WO2012161227A1 - 核酸構築物、核酸-蛋白質複合体、及びその利用 - Google Patents

核酸構築物、核酸-蛋白質複合体、及びその利用 Download PDF

Info

Publication number
WO2012161227A1
WO2012161227A1 PCT/JP2012/063221 JP2012063221W WO2012161227A1 WO 2012161227 A1 WO2012161227 A1 WO 2012161227A1 JP 2012063221 W JP2012063221 W JP 2012063221W WO 2012161227 A1 WO2012161227 A1 WO 2012161227A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
nucleic acid
polypeptide
binding
coding
Prior art date
Application number
PCT/JP2012/063221
Other languages
English (en)
French (fr)
Inventor
章 和田
長田 裕之
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Priority to JP2013516421A priority Critical patent/JP6057297B2/ja
Priority to US14/119,730 priority patent/US9863936B2/en
Publication of WO2012161227A1 publication Critical patent/WO2012161227A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/10Peptides being immobilised on, or in, an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1041Ribosome/Polysome display, e.g. SPERT, ARM
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/85Fusion polypeptide containing an RNA binding domain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors

Definitions

  • the present invention relates to a nucleic acid construct capable of expressing a polypeptide in association with a nucleic acid sequence encoding the polypeptide, a kit containing the same, a method for presenting a polypeptide on a nucleic acid using the same, and a polypeptide that binds to a target substance.
  • the present invention relates to a method for selecting a peptide sequence.
  • “Peptide aptamer” is a general term for artificial peptides that specifically bind to a target molecule.
  • small peptide aptamers that express a binding function similar to “antibodies” are attracting attention as probes for molecular detection and inhibitors of biological functions in chemical and biological science research.
  • it is also expected as a next-generation molecular target drug that replaces antibody drugs.
  • the phage display method has been mainly used as a method for creating peptide aptamers.
  • a strategy for selecting a peptide aptamer that specifically binds to a target molecule is selected from about 109 types of peptide libraries displayed on a part of the outer shell protein of the phage.
  • many unsolved problems remain. For example, (1) In the process of selecting peptide aptamers, the life cycle of E. coli and phage is used, and therefore peptides that adversely affect their life activities are automatically excluded. Therefore, a phenomenon frequently occurs in which a peptide aptamer having a target function cannot be obtained at all.
  • a ribosome display method As such an in-vitro display method, there is a ribosome display method (Patent Documents 1-4 and Non-Patent Document 1). Compared to the mRNA display method, the ribosome display method allows the design and use of peptide (protein) libraries of various sizes according to the purpose of research. Since it can be selected and identified by a simple process, research can be developed with a view to future commissioning, kitting, and robot automation. However, since the peptide-ribosome-mRNA complex used in the peptide aptamer selection process is extremely unstable, the target peptide aptamer cannot often be identified. Therefore, the number of researchers who can freely handle this principle, condition, and technology is extremely small in the world.
  • Non-Patent Document 2 discloses a technique in which a Cv sequence is incorporated into the 5′-untranslated region of mRNA and a Cvap dimer is included in the expressed polypeptide to perform ribosome display. Is disclosed (Non-patent Document 2). However, further improvements were sought to increase the efficiency of ribosome display.
  • An object of the present invention is to stably and efficiently form a complex of a polypeptide and a nucleic acid containing a sequence encoding the polypeptide, thereby associating the polypeptide with a sequence encoding the polypeptide or binding to a target substance. It is to provide a technique capable of efficiently performing polypeptide screening.
  • the present inventors newly constructed a template in which peptides and proteins that specifically bind to two small RNA motifs introduced at the 5 ′ end of mRNA were introduced.
  • they succeeded in stabilizing the complex by affinity intramolecular association.
  • we succeeded in synthesizing a new complex in which ribosomes were dissociated from the complex and conducting peptide selection experiments using the complex (stable cross-linked ribosome display method). was completed.
  • a nucleic acid construct comprising a 5′-untranslated region and a coding region, wherein the coding region encodes a polypeptide to be presented, a sequence encoding a first nucleic acid-binding polypeptide, and a second nucleic acid A first sequence capable of binding to the first nucleic acid binding polypeptide and a second sequence capable of binding to the second nucleic acid binding polypeptide, wherein the 5′-untranslated region comprises a sequence encoding the binding polypeptide.
  • a fusion protein that is translated from the coding region of the nucleic acid construct when introduced into a translation system, the binding between the first nucleic acid binding polypeptide and the first sequence and A nucleic acid construct that forms a complex with RNA corresponding to the nucleic acid construct by binding a second nucleic acid-binding polypeptide and the second sequence.
  • the first nucleic acid binding polypeptide and the second nucleic acid binding polypeptide are boxB-associating peptide (Bap) and Cv-associating peptide (Cvap) dimers, and the first and second sequences are The nucleic acid construct according to [1], which is a boxB sequence and a Cv sequence.
  • the first nucleic acid binding polypeptide and the second nucleic acid binding polypeptide are Bap and Rev, and the first sequence and the second sequence are a boxB sequence and an apI sequence or an apII sequence, [1 ].
  • the first nucleic acid binding polypeptide and the second nucleic acid binding polypeptide are Bap and BIV Tat, and the first sequence and the second sequence are boxB sequence and BIV TAR sequence, [1] The nucleic acid construct according to 1.
  • [5] The polypeptide-to-be-presented coding sequence, Bap coding sequence, Cvap dimer, wherein the 5′-untranslated region includes a boxB sequence, a Cv sequence, and a ribosome binding sequence, and the coding region is linked in accordance with the reading frame.
  • [6] The polypeptide-to-be-presented coding sequence, Bap code, wherein the 5′-untranslated region includes a boxB sequence, apI sequence or apII sequence, and a ribosome binding sequence, and the coding region is ligated together in a reading frame.
  • the 5′-untranslated region includes a boxB sequence, a BIV TAR sequence, and a ribosome binding sequence, and the coding region is linked in a reading frame, a polypeptide to be displayed, a Bap coding sequence, BIV
  • nucleic acid construct according to any one of [1] to [8], wherein the polypeptide coding sequence to be presented is a sequence encoding a random polypeptide.
  • a nucleic acid construct comprising a 5′-untranslated region and a coding region; A nucleic acid-protein complex comprising a fusion protein translated from the coding region, wherein the coding region encodes a sequence encoding a polypeptide to be presented, a sequence encoding a first nucleic acid binding polypeptide, and a second Comprising a sequence encoding a nucleic acid binding polypeptide of The 5'-untranslated region comprises a first sequence capable of binding to a first nucleic acid binding polypeptide and a second sequence capable of binding to a second nucleic acid binding polypeptide; Formed by the binding of the first nucleic acid binding polypeptide and the first sequence and the binding of the second nucleic acid binding polypeptide and the second sequence; Nucleic acid-
  • nucleic acid-protein complex according to [10], which does not contain a ribosome.
  • the first nucleic acid binding polypeptide and the second nucleic acid binding polypeptide are Bap and Cvap dimers, and the first and second sequences are boxB and Cv sequences, [10] or [11] The nucleic acid-protein complex according to [11].
  • nucleic acid construct according to any one of [1] to [9] is introduced into a translation system to express a fusion protein encoded by the coding region, and the first nucleic acid binding polypeptide and the first By forming a complex of the fusion protein and RNA corresponding to the nucleic acid construct through binding to the sequence of the second nucleic acid-binding polypeptide and binding of the second sequence to the second sequence.
  • a method for presenting a polypeptide on a nucleic acid comprising presenting the peptide on a nucleic acid construct.
  • a fusion protein of a random polypeptide, a first nucleic acid-binding polypeptide, and a second nucleic acid-binding polypeptide is expressed from the nucleic acid construct according to [9], and randomly expressed on RNA corresponding to the nucleic acid construct Presenting a polypeptide library; (2) contacting the library with a target substance; and (3) selecting a fusion protein containing a polypeptide sequence that binds to the target substance and amplifying a nucleic acid sequence encoding the selected fusion protein.
  • the method according to [16] comprising a step of dissociating the ribosome from the nucleic acid construct between the steps (1) and (2).
  • a kit for displaying a polypeptide on a nucleic acid comprising the nucleic acid construct according to any one of [1] to [9].
  • a complex of a polypeptide and a nucleic acid containing a sequence encoding the polypeptide can be stably and efficiently formed, whereby the association between the polypeptide and the sequence encoding the polypeptide or the target substance can be achieved. It is possible to efficiently screen for a binding polypeptide.
  • a complex of a polypeptide and a nucleic acid containing a sequence encoding the polypeptide is maintained even if the ribosome is removed after the peptide-ribosome-RNA complex is formed. It is possible to completely eliminate the “steric hindrance between the ribosome of the complex and the target molecule”, which was another problem. This eliminates non-specific binding to the ribosome and allows selection of peptide aptamers having stronger target binding properties that could not be selected so far.
  • FIG. 1 Schematic diagram of the complex (1) used for the conventional ribosome display method and the new complex (2) used for the stable cross-linked ribosome display method.
  • Ps represents a spacer sequence.
  • (3) is an electrophoretogram showing that the FLAG peptide expressed using the complex (2) was selected by the anti-FLAG antibody and the sequence encoding it could be specifically amplified.
  • Example 2 (A) DNA template 1-S, (B) DNA template 2-S, (C) DNA template 3-S, (D) DNA template 4-S -Schematic diagram of peptide-mRNA complex when ribosome is dissociated after forming ribosome-mRNA complex.
  • mold display method Sequence and description of plasmid DNA and various DNA templates prepared based on it for synthesizing each complex used in stable cross-linked ribosome display method and stable cross-linked display method.
  • Figure 4 shows the results of Western blotting confirming the expression of these proteins in vitro after introducing polypeptides and proteins of various sizes into plasmid II in Fig. 4 and preparing them as 5-X templates in Fig. 4 (Photo). RNA motif-peptide cross-linked structure.
  • the nucleic acid construct of the present invention includes a 5′-untranslated region and a coding region, and the coding region includes a sequence encoding a polypeptide to be displayed, a sequence encoding a first nucleic acid-binding polypeptide, and a second nucleic acid-binding polypeptide.
  • a sequence encoding a peptide, wherein the 5'-untranslated region comprises a first sequence capable of binding to the first nucleic acid binding polypeptide and a second sequence capable of binding to the second nucleic acid binding polypeptide; including.
  • the fusion protein translated from the coding region comprises a first nucleic acid binding polypeptide and a second nucleic acid binding property contained in the fusion protein.
  • Each polypeptide binds to the first and second sequences of the 5′-untranslated region to form a complex with the RNA corresponding to the nucleic acid construct.
  • the combination of the first nucleic acid-binding polypeptide and the first sequence and the combination of the second nucleic acid-binding polypeptide and the second sequence may be a combination that can form a stable nucleic acid-polypeptide bond.
  • Any known nucleic acid sequence-nucleic acid binding polypeptide can be used, and specific examples include boxB-associating peptide (Bap) and boxB sequence, Cv-associating peptide (Cvap) and Cv sequence, etc.
  • Bap and boxB sequences, and Cvap and Cv sequences are preferable.
  • the combination of the first nucleic acid binding polypeptide and the first sequence and the combination of the second nucleic acid binding polypeptide and the second sequence may be the same combination, but different combinations are preferred.
  • the boxB sequence is a boxB sequence of ⁇ phage (Lazinski, D., Grzadzielska, E., and Das, A. Cell 1989, 59, 207-218 .; Legault, P., Li, J ., Mogridge, J., Kay, LE, and Greenblatt, J. Cell 1998,93, 289-299.),
  • the boxB sequence contained in the nucleic acid construct of the present invention is the base numbers 20 to 35 of SEQ ID NO: 5
  • the sequence shown in the case of RNA, T is replaced with U: SEQ ID NO: 38).
  • 1 to several (for example, 2 or 3) bases may be substituted, deleted, or added in this sequence.
  • Cv sequence refers to C-variant RNA (Nucleic Acids Research Research Supplement No. 1 99-100).
  • the Cv sequence contained in the nucleic acid construct of the present invention is represented by nucleotide numbers 41 to 59 of SEQ ID NO: 5. Sequence (in the case of RNA, replace T with U). However, as long as Cvap can bind, 1 to several (eg, a few) bases may be substituted, deleted or added in this sequence.
