様で加工部9a及び非加工部9bの長さがいずれも3mmで、加工部比率は50%である。
 実施例1,2の芯材3においては、積層工程における積層加工性及びリサイクルセンターにおける破砕性は、表1に示すように良好であった。
 一方、比較例1の芯材3は、表1に示すように破砕性は問題がなかったが、積層加工の際に不織布6に布切れが発生した。これは加工部比率が83%と大きく、不織布6が巻取りテンションに耐えられなかったためと考えられる。
 また、比較例2の場合は、表1に示すように積層加工性については特に問題はなかったが、破砕性については、加工部比率が50%と非加工部9bの比率が大きすぎたため破砕が不十分になり、破砕された金属片への不織布6の絡みつきが増加し、ウレタン回収工程への回収が不十分となって、金属回収工程への混入量が増加した。
 以上のことから、図11の仕様におけるミシン目加工の加工部比率は、60~75%程度が適当であると云える。
 次に、実施例3の芯材3のミシン目9加工部9aは図12の仕様によるもので、ハーフカット部9dを長さ30mmの連続する格子状とし、非加工部9bをなくしたものである。ハーフカット部9dは不織布6の積層工程に耐え、破砕時の衝撃で千切れる程度に繊維を押し潰して固めた状態になっている。
 本実施形態においては、積層加工性、破砕性ともに表1に示すように良好であった。
 実施例4及び比較例3のミシン目加工部は、図12の仕様によるもので、その格子の大きさを変えたものである。
 実施例4はハーフカット部9dを50mmの長さとし、比較例3はハーフカット部9dを100mm長さとした。
 実施例4の場合は、積層加工性、破砕性とも表1に示すように良好であった。一方、比較例3の場合は、破砕後の不織布6のサイズが大きすぎるため、金属回収工程への不織布6の混入量が増加した。このことから、ミシン目加工による格子サイズは、100mm未満が好ましいことがわかった。なお、ミシン目加工部をハーフカット部9dで形成する場合、不織布6の目付があまり小さいと押し潰し部分の繊維量が不足して、破砕時にハーフカット部9dから切れにくいので、PS繊維の場合、目付は26g/m以上であることが望ましい。
 実施例5は、図13のミシン目加工の仕様によるもので、完全カットした加工部9aの切れ目を、不織布6の製造方向Cに対して斜めに、かつ千鳥状に設けたものである。
 本実施例においては、加工部9aの長さLを6mm、この加工部9aと直交する加工部9aとのすき間S(非加工部9b)は2mmで、前者の加工部9aの長手方向の中心部からずらして設けてあり、また、加工部9aとこれと直交する加工部9aの先端部間のすき間Sを2.8mmとした。
 本実施形態における芯材3の積層加工性は、表1に示すように良好であり、また、不織布6の繊維は製造方向に対する配向が強くなっているので、加工部9aの切れ目をずらして加工することにより繊維を分断できるため、破砕時の繊維の伸びを抑制することができ、破砕性が向上する。なお、比較例4は、不織布6にミシン目9を設けなかった場合で、積層加工性は問題ないが、破砕性は前述のように著しく劣る。
[実施形態2]
 図15は本発明の実施形態2に係る断熱箱の説明図で、冷蔵庫を模式的に示してある。
