WO2012161054A1 - 医用画像診断装置、画像処理装置及び超音波診断装置 - Google Patents

医用画像診断装置、画像処理装置及び超音波診断装置 Download PDF

Info

Publication number
WO2012161054A1
WO2012161054A1 PCT/JP2012/062551 JP2012062551W WO2012161054A1 WO 2012161054 A1 WO2012161054 A1 WO 2012161054A1 JP 2012062551 W JP2012062551 W JP 2012062551W WO 2012161054 A1 WO2012161054 A1 WO 2012161054A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallax
image
viewpoint
control unit
parallax image
Prior art date
Application number
PCT/JP2012/062551
Other languages
English (en)
French (fr)
Inventor
雄志 深澤
一人 中田
憲一 宇南山
史生 望月
奥村 貴敏
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Priority to CN201280000696.7A priority Critical patent/CN102985013B/zh
Publication of WO2012161054A1 publication Critical patent/WO2012161054A1/ja
Priority to US14/076,493 priority patent/US20140063208A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/462Displaying means of special interest characterised by constructional features of the display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/275Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • Embodiments described herein relate generally to a medical image diagnostic apparatus, an image processing apparatus, and an ultrasonic diagnostic apparatus.
  • a technique for displaying a stereoscopic image that can be stereoscopically recognized by an observer using a dedicated device such as stereoscopic glasses by displaying two parallax images taken from two viewpoints on a monitor.
  • a multi-parallax image (for example, nine parallax images) captured from a plurality of viewpoints is displayed on a monitor using a light beam controller such as a lenticular lens, thereby displaying a stereoscopic image to a naked eye observer.
  • a light beam controller such as a lenticular lens
  • volume data generated by such a medical image diagnostic apparatus is converted into a two-dimensional image (rendered image) by various image processes (rendering processes) and displayed two-dimensionally on a general-purpose monitor.
  • volume data generated by a medical image diagnostic apparatus is converted into a two-dimensional image (volume rendering image) reflecting three-dimensional information by volume rendering, and is displayed two-dimensionally on a general-purpose monitor.
  • volume rendering image generated by performing volume rendering from multiple viewpoints on volume data generated by a medical image diagnostic apparatus is considered to be displayed stereoscopically on the above-described stereoscopic monitor. Yes.
  • a stereoscopic image stereoscopically viewed on a stereoscopic monitor uses a parallax image group having a predetermined number of parallaxes, volume data cannot be observed simultaneously in a wide range.
  • the problem to be solved by the present invention is to provide a medical image diagnostic apparatus, an image processing apparatus, and an ultrasonic diagnostic apparatus capable of simultaneously and stereoscopically observing three-dimensional medical image data in a wide range.
  • the medical image diagnostic apparatus includes a display unit, a rendering processing unit, a first control unit, and a second control unit.
  • the display unit displays a parallax image group that is a parallax image having a predetermined number of parallaxes with a parallax angle between images being a predetermined angle, and displays a stereoscopic image that is stereoscopically recognized by an observer.
  • the rendering processing unit generates the parallax image group by performing volume rendering processing from a plurality of viewpoints centered on a reference viewpoint on volume data that is three-dimensional medical image data.
  • the first control unit receives positions of a plurality of reference viewpoints as the positions of the reference viewpoints, and causes the rendering processing unit to generate a parallax image group based on each of the received plurality of reference viewpoints.
  • the second control unit performs control so that each of the plurality of parallax image groups based on each of the plurality of reference viewpoints is allocated and displayed on each of a plurality of regions obtained by dividing the display region of the display unit.
  • FIG. 1 is a diagram for explaining a configuration example of an ultrasonic diagnostic apparatus according to the first embodiment.
  • FIG. 2A is a diagram (1) illustrating an example of a stereoscopic display monitor that performs stereoscopic display using two parallax images.