  • either the first sequence or the second sequence may be on the 5 ′ side, and one or both of them may be present in plural. From the viewpoint of stabilization of the protein-RNA complex, 3 to 15 bases are preferred between the first sequence and the second sequence.
  • a ribosome binding sequence (RBS) is preferably present after the first sequence and the second sequence.
  • the interval between the sequence present on the 3 ′ side of the first sequence and the second sequence and the ribosome binding sequence is preferably 30 to 40 bases from the viewpoint of easy binding of the ribosome.
  • the ribosome binding sequence include a Shine-Dalgarno (SD) sequence.
  • SD Shine-Dalgarno
  • the Bap coding sequence included in the coding region is a sequence encoding Bap (Legault, P., Li, J., Mogridge, J., Kay, LE, and Greenblatt, J. Cell 1998,93, 289-299 .; Austin, R. J., Xia, T., Ren, J., Takahashi, T. T., and Roberts, RW J. Am. Chem. Soc. 2002, 124, 10966-10967),
  • Examples of the sequence include sequences encoding amino acid numbers 23 to 45 (SEQ ID NO: 33) of SEQ ID NO: 6, and more specifically, a sequence represented by base numbers 172 to 240 of SEQ ID NO: 5.
  • 1 to several (eg, 2, 3) amino acids may be substituted, deleted, or added in the amino acid sequence of SEQ ID NO: 33.
  • the Cvap dimer coding sequence contained in the coding region is a sequence encoding Cvap (Rowsell, S., Stonehouse, NJ, Convery, MA, Adams, CJ, Ellington, AD, Hirao, I., Peabody, DS, Stockley, PG, and Phillips, SE. Nat. Struct. Biol. 1998, 5, 970-975 .; Wada, A., Sawata, SY, and Ito, Y. Biotechnol. Bioeng. 2008, 101, 1102-1107.) An array containing two.
  • Examples of the Cvap coding sequence include a sequence encoding amino acid numbers 70 to 199 of SEQ ID NO: 6, and more specifically, a sequence represented by base numbers 313 to 702 of SEQ ID NO: 5. However, as long as it can bind to the Cv sequence, 1 to several (for example, 2 to 5 or 2 to 10) amino acids in the amino acid sequence of amino acid numbers 70 to 199 of SEQ ID NO: 6 are substituted or missing. It may be lost or added. Since Cvap is known to bind to the Cv sequence by a dimer, it is necessary that the coding region contains two Cvap coding sequences.
  • the Cvap dimer coding sequence may be a sequence in which two Cvap coding sequences are connected in succession, or may be a sequence in which two Cvap coding sequences are connected via a linker coding sequence.
  • the first nucleic acid-binding polypeptide and the second nucleic acid-binding polypeptide are boxB-associating peptide (Bap) and Rev (TRQARRNRRRRWRERQR: SEQ ID NO: 34), and the first and second sequences are boxB-B It may be a sequence and an apI sequence (5'-GGCUGGACUCGUACUUCGGUACUGGAGAAACAGCC-3 ': SEQ ID NO: 39) or apII (5'-GGUGUCUUGGAGUGCUGAUCGGACACC-3': SEQ ID NO: 40) sequence.
  • first nucleic acid-binding polypeptide and the second nucleic acid-binding polypeptide are boxB-associating peptide (Bap) and BIV Tat (SGPRPRGTRGKGRRIRR: SEQ ID NO: 35), and the first sequence and the second sequence are It may be a boxB sequence and a BIV ⁇ ⁇ TAR sequence (5′-GCUCGUGUAGCUCAUUAGCUCCGAGC-3 ′: SEQ ID NO: 41).
  • the Rev sequence is exemplified by SEQ ID NO: 34. As long as it can bind to the apI or apII sequence, 1 to several (for example, 2, 3) amino acids in the amino acid sequence of SEQ ID NO: 34 Substitutions, deletions or additions may be made.
  • the sequence of BIV Tat is exemplified by SEQ ID NO: 35. As long as it can bind to the BIV TAR sequence, 1 to several (for example, 2, 3) amino acids in the amino acid sequence of SEQ ID NO: 35 Substitutions, deletions or additions may be made. In each sequence of other exemplified polypeptides, 1 to several (for example, a few) amino acids may be substituted, deleted, or added as long as they can bind to the target sequence.
  • the nucleic acid binding polypeptide is not limited to the above, and any polypeptide that can bind to the nucleic acid sequence may be used. However, the total number of R and K in the peptide sequence is 6 or more, or in the peptide sequence It is preferable to use a polypeptide having R of 7 or more. Further, in the peptide sequence, one or more of RXR sequence (X is an arbitrary amino acid), RX 1 X 2 R sequence (SEQ ID NO: 42, X 1 and X 2 are arbitrary amino acids), RR sequence, more preferably 2 It is preferred to use polypeptides in which there are more than one, particularly preferably all three.
  • RXR sequence RX 1 X 2 R sequence (SEQ ID NO: 42, X 1 , X 2 are any amino acid), RRXRR sequence (SEQ ID NO: 43, X is any amino acid), It is also preferable to use a polypeptide in which two or more, more preferably all three are present.
  • the above-described two kinds of polypeptides may be selected and used.
  • Other specific examples include the following.
  • sequence to which the nucleic acid-binding polypeptide binds is not particularly limited as long as it is a sequence that can bind to the polypeptide as described above, but a sequence that forms a stem loop is preferable, and the loop length is preferably 3 to 10 bases, preferably Is preferably a sequence that forms a stem loop of 3 to 8 bases, more preferably 3 to 7 bases.
  • the following sequences may be mentioned.
  • -P22 boxB 5'-GCGCUGACAAAGCGC-3 '(15 mer) (SEQ ID NO: 64) -HIV-1 RRE: 5'-GGUCUGGGCGCAGCGCAAGCUGACGGUACAGGCC-3 '(34 mer) (SEQ ID NO: 65)
  • 1 to several (eg, a few) bases may be substituted, deleted or added in these sequences.
  • the order of the first nucleic acid binding polypeptide coding sequence and the second nucleic acid binding polypeptide coding sequence depends on the order of the first sequence and the second sequence in the 5′-untranslated region. If the first sequence (eg, boxB sequence) is first (5 ′ side) in the 5′-untranslated region, the first nucleic acid-binding polypeptide coding sequence (eg, Bap coding sequence) is first in the coding region ( If the second sequence (eg Cv sequence) is first (5 ′ side), the second nucleic acid binding polypeptide coding sequence (eg Cvap dimer coding sequence) is first in the coding region. (5 'side)
  • the interval between the first nucleic acid binding polypeptide coding sequence and the second nucleic acid binding polypeptide coding sequence is preferably 60 to 75 bases from the viewpoint of stabilization of the protein-RNA complex.
  • the polypeptide coding sequence to be presented is arranged in front (5 ′ side) of the first nucleic acid binding polypeptide coding sequence and the second nucleic acid binding polypeptide coding sequence, and these are read frames. Are preferably arranged together.
  • the polypeptide to be presented coding sequence may be a known sequence or a random sequence.
  • the length is not particularly limited, and may be a short peptide or a protein.
  • polypeptide whose sequence is known is not particularly limited, and examples thereof include enzymes, antibodies, signal transduction factors, channels, cell growth factors, transcription factors, adhesion factors, and receptors.
  • a protein whose function is unknown may be used. Its origin is not particularly limited, and a polypeptide having a natural sequence derived from any organism such as mammals including humans, plants, viruses, yeasts, or bacteria can be used. Alternatively, a part of the natural polypeptide or a mutant polypeptide having a modified amino acid sequence can be used as the polypeptide to be displayed. Furthermore, a polypeptide containing an artificially designed amino acid sequence can be used as a polypeptide to be presented.
  • the polypeptide coding sequence is a random sequence, it is preferably a sequence encoding a random polypeptide in which arbitrary amino acids are randomly arranged.
  • the random polypeptide usually has a random amino acid sequence consisting of a length of about 5 to 100 residues, preferably 5 to 50 residues, more preferably about 5 to 20 residues.
  • the amino acid may be natural or non-natural, or a mixture thereof. More simply, the random polypeptide is composed of one or more amino acids selected from natural 20 amino acids.
  • 3n A, T, G, and C may be randomly arranged.
  • a peptide sequence in which eight types of amino acids (Ser, Asn, Gly, Asp, Arg, His, Cys, or Tyr) appear at random can be expressed by using the repetition of the NRY codon.
  • what is necessary is just to change a codon according to a well-known means, when a random polypeptide contains an unnatural amino acid.
  • the polypeptide coding sequence to be presented, the first nucleic acid binding polypeptide coding sequence, and the second nucleic acid binding polypeptide coding sequence are linked together in the reading frame.
  • “linked in reading frame” means that the polypeptide to be presented, the first nucleic acid binding polypeptide coding sequence and the second nucleic acid binding polypeptide coding sequence are translated as a fusion protein. It means that it is connected to.
  • the polypeptide to be presented, the first nucleic acid binding polypeptide coding sequence and the second nucleic acid binding polypeptide coding sequence may be directly linked, but in order to ensure the freedom of the polypeptide to be presented, It is preferred to link via a linker coding sequence.
  • a sequence encoding a polypeptide to be presented is artificially synthesized and a restriction enzyme recognition sequence (in the example, SfiI recognition sequence is used) or PCR is used, for example. It can be genetically linked to the 5 'side of the Bap coding sequence and the Cvap dimer coding sequence.
  • the sequence encoding the polypeptide to be presented, the first nucleic acid binding polypeptide coding sequence, and the second nucleic acid binding polypeptide coding sequence may all be artificially synthesized.
  • the polypeptide coding sequence to be presented is placed after a tag peptide (eg, FLAG, polyhistidine, GST, etc.) is placed after the initiation codon. You may arrange.
  • a tag peptide eg, FLAG, polyhistidine, GST, etc.
  • the spacer sequence is preferably a sequence of 10 to 200 amino acids.
  • the amino acid sequence of the spacer sequence is not particularly limited as long as it does not adversely affect the binding reaction between the protein to be presented and the target substance, but is preferably a sequence that has high water solubility and does not take a special three-dimensional structure.
  • GS linker mainly containing glycine and serine, a partial geneIII sequence of phage, and the like can be used.
  • a stop codon may be provided at the 3 'end of the coding region, but it is preferable not to provide a stop codon at the 3' end of the coding region in order to efficiently lock the ribosome.
  • a SecM sequence may be added to the 3 'end of the coding region.
  • the SecM sequence is also called a SecM stall sequence, and is a sequence that has been reported to cause translational arrest inside the ribosome (FXXXWIXXXXGIRAGP: SEQ ID NO: 32).
  • FIG. 1 (2) shows a schematic diagram of an example of a polypeptide (fusion protein) -ribosome-RNA complex obtained by introducing the nucleic acid construct of the present invention into a translation system.
  • “Peptide / protein libraries” is a polypeptide to be presented, but it does not have to be a library.
  • the conventional polypeptide-ribosome-RNA complex is only maintained when the ribosome is locked onto RNA as shown in (1) of FIG. 1, but in the case of (2) of FIG. , Bap and boxB, Cvap dimer and Cv interact to stabilize the complex.
  • RNA corresponding to a nucleic acid construct means an RNA obtained by being transcribed from the nucleic acid construct itself when the nucleic acid construct is RNA, and when it is DNA.
  • a promoter sequence for transcription of RNA is preferably added upstream of the 5 ′ untranslated region.
  • the promoter can be appropriately selected according to the expression system to be used. For example, when an E. coli cell or a cell-free translation system derived from E. coli is used, promoters that function in E. coli such as T7 promoter, T3 promoter, SP6 promoter are exemplified.
  • SEQ ID NOs: 5, 9, 11, 13, 15 include a promoter sequence, boxB sequence, Cv sequence, SD sequence, start codon, polypeptide coding sequence to be presented, Bap coding sequence, Cvap dimer coding sequence, A nucleic acid construct containing a spacer-encoding sequence was exemplified (FIG. 2).
  • the amino acid sequences of the fusion proteins translated from these nucleic acids are shown in SEQ ID NOs: 6, 10, 12, 14, and 16.
  • the nucleic acid construct of the present invention and the fusion protein encoded thereby are not limited thereto.
  • the nucleic acid construct of the present invention may be incorporated into a plasmid vector, a phage vector, a viral vector, or the like.
  • the type of vector can be appropriately selected according to the translation system or screening system used.
  • the nucleic acid construct and a vector containing the nucleic acid construct can be prepared by a known genetic technique described in Molecular cloning (Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001).
  • RNA Nucleic Acid
  • a cell-free translation system containing ribosomes obtained from cells derived from Escherichia coli, insects, wheat germ, rabbit reticulocytes, human cancers and the like can be used.
  • a cell-free translation system reconstituted by adding ribosome, tRNA, amino acid, or the like may be used.
  • a commercially available product may be used.
  • RNA polymerase according to a promoter is added.
  • the size of the library is usually 1 ⁇ 10 3 or more, preferably 1 ⁇ 10 4 or more, more preferably 1 ⁇ 10 5 or more, and further preferably 1 ⁇ 10 6 or more. It is.
  • the ribosome may be dissociated from the RNA after the polypeptide-ribosome-RNA complex is formed.
  • EDTA with a concentration of 50 to 650 mM (or a ligand capable of chelating Mg 2+ ions such as EGTA) may be added to the translation system. EDTA may be added to the translation system from the beginning.
  • a random polypeptide library is prepared by expressing a fusion protein of a random polypeptide, a first nucleic acid-binding polypeptide, and a second nucleic acid-binding polypeptide from the nucleic acid construct of the present invention on RNA corresponding to the nucleic acid construct. Presenting; (2) contacting the library with a target substance; and (3) selecting a fusion protein containing a polypeptide sequence that binds to the target substance, and amplifying a nucleic acid sequence encoding the selected fusion protein.