 冷蔵庫20は塗装鋼板からなる外箱21と、外箱21の内側に隙間を隔てて設置された樹脂成形品からなる内箱22とを有し、外箱21と内箱22との間に形成された隙間内には後述の断熱壁23が設けられている。そして、内箱22内には冷気を供給する冷凍ユニット(図示せず)が設けられており、また、外箱21と内箱22には、共通する面にそれぞれ開口部が形成され、これら開口部には開閉扉が設けられている(共に図示せず)。
 冷蔵庫20の外箱21と内箱22との間の隙間には、実施形態1に係る真空断熱材1(誇張して示してある)が配設されてポリウレタンフォーム25が充填され、断熱壁23を形成するようになっている。しかしながら、真空断熱材1の外包材2はアルミ箔を含んでいるため、外箱21との間にこのアルミ箔を通って熱が回り込むヒートブリッジを生じるおそれがある。
 そこで、このようなヒートブリッジの発生を防止するために、真空断熱材1は、非導電性である樹脂成形品のスペーサ24を用いて、外箱21から離して配設されている。なお、スペーサ24は、後工程で外箱21と内箱22との間の隙間に注入されるポリウレタンフォーム25にボイドが残らないように、流動を阻害しないための孔が適宜設けられている。
 このように、本実施形態に係る冷蔵庫20は、外箱21と内箱22との間に、実施形態1に係る真空断熱材1、スペーサ24及びポリウレタンフォーム25からなる断熱壁23が形成されている。なお、断熱壁23が設けられる範囲は限定するものではなく、外箱21と内箱22との間に形成された隙間の全範囲、あるいはその一部であってもよい。さらに、外箱21と真空断熱材1との間及び内箱22と真空断熱材1との間の両者又はいずれか一方に設けてもよい。また、開口部の開閉扉内に設けてもよい。
 ところで、冷蔵庫は、使用済みとなった場合、家電リサイクル法に基づき、各地のリサイクルセンターで解体され、リサイクルされる。このとき、本発明に係る冷蔵庫20は、繊維集合体6からなる芯材3を内蔵する真空断熱材1を有するため、真空断熱材1を取り外すことなく破砕処理を行うことができ、サーマルリサイクルに際して燃焼効率を下げたり、残渣となったりすることがないので、リサイクル性がよい。
 上記の説明では、本発明に係る真空断熱材1を断熱箱の一例として冷蔵庫に用いた場合を示したが、これに限定するものではなく、例えば、保温庫、車輌空調機、給湯器などの冷熱機器又は温熱機器、さらには、所定の形状を備えた箱体に代えて、変形自在な外袋及び内袋を備えた断熱袋(断熱容器)にも、本発明に係る真空断熱材1を用いることができる。
 1 真空断熱材、2 外包材、2a 開口部、3 芯材、3a シート状繊維集合体、4 吸着剤、5 積層体、6 長繊維不織布(繊維集合体)、7 繊維、8 エンボス加工部、9,9A,9B ミシン目、9a 加工部、9b 非加工部、9c ミシン目間の間隔、9d ハーフカット部、20 冷蔵庫(断熱箱)、21 外箱、22 内箱、23 断熱壁、24 スペーサ、25 ポリウレタンフォーム、101 原反ロール、111 巻枠、112a,112b クランプ部材設置部、113a,113b クランプ部材、114a,114b 円周部材保持軸、115a,115b 円周部材、116 回転軸。

