WO2012162926A1 - 携带准直透镜的二维光纤阵列 - Google Patents

携带准直透镜的二维光纤阵列 Download PDF

Info

Publication number
WO2012162926A1
WO2012162926A1 PCT/CN2011/076788 CN2011076788W WO2012162926A1 WO 2012162926 A1 WO2012162926 A1 WO 2012162926A1 CN 2011076788 W CN2011076788 W CN 2011076788W WO 2012162926 A1 WO2012162926 A1 WO 2012162926A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
ferrule
microlens
collimating lens
fiber array
Prior art date
Application number
PCT/CN2011/076788
Other languages
English (en)
French (fr)
Inventor
谢灿生
郑镇宏
王占慧
Original Assignee
潮州三环(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潮州三环(集团)股份有限公司 filed Critical 潮州三环(集团)股份有限公司
Publication of WO2012162926A1 publication Critical patent/WO2012162926A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/322Optical coupling means having lens focusing means positioned between opposed fibre ends and having centering means being part of the lens for the self-positioning of the lightguide at the focal point, e.g. holes, wells, indents, nibs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/36722D cross sectional arrangements of the fibres with fibres arranged in a regular matrix array

Definitions

  • This invention relates to an optical fiber array, and more particularly to an integrated optical component, a two-dimensional optical fiber array carrying a collimating lens integrated into an optical fiber array and a lens array for an optical switch.
  • the core technology of the all-optical communication network is the all-optical switch. All-optical switches with 3D-MEMS design solutions are now widely available.
  • the design of the optical interface is to manufacture a high-precision 2D optical fiber array and to fabricate a collimating microlens array by molding or etching, and then use a high-precision adjustment instrument to integrally align the optical fiber array and the microlens array. Thereby a collimated transmitting or receiving optical path is obtained.
  • NA numerical aperture
  • n the refractive index of the medium into which the fiber is emitted
  • ⁇ max the half angle of the cone emission mode.
  • each fiber has substantially the same numerical aperture.
  • a single optical fiber and lens optical path collimator which fixes the optical fiber in the ceramic ferrule, and then seals the optical path by collimating the lens with an external clamp at the end of the ferrule.
  • this way of aligning the core of the lens and the fiber with an external fixture is not satisfactory for a high density fiber array.
  • 2D high-precision optical fiber arrays have been fabricated with a pitch accuracy of about 2 ⁇ m and a parallel light output of 2.5 mrad.
  • a 2D collimating microlens array is fabricated by molding or etching, and the pitch accuracy is about 2 ⁇ m.
  • the micro-collimator lens array and the fiber array are integrally aligned with the package to achieve collimation of the optical path.
  • both the optical fiber array and the micro-collimating lens array have a pitch error, and the central core will have an error after the whole package, and the error range is between 0-4um, which causes the optical path coupling loss;
  • each collimating lens The focus of the fiber cannot correspond to the corresponding fiber end face at the same time, and the parallel light path cannot be emitted. Again, the inconsistent light directions of the fiber array may cause the light path after the collimation to be unable to exit in parallel.
  • the object of the present invention is to provide a two-dimensional optical fiber array carrying a collimating lens with small pitch error and small focal length error and uniform light exiting direction;
  • the present invention also provides a packaging method of the two-dimensional optical fiber array carrying the collimating lens.
  • the technical solution of the present invention is: a two-dimensional optical fiber array carrying a collimating lens, comprising a plurality of ferrules arranged in an array and an optical fiber inserted in the ferrule, the optical fiber extending to the ferrule end
  • the head and the optical fiber are fixedly sealed with the ferrule, wherein each of the ferrule ends is provided with a microlens.
  • the fiber-optic array and the microlens array have a problem of spacing error, focal length error, and inconsistent light-emitting direction due to the one-to-one correspondence between the optical fiber and the independent microlens.
  • the focus of the microlens coincides with the end face of the ferrule end.
  • a micro-step is provided at the focus of the microlens, and a small boss is arranged on the end surface of the ferrule end, and the micro-protrusion is inserted into the micro-step.
  • the diameter of the mating surface of the collimating lens and the diameter of the mating face of the ferrule are less than 0.5 um.
  • the ferrule end mating surface has a convex cylindrical structure, and the mating surface of the collimating microlens is a concave cylindrical hole.
  • the ferrule end mating surface is a recessed conical hole, and the collimating microlens mating surface has a convex convex structure.
  • the ferrule end mating surface and the collimating microlens mating surface have a planar structure.
  • the end face of the ferrule end is plated with an anti-reflection film to increase the transmittance of light waves required in the optical path.