  • a random polypeptide library is contacted with the target substance, and the random polypeptide library binds to the target substance.
  • a fusion protein containing the polypeptide sequence is selected and the nucleic acid construct encoding it is amplified.
  • panning In order to select a polypeptide bound to a target substance, it is necessary to screen a polypeptide bound to the target polypeptide from among a large number of polypeptides not bound to the target polypeptide. This is done according to a known method called panning (Coomber (2002) Method Mol. Biol., Vol.178, p.133-145).
  • the basic panning protocol is as follows. (I) A polypeptide library is brought into contact with a target substance. (II) Remove other polypeptides contained in the library that did not bind to the target polypeptide. For example, it can be removed by washing. (III) The polypeptide that has not been removed, that is, the polypeptide specifically bound to the target polypeptide is recovered. (IV) Repeat steps (I) to (III) multiple times as necessary.
  • the ribosome is dissociated from the polypeptide-RNA complex by EDTA or the like after step (1), the “steric hindrance between the ribosome of the complex and the target molecule” and nonspecific binding can be eliminated. It is preferable because it is possible.
  • a target substance may be bound to a carrier such as a bead, a plate, or a column, and a sample containing a complex of the polypeptide and RNA may be brought into contact therewith.
  • a metal including a metal salt or a metal oxide
  • a silicon-containing compound or the like, it can be brought into contact by adding these substances to a sample containing a complex of a polypeptide and RNA.
  • RNA contained in the selected complex can be amplified by, for example, RT-PCR.
  • DNA is synthesized by RT-PCR using RNA as a template. DNA can be transcribed again into RNA and used for complex formation.
  • sequence information can be identified by analyzing the sequence of the obtained RNA.
  • Example 1 New development of a “stable cross-linking ribosome display method” using a template in which a peptide and a protein that specifically bind to an RNA motif are introduced
  • a peptide library is developed as a development of a stable cross-linking ribosome display method.
  • Two RNA motifs (boxB and Cv) were introduced at the 5 'end of the mRNA template used for translation.
  • a sequence encoding a peptide (Bap) and a protein (Cvap dimer) that specifically bind to each RNA motif was introduced downstream of the sequence encoding the peptide library.
  • peptides (Bap) and proteins (Cvap dimers) expressed by in vitro translation of mRNA templates form cross-linked structures with each RNA motif.
  • Bap-Cvap-ribosome-mRNA complex (FIG. 1 (2)) ”can be synthesized.
  • the anti-FLAG antibody immobilized on the beads is targeted.
  • the “FLAG peptide selection experiment” was performed (this experiment was performed according to the operation scheme of FIG. 3 as a model experiment for selecting a target molecule-binding peptide from the complex presenting the peptide library).
  • Plasmid DNA-I is an artificial sequence in the order of SD sequence, start codon, SfiI restriction enzyme site (1), SfiI restriction enzyme site (2), Bap sequence, Cvap sequence, and Ps sequence.
  • plasmid DNA-II is an artificial sequence arranged in the order of T7 promoter sequence, SD sequence, start codon, SfiI restriction enzyme site (1), SfiI restriction enzyme site (2), Bap sequence, Cvap sequence, Ps sequence, It was constructed by introducing it into a cloning site of a commercially available plasmid.
  • a plasmid DNA-II-FLAG (SEQ ID NO: 8, partial sequence is SEQ ID NO: 5) in which a FLAG peptide is introduced into the SfiI site of plasmid DNA-II is constructed, using it as a template, primer fp4 (SEQ ID NO: 28) And rp3 (SEQ ID NO: 31) were used to synthesize a DNA template 4-NS (FIG. 4: NS indicates that there is no stop codon).
  • the complex and beads immobilized with anti-FLAG antibody (manufactured by SIGMA-ALDRICH) were mixed, and only the complex specifically bound to the anti-FLAG antibody was obtained.
  • the FLAG peptide (manufactured by SIGMA-ALDRICH) was competitively eluted from the beads.
  • PCR was performed using the cDNA obtained by reverse transcription of the mRNA recovered from these complexes as a template, and the PCR product was electrophoresed.
  • ⁇ Procedure 1 of peptide selection experiment> 1. Mix the selection buffer (250 ⁇ l) and the translation solution (50 ⁇ l) containing “peptide-Bap-Cvap-ribosome-mRNA complex”, add beads (15 ⁇ l), and incubate (1 h, 4 ° C.) . 2. Wash the beads treated in 1 with Washing buffer (300 ⁇ l) 5 times. 3. Add FLAG peptide (100 ⁇ l) to the beads treated in 2 and further incubate (0.5 h, 4 ° C.). 4. Sediment the beads at 1000 rpm (5 min) and collect the supernatant (100 ⁇ l). 5.
  • the mRNA recovered in 4 is purified (RNeasy kit manufactured by QIAGEN), and cDNA is synthesized by performing reverse transcription (Prime Script Reverse Transcriptase manufactured by TAKARA) based on the mRNA. 6. Perform PCR (PrimSTAR GXL DNA Polymerase from TAKARA) using the cDNA synthesized in step 5 as a template, and confirm the amount of mRNA recovered by electrophoresis of the PCR product.
  • Washing buffer Tris-HCl (50 mM, pH 7.5), NaCl (150 mM), 0.5% Tween Selection buffer: Tris-HCl (60 mM, pH 7.5), NaCl (180 mM)
  • Beads ANTI-FLAG-M2-Affinity Gel (manufactured by SIGMA-ALDRICH) FLAG peptide (SIGMA-ALDRICH)
  • Example 2 Development of “stable cross-linking display method” using a complex in which ribosomes are dissociated
  • “steric hindrance between ribosome and target molecule in complex” has been a problem in peptide selection experiments by ribosome display method Can be eliminated, it is possible to create stronger target-binding peptides that could not be selected so far. Therefore, this time, we synthesize “peptide-mRNA complex” without ribosome by a simple method completely different from the mRNA display method, and worked on the development of a new display method using them.
  • Plasmid DNA-I-FLAG (SEQ ID NO: 7, partial sequence is SEQ ID NO: 3) in which FLAG peptide (peptide library model) is introduced into the SfiI sites of plasmid DNA-I (SEQ ID NO: 1) and DNA-II (SEQ ID NO: 2) ) And DNA-II-FLAG (SEQ ID NO: 8, partial sequence is SEQ ID NO: 5). Then, the following four types of DNA were constructed.
  • A DNA template 1-S (SEQ ID NO: 9) was amplified by PCR using plasmid DNA-I-FLAG as a template and primers fp1 (SEQ ID NO: 25) and rp1 (SEQ ID NO: 29).
  • DNA template 2-S (SEQ ID NO: 11) was amplified by PCR using plasmid DNA-I-FLAG as a template and primers fp2 (SEQ ID NO: 26) and rp1 (SEQ ID NO: 29).
  • DNA template 3-S (SEQ ID NO: 13) was amplified by PCR using plasmid DNA-I-FLAG as a template and primers fp3 (SEQ ID NO: 27) and rp1 (SEQ ID NO: 29).
  • DNA template 4-S (SEQ ID NO: 15) was amplified by PCR using plasmid DNA-II-FLAG as a template and primers fp4 (SEQ ID NO: 28) and rp1 (SEQ ID NO: 29).
  • Primer fp1 includes the sequence of base numbers 1 to 24 of SEQ ID NO: 3, and includes the T7 promoter.
  • Primer fp2 includes the sequence of base numbers 1 to 24 of SEQ ID NO: 3, and includes the T7 promoter and boxB sequence.
  • Primer fp3 includes the sequence of base numbers 1 to 24 of SEQ ID NO: 3, and includes the T7 promoter and Cv sequence.
  • Primer fp4 includes the sequence of base numbers 1 to 35 of SEQ ID NO: 5, and includes the T7 promoter, boxB sequence, and Cv sequence.
  • Primer rp1 includes sequences complementary to base numbers 1094 to 1113 of SEQ ID NO: 3 and base numbers 1157 to 1176 of SEQ ID NO: 5 and includes a stop codon.
  • DNA template 1-NS (at the end of SEQ ID NO: 9, instead of taatga) by PCR using plasmid DNA-I-FLAG as a template and primers as fp1 (SEQ ID NO: 25) and rp3 (SEQ ID NO: 31)
  • fp1 SEQ ID NO: 25
  • rp3 SEQ ID NO: 31
  • fp4 SEQ ID NO: 28
  • rp3 SEQ ID NO: 31
  • the sequence to which 1177 to 1626 of SEQ ID NO: 5 was added was amplified.
  • Primer rp3 contains sequences complementary to base numbers 1544 to 1563 of SEQ ID NO: 3 and base numbers 1607 to 1626 of SEQ ID NO: 5 and does not contain a stop codon.
  • each mRNA template synthesized by in vitro transcription using the T7 promoter of these DNA templates was translated by a cell-free protein synthesis system (PURESYSTEM-classic II manufactured by Biocommer).
  • the ribosome was dissociated from the mRNA by mixing a buffer containing EDTA (50 mM) and the translation solution according to the procedure 2 of the peptide selection experiment below, and four types of complexes shown in FIG. 2 were obtained.
  • ⁇ Procedure 2 of peptide selection experiment> 1. Mix Selection buffer (250 ⁇ l) and translation solution (50 ⁇ l) containing each complex, add beads (15 ⁇ l), and incubate (1 h, 4 ° C.). 2. Wash the beads treated in 1 with Washing buffer (300 ⁇ l) 5 times. 3. Add FLAG peptide (100 ⁇ l) to the beads treated in 2 and further incubate (0.5 h, 4 ° C.). 4. Sediment the beads at 1000 rpm (5 min) and collect the supernatant (100 ⁇ l). 5.
  • the mRNA recovered in 4 is purified (RNeasy kit manufactured by QIAGEN), and cDNA is synthesized by performing reverse transcription (Prime Script Reverse Transcriptase manufactured by TAKARA) based on the mRNA. 6. Perform PCR (PrimSTAR GXL DNA Polymerase from TAKARA) using the cDNA synthesized in step 5 as a template, and confirm the amount of mRNA recovered by electrophoresis of the PCR product.
  • Washing buffer Tris-HCl (50 mM, pH 7.5), NaCl (150 mM), EDTA (50 mM), 0.5% Tween Selection buffer: Tris-HCl (60 mM, pH 7.5), NaCl (180 mM), EDTA (60 mM)
  • Beads ANTI-FLAG-M2-Affinity Gel (manufactured by SIGMA-ALDRICH) FLAG peptide (SIGMA-ALDRICH)
  • Example 3 Presentation of various polypeptides / proteins in "Stable Cross-Linking Ribosome Display Method” and “Stable Cross-Linking Display Method” Based on the above experiment, the “stable cross-linking ribosome display method” and “stable cross-linking display method” It has become clear that it is possible to conduct experiments for selecting peptides that specifically bind to target molecules.
  • DNA templates 5-H6-FLAG-S, 5-EGF-FLAG-S, 5-FKBP12- were obtained by PCR using these plasmid DNAs as templates and using primers fp4 (SEQ ID NO: 28) and rp2 (SEQ ID NO: 30).
  • FLAG-S and 5-CypA-FLAG-S were synthesized (FIG. 4 where X is H6, EGF, FKBP12 or CypA in 5-X).
  • Primer rp2 contains a sequence complementary to base numbers 1157 to 1176 of SEQ ID NO: 5, and contains a FLAG coding sequence and a stop codon.
  • RNA motif-peptide cross-linked structure eg, functional nucleic acid
  • Fig. 8 In order to find out the potential of delivery of nucleic acid drugs, etc., we worked on new creation of RNA motif-peptide cross-linked structures (Fig. 8).
  • Fig. 8 we designed heterogeneous tandemized RNA motifs and tandemized peptides that bind to them based on naturally occurring RNA motif-peptide interactions and artificially found RNA motif-peptide interactions.
  • Figure 8 and Table 1 After mixing various RNA motifs synthesized with chemical methods and peptides, we evaluated the feasibility of forming RNA motif-peptide cross-linked structures by gel shift assay by electrophoresis. Performed according to
  • tandem RNA motif TRM4: Table 1
  • tandem peptide TP3 or TP4: Table 1
  • Figure 9 arrow
  • formation of crosslinked structures of all the tandem RNA motifs shown in Table 1 and the corresponding tandem peptides could also be confirmed by electrophoresis.
  • the molecular weight is smaller than that of the fusion protein (about 1/6), suggesting that it can be used to synthesize stable ribosomal complexes that are easier to handle.
  • application to functional nucleic acid / nucleic acid pharmaceuticals such as siRNA and ncRNA using these RNA motif-peptide cross-linked structures can also be expected.
  • RNA motif-peptide mixed solution ⁇ Preparation and electrophoresis of RNA motif-peptide mixed solution> (1) Prepare an RNA motif solution (1 ⁇ M) using the following sample buffer. Then, after incubation at 70 ° C., it is left at room temperature. (2) After mixing various peptide solutions (1 ⁇ M) prepared with the following sample buffer and the above RNA motif solution, the volume is made up to a total volume of 10 ⁇ L (final RNA molar amount: 4 pmol). (3) After separating the RNA motif and the RNA motif-peptide cross-linked structure by 10% PAGE, the gel was stained with SYBRG to measure the image (example: FIG. 9).
  • Electrophoresis buffer Tris-acetate (10 mM, pH 7.5)
  • RNA motif sequence> boxB GGCCCUGAAAAAGGGCC (SEQ ID NO: 38) ap I: GGCUGGACUCGUACUUCGGUACUGGAGAAACAGCC (SEQ ID NO: 39) ap II: GGUGUCUUGGAGUGCUGAUCGGACACC (SEQ ID NO: 40)
  • BIV TAR GCUCGUGUAGCUCAUUAGCUCCGAGC (SEQ ID NO: 41)
  • nucleic acid construct of the present invention and the method using the same are useful in fields such as genetic engineering, peptide engineering, and drug discovery.
  • Plasmid DNA-I full nucleotide sequence Plasmid DNA-II full nucleotide sequence 3. 4. Amino acid sequence of the plasmid DNA-I-FLAG partial base sequence 4.3. 6. Plasmid DNA-II-FLAG partial amino acid sequence 6.5. Plasmid DNA-I-FLAG full base sequence8. Plasmid DNA-II-FLAG full nucleotide sequence 10. amino acid sequence of DNA-I-fp1-rp1 base sequence 10.9 12. amino acid sequence of DNA-I-fp2-rp1 base sequence 12.11 15. amino acid sequence of DNA-I-fp3-rp1 base sequence 14.13 16. amino acid sequence of the DNA-I-fp4-rp1 base sequence 16.15 18.
  • Amino acid sequence of plasmid DNA-II-H6 full base sequence 18.17 21. Amino acid sequence of the plasmid DNA-II-EGF full base sequence 20.19 24. Amino acid sequence of Plasmid DNA-II-FKBP12 full base sequence 22.21 Plasmid DNA-II-CypA full Amino acid sequence 24.23 Primer fp1 base sequence 26. Primer fp2 base sequence 27. Primer fp3 base sequence 28. Primer fp4 base sequence 29. Primer rp1 base sequence 30. Primer rp2 base sequence 31. Primer rp3 base sequence 32. secM amino acid sequence 33. Bap 34. Rev 35. BIV Tat 36. linker 1 37.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