Claims (14)

  1.  シート状繊維集合体を複数積層した積層体で構成される芯材と、
     前記芯材を外包し、内部が減圧された外包材とを備え、
     前記芯材には、前記シート状繊維集合体のそれぞれに、非加工部とスリット状の加工部が一つ置きに連続するミシン目が形成されていることを特徴とする真空断熱材。
  2.  前記スリット状の加工部は、完全カットされた加工部又はハーフカットされたハーフカット部であることを特徴とする請求項1記載の真空断熱材。
  3.  前記ミシン目を、一方向あるいは二方向に形成したことを特徴とする請求項1又は請求項2記載の真空断熱材。
  4.  前記ミシン目は、前記一方向あるいは前記二方向に複数ライン並設して形成されていることを特徴とする請求項3記載の真空断熱材。
  5.  前記並設されたミシン目の間隔は6[mm]以下であることを特徴とする請求項4記載の真空断熱材。
  6.  前記ミシン目の前記非加工部の長さが1~5[mm]、前記スリット状の加工部の長さが3[mm]以上であることを特徴とする請求項1乃至請求項5のいずれか一項に記載の真空断熱材。
  7.  前記ミシン目の加工部と非加工部の合計長さに対する該加工部の比率を60~75%としたことを特徴とする請求項1乃至請求項4のいずれか一項に記載の真空断熱材。
    5に記載の真空断熱材。
  8.  前記ミシン目は、前記繊維集合体の製造方向に対して傾斜させて千鳥状に配置された加工部と、該加工部の間に設けられた非加工部とによって形成されていることを特徴とする請求項1又は請求項2記載の真空断熱材。
  9.  シート状繊維集合体を複数積層した積層体で構成される芯材と、
     前記芯材を外包し、内部が減圧された外包材とを備え、
     前記芯材には、前記シート状繊維集合体のそれぞれに、貫通していない切込みによってハーフカットされたハーフカット部が形成されていることを特徴とする真空断熱材。
  10. ハーフカット部により格子状部が形成されていることを特徴とする請求項9記載の真空断熱材。
  11.  前記ハーフカット部により囲まれた前記格子状部のサイズを100mm未満としたことを特徴とする請求項10に記載の真空断熱材。
  12.  外箱と、この外箱の内部に配置された内箱とを備え、前記外箱と前記内箱との間に請求項1乃至請求項11のいずれか一項の真空断熱材を配置したことを特徴とする断熱箱。
  13.  前記外箱と前記真空断熱材との間、および前記内箱と前記真空断熱材との間の、両方またはいずれか一方に、断熱材を充填したことを特徴とする請求項12記載の断熱箱。
  14.  前記外箱と前記真空断熱材との間に、該真空断熱材の位置決めと、前記断熱材充填時の流路を確保するためのスペーサを配設したことを特徴とする請求項13記載の断熱箱。
PCT/JP2012/003420 2011-05-30 2012-05-25 真空断熱材及びこれを使用した断熱箱 WO2012164888A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013517857A JP5627773B2 (ja) 2011-05-30 2012-05-25 真空断熱材及びこれを使用した断熱箱
SG2013079322A SG194627A1 (en) 2011-05-30 2012-05-25 Vacuum heat insulator and heat-insulating box formed using same
CN201280026297.8A CN103562613B (zh) 2011-05-30 2012-05-25 真空隔热件及使用它的隔热箱
TW101119059A TWI466992B (zh) 2011-05-30 2012-05-29 Vacuum insulation materials and insulation boxes using the material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011119942 2011-05-30
JP2011-119942 2011-05-30
JP2011-192557 2011-09-05
JP2011192557 2011-09-05

Publications (1)

Publication Number Publication Date
WO2012164888A1 true WO2012164888A1 (ja) 2012-12-06

Family

ID=47258764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003420 WO2012164888A1 (ja) 2011-05-30 2012-05-25 真空断熱材及びこれを使用した断熱箱

Country Status (5)

Country Link
JP (1) JP5627773B2 (ja)
CN (1) CN103562613B (ja)
SG (1) SG194627A1 (ja)
TW (1) TWI466992B (ja)
WO (1) WO2012164888A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170674A1 (ja) * 2015-04-24 2016-10-27 三菱電機株式会社 繊維集合体の切断方法、切断装置、真空断熱材及び冷蔵庫