  • the present invention also provides a method for packaging a two-dimensional optical fiber array carrying a collimating lens, which uses a rail adjustment frame to perform alignment using a high-precision projector, and ensures that the ferrule array tip is at the microlens focus,
  • the lens and the ferrule array mating surface are coated with a packaging material to fix the package.
  • the ferrule and the microlens are obtained by a forming or grinding process to obtain a desired fitting shape.
  • each lens can be individually adjusted in focus and packaged.
  • a 0.1um-level rail adjustment frame is used, and a high-precision projector is used for alignment to ensure that the array end is at the lens focus, then in the lens and
  • the array contact surface is coated with a special sealing material to fix the seal.
  • the radial deviation of a single fiber from a microlens is less than 0.25 um, and the alignment or coupling effect is good.
  • the fiber array array and the ideal lattice point deviation are less than 1.5um.
  • This highly integrated, high-density optical fiber array with collimator lens, ideal fiber radial deviation, low optical path transmission loss, is suitable for optical communication.
  • Optical path switching especially MEMS-based all-optical switching.
  • 1a, 1b, and 1c are various possible cross-sectional views of a collimator lens array
  • FIG. 2 is a schematic diagram of a high precision two-dimensional optical fiber array
  • 3a, 3b, and 3c are side views of various shapes of a two-dimensional fiber array
  • FIGS. 4a, 4b, 4c are schematic illustrations of various possible collimating lenses
  • 5a, 5b, 5c are schematic views of various possible precision ferrules
  • Figures 6a, 6b, and 6c are schematic views of a single collimating lens in close fitting with the ferrule.
  • the present invention discloses a two-dimensional optical fiber array carrying a collimating lens, comprising a plurality of ferrules arranged in an array and an optical fiber inserted in the ferrule, the optical fiber extending to the ferrule The end, and the optical fiber and the ferrule are fixedly sealed, and then the end is polished and polished, and coated according to the required light-passing wavelength, wherein each of the ferrule ends is provided with a microlens.
  • the high-precision ferrule 2 is precisely arranged by a special tool, as shown in FIG. 2, and penetrates into the optical fiber 3, and then the optical fiber and the ferrule are accurately fixed and sealed by using an adhesive, thereby realizing one.
  • High precision, high air tight fiber array If any lattice point in the array is used as the base point, the distance between the other lattice points and the base point and the ideal lattice point error should not exceed 1.5 ⁇ m at the maximum.
  • the ferrule can be designed in various shapes, the main purpose of which is to better fix the lens.
  • microlenses and ferrule ends can be closely matched, and it is very convenient to package each collimating microlens 1 at each ferrule end by special tooling, thereby obtaining collimated emission. Or receive the light path.
  • the microlenses can be designed in various shapes corresponding to the ferrules.
  • Figure 1a the microlens is made by molding or injection. The focus of the microlens coincides with the end face of the ferrule at the time of encapsulation, and a small step is designed at the focal point of the end face of the microlens, and a tiny design is made at the end of the ferrule.
  • the bosses are such that the ferrules of the ferrules are placed on the tiny steps so that the light-emitting end faces are at the focus of the microlenses.
  • the diameter of the mating surface of the collimating microlens and the diameter of the ferrule end are less than 0.5 um, so that the core deviation after sealing the microlens and the ferrule end is less than 0.25 um, so that the microlens is Good alignment or coupling of the light path.
  • the ferrule end mating surface 4 has a convex cylindrical structure, and the mating surface of the collimating microlens has a concave cylindrical hole.
  • the ferrule end mating face 4 can also be a recessed conical hole, and the collimating microlens mating surface has a convex convex structure.
  • the core error of the mating surface of the microlens and the ferrule end is less than 0.2um, and the optical path alignment or coupling effect is very good.
  • the ferrule end mating face 4 and the collimating microlens mating surface may also have a planar structure.
  • the end face of the ferrule end is coated with an anti-reflection coating to reduce reflection of the optical path.
  • the invention discloses a packaging method for a two-dimensional optical fiber array carrying a collimating lens, which utilizes a rail adjusting frame and uses a high-precision projector for alignment, ensuring that the ferrule array tip is at the microlens focus after the microlens and The ferrule array mating surface is coated with a sealing material 6 to fix the package.
  • the ferrule and the microlens are obtained by a forming or grinding process to obtain a desired fitting shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种携带准直透镜的二维光纤阵列,包括多个呈阵列排布的插芯(2)及插装于插芯(2)内的光纤(3)。光纤(3)延伸至插芯(2)端头,且光纤(3)与插芯(2)固定密封。每个插芯(2)端头上均封装有一微透镜(1)。微透镜(1)的焦点与插芯(2)端头的端面重合。微透镜(1)焦点处设有一微小台阶,插芯(2)端头的端面上设有一微小凸台,且微小凸台顶入微小台阶内。本发明的优点在于间距误差小,焦距误差小且出光方向一致。