5'-非翻訳領域およびコード領域を含む核酸構築物であって、前記コード領域が提示対象ポリペプチドをコードする配列、第一の核酸結合性ポリペプチドをコードする配列および第二の核酸結合性ポリペプチドをコードする配列を含み、前記5'-非翻訳領域が第一の核酸結合性ポリペプチドに結合可能な第一の配列と、第二の核酸結合性ポリペプチドに結合可能な第二の配列とを含み、翻訳系に導入されたときに、前記核酸構築物のコード領域から翻訳される融合蛋白質が、前記第一の核酸結合性ポリペプチドと前記第一の配列との結合および前記第二の核酸結合性ポリペプチドと前記第二の配列との結合によって、前記核酸構築物に対応するRNAと複合体を形成する、核酸構築物を用いてポリペプチドとそれをコードする配列との対応付けや標的物質に結合するポリペプチドのスクリーニングを行う。

Description

核酸構築物、核酸-蛋白質複合体、及びその利用
 本発明は、ポリペプチドをそれをコードする核酸配列と対応付けて発現させることのできる核酸構築物、それを含むキット並びにそれを用いたポリペプチドの核酸上での提示方法および標的物質に結合するポリペプチド配列の選択方法に関する。
 「ペプチドアプタマー」とは、ある標的分子に対して特異的に結合する人工ペプチドの総称である。現在、「抗体」と類似の結合機能を発現する小さなペプチドアプタマーは、化学・生物科学研究における分子検出用プローブや生体機能の阻害剤などとして注目されている。さらに、医療分野においては、抗体医薬に替わる次世代の分子標的薬としても期待されている。
 近年、ペプチドアプタマーを創出する手法としては、ファージディスプレイ法が主に利用されてきた。この手法では、ファージの外殻蛋白質の一部に提示した約109種類のペプチドライブラリーから、標的分子に対して特異的に結合するペプチドアプタマーを選択する戦略をとる。しかし、解決されていない問題点も数多く残されている。例えば、(1)ペプチドアプタマーの選択過程において、大腸菌とファージの生活環を利用するため、それらの生命活動に悪影響を与えるペプチドは自動的に排除されてしまう。それゆえ、目的の機能を有するペプチドアプタマーが全く得られない現象が頻繁に起こる。また、(2)細胞内では、20種類のアミノ酸をコードする各コドンの出現頻度には偏りがあり、理論的に設計・合成したペプチドライブラリーと実際に利用しているライブラリーの多様性には大きなギャップが生じていることが懸念されている。さらに、(3)この手法で選択したペプチドアプタマーは、ファージの外殻蛋白質から切り離した状態では、標的分子に対する結合性が低下もしくは消失してしまう現象が多々起こる。なぜなら、ペプチドアプタマーとファージ由来の蛋白質が融合した状態にあることが、標的分子に対する結合性の発現と維持に必要不可欠であるからであり、ファージディスプレイ法を利用する場合には、避けては通れぬ大きな問題となっている。それゆえ、上記の問題を回避するためには、生細胞を利用するのではなく、細胞内の翻訳反応だけを利用して、ペプチドライブラリーもしくはプロテインライブラリーを構築する必要性がある。そして、そのライブラリーの中から、目的の標的分子に対して特異的に結合性するペプチドアプタマーを効率的に選択する「試験管内ディスプレイ法」の開発が必要不可欠である。
 そのような試験管内ディスプレイ法として、リボソームディスプレイ法(特許文献1-4、非特許文献1)がある。リボソームディスプレイ法は、mRNAディスプレイ法に比べて、研究の用途に応じて様々な大きさのペプチド(プロテイン)ライブラリーを設計・利用できること、さらに、それらライブラリーの中から目的のペプチドアプタマーを迅速かつ簡便なプロセスで選択・同定することができるため、将来の受託化・キット化、ロボットによる自動化を視野に入れて研究を展開できる。しかし、ペプチドアプタマーの選択プロセスで利用するペプチド-リボソーム-mRNA複合体は極めて不安定であるため、目的とするペプチドアプタマーを同定することができないこともしばしば起こる。それゆえ、この原理・条件・技術を自在に扱える研究者の数は世界的に見ても極めて少ないのが現状である。
 ペプチド-リボソーム-mRNA複合体の安定性を増加させるため、非特許文献2ではmRNAの5’-非翻訳領域にCv配列を組み込み、発現させるポリペプチドにCvapダイマーを含ませてリボソームディスプレイを行う技術が開示されている(非特許文献2)。しかし、リボソームディスプレイの効率を上げるためにさらなる改善が求められていた。
特許第3127158号公報 特表2001-521395号公報 特表2002-500514号公報 国際公開第01/75097号パンフレット
Proc Natl Acad Sci U S A, vol.94, p.4937-4942, 1997 Biotechnologyand Bioengineering vol. 101, No. 5, December 1, 2008
 本発明の課題は、ポリペプチドとそれをコードする配列を含む核酸との複合体を安定に効率よく形成させ、それにより、ポリペプチドとそれをコードする配列との対応付けや標的物質に結合するポリペプチドのスクリーニングを効率よく行うことのできる技術を提供することである。
 そこで、これら問題を解決するため鋭意検討を行った結果、本発明者は、mRNAの5' 端に導入した2つの小さなRNAモチーフに特異的に結合するペプチドおよび蛋白質を導入したテンプレートを新たに構築し、試験管内の翻訳反応と同時に、それらが親和的に分子内会合することで複合体を安定化させることに成功した。さらに、その複合体からリボソームを解離させた新たな複合体を合成し、それを利用したペプチド選択実験を行うこと(安定架橋型リボソームディスプレイ法)にも成功し、これらの成功に基づいて本発明を完成させた。
 すなわち、本発明は以下を提供する。
[1] 5’-非翻訳領域およびコード領域を含む核酸構築物であって、前記コード領域が提示対象ポリペプチドをコードする配列、第一の核酸結合性ポリペプチドをコードする配列および第二の核酸結合性ポリペプチドをコードする配列を含み、前記5’-非翻訳領域が第一の核酸結合性ポリペプチドに結合可能な第一の配列と、第二の核酸結合性ポリペプチドに結合可能な第二の配列とを含み、翻訳系に導入されたときに、前記核酸構築物のコード領域から翻訳される融合蛋白質が、前記第一の核酸結合性ポリペプチドと前記第一の配列との結合および前記第二の核酸結合性ポリペプチドと前記第二の配列との結合によって、前記核酸構築物に対応するRNAと複合体を形成する、核酸構築物。
[2]第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがboxB-associating peptide (Bap)およびCv-associating peptide (Cvap)ダイマーであり、第一の配列および第二の配列がboxB配列およびCv配列である、[1]に記載の核酸構築物。
[3]第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがBapおよびRevであり、第一の配列および第二の配列がboxB配列およびapI配列またはapII配列である、[1]に記載の核酸構築物。
[4]第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがBapおよびBIV Tatであり、第一の配列および第二の配列がboxB配列およびBIV TAR配列である、[1]に記載の核酸構築物。
[5]前記5’-非翻訳領域がboxB配列、Cv配列およびリボソーム結合配列を含み、前記コード領域が、読み枠を合わせて連結された、提示対象ポリペプチドコード配列、Bapコード配列、Cvapダイマーコード配列およびスペーサーコード配列を含む、[2]に記載の核酸構築物。
[6]前記5’-非翻訳領域がboxB配列、apI配列またはapII配列、およびリボソーム結合配列を含み、前記コード領域が、読み枠を合わせて連結された、提示対象ポリペプチドコード配列、Bapコード配列、Revコード配列およびスペーサーコード配列を含む、[3]に記載の核酸構築物。
[7]前記5’-非翻訳領域がboxB配列、BIV TAR配列およびリボソーム結合配列を含み、前記コード領域が、読み枠を合わせて連結された、提示対象ポリペプチドコード配列、Bapコード配列、BIV Tatコード配列およびスペーサーコード配列を含む、[4]に記載の核酸構築物。
[8]前記5’-非翻訳領域がリボソーム結合配列を含む、[1]~[4]のいずれかに記載の核酸構築物。
[9]提示対象ポリペプチドコード配列がランダムポリペプチドをコードする配列である、[1]~[8]のいずれかに記載の核酸構築物。
[10]5’-非翻訳領域およびコード領域を含む核酸構築物と、
前記コード領域から翻訳される融合蛋白質とを含む核酸-蛋白質複合体であって、前記コード領域が、提示対象ポリペプチドをコードする配列、第一の核酸結合性ポリペプチドをコードする配列及び第二の核酸結合性ポリペプチドをコードする配列を含み、
前記5’-非翻訳領域が、第一の核酸結合性ポリペプチドに結合可能な第一の配列と、第二の核酸結合性ポリペプチドに結合可能な第二の配列とを含み、
前記第一の核酸結合性ポリペプチドと前記第一の配列との結合および前記第二の核酸結合性ポリペプチドと前記第二の配列との結合によって形成される、
核酸-蛋白質複合体。
[11] リボソームを含まない、[10]に記載の核酸-蛋白質複合体。
[12]第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがBapおよびCvapダイマーであり、第一の配列および第二の配列がboxB配列およびCv配列である、[10]または[11]に記載の核酸-蛋白質複合体。
[13]提示対象ポリペプチドコード配列がランダムポリペプチドをコードする配列である、[10]~[12]のいずれかに記載の核酸-蛋白質複合体。
[14] [1]~[9]のいずれかに記載の核酸構築物を翻訳系に導入して前記コード領域にコードされる融合蛋白質を発現させ、第一の核酸結合性ポリペプチドと前記第一の配列との結合および前記第二の核酸結合性ポリペプチドと前記第二の配列との結合を介して該融合蛋白質と核酸構築物に対応するRNAとの複合体を形成させることにより、提示対象ポリペプチドを核酸構築物上に提示させることを特徴とする、ポリペプチドを核酸上に提示させる方法。
[15]融合蛋白質と核酸構築物に対応するRNAとの複合体を形成させた後、リボソームを核酸構築物から解離させる工程を含む、[14]に記載の方法。
[16]標的物質に結合するポリペプチド配列を選択する方法であって、次の工程(1)~(3)を繰り返すことを特徴とする方法。
(1)[9]に記載の核酸構築物からランダムポリペプチドと第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドとの融合蛋白質を発現させ、核酸構築物に対応するRNA上にランダムポリペプチドライブラリーを提示する工程;
(2)標的物質に前記ライブラリーを接触させる工程;および
(3)標的物質に結合するポリペプチド配列を含む融合蛋白質を選択し、選択された融合蛋白質をコードする核酸配列を増幅する工程。
[17]前記工程(1)と(2)の間に、リボソームを核酸構築物から解離させる工程を含む、[16]に記載の方法。
[18] [1]~[9]のいずれかに記載の核酸構築物を含む、ポリペプチドを核酸上に提示させるためのキット。
 本発明の方法によれば、ポリペプチドとそれをコードする配列を含む核酸との複合体を安定に効率よく形成させ、それにより、ポリペプチドとそれをコードする配列との対応付けや標的物質に結合するポリペプチドのスクリーニングを効率よく行うことができる。
 また、本発明の方法によれば、ペプチド-リボソーム-RNA複合体形成後にリボソームを除去しても、ポリペプチドとそれをコードする配列を含む核酸との複合体が維持されるため、リボソームディスプレイ法のもう一つの問題であった「複合体のリボソームと標的分子との立体障害」を完全に解消することができる。これにより、リボソームへの非特異的結合が除けるとともに、これまでに選択できなかったより強力な標的結合性を有するペプチドアプタマーの選択が可能となる。
従来のリボソームディスプレイ法に利用する複合体(1)と安定架橋型リボソームディスプレイ法に利用する新規複合体(2)の模式図。Psはスペーサー配列を示す。(3)は複合体(2)を用いて発現させたFLAGペプチドが抗FLAG抗体により選択され、それをコードする配列が特異的に増幅できたことを示す電気泳動写真である。 実施例2の(A)DNAテンプレート1-S、(B)DNAテンプレート2-S、(C)DNAテンプレート3-S、(D)DNAテンプレート4-SからmRNAを転写し、翻訳を行ってペプチド-リボソーム-mRNA複合体を形成させた後にリボソームを解離させたときのペプチド-mRNA複合体の模式図。 安定架橋型リボソームディスプレイ法及び安定架橋型ディスプレイ法を利用してFLAGペプチド選択実験を行うための操作スキームを示す図。 安定架橋型リボソームディスプレイ法及び安定架橋型ディスプレイ法に利用する各複合体を合成するためのプラスミドDNAとそれを基にして調製した各種DNAテンプレートの配列と説明。 安定架橋型ディスプレイ法に利用する各複合体を形成させるための各蛋白質(実施例2の配列番号10,12,14,16)が試験管内で発現するかどうかをWestern blottingで確認した図(写真)。 図2の各複合体を利用して、FLAGペプチド選択実験を行った結果を示す図(写真)(A)18サイクル、(B)21サイクル。 図4のプラスミドIIに様々な大きさのポリペプチドや蛋白質を導入し、図4の5-Xのテンプレートとして調製した後、それら蛋白質の試験管内での発現をWestern blottingにより確認した結果を示す図(写真)。 RNAモチーフ-ペプチド架橋構造体。 RNAモチーフ-ペプチド架橋構造体の形成を示す電気泳動写真(レーン1:TRM4のみ、レーン2:TRM4+TP3(0.25eq.)、レーン3:TRM4+TP3(0.5eq.)、レーン4:TRM4+TP3(1eq.)、レーン5:TRM4+TP4(0.25eq.)、レーン6:TRM4+TP4(0.5eq.)、レーン7:TRM4+TP4(1eq.))。
<核酸構築物>
 本発明の核酸構築物は5’-非翻訳領域およびコード領域を含み、コード領域は提示対象ポリペプチドをコードする配列、第一の核酸結合性ポリペプチドをコードする配列および第二の核酸結合性ポリペプチドをコードする配列を含み、5’-非翻訳領域は第一の核酸結合性ポリペプチドに結合可能な第一の配列と、第二の核酸結合性ポリペプチドに結合可能な第二の配列とを含む。
 そして、本発明の核酸構築物は、翻訳系に導入されたときに、前記コード領域から翻訳される融合蛋白質が、該融合蛋白質に含まれる第一の核酸結合性ポリペプチドと第二の核酸結合性ポリペプチドがそれぞれ5’-非翻訳領域の第一の配列および第二の配列に結合することによって、核酸構築物に対応するRNAと複合体を形成する。
 ここで、第一の核酸結合性ポリペプチドと第一の配列の組み合わせおよび第二の核酸結合性ポリペプチドと第二の配列の組み合わせとしては、安定な核酸-ポリペプチド結合を形成できる組み合わせであればよく、公知の核酸配列-核酸結合性ポリペプチドを使用することができ、具体的には、boxB-associating peptide (Bap)とboxB配列、Cv-associating peptide (Cvap)とCv配列などが例示される。この中ではBapとboxB配列、CvapとCv配列が好ましい。第一の核酸結合性ポリペプチドと第一の配列の組み合わせおよび第二の核酸結合性ポリペプチドと第二の配列の組み合わせは同じ組み合わせでもよいが、異なる組み合わせの方が好ましい。
 ここで、boxB配列とはλファージのboxB配列のことであり(Lazinski, D., Grzadzielska, E., and Das, A. Cell 1989, 59, 207-218.; Legault, P., Li, J., Mogridge, J., Kay, L.E., and Greenblatt, J. Cell 1998,93, 289-299.)、本発明の核酸構築物に含まれるboxB配列としては、配列番号5の塩基番号20~35で示される配列(RNAの場合はTをUに読み換える:配列番号38)が挙げられる。ただし、Bapが結合することができる限り、この配列において1~数個(例えば、2,3個)の塩基が置換、欠失または付加されてもよい。
 Cv配列とはC-variant RNAのことであり(Nucleic Acids Research Supplement No. 1 99-100)、本発明の核酸構築物に含まれるCv配列としては、配列番号5の塩基番号41~59で示される配列(RNAの場合はTをUに読み換える)が挙げられる。ただし、Cvapが結合することができる限り、この配列において1~数個(例えば、2,3個)の塩基が置換、欠失または付加されてもよい。
 5’-非翻訳領域においては、第一の配列と第二の配列の順番はどちらが5’側でもよく、これらの一方または両方が複数存在してもよい。
 第一の配列と第二の配列の間は3~15塩基であることが蛋白質-RNA複合体の安定化の面から好ましい。
 そして、5’-非翻訳領域においては、第一の配列と第二の配列の後にリボソーム結合配列(RBS)が存在することが好ましい。その場合、第一の配列と第二の配列のうち3’側に存在する配列とリボソーム結合配列との間隔は30~40塩基であることがリボソームの結合しやすさの面から好ましい。
 リボソーム結合配列としては、Shine-Dalgarno(SD)配列が挙げられ、例えば、配列番号5の塩基番号92~97の配列が例示される。
 コード領域に含まれるBapコード配列とは、Bapをコードする配列のことであり(Legault, P., Li, J., Mogridge, J., Kay, L.E., and Greenblatt, J. Cell 1998,93, 289-299.; Austin, R. J., Xia, T., Ren, J., Takahashi, T. T., and Roberts, R.W. J. Am. Chem. Soc. 2002, 124, 10966-10967)、その配列としては、配列番号6のアミノ酸番号23~45(配列番号33)をコードする配列が例示され、より具体的には、配列番号5の塩基番号172~240で示される配列が挙げられる。ただし、前記boxB配列に結合することができる限り、配列番号33のアミノ酸配列において1~数個(例えば、2,3個)のアミノ酸が置換、欠失または付加されてもよい。
 コード領域に含まれるCvapダイマーコード配列とは、Cvapをコードする配列(Rowsell,S., Stonehouse, N. J., Convery, M. A., Adams, C. J., Ellington, A. D., Hirao, I., Peabody, D. S., Stockley, P. G., and Phillips, SE. Nat. Struct. Biol. 1998, 5, 970-975.; Wada, A., Sawata, S. Y., and Ito, Y. Biotechnol. Bioeng. 2008, 101, 1102-1107.)を2つ含む配列のことである。
 Cvapコード配列としては、配列番号6のアミノ酸番号70~199をコードする配列が例示され、より具体的には、配列番号5の塩基番号313~702で示される配列が挙げられる。ただし、前記Cv配列に結合することができる限り、配列番号6のアミノ酸番号70~199のアミノ酸配列において1~数個(例えば、2~5個、もしくは2~10個)のアミノ酸が置換、欠失または付加されてもよい。
 CvapはダイマーでCv配列に結合することが知られているので、コード領域には前記Cvapコード配列が2つ含まれる必要がある。Cvapダイマーコード配列はCvapコード配列が連続して2つつながったものでもよいが、間にリンカーコード配列を介してCvapコード配列が2つつながった配列でもよい。
 また、第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがboxB-associating peptide (Bap)およびRev(TRQARRNRRRRWRERQR:配列番号34)であり、第一の配列および第二の配列がboxB配列およびapI配列(5’-GGCUGGACUCGUACUUCGGUACUGGAGAAACAGCC-3’:配列番号39)またはapII(5’-GGUGUCUUGGAGUGCUGAUCGGACACC-3’:配列番号40)配列であってもよい。
 また、第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがboxB-associating peptide (Bap)およびBIV Tat(SGPRPRGTRGKGRRIRR:配列番号35)であり、第一の配列および第二の配列がboxB配列およびBIV TAR配列(5’-GCUCGUGUAGCUCAUUAGCUCCGAGC-3’:配列番号41)であってもよい。
 Revの配列としては、配列番号34が例示されるが、前記apIまたはapII配列に結合することができる限り、配列番号34のアミノ酸配列において1~数個(例えば、2,3個)のアミノ酸が置換、欠失または付加されてもよい。
 BIV Tatの配列としては、配列番号35が例示されるが、前記BIV TAR配列に結合することができる限り、配列番号35のアミノ酸配列において1~数個(例えば、2,3個)のアミノ酸が置換、欠失または付加されてもよい。