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101773230B1 (ko) * 2014-04-23 2017-09-13 (주)엘지하우시스 진공단열재용 외피재 및 이를 포함하는 진공단열재
CN108601410B (zh) * 2016-01-13 2021-06-29 杜邦安全与建筑公司 改进的热防护服
US11300238B2 (en) * 2019-01-21 2022-04-12 Whirlpool Corporation Vacuum insulated structure with filter features in a vacuum cavity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283643A (ja) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp 真空断熱パネルとその製造方法
JP2006342922A (ja) * 2005-06-10 2006-12-21 Matsushita Electric Ind Co Ltd 真空断熱材および真空断熱材を適用した履物
WO2011048824A1 (ja) * 2009-10-19 2011-04-28 三菱電機株式会社 真空断熱材及び断熱箱及び冷蔵庫及び冷凍・空調装置及び給湯装置及び機器及び真空断熱材の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339902A (en) * 1980-06-30 1982-07-20 Manville Service Corporation Multiple layer thermal insulation device
JP2006017151A (ja) * 2004-06-30 2006-01-19 Fuji Electric Retail Systems Co Ltd 真空断熱材
JP4857999B2 (ja) * 2006-08-04 2012-01-18 株式会社デンソー 貯湯式給湯装置の断熱構造
JP4789886B2 (ja) * 2007-08-06 2011-10-12 三菱電機株式会社 真空断熱材および断熱箱
JP2009228886A (ja) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp 真空断熱材及びこれを用いた断熱箱
JP5195494B2 (ja) * 2009-02-16 2013-05-08 三菱電機株式会社 真空断熱材及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283643A (ja) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp 真空断熱パネルとその製造方法
JP2006342922A (ja) * 2005-06-10 2006-12-21 Matsushita Electric Ind Co Ltd 真空断熱材および真空断熱材を適用した履物
WO2011048824A1 (ja) * 2009-10-19 2011-04-28 三菱電機株式会社 真空断熱材及び断熱箱及び冷蔵庫及び冷凍・空調装置及び給湯装置及び機器及び真空断熱材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170674A1 (ja) * 2015-04-24 2016-10-27 三菱電機株式会社 繊維集合体の切断方法、切断装置、真空断熱材及び冷蔵庫

Also Published As

Publication number Publication date
TW201319235A (zh) 2013-05-16
JPWO2012164888A1 (ja) 2015-02-23
SG194627A1 (en) 2013-12-30
TWI466992B (zh) 2015-01-01
CN103562613B (zh) 2016-01-06
JP5627773B2 (ja) 2014-11-19
CN103562613A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5236550B2 (ja) 真空断熱材とその製造方法、及びこの真空断熱材を備えた断熱箱
JP5362024B2 (ja) 真空断熱材及び断熱箱及び冷蔵庫及び冷凍・空調装置及び給湯装置及び機器及び真空断熱材の製造方法
JP4789886B2 (ja) 真空断熱材および断熱箱
JP5388603B2 (ja) 真空断熱材及びこれを備えた断熱箱
DE112010001540B4 (de) Vakuumwärmeisolationsmaterial und vorrichtung mit demselben
JP5627773B2 (ja) 真空断熱材及びこれを使用した断熱箱
JP2013076471A (ja) 断熱壁、冷蔵庫、機器
JP2011074934A (ja) 真空断熱材、およびこの真空断熱材を備えた断熱箱
JP5664297B2 (ja) 真空断熱材および断熱箱
JPWO2011045946A1 (ja) 真空断熱材の芯材の製造装置及び真空断熱材の製造方法及び真空断熱材及び冷蔵庫及び機器
WO2011045947A1 (ja) 真空断熱材及び冷蔵庫
EP3457018A1 (en) Vacuum heat-insulating material and manufacturing method therefor
EP2105648B1 (en) Vacuum heat insulating material and heat insulating box using the same
DE112010001539T5 (de) Vakuumwärmeisolationsmaterial und vorrichtung mit demselben
JP5611258B2 (ja) 真空断熱材、その製造方法、保温体及びその解体処理方法
JP5360029B2 (ja) 真空断熱材、断熱壁、冷蔵庫、給湯機
JP5448937B2 (ja) 真空断熱材、及びこの真空断熱材を備えた断熱箱
JP5512011B2 (ja) 断熱箱用の真空断熱材
JP2011027204A (ja) 真空断熱材、およびこの真空断熱材を備えた断熱箱
JP2010169147A (ja) 真空断熱材、その製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792505

Country of ref document: EP

Kind code of ref document: A1