Description

携带准直透镜的二维光纤阵列
技术领域
本发明涉及一种光纤阵列,更确切地说本发明涉及一种集成的光学元件,将应用于光交换机的光纤阵列和透镜阵列进行集成的携带准直透镜的二维光纤阵列。
背景技术
全光通信网络实现的技术核心在于全光交换机。目前以3D-MEMS设计方案的全光交换机得以广泛推广。一般其出入光接口的设计方案是制造出的高精度2D光纤阵列和利用模压或蚀刻制作出准直微透镜阵列,然后再利用高精度的调整仪器将光纤阵列和微透镜阵列整体对准耦合,从而获得准直的发射或接收光路。
由于从光纤发射出的光一般按照由光纤的数值孔径(NA)确定的锥形模式而发散。(NA=nsin(θmax),其中n是光纤发射到其中的介质的折射率,而θmax是所述锥形发射模式的半角。)为了降低光纤阵列链接到光学系统的损耗,阵列中的光纤所发射的发散光束一般由透镜准直或重聚焦后耦合到另一个光学系统时,要求微透镜阵列对齐个条光纤系统中的每一条,以确保1)光是从每条光纤在阵列中一个精确的已知位置发射的,2)光是从每条光纤以基本相同的角度发射的(即光纤被对齐成彼此基本平行),3)光是从每条光纤在离准直透镜基本相同的距离处发射的,4)每条光纤具有基本相同的数值孔径。
根据上述原理,人们发明了单个光纤和透镜的光路准直器,其将光纤固定在陶瓷插芯中,再将透镜利用外部夹具封接在插芯端头,对光路进行准直。但是这种利用外部夹具对准透镜和光纤的核心的方式对于高密度的光纤阵列是无法满足的。
目前人们已经制造了2D高精度光纤阵列,其间距精度约2um,出射光平行度2.5mrad,同时也利用模压或蚀刻制作了2D准直微透镜阵列,其间距精度约2um。将微准直透镜阵列和光纤阵列整体对准封装,起到光路的准直。但是,光纤阵列和微准直透镜阵列都存在间距误差,两者整体封装后中心核心就会产生误差,误差范围在0-4um之间,该误差造成光路耦合损耗;其次,每一个准直透镜的焦点都无法同时对应相应的光纤端面而无法出射平行光路;再次,光纤阵列的出光方向不一致也会导致准直后光路无法平行出射。这些原因给光路准直耦合带来重大的困难,从而导致光损耗较大而无法使用。
发明内容
针对现有技术的缺点,本发明的目的是提供一种间距误差及焦距误差小、出光方向一致的携带准直透镜的二维光纤阵列;
同时,本发明还提供了该携带准直透镜的二维光纤阵列的封装方法。
为实现上述目的,本发明的技术方案为:一种携带准直透镜的二维光纤阵列,包括多个呈阵列排布的插芯及插装于插芯内的光纤,光纤延伸至插芯端头,且光纤与插芯固定密封,其中,每个插芯端头上均封装有一微透镜。
本方案中,通过光纤和独立的微透镜一一对应,很好地解决了由于光纤阵列和微透镜阵列都存在间距误差、焦距误差、出光方向不一致等问题。
该微透镜的焦点与插芯端头的端面重合。
该微透镜焦点处设有一微小台阶,在插芯端头的端面上设有一微小凸台,且微小凸台顶入微小台阶内。
该准直透镜配合面的直径和插芯端头配合面的直径相差小于0.5um。
该插芯端头配合面呈外凸的柱形结构,该准直微透镜的配合面呈内凹的柱形孔。
该插芯端头配合面呈内陷的锥形孔,该准直微透镜配合面呈外凸锥形结构。
该插芯端头配合面与准直微透镜配合面呈平面结构。
所述插芯端头的端面上镀有一层增透膜,可以增大光路中所需光波的透过率。
同时,本发明还提供一种携带准直透镜的二维光纤阵列的封装方法,其利用导轨调节架,使用高精度投影仪进行对准,确保插芯阵列端头处于微透镜焦点后,在微透镜和插芯阵列配合面上涂覆封装材料固定封装。