 その他の例示するポリペプチド各配列においても、標的配列に結合できる限り、1~数個(例えば、2,3個)のアミノ酸が置換、欠失または付加されてもよい。
 核酸結合性ポリペプチドとしては上記のものに限定されず、核酸配列に結合できるものであればよいが、ペプチド配列中のRとKの総数が6個以上であるポリペプチド、あるいは、ペプチド配列中のRの数が7個以上であるポリペプチドを使用することが好ましい。
 また、ペプチド配列中に、RXR配列(Xは任意のアミノ酸)、RX1X2R配列(配列番号42、X1,X2は任意のアミノ酸)、RR配列の1種以上、より好ましくは2種以上、特に好ましくは3種全てが存在するポリペプチドを使用することが好ましい。
 また、ペプチド配列中に、RXR配列、RX1X2R配列(配列番号42、X1,X2は任意のアミノ酸)、RRXRR配列(配列番号43、Xは任意のアミノ酸)の1種以上、より好ましくは2種以上、特に好ましくは3種全てが存在するポリペプチドを使用することも好ましい。
 第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドとして、上記のような2種類のポリペプチドを選択して用いればよいが、他の具体的な例として、下記が挙げられる。
・HIV-1 Tat:GRKKRRQRRR (10 mer)(配列番号44)
・JDV Tat:GRRKKRGTRGKGRKIHY (17 mer) (配列番号45)
・λ N:MDAQTRRRERRAEKQAQWKAAN (22 mer) (配列番号46)
・λ N mutant:GNARTRRRERRAEKQAQWKAAN (22 mer) (配列番号47)
・P22 N:NAKTRRHERRRKLAIER (17 mer) (配列番号48)
・φ21N:TAKTRYKARRAELIAERR (18 mer) (配列番号49)
・BMV Gag:KMTRAQRRAAARRNRWTAR (19 mer) (配列番号50)
・CCMV Gag:KLTRAQRRAAARKNKRNTR (19 mer) (配列番号51)
・Spuma Gag:TRALRRQLAER (11 mer) (配列番号52)
・Yeast PRP6:TRRNKRNRIQEQLNRK (16 mer) (配列番号53)
・Human U2AF:SQMTRQARRLYV (12 mer) (配列番号54)
・HTLV-II Rex:TRRQRTRRARRNR (13 mer) (配列番号55)
・FHV coat:RRRRNRTRRNRRRVR (15 mer) (配列番号56)
・S3:RRVAFRRIVRKAITRAQRR (19 mer) (配列番号57)
・S7:KTKLERRNK (9 mer) (配列番号58)
・S28:RKLRVHRRNNR (11 mer) (配列番号59)
・L16:RRAMSRKFRRNSK (13 mer) (配列番号60)
・L35:RAKKTRALRR (10 mer) (配列番号61)
このうち、HIV-1 TatはHIV-1 TAR(5’-CCAGAUCUGAGCCUGGGAGCUCUCUGG-3’:配列番号62)に結合し、JDV TatはJDV TAR(5’-GCUCUGGAUAGCUGACAGCUCCGAGC-3’:配列番号63)に結合する。
 核酸結合性ポリペプチドが結合する配列としては、上記のようなポリペプチドが結合できる配列であれば特に制限されないが、ステムループを形成する配列が好ましく、ループの長さが3~10塩基、好ましくは3~8塩基、より好ましくは3~7塩基のステムループを形成する配列が望ましい。
 例えば、上記で例示した配列に加え、下記のような配列が挙げられる。
・P22 boxB:5’-GCGCUGACAAAGCGC-3’ (15 mer) (配列番号64)
・HIV-1 RRE:5’-GGUCUGGGCGCAGCGCAAGCUGACGGUACAGGCC-3’ (34 mer) (配列番号65)
ただし、核酸結合性ポリペプチドが結合することができる限り、これらの配列において1~数個(例えば、2,3個)の塩基が置換、欠失または付加されてもよい。
 コード領域において、第一の核酸結合性ポリペプチドコード配列と第二の核酸結合性ポリペプチドコード配列の順序は、5’-非翻訳領域における第一の配列と第二の配列の順序に依存し、5’-非翻訳領域において第一の配列(例えばboxB配列)が先(5’側)であれば、コード領域において第一の核酸結合性ポリペプチドコード配列(例えばBapコード配列)を先(5’側)に配置し、第二の配列(例えばCv配列)が先(5’側)であれば、コード領域において第二の核酸結合性ポリペプチドコード配列(例えばCvapダイマーコード配列)を先(5’側)に配置する。
 第一の核酸結合性ポリペプチドコード配列と第二の核酸結合性ポリペプチドコード配列の間隔は60~75塩基であることが蛋白質-RNA複合体の安定化の面から好ましい。
 コード領域においては、第一の核酸結合性ポリペプチドコード配列と第二の核酸結合性ポリペプチドコード配列の前(5’側)に、提示対象ポリペプチドコード配列を配置させ、これらを、読み枠を合わせて配置させることが好ましい。
 ここで、提示対象ポリペプチドコード配列は、既知の配列でもランダム配列でもよい。また、長さも特に制限はなく、短いペプチドでも、蛋白質でもよい。
 提示させる配列既知のポリペプチドの種類は特に制限されないが、酵素、抗体、シグナル伝達因子、チャネル、細胞増殖因子、転写因子、接着因子、受容体などが例示される。なお、機能未知の蛋白質でもよい。
 その由来は特に制限されず、ヒトを含む哺乳動物、植物、ウイルス、酵母、あるいは細菌など、あらゆる生物に由来する天然の配列を持つポリペプチドを用いることができる。あるいは、前記天然ポリペプチドの一部や、アミノ酸配列を改変した変異ポリペプチドを提示対象ポリペプチドとして利用することもできる。更に、人工的に設計されたアミノ酸配列を含むポリペプチドを提示対象ポリペプチドとすることもできる。
 ポリペプチドコード配列をランダム配列とする場合、任意のアミノ酸がランダムに配列したランダムポリペプチドをコードする配列とするのが好ましい。ランダムポリペプチドは、通常、5~100残基、好ましくは5~50残基、より好ましくは5~20残基程度の長さからなるランダムなアミノ酸配列を有する。アミノ酸は天然のものでも非天然のものでもよく、これらが混合されたものでもよい。より簡便にはランダムポリペプチドは天然の20アミノ酸から選ばれるアミノ酸の一種類以上から構成される。
 ポリペプチドを全くランダムな配列(アミノ酸残基数n個)にする場合は、A,T,G,Cを3n個ランダムに配列させればよい。ただし、効率よくクローンを翻訳させるためには、終止コドンが出現しないよう、3m番目(m=1,2,3・・・,n)の塩基がTまたはCになるようにしてもよい。あるいは、特定の複数種類のアミノ酸のみからなるランダム配列になるようコドンを調整してもよい。
 例えば、NRYコドンの繰り返しを利用することで、8種類のアミノ酸(Ser, Asn, Gly, Asp, Arg, His, CysまたはTyr)がランダムに出現するペプチド配列を発現させることが
できる。
  N = A, G, C, T
  R = A, G
  Y = C, T
 なお、ランダムポリペプチドが非天然のアミノ酸を含む場合は、コドンを公知の手段にしたがって改変すればよい。
 コード領域において、提示対象ポリペプチドコード配列、第一の核酸結合性ポリペプチドコード配列および第二の核酸結合性ポリペプチドコード配列は読み枠を合わせて連結される。ここで、「読み枠を合わせて連結される」とは、提示対象ポリペプチドと第一の核酸結合性ポリペプチドコード配列と第二の核酸結合性ポリペプチドコード配列が融合蛋白質として翻訳されるように連結されることを意味する。なお、提示対象ポリペプチドと、第一の核酸結合性ポリペプチドコード配と第二の核酸結合性ポリペプチドコード配列は直接連結されてもよいが、提示対象ポリペプチドの自由度を確保するため、リンカーコード配列を介して連結することが好ましい。
 ランダムポリペプチドなどの提示対象ポリペプチドをコードする配列は人工的に合成し、制限酵素認識配列(実施例ではSfiI認識配列を利用している)を利用したり、PCRを利用したりして例えばBapコード配列とCvapダイマーコード配列の5’側に遺伝子工学的に連結することができる。ただし、提示対象ポリペプチドをコードする配列と第一の核酸結合性ポリペプチドコード配列と第二の核酸結合性ポリペプチドコード配列を全て人工的に合成してもよい。
 提示対象ポリペプチドコード配列の5’側に開始コドンATGを存在させることが好ましいが、開始コドンの後にタグペプチド(例えば、FLAG、ポリヒスチジン、GSTなど)を配置した後に提示対象ポリペプチドコード配列を配置してもよい。
 また、第一の核酸結合性ポリペプチドコード配列と第二の核酸結合性ポリペプチドコード配列の下流(3’側)にはスペーサーコード配列を配置することがポリペプチド(融合蛋白質)-リボソーム-RNA複合体安定性の面から好ましい。
 スペーサー配列は10~200アミノ酸の配列とすることが好ましい。スペーサー配列のアミノ酸配列は、提示対象蛋白質と標的物質との結合反応に悪影響を与えない配列であれば特に制限されないが、水溶性が高く、特殊な3次元構造をとらない配列であることが好ましく、具体的には、主にグリシンとセリンを含むいわゆるGSリンカーやファージのgeneIIIの部分配列などを用いることができる。
 コード領域の3’末端には終止コドンを設けてもよいが、リボソームを効率よく係止させるため、コード領域の3’末端には終止コドンを設けないことが好ましい。あるいは、コード領域の3’末端にSecM配列を付加してもよい。SecM配列はSecM stall配列とも呼ばれ、リボソーム内部で翻訳アレストを起こすと報告されている配列である(FXXXXWIXXXXGIRAGP:配列番号32)。SecMのアレスト配列を導入することで、ポリペプチド(融合蛋白質)-リボソーム-RNA複合体を効率よく維持できるのでリボソームディスプレイに特に有効である。
 本発明の核酸構築物を翻訳系に導入して得られる、ポリペプチド(融合蛋白質)-リボソーム-RNA複合体の一例の模式図を図1の(2)に示す。「Peptide/protein libraries」と記載されているのが提示対象ポリペプチドであるが、ライブラリーである必要はない。従来のポリペプチド-リボソーム-RNA複合体は図1の(1)のようにリボソームがRNA上で係止することで複合体が維持されるのみであるが、図1の(2)の場合は、BapとboxB、CvapダイマーとCvの相互作用により複合体が安定化される。
 本発明の核酸構築物はDNAでもRNA(好ましくはmRNA)でもよい。したがって、「核酸構築物に対応するRNA」とは、核酸構築物がRNAの場合は核酸構築物そのもの、DNAの場合は核酸構築物から転写されて得られるRNAを意味する。
 DNAの場合は、RNAを転写させるためのプロモーター配列を5’非翻訳領域の上流に付加することが好ましい。
 プロモーターは、使用する発現系に応じて適宜、選択することができる。例えば、大腸菌細胞や大腸菌由来の無細胞翻訳系を用いる場合、T7プロモーター、T3プロモーター、SP6プロモーター等の大腸菌で機能するプロモーターが例示される。
 本発明の一例として、配列番号5,9,11,13,15に、プロモーター配列、boxB配列、Cv配列、SD配列、開始コドン、提示対象ポリペプチドコード配列、Bapコード配列、Cvapダイマーコード配列、スペーサーコードする配列を含む核酸構築物を例示した(図2)。
 そして、配列番号6,10,12,14,16にこれらの核酸から翻訳される融合蛋白質のアミノ酸配列を示した。ただし、本発明の核酸構築物とそれにコードされる融合蛋白質はこれらに限定されない。
 本発明の核酸構築物は、プラスミドベクター、ファージベクター、ウイルスベクターなどに組み込まれてもよい。ベクターの種類は、用いる翻訳系やスクリーニング系にしたがって適宜選択することができる。
 上記核酸構築物およびそれを含むベクターはMolecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001)などに記載されている公知の遺伝子学的手法によって作製することができる。
<本発明の核酸構築物を用いてポリペプチドを核酸(RNA)上に提示させる方法>
 上記核酸構築物を翻訳系に導入して前記コード領域にコードされる融合蛋白質を発現させることにより、第一の核酸結合性ポリペプチドと第一の配列との結合および第二の核酸結合性ポリペプチドと第二の配列との結合を介して融合蛋白質と核酸構築物に対応するRNAとの複合体を形成させることができ、提示対象ポリペプチドをRNA上に提示させることができる。
 翻訳系としては、大腸菌、昆虫、小麦胚芽、ウサギ網状赤血球、ヒト癌等に由来する細胞から得られたリボソームを含む無細胞翻訳系を使用することができる。リボソーム、tRNA、アミノ酸などを添加して再構成された無細胞翻訳系でもよい。市販のものでもよい。
 なお、核酸構築物としてDNAを用いる場合は、プロモーターに応じたRNAポリメラーゼを加える。
 提示対象蛋白質としてランダムペプチドライブラリーを用いる場合、ライブラリーの規模は、通常1×103以上、好ましくは1×104以上、より好ましくは1×105以上、さらに好ましくは1×106以上である。
 なお、ポリペプチド-リボソーム-RNA複合体を形成させた後、リボソームをRNAから解離させてもよい。この場合、濃度50 ~ 650 mMのEDTA(もしくはEGTA等のMg2+イオンをキレートできる配位子)を翻訳系に添加すればよい。EDTAは最初から翻訳系に加えてもよい。リボソームをRNAから解離させることにより、リボソームを含まないポリペプチド-RNA複合体を得ることができる。
<本発明の核酸構築物を用いて標的物質に結合するポリペプチド配列を選択する方法>
 本発明のポリペプチド配列の選択方法では、次の工程(1)~(3)を繰り返す。
(1)本発明の核酸構築物からランダムポリペプチドと第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドとの融合蛋白質を発現させ、核酸構築物に対応するRNA上にランダムポリペプチドライブラリーを提示する工程;
(2)標的物質に前記ライブラリーを接触させる工程;および
(3)標的物質に結合するポリペプチド配列を含む融合蛋白質を選択し、選択された融合蛋白質をコードする核酸配列を増幅する工程。
 具体的には、本発明の核酸構築物を翻訳系に導入してポリペプチド-RNA複合体を形成させた後、標的物質にランダムポリペプチドライブラリーを接触させ、ランダムポリペプチドライブラリーから標的物質に結合するポリペプチド配列を含む融合蛋白質を選択し、それをコードする核酸構築物を増幅する。
 標的物質に結合したポリペプチドを選択するには、標的ポリペプチドと結合したポリペプチドを、標的ポリペプチドと結合していない多数のポリペプチドの中からスクリーニングする必要がある。これはパニングとよばれる既知の方法に従って行う(Coomber (2002) Method Mol. Biol., vol.178, p.133-145)。パニングの基本的なプロトコルは以下のとおりである。
(I)標的物質にポリペプチドライブラリーを接触させる。
(II)標的ポリペプチドに結合しなかった、ライブラリーに含まれていたその他のポリペプチドを除去する。例えば、洗浄により除去することができる。
(III)除去されなかったポリペプチド、すなわち標的ポリペプチドに特異的に結合していたポリペプチドを回収する。
(IV)必要に応じ(I)から(III)の操作を複数回繰り返す。
 なお、工程(1)の後でEDTAなどによりポリペプチド-RNA複合体からリボソームを解離させておくと、「複合体のリボソームと標的分子との立体障害」や非特異的結合を解消することができるので好ましい。
 ポリペプチドライブラリーと標的物質を接触させ、結合を可能にする条件は公知であり(WO95/11922、WO93/03172、WO91/05058)、当業者にとって過度の負担なしに確立することができる。例えば、ビーズ、プレート、カラム等の担体に標的物質を結合させ、ここにポリペプチドとRNAの複合体を含む試料を接触させてもよい。また、標的物質が金属(金属塩や金属酸化物を含む)や含珪素化合物等の場合、ポリペプチドとRNAの複合体を含む試料にこれらの物質を添加することにより接触させることもできる。
 選択された複合体に含まれるRNAは、例えば、RT-PCRによって増幅することができる。RT-PCRによって、RNAを鋳型としてDNAが合成される。DNAを再びRNAに転写し、複合体の形成のために利用することができる。
 以上の操作を繰り返すことにより、標的物質に特異的に結合するペプチド配列が濃縮される。配列情報は、得られたRNAの配列を解析することにより同定することができる。
 以下、実施例を参照して本発明をより具体的に説明する。ただし、本発明は以下の態様に限定されない。
実施例1:RNAモチーフに特異的に結合するペプチドおよび蛋白質を導入したテンプレートを利用する「安定架橋型リボソームディスプレイ法」の新規開発
 ここでは、安定架橋型リボソームディスプレイ法の開発として、ペプチドライブラリーを翻訳するために利用するmRNAテンプレートの5'端に、二つのRNAモチーフ(boxBとCv)を導入した。さらに、ペプチドライブラリーをコードする配列の下流に、各RNAモチーフに特異的に結合するペプチド(Bap)および蛋白質(Cvapダイマー)をコードする配列を導入した。これにより、mRNAテンプレートの試験管内翻訳により発現したペプチド(Bap)と蛋白質(Cvapダイマー)が、各RNAモチーフと親和的に架橋構造を形成するため、これまでにない安定性を獲得した「ペプチド-Bap-Cvap-リボソーム-mRNA複合体(図1(2))」を合成することができる。
 まず、「ペプチド-Bap-Cvap-リボソーム-mRNA複合体」を利用すれば、標的分子結合性ペプチドを選択することが可能であることを証明するため、ビーズに固定化した抗FLAG抗体を標的とした「FLAGペプチド選択実験」を行った(この実験は、ペプチドライブラリーを提示した複合体の中から標的分子結合性ペプチドを選択するモデル実験として、図3の操作スキームに準じて行った)。
 まず、「ペプチド-Bap-Cvap-リボソーム-mRNA複合体」を合成するためのプラスミドDNA-I(配列番号1:図4)とプラスミドDNA-II(配列番号2:図4)の構築を行った。
プラスミドDNA-I は、SD配列・開始コドン・SfiI制限酵素サイト(1)・SfiI制限酵素サイト(2)・Bap配列・Cvap配列・Ps配列の順に並んだ人工配列を、市販プラスミドのクローニングサイトに導入することで構築した。また、プラスミドDNA-IIは、T7プロモーター配列・SD配列・開始コドン・SfiI制限酵素サイト(1)・SfiI制限酵素サイト(2)・Bap配列・Cvap配列・Ps配列の順に並んだ人工配列を、市販プラスミドのクローニングサイトに導入することで構築した。
 次に、プラスミドDNA-IIのSfiIサイトにFLAGペプチドを導入したプラスミドDNA-II-FLAG(配列番号8、部分配列は配列番号5)を構築し、それを鋳型にし、プライマーfp4(配列番号28)とrp3(配列番号31)を用いたPCRによりDNAテンプレート4-NS(図4:NSは終止コドンがないことを示す)を合成した。
 そして、そのDNAテンプレート4-NSを利用してT7プロモーターからmRNAテンプレートを合成し、これを無細胞蛋白質合成系(バイオコゥマー社製 PURESYSTEM classic II)の翻訳反応に供することより、「FLAGペプチド-Bap-Cvap-リボソーム-mRNA複合体」を合成した。
 さらに、下記のペプチド選択実験の手順1に従って、その複合体と、抗FLAG抗体を固定化したビーズ(SIGMA-ALDRICH社製)を混合した後、抗FLAG抗体と特異的に結合した複合体のみをFLAGペプチド(SIGMA-ALDRICH社製)の添加により競合的にビーズから溶出した。そして、それら複合体から回収したmRNAを逆転写して得られたcDNAを鋳型にPCRを行い、そのPCR産物の電気泳動を行った。
 その結果、目的のFLAGペプチドをコードするmRNAの回収に成功していることが確認できた(図1-(3))。これにより、「ペプチド-Bap-Cvap-リボソーム-mRNA複合体」を利用した「安定架橋型リボソームディスプレイ法」により、ペプチド選択実験を実行することが可能であることが示された。
<ペプチド選択実験の手順1>
1. Selection buffer(250μl)と「ペプチド-Bap-Cvap-リボソーム-mRNA複合体」を有する翻訳液(50μl)を混合し、ビーズ(15μl)を添加した後、インキュベート(1 h, 4℃)する。
2. 1で処理したビーズをWashing buffer(300μl)で5回洗浄する。
3. 2で処理したビーズにFLAGペプチド(100μl)を添加し、さらにインキュベート(0.5 h,4℃)する。4. 1000rpm(5 min)でビーズを沈降させた後、上清(100μl)を回収する。
5. 4で回収したmRNAを精製(QIAGEN社製RNeasy kit)し、それをもとに逆転写(TAKARA社製PrimeScript Reverse Transcriptase)を行うことでcDNAを合成する。
6. 5で合成したcDNAを鋳型にしてPCR(TAKARA社製 PrimeSTAR GXL DNA Polymerase)を行い、そのPCR産物を電気泳動することで、mRNAの回収量を確認する。

 Washing buffer : Tris-HCl(50 mM, pH 7.5), NaCl(150 mM), 0.5 % Tween
 Selection buffer : Tris-HCl(60 mM, pH 7.5), NaCl(180 mM)
 ビーズ : ANTI-FLAG-M2-Affinity Gel (SIGMA-ALDRICH社製)
 FLAGペプチド (SIGMA-ALDRICH社製)
実施例2:リボソームを解離させた複合体を利用する「安定架橋型ディスプレイ法」の開発
 従来、リボソームディスプレイ法によるペプチド選択実験において問題とされてきた「複合体におけるリボソームと標的分子との立体障害」を解消することができれば、これまでに選択できなかったより強力な標的結合性ペプチドの創出が可能となる。
 そこで今回、mRNAディスプレイ法とは全く異なる簡便な方法により、リボソームを有さない「ペプチド-mRNA複合体」を合成し、それら利用する新規ディスプレイ法の開発に取り組んだ。
 ここでは、上記の実施例1で開発した「ペプチド-Bap-Cvap-リボソーム-mRNA複合体」が、分子内架橋構造の形成により安定化していることに着目し、その複合体からリボソームだけを解離した「ペプチド-Bap-Cvap-mRNA複合体」の合成を試みた(図2(D))。さらに、その「ペプチド-Bap-Cvap-mRNA複合体」を利用したペプチド選択実験の実行と評価により、今回の新たな「安定架橋型ディスプレイ法」の有用性を実証することにした。
 まず、図2に示す4種類の複合体を形成するための人工蛋白質が、5'端にRNAモチーフを導入したmRNAとRNAモチーフを導入していないmRNAから同等に発現できることを確認するため、以下の手順で実験を行った。
 プラスミドDNA-I(配列番号1)とDNA-II(配列番号2)のSfiIサイトにFLAGペプチド(ペプチドライブラリーモデル)を導入したプラスミドDNA-I-FLAG(配列番号7、部分配列は配列番号3)とDNA-II-FLAG(配列番号8、部分配列は配列番号5)を構築した。そして、下記4種類のDNAを構築した。
(A)プラスミドDNA-I-FLAGを鋳型に、プライマーはfp1(配列番号25)とrp1(配列番号29)を用いてPCRによりDNAテンプレート1-S(配列番号9)を増幅した。
(B)プラスミドDNA-I-FLAGを鋳型に、プライマーはfp2(配列番号26)とrp1(配列番号29)を用いてPCRによりDNAテンプレート2-S(配列番号11)を増幅した。
(C)プラスミドDNA-I-FLAGを鋳型に、プライマーはfp3(配列番号27)とrp1(配列番号29)を用いてPCRによりDNAテンプレート3-S(配列番号13)を増幅した。
(D)プラスミドDNA-II-FLAGを鋳型に、プライマーはfp4(配列番号28)とrp1(配列番号29)を用いてPCRによりDNAテンプレート4-S(配列番号15)を増幅した。
プライマーfp1は配列番号3の塩基番号1~24の配列を含み、T7プロモーターを含んでいる。
プライマーfp2は配列番号3の塩基番号1~24の配列を含み、T7プロモーター、boxB配列を含んでいる。
プライマーfp3は配列番号3の塩基番号1~24の配列を含み、T7プロモーター、Cv配列を含んでいる。
プライマーfp4は配列番号5の塩基番号1~35の配列を含み、T7プロモーター、boxB配列、Cv配列を含んでいる。
プライマーrp1は配列番号3の塩基番号1094~1113および配列番号5の塩基番号1157~1176に相補的な配列を含み、終止コドンを含んでいる。
 さらに、それらDNAテンプレートからT7プロモーターを利用した試験管内転写により合成した各mRNAテンプレートを、無細胞蛋白質合成系(バイオコゥマー社製 PURESYSTEM classic II)により翻訳することで、「FLAGペプチド-Bap-Cvap融合蛋白質」(配列番号10,12,14,16)の発現を行った。
 その結果、抗FLAG抗体-HRP(SIGMA-ALDRICH社製)と化学発光試薬(PIERCE社製)を利用したWestern blotting(図5)において、mRNAの5'端におけるRNAモチーフの導入の有無に関係なく、同程度の蛋白質量が発現していることを確認できた。
 次に、図2に示す4種類の複合体を利用したFLAGペプチド選択実験を行うため、以下の4種類のDNAテンプレートを構築した(図4-1~4)。
(A)プラスミドDNA-I-FLAGを鋳型に、プライマーはfp1(配列番号25)とrp3(配列番号31)を用いてPCRによりDNAテンプレート1-NS(配列番号9の最後に、taatgaの代わりに配列番号5の1177~1626が付加した配列)を増幅した。
(B)プラスミドDNA-I-FLAGを鋳型に、プライマーはfp2(配列番号26)とrp3(配列番号31)を用いてPCRによりDNAテンプレート2-NS(配列番号11の最後に、taatgaの代わりに配列番号5の1177~1626が付加した配列)を増幅した。
(C)プラスミドDNA-I-FLAGを鋳型に、プライマーはfp3(配列番号27)とrp3(配列番号31)を用いてPCRによりDNAテンプレート3-NS(配列番号13の最後に、taatgaの代わりに配列番号5の1177~1626が付加した配列)を増幅した。
(D)プラスミドDNA-II-FLAGを鋳型に、プライマーはfp4(配列番号28)とrp3(配列番号31)を用いてPCRによりDNAテンプレート4-NS(配列番号15の最後に、taatgaの代わりに配列番号5の1177~1626が付加した配列)を増幅した。
プライマーrp3は配列番号3の塩基番号1544~1563および配列番号5の塩基番号1607~1626に相補的な配列を含み、終止コドンを含んでいない。
 さらに、それらDNAテンプレートのT7プロモーターを利用した試験管内転写により合成した各mRNAテンプレートを、無細胞蛋白質合成系(バイオコゥマー社製 PURESYSTEM classic II)により翻訳した。そして、下記のペプチド選択実験の手順2にしたがって、EDTA(50 mM)を含有したバッファーと翻訳液を混合することでリボソームをmRNAから解離させ、図2に示す4種類の複合体を得た。
 続いて、それら複合体と抗FLAG抗体を固定化したビーズ(SIGMA-ALDRICH社製)を混合した後、抗FLAG抗体と特異的に結合した複合体のみを、FLAGペプチド(SIGMA-ALDRICH社製)の添加により競合的にビーズから溶出した。そして、回収したmRNAを逆転写して得られたcDNAを鋳型にPCRを行い、各実験から得られたPCR産物を電気泳動することでmRNAの回収量を比較した。
 その結果、図6(A)(18サイクル)の電気泳動では、「ペプチド-Bap-Cvap-mRNA複合体」を利用した場合にのみ、バンドを確認することができた。今回の電気泳動(図6)では、各複合体から回収したFLAGペプチドのmRNA量が多いほど、PCRサイクル数が少ない条件でバンドが確認できることから、図2(D)の「ペプチド-Bap-Cvap-mRNA複合体」が最も安定であると同時に、この複合体を利用すれば、「安定架橋型リボソームディスプレイ(図1-(3))」と同様のペプチド選択実験を行うことが可能であることが明らかとなった。さらに、図6(B)(21サイクル)の電気泳動では、図2(B)の複合体と図2(C)の複合体を利用した場合においてもバンドを確認することができたことから、これらを用いてもペプチド選択実験が可能であることが示された。
<ペプチド選択実験の手順2>
1. Selection buffer(250μl)と各複合体を有する翻訳液(50μl)を混合し、ビーズ(15μl)を添加した後、インキュベート(1 h, 4℃)する。
2. 1で処理したビーズをWashing buffer(300μl)で5回洗浄する。
3. 2で処理したビーズにFLAGペプチド(100μl)を添加し、さらにインキュベート(0.5 h,4℃)する。
4. 1000rpm(5 min)でビーズを沈降させた後、上清(100μl)を回収する。
5. 4で回収したmRNAを精製(QIAGEN社製RNeasy kit)し、それをもとに逆転写(TAKARA社製PrimeScript Reverse Transcriptase)を行うことでcDNAを合成する。
6. 5で合成したcDNAを鋳型にしてPCR(TAKARA社製 PrimeSTAR GXL DNA Polymerase)を行い、そのPCR産物を電気泳動することで、mRNAの回収量を確認する。