插芯和微透镜通过成型或研磨加工方法,获得所需的配合形状。
本发明解决了目前精密光纤阵列和微透镜阵列整体配合时存在的间距误差、出光方向不一致、焦距误差等问题产生的较大的损耗。本发明中每一个透镜都可单独调整焦距后封装,在封接过程中,利用0.1um级导轨调节架,使用高精度投影仪进行对准,确保阵列端头处于透镜焦点后,然后在透镜和阵列接触面上涂覆特殊的封接材料固定封接。单个光纤与微透镜的径向偏差小于0.25um,准直或耦合效果良好。整个光纤阵列阵点和理想的阵点偏差小于1.5um,这种高集成、高密度的携带准直透镜的光纤阵列,理想的光纤径向偏差,较低的光路传输损耗,完全适合于光通信中的光路交换,尤其是基于MEMS的全光交换。
附图说明
图号标号说明:1--准直透镜;2--精密插芯;3--光纤;
图1a、图1b、图1c是携带准直透镜光纤阵列各种可能的剖面图;
图2是高精度二维光纤阵列示意图;
图3a、图3b、图3c是二维光纤阵列各种形状侧视图;
图4a、4b、4c是各种可能的准直透镜示意图;
图5a、5b、5c是各种可能精密插芯示意图;
图6a、6b、6c是单个准直透镜与插芯紧密配合示意图。
具体实施方式
以下结合实施例及附图对本发明进行详细的描述。
如图1至图6所示,本发明公开了一种携带准直透镜的二维光纤阵列,包括多个呈阵列排布的插芯及插装于插芯内的光纤,光纤延伸至插芯端头,且光纤与插芯固定密封,再进行端头的研磨抛光,并根据所需通光波长镀膜,其中每个插芯端头上均封装有一微透镜。
本发明中先将高精度的插芯2利用专用制具进行精密排列,如图2所示,并穿入光纤3,再使用粘结剂将光纤、插芯进行精准固定和密封,从而实现一个高精度、高气密性的光纤阵列。若以阵列中的任意阵点为基点,其余阵点与基点的间距和理想的阵点误差最大不超过1.5um。其中根据设计方案的不同及封装方案的不同,插芯可以设计成各种形状,其主要目的在于能更好地与透镜进行固定。
根据不同的设计方案,可以将不同形状的微透镜和插芯端头进行紧密配合,非常方便地通过专用工装将各个准直微透镜1封装在每一个插芯端头,从而获得准直的发射或接收光路。根据设计方案的不同及封装方案的不同,微透镜可以设计成各种与插芯相互对应的形状。图1a,微透镜经过模压或注射等加工方式制成,封装时微透镜的焦点与插芯端头的端面重合,并在微透镜端面焦点处设计一个微小台阶,在插芯端头设计一个微小凸台,使插芯微小凸台恰好顶在微小台阶上,使得光纤出光端面处于微透镜焦点处。图1a的设计方案中,准直微透镜配合面的直径和插芯端头的直径相差小于0.5um,这样微透镜与插芯端头封接后核心偏差就不到0.25um,这样微透镜就很好的对光路进行准直或耦合。
进一步地,如图3a、图4及图5,该插芯端头配合面4呈外凸的柱形结构,该准直微透镜的配合面呈内凹的柱形孔。
除上述结构之外,如图3b,该插芯端头配合面4也可呈内陷的锥形孔,该准直微透镜配合面呈外凸锥形结构。此种设计中微透镜和插芯端头配合面核心误差小于0.2um,光路准直或耦合效果很好。
除上述结构之外,如图3c,该插芯端头配合面4与准直微透镜配合面也可呈平面结构。
根据需要的波段不同,所述插芯端头的端面上镀有一层增透膜,以减少光路的反射。
本发明公开了一种携带准直透镜的二维光纤阵列的封装方法,其利用导轨调节架,使用高精度投影仪进行对准,确保插芯阵列端头处于微透镜焦点后,在微透镜和插芯阵列配合面上涂覆封装材料6固定封装。
插芯和微透镜通过成型或研磨加工方法,获得所需的配合形状。

Claims (10)