 Washing buffer : Tris-HCl(50 mM, pH 7.5), NaCl(150 mM), EDTA(50 mM), 0.5 % Tween
 Selection buffer : Tris-HCl(60 mM, pH 7.5), NaCl(180 mM), EDTA(60 mM)
 ビーズ : ANTI-FLAG-M2-Affinity Gel (SIGMA-ALDRICH社製)
 FLAGペプチド (SIGMA-ALDRICH社製)
実施例3:「安定架橋型リボソームディスプレイ法」および「安定架橋型ディスプレイ法」における各種ポリペプチド・蛋白質の提示
 上記の実験により、「安定架橋型リボソームディスプレイ法」および「安定架橋型ディスプレイ法」を利用して、標的分子に特異的に結合するペプチドの選択実験を行えることが明らかとなった。
 さらに、様々な長さのペプチド(プロテイン)ライブラリーをプラスミドDNA-IIに導入し、目的の機能を発現するペプチド(プロテイン)アプタマーを選択できる汎用的なディスプレイ法として確立するために、プラスミドDNA-IIに各種ポリペプチド・蛋白質を導入し、それらが発現できるかどうかを検証した。
 まず、プラスミドDNA-II(配列番号2)のSfiIサイトに、ポリヒスチジンタグ(H6)、Human epidermal growth factor (EGF)、FK-binding protein 12 (FKBP12)、Cyclophilin A(CypA)を導入した各種プラスミドDNA-II-H6(配列番号17)、DNA-II-EGF(配列番号19)、DNA-II-FKBP12(配列番号21)、DNA-II-CypA(配列番号23)を構築した。
 そして、それらプラスミドDNAを鋳型にし、プライマーfp4(配列番号28)とrp2(配列番号30)を用いたPCRによりDNAテンプレート5-H6-FLAG-S、5-EGF-FLAG-S、5-FKBP12-FLAG-S、5-CypA-FLAG-Sを合成した(図4 5-XでXがH6,EGF,FKBP12またはCypA)。
 プライマーrp2は配列番号5の塩基番号1157~1176に相補的な配列を含み、FLAGコード配列と終止コドンを含んでいる。
 さらに、それらDNAテンプレートからT7プロモーターを利用した試験管内転写により合成したmRNAテンプレートを、無細胞蛋白質合成系(バイオコゥマー社製 PURESYSTEM classic II)により翻訳することで、各種蛋白質(配列番号18,20,22,24)の発現を行った。そして、抗FLAG抗体-HRP(SIGMA-ALDRICH社製)と化学発光試薬(PIERCE社製)を利用したWestern blotting(図7)を行ったところ、各蛋白質の発現を確認することに成功した。
 この結果は、プラスミドDNA-IIの利用により、様々なペプチド(プロテイン)ライブラリーを導入した「ペプチド(プロテイン)-Bap-Cvap-mRNA複合体」の合成が可能であり、目的のペプチド(プロテイン)アプタマーの選択実験を行うことが可能であることを示唆している。
実施例4:RNAモチーフ-ペプチド架橋構造の新たな創成
 安定架橋型リボソーマル複合体の多様化およびコンパクト化の可能性を模索すると共に、RNAモチーフ-ペプチド架橋構造体の多目的利用(例:機能性核酸・核酸医薬などのデリバリー)の潜在性を見出すため、RNAモチーフ-ペプチド架橋構造体(図8)の新たな創成に取り組んだ。ここでは、天然に存在するRNAモチーフ-ペプチド相互作用および人工的に見出されたRNAモチーフ-ペプチド相互作用を規範として、ヘテロなタンデム化RNAモチーフとそれらに結合するタンデム化ペプチドを新規に設計した(図8と表1)。そして、化学的手法により合成した各種RNAモチーフとペプチドを混合した後、電気泳動によるゲルシフトアッセイにより、RNAモチーフ-ペプチド架橋構造体の形成の可否について評価した(今回の実験は、下記の条件と手順に従って実行した)。
 例えば、タンデム化RNAモチーフ(TRM4:表1)とタンデム化ペプチド(TP3もしくはTP4:表1)を混合したところ、RNAモチーフ-ペプチド架橋構造体の形成を示すバンドシフト(図9:矢印)を確認することができた。さらに、表1に示したすべてのタンデム化RNAモチーフとそれぞれに対応するタンデム化ペプチドとの架橋構造体の形成も電気泳動で確認することができた。これらの結果は、今回合成したタンデム化ペプチドが、定量的にRNAモチーフ-ペプチド架橋構造体を形成することができるだけでなく、実施例1~3のペプチド(Bap)とタンパク質(Cvap)で構成される融合タンパク質に比べて分子量も小さいため(約1/6)、より取り扱い易い安定型リボソーマル複合体の合成に利用できることを示唆している。また、これらRNAモチーフ-ペプチド架橋構造体を利用したsiRNAやncRNAなどの機能性核酸・核酸医薬のデリバリーへの応用も期待できる。
<RNAモチーフ-ペプチド混合溶液の調製と電気泳動>
 (1)下記サンプルバッファーにより、RNAモチーフ溶液(1μM)を調製する。そして、70℃でインキュベーションした後、室温で放置する。
 (2)下記サンプルバッファーにより調製した各種ペプチド溶液(1μM)と上記RNAモチーフ溶液を混合した後、総量10μLにメスアップする(最終のRNAのモル量:4 pmol)。
 (3)10% PAGEにより、RNAモチーフとRNAモチーフ-ペプチド架橋構造体を分離した後、ゲルをSYBRGで染色してイメージ像を測定した(例:図9)。
・サンプルバッファー:Tris-acetate (50 mM, pH7.5)、KCl (150 mM)、Tween-20 (0.1 %)、
Mg(AcO)2(50 mM)、Zn(AcO)2 (0.1 mM)
・電気泳動バッファー:Tris-acetate (10 mM, pH 7.5)
Figure JPOXMLDOC01-appb-T000001
<ペプチドの配列>
Bap : GNARTRRRERRAMERATLPQVLG(配列番号33)
Rev : TRQARRNRRRRWRERQR(配列番号34)
BIV Tat : SGPRPRGTRGKGRRIRR(配列番号35)
GS2 : GGGSGGGS(配列番号36)
GS3 : GGGSGGGSGGGS(配列番号37)
<RNAモチーフの配列>
boxB : GGCCCUGAAAAAGGGCC(配列番号38)
ap I : GGCUGGACUCGUACUUCGGUACUGGAGAAACAGCC(配列番号39)
ap II : GGUGUCUUGGAGUGCUGAUCGGACACC(配列番号40)
BIV TAR : GCUCGUGUAGCUCAUUAGCUCCGAGC(配列番号41)
 
 本発明の核酸構築物及びそれを用いる方法は遺伝子工学やペプチド工学、創薬等の分野で有用である。
[配列表の説明]
1.Plasmid DNA-I full塩基配列
2.Plasmid DNA-II full塩基配列
3.Plasmid DNA-I-FLAG partial塩基配列
4.3のアミノ酸配列
5.Plasmid DNA-II-FLAG partial塩基配列
6.5のアミノ酸配列
7.Plasmid DNA-I-FLAG full塩基配列
8.Plasmid DNA-II-FLAG full塩基配列
9.DNA-I-fp1-rp1塩基配列
10.9のアミノ酸配列
11.DNA-I-fp2-rp1塩基配列
12.11のアミノ酸配列
13.DNA-I-fp3-rp1塩基配列
14.13のアミノ酸配列
15.DNA-I-fp4-rp1塩基配列
16.15のアミノ酸配列
17.Plasmid DNA-II-H6 full塩基配列
18.17のアミノ酸配列
19.Plasmid DNA-II-EGF full塩基配列
20.19のアミノ酸配列
21.Plasmid DNA-II-FKBP12 full塩基配列
22.21のアミノ酸配列
23.Plasmid DNA-II-CypA full塩基配列
24.23のアミノ酸配列
25.プライマーfp1塩基配列
26.プライマーfp2塩基配列
27.プライマーfp3塩基配列
28.プライマーfp4塩基配列
29.プライマーrp1塩基配列
30.プライマーrp2塩基配列
31.プライマーrp3塩基配列
32.secMアミノ酸配列
33.Bap
34.Rev
35.BIV Tat
36.linker 1
37.linker 2
38.boxB
39.apI
40.apII
41.BIV TAR
42.consensus sequence 1
43.consensus sequence 2
44.HIV-1 Tat
45.JDV Tat
46.λN
47.λN mutant
48.P22N
49.φ21N
50.BMV Gag
51.CCMV Gag
52.Spuma Gag
53.Yeast PRP6
54.Human U2AF
55.HTLV-II Rex
56.FHV coat
57.S3
58.S7
59.S28
60.L16
61.L35
62.HIV-1 TAR
63.JDV TAR
64.P22 boxB
65.HIV-1 RRE

Claims (18)

  1. 5’-非翻訳領域およびコード領域を含む核酸構築物であって、前記コード領域が提示対象ポリペプチドをコードする配列、第一の核酸結合性ポリペプチドをコードする配列および第二の核酸結合性ポリペプチドをコードする配列を含み、前記5’-非翻訳領域が第一の核酸結合性ポリペプチドに結合可能な第一の配列と、第二の核酸結合性ポリペプチドに結合可能な第二の配列とを含み、翻訳系に導入されたときに、前記核酸構築物のコード領域から翻訳される融合蛋白質が、前記第一の核酸結合性ポリペプチドと前記第一の配列との結合および前記第二の核酸結合性ポリペプチドと前記第二の配列との結合によって、前記核酸構築物に対応するRNAと複合体を形成する、核酸構築物。
  2. 第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがboxB-associating peptide (Bap)およびCv-associating peptide (Cvap)ダイマーであり、第一の配列および第二の配列がboxB配列およびCv配列である、請求項1に記載の核酸構築物。
  3. 第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがBapおよびRevであり、第一の配列および第二の配列がboxB配列およびapI配列またはapII配列である、請求項1に記載の核酸構築物。
  4. 第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがBapおよびBIV Tatであり、第一の配列および第二の配列がboxB配列およびBIV TAR配列である、請求項1に記載の核酸構築物。
  5. 前記5’-非翻訳領域がboxB配列、Cv配列およびリボソーム結合配列を含み、前記コード領域が、読み枠を合わせて連結された、提示対象ポリペプチドコード配列、Bapコード配列、Cvapダイマーコード配列およびスペーサーコード配列を含む、請求項2に記載の核酸構築物。
  6. 前記5’-非翻訳領域がboxB配列、apI配列またはapII配列、およびリボソーム結合配列を含み、前記コード領域が、読み枠を合わせて連結された、提示対象ポリペプチドコード配列、Bapコード配列、Revコード配列およびスペーサーコード配列を含む、請求項3に記載の核酸構築物。
  7. 前記5’-非翻訳領域がboxB配列、BIV TAR配列およびリボソーム結合配列を含み、前記コード領域が、読み枠を合わせて連結された、提示対象ポリペプチドコード配列、Bapコード配列、BIV Tatコード配列およびスペーサーコード配列を含む、請求項4に記載の核酸構築物。
  8. 前記5’-非翻訳領域がリボソーム結合配列を含む、請求項1~4のいずれか一項に記載の核酸構築物。
  9. 提示対象ポリペプチドコード配列がランダムポリペプチドをコードする配列である、請求項1~8のいずれか一項に記載の核酸構築物。
  10. 5’-非翻訳領域およびコード領域を含む核酸構築物と、
    前記コード領域から翻訳される融合蛋白質とを含む核酸-蛋白質複合体であって、
    前記コード領域が、提示対象ポリペプチドをコードする配列、第一の核酸結合性ポリペプチドをコードする配列及び第二の核酸結合性ポリペプチドをコードする配列を含み、
    前記5’-非翻訳領域が、第一の核酸結合性ポリペプチドに結合可能な第一の配列と、第二の核酸結合性ポリペプチドに結合可能な第二の配列とを含み、
    前記第一の核酸結合性ポリペプチドと前記第一の配列との結合および前記第二の核酸結合性ポリペプチドと前記第二の配列との結合によって形成される、
    核酸-蛋白質複合体。
  11. リボソームを含まない、請求項10に記載の核酸-蛋白質複合体。
  12. 第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドがBapおよびCvapダイマーであり、第一の配列および第二の配列がboxB配列およびCv配列である、請求項10または11に記載の核酸-蛋白質複合体。
  13. 提示対象ポリペプチドコード配列がランダムポリペプチドをコードする配列である、請求項10~12のいずれか一項に記載の核酸-蛋白質複合体。
  14. 請求項1~9のいずれか一項に記載の核酸構築物を翻訳系に導入して前記コード領域にコードされる融合蛋白質を発現させ、第一の核酸結合性ポリペプチドと前記第一の配列との結合および前記第二の核酸結合性ポリペプチドと前記第二の配列との結合を介して該融合蛋白質と核酸構築物に対応するRNAとの複合体を形成させることにより、提示対象ポリペプチドを核酸構築物に対応するRNA上に提示させることを特徴とする、ポリペプチドを核酸上に提示させる方法。
  15. 融合蛋白質と核酸構築物に対応するRNAとの複合体を形成させた後、リボソームを核酸構築物から解離させる工程を含む、請求項14に記載の方法。
  16. 標的物質に結合するポリペプチド配列を選択する方法であって、次の工程(1)~(3)を繰り返すことを特徴とする方法。
    (1)請求項9に記載の核酸構築物からランダムポリペプチドと第一の核酸結合性ポリペプチドおよび第二の核酸結合性ポリペプチドとの融合蛋白質を発現させ、核酸構築物に対応するRNA上にランダムポリペプチドライブラリーを提示する工程;
    (2)標的物質に前記ライブラリーを接触させる工程;および
    (3)標的物質に結合するポリペプチド配列を含む融合蛋白質を選択し、選択された融合蛋白質をコードする核酸配列を増幅する工程。
  17. 前記工程(1)と(2)の間に、リボソームを核酸構築物から解離させる工程を含む、請求項16に記載の方法。
  18. 請求項1~9のいずれか一項に記載の核酸構築物を含む、ポリペプチドを核酸上に提示させるためのキット。
PCT/JP2012/063221 2011-05-23 2012-05-23 核酸構築物、核酸-蛋白質複合体、及びその利用 WO2012161227A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013516421A JP6057297B2 (ja) 2011-05-23 2012-05-23 核酸構築物、核酸−蛋白質複合体、及びその利用
US14/119,730 US9863936B2 (en) 2011-05-23 2012-05-23 Nucleic acid construct, nucleic acid-protein complex, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-115166 2011-05-23
JP2011115166 2011-05-23

Publications (1)

Publication Number Publication Date
WO2012161227A1 true WO2012161227A1 (ja) 2012-11-29

Family

ID=47217303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063221 WO2012161227A1 (ja) 2011-05-23 2012-05-23 核酸構築物、核酸-蛋白質複合体、及びその利用

Country Status (3)

Country Link
US (1) US9863936B2 (ja)
JP (1) JP6057297B2 (ja)
WO (1) WO2012161227A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463885A (zh) * 2015-12-22 2016-04-06 安徽三宝棉纺针织投资有限公司 一种纯棉织物助染剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029061A (ja) * 2005-07-29 2007-02-08 National Institute Of Advanced Industrial & Technology ランダムペプチドライブラリーもしくは抗体超可変領域を模倣したペプチドライブラリーと、rna結合タンパク質を用いる試験管内ペプチド選択法を組み合わせた、新規の機能性ペプチド創製システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198346A (en) * 1989-01-06 1993-03-30 Protein Engineering Corp. Generation and selection of novel DNA-binding proteins and polypeptides
ES2118066T3 (es) 1989-10-05 1998-09-16 Optein Inc Sintesis y aislamiento, exentos de celulas, de nuevos genes y polipeptidos.
JP4086325B2 (ja) 1997-04-23 2008-05-14 プリュックテュン,アンドレアス 標的分子と相互作用する(ポリ)ペプチドをコードする核酸分子の同定方法
US6620587B1 (en) 1997-05-28 2003-09-16 Discerna Limited Ribosome complexes as selection particles for in vitro display and evolution of proteins
US5882893A (en) * 1997-12-04 1999-03-16 Millennium Pharmaceuticals, Inc. Nucleic acids encoding muscarinic receptors and uses therefor
ES2253358T3 (es) 2000-03-31 2006-06-01 Cambridge Antibody Technology Limited Mejoras en la visualizacion del ribosoma.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029061A (ja) * 2005-07-29 2007-02-08 National Institute Of Advanced Industrial & Technology ランダムペプチドライブラリーもしくは抗体超可変領域を模倣したペプチドライブラリーと、rna結合タンパク質を用いる試験管内ペプチド選択法を組み合わせた、新規の機能性ペプチド創製システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AUSTIN, R. J. ET AL.: "Designed Arginine-Rich RNA-Binding Peptides with Picomolar Affinity", J. AM. CHEM. SOC., vol. 124, 2002, pages 10966 - 10967 *
GREENBAUM, N. L. ET AL.: "How Tat targets TAR: structure of the BIV peptide-RNA complex", STRUCTURE, vol. 4, 1996, pages 5 - 9 *
SAWATA, S. Y. ET AL.: "Modified peptide selection in vitro by introduction of a protein-RNA interaction", PROTEIN ENGINEERING, vol. 16, no. 12, 2003, pages 1115 - 1124 *
WADA, A. ET AL.: "Ribosome Display Selection of a Metal-Binding Motif From an Artificial Peptide Library", BIOTECHNOLOGY AND BIOENGINEERING, vol. 101, no. 5, 2008, pages 1102 - 1107 *
ZHOU, J. ET AL.: "A Novel Strategy by the Action of Ricin that Connects Phenotype and Genotype without Loss of the Diversity of Libraries", J. AM. CHEM. SOC., vol. 124, no. 4, 2002, pages 538 - 543 *

Also Published As

Publication number Publication date
US9863936B2 (en) 2018-01-09
JP6057297B2 (ja) 2017-01-11
US20140206560A1 (en) 2014-07-24
JPWO2012161227A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
AU773236B2 (en) Selection of proteins using RNA-protein fusions
ES2373110T3 (es) Selección de proteínas usando fusiones de arn-proteína.
JP2008516210A (ja) 治療、診断およびクロマトグラフィーに使用するためのタンパク質複合体
JP2007513602A5 (ja) 発現ベクター、ポリペプチドディスプレイライブラリ、並びにそれらの作製及び使用方法
WO2014119600A1 (ja) Flexible Display法
WO2011005598A1 (en) Compositions and methods for the rapid biosynthesis and in vivo screening of biologically relevant peptides
JP6057297B2 (ja) 核酸構築物、核酸−蛋白質複合体、及びその利用
JP4953046B2 (ja) ランダムペプチドライブラリーもしくは抗体超可変領域を模倣したペプチドライブラリーと、rna結合タンパク質を用いる試験管内ペプチド選択法を組み合わせた、新規の機能性ペプチド創製システム
JP6478392B2 (ja) 核酸リンカー
JP3706942B2 (ja) 物質と蛋白質との間の相互作用の検出方法、物質と相互作用する蛋白質のスクリーニング方法、及び、物質とその物質と相互作用する蛋白質との複合体の形成方法
Hampton et al. An amber-encoding helper phage for more efficient phage display of noncanonical amino acids
WO2015115661A1 (ja) アゾール誘導体骨格を有するペプチドの製造方法
JP6332965B2 (ja) アゾリン化合物及びアゾール化合物のライブラリー、並びにその製造方法
US9006393B1 (en) Molecular constructs and uses thereof in ribosomal translational events
Chen et al. Screening technology of cyclic peptide library based on gene encoding
Bowen et al. Screening of yeast display libraries of enzymatically-cyclized peptides to discover macrocyclic peptide ligands
JP2010071744A (ja) 化合物のスクリーニング方法、並びに、スクリーニング用キット
Tsuji et al. In vitro selection of GTP-binding proteins by block shuffling of estrogen-receptor fragments
Murakami et al. High-affinity mirror-image monobody targeting MCP-1 generated via TRAP display and chemical protein synthesis
KR20240042497A (ko) 폴리펩타이드의 제작 방법, 태그, 발현 벡터, 폴리펩타이드의 평가 방법, 핵산 디스플레이 라이브러리의 제작 방법 및 스크리닝 방법
Reyes et al. PURE mRNA display and cDNA display provide rapid detection of consensus binding motif via high-throughput sequencing
JP2016123342A (ja) Vegf結合性ペプチド
WO2005012902A1 (ja) 有用タンパク質のスクリーニング方法
JP6590474B2 (ja) 化学架橋ペプチドの作製方法、その方法を用いて作製した化学架橋ペプチド及びそのペプチドを用いて構築したcDNAディスプレイ法によるペプチドライブラリ
JPWO2004053121A1 (ja) c−Fos蛋白質と複合体を形成する蛋白質、及び、それをコードする核酸、ならびに、それらの利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516421

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14119730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789387

Country of ref document: EP

Kind code of ref document: A1