  1. 一种携带准直透镜的二维光纤阵列,包括多个呈阵列排布的插芯及插装于插芯内的光纤,光纤延伸至插芯端头,且光纤与插芯固定密封,其特征在于,每个插芯端头上均封装有一微透镜。
  2. 根据权利要求1所述的携带准直透镜的二维光纤阵列,其特征在于,该微透镜的焦点与插芯端头的端面重合。
  3. 根据权利要求2所述的携带准直透镜的二维光纤阵列,其特征在于,该微透镜焦点处设有一微小台阶,在插芯端头的端面上设有一微小凸台,且微小凸台顶入微小台阶内。
  4. 根据权利要求2所述的携带准直透镜的二维光纤阵列,其特征在于,该透镜配合面的直径和插芯端头配合面的直径相差小于0.5um。
  5. 根据权利要求1至4任一项所述的携带准直透镜的二维光纤阵列,其特征在于,该插芯端头配合面呈外凸的柱形结构,该准直微透镜的配合面呈内凹的柱形孔。
  6. 根据权利要求1至4任一项所述的携带准直透镜的二维光纤阵列,其特征在于,该插芯端头配合面呈内陷的锥形孔,该准直微透镜配合面呈外凸锥形结构。
  7. 根据权利要求1至4任一项所述的携带准直透镜的二维光纤阵列,其特征在于,该插芯端头配合面与准直微透镜配合面呈平面结构。
  8. 根据权利要求1至4任一项所述的携带准直透镜的二维光纤阵列,其特征在于,所述插芯端头的端面上镀有一层增透膜。
  9. 一种根据权利要求2携带准直透镜的二维光纤阵列的封装方法,其特征在于,利用导轨调节架,使用高精度投影仪进行对准,当插芯阵列端头处于微透镜焦点后,在微透镜和插芯阵列配合面上涂覆封装材料固定封装。
  10. 根据权利要求9所述的封装方法,其特征在于,插芯和微透镜通过成型或研磨加工方法,获得所需的配合形状。
PCT/CN2011/076788 2011-05-31 2011-07-02 携带准直透镜的二维光纤阵列 WO2012162926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110144441 CN102183824A (zh) 2011-05-31 2011-05-31 携带准直透镜的二维光纤阵列
CN201110144441.5 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012162926A1 true WO2012162926A1 (zh) 2012-12-06

Family

ID=44570020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076788 WO2012162926A1 (zh) 2011-05-31 2011-07-02 携带准直透镜的二维光纤阵列

Country Status (2)

Country Link
CN (1) CN102183824A (zh)
WO (1) WO2012162926A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317626B2 (en) 2017-06-15 2019-06-11 Google Llc Inner and outer collimator elements for an optical circuit switch
CN110888200A (zh) * 2019-11-22 2020-03-17 浙江光塔节能科技有限公司 一种光纤接头

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231584B2 (en) * 2013-08-12 2016-01-05 Huawei Technologies Co., Ltd. Device and method for micro-electro-mechanical-system photonic switch
US9213142B2 (en) * 2013-11-21 2015-12-15 Huawei Technologies Co., Ltd. Device and method for micro-electro-mechanical-system photonic switch
CN104407418A (zh) * 2014-11-28 2015-03-11 中国科学院半导体研究所 透镜光纤阵列耦合件
US20200264386A1 (en) * 2016-11-08 2020-08-20 Molex, Llc Multi-fiber ferrule with lens elements
CN109387905A (zh) * 2018-11-22 2019-02-26 中山市美速光电技术有限公司 一种二维微间距的阵列准直器及其制造方法
CN109580186A (zh) * 2018-12-29 2019-04-05 苏州天步光电技术有限公司 一种二维光纤阵列的测试方法
US11105985B2 (en) 2020-01-31 2021-08-31 Corning Research & Development Corporation Lens-based connector assemblies having precision alignment features and methods for fabricating the same
US11249257B2 (en) 2020-01-31 2022-02-15 Corning Research & Development Corporation Ferrule assemblies having a lens array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421717A (zh) * 2001-11-23 2003-06-04 鸿富锦精密工业(深圳)有限公司 光纤准直器及其制造方法
US20040184728A1 (en) * 2003-03-18 2004-09-23 Cheng-Hsi Miao Optical fiber system
JP2005025067A (ja) * 2003-07-04 2005-01-27 Fujikura Ltd 光ファイバコリメータとその製造方法ならびにその製造装置
JP2005221671A (ja) * 2004-02-04 2005-08-18 Matsushita Electric Works Ltd 光コリメータ
JP2006227132A (ja) * 2005-02-16 2006-08-31 Matsushita Electric Works Ltd コリメータ構造
JP2007178603A (ja) * 2005-12-27 2007-07-12 Topcon Corp 光部品およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215388A (ja) * 2002-01-25 2003-07-30 Hitachi Metals Ltd レンズ付き光ファイバー組立体とその製造方法
JP4161863B2 (ja) * 2003-09-19 2008-10-08 ヤマハ株式会社 コリメータレンズ、コリメータレンズアレイ、コリメータ、コリメータアレイ、フェルールアレイの製法、コリメータレンズの製法及びコリメータレンズアレイの製法
CN201051161Y (zh) * 2007-04-28 2008-04-23 福州高意通讯有限公司 一种单光纤准直器
CN101320137A (zh) * 2008-06-20 2008-12-10 福州高意通讯有限公司 一种小直径自聚焦透镜式准直器
CN201828684U (zh) * 2010-10-11 2011-05-11 福州高意通讯有限公司 一种阵列准直器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421717A (zh) * 2001-11-23 2003-06-04 鸿富锦精密工业(深圳)有限公司 光纤准直器及其制造方法
US20040184728A1 (en) * 2003-03-18 2004-09-23 Cheng-Hsi Miao Optical fiber system
JP2005025067A (ja) * 2003-07-04 2005-01-27 Fujikura Ltd 光ファイバコリメータとその製造方法ならびにその製造装置
JP2005221671A (ja) * 2004-02-04 2005-08-18 Matsushita Electric Works Ltd 光コリメータ
JP2006227132A (ja) * 2005-02-16 2006-08-31 Matsushita Electric Works Ltd コリメータ構造
JP2007178603A (ja) * 2005-12-27 2007-07-12 Topcon Corp 光部品およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317626B2 (en) 2017-06-15 2019-06-11 Google Llc Inner and outer collimator elements for an optical circuit switch
TWI677715B (zh) * 2017-06-15 2019-11-21 美商谷歌有限責任公司 光學電路切換器
CN110888200A (zh) * 2019-11-22 2020-03-17 浙江光塔节能科技有限公司 一种光纤接头
CN110888200B (zh) * 2019-11-22 2024-04-12 浙江光塔安全科技有限公司 一种光纤接头

Also Published As

Publication number Publication date
CN102183824A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2012162926A1 (zh) 携带准直透镜的二维光纤阵列
US7123809B2 (en) Optical fiber array
US10761279B2 (en) Method of producing a device for adiabatic coupling between waveguide arrays, corresponding device, and system
US6941047B2 (en) System and method for collimating and redirecting beams in a fiber optic system
US9804348B2 (en) Silicon photonics connector
US10146009B2 (en) Silicon photonics connector
JP5166295B2 (ja) 光ファイバアレイおよびその製造方法
CN110989088B (zh) 一种基于透镜和超表面透镜的复用/解复用装置及方法
KR100448968B1 (ko) 광결합 소자의 제작 방법, 광결합 소자, 광결합 소자조립체 및 광결합 소자를 이용한 렌즈 결합형 광섬유
US20140294339A1 (en) Compact optical fiber splitters
CN114424100A (zh) 微光学互连元器件及其制备方法
US7407595B2 (en) Optical member, manufacturing method of the optical member, waveguide substrate, and photo-electric integrated substrate
JP2017130543A (ja) 光送信機およびその製造方法
Betschon et al. Mass production of planar polymer waveguides and their applications
JP3742382B2 (ja) 光ファイバアレイ
CN206573743U (zh) 一种集成准直微透镜阵列和二维光纤阵列的光学元件
CN101025460B (zh) 用微通道阵列对微光学部件定位的机构及微通道模块制备方法
JP2020173408A (ja) 光接続構造
JP5185214B2 (ja) 光ファイバアレイ
WO2020133951A1 (en) Multi-channel mode converters with silicon lenses
JPH0836119A (ja) 低損失コリメータ対の作製方法
He et al. Two-microlens coupling scheme with revolved hyperboloid sol-gel microlens arrays for high-power-efficiency optical coupling
CN202676944U (zh) 一种携带准直透镜的二维光纤阵列
JP2010286549A (ja) 光信号処理回路、光信号処理回路付半導体装置および光信号処理回路の製造方法
Maruyama et al. Direct core monitoring technique for passive optical alignment between multichannel silicon waveguide and single-mode fiber array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866507

Country of ref document: EP

Kind code of ref document: A1