  • FIG. 2B is a diagram (2) illustrating an example of a stereoscopic display monitor that performs stereoscopic display using two parallax images.
  • FIG. 3 is a diagram for explaining an example of a stereoscopic display monitor that performs stereoscopic display using nine parallax images.
  • FIG. 4 is a diagram for explaining an example of a volume rendering process for generating a parallax image group.
  • FIG. 1 is a diagram for explaining a configuration example of an ultrasonic diagnostic apparatus according to the first embodiment.
  • FIG. 2A is a diagram (1) illustrating an example of a stereoscopic display monitor that performs stereoscopic display using two parallax images.
  • FIG. 2B is a diagram (2)
  • FIG. 5A is a diagram (1) for explaining an example of a method for accepting a change in the position of the reference viewpoint.
  • FIG. 5B is a diagram (2) for explaining an example of a method for accepting a change in the position of the reference viewpoint.
  • FIG. 6 is a diagram for explaining an example of division of the display area of the monitor.
  • FIG. 7 is a diagram for explaining terms used for defining the reference viewpoint.
  • FIG. 8A is a diagram (1) illustrating an example of a control process performed by the control unit according to the first embodiment.
  • FIG. 8B is a diagram (2) illustrating an example of the control process performed by the control unit according to the first embodiment.
  • FIG. 9A is a diagram (3) illustrating an example of a control process performed by the control unit according to the first embodiment.
  • FIG. 9B is a diagram (4) illustrating an example of a control process performed by the control unit according to the first embodiment.
  • FIG. 10 is a diagram (5) for explaining an example of the control process performed by the control unit according to the first embodiment.
  • FIG. 11 is a diagram (6) illustrating an example of a control process performed by the control unit according to the first embodiment.
  • FIG. 12A is a diagram (1) illustrating a modification example related to the division of the display area.
  • FIG. 12B is a diagram (2) for describing the modification example related to the division of the display region.
  • FIG. 12C is a diagram (3) for describing the modification example related to the division of the display region.
  • FIG. 13 is a flowchart for explaining processing of the ultrasonic diagnostic apparatus according to the first embodiment.
  • FIG. 13 is a flowchart for explaining processing of the ultrasonic diagnostic apparatus according to the first embodiment.
  • FIG. 14 is a diagram for explaining a modification of the first embodiment.
  • FIG. 15A is a diagram (1) for explaining the second embodiment.
  • FIG. 15B is a diagram (2) for explaining the second embodiment.
  • FIG. 15C is a diagram (3) for explaining the second embodiment.
  • FIG. 16 is a diagram (1) for explaining a modification of the first embodiment and the second embodiment.
  • FIG. 17 is a diagram (2) for explaining a modification of the first embodiment and the second embodiment.
  • a “parallax image group” is an image generated by performing volume rendering processing by moving a viewpoint position by a predetermined parallax angle with respect to volume data. It is a group. That is, the “parallax image group” includes a plurality of “parallax images” having different “viewpoint positions”.
  • the “parallax angle” is a predetermined position in the space represented by the volume data and an adjacent viewpoint position among the viewpoint positions set to generate the “parallax image group” (for example, the center of the space) It is an angle determined by.
  • the “parallax number” is the number of “parallax images” necessary for stereoscopic viewing on the stereoscopic display monitor.
  • the “9 parallax images” described below is a “parallax image group” composed of nine “parallax images”.
  • the “two-parallax image” described below is a “parallax image group” composed of two “parallax images”.
  • a “stereoscopic image” is an image stereoscopically viewed by an observer who refers to a stereoscopic display monitor that displays a “parallax image group”.
  • FIG. 1 is a diagram for explaining a configuration example of an ultrasonic diagnostic apparatus according to the first embodiment.
  • the ultrasonic diagnostic apparatus according to the first embodiment includes an ultrasonic probe 1, a monitor 2, an input device 3, and an apparatus main body 10.
  • the ultrasonic probe 1 includes a plurality of piezoelectric vibrators, and the plurality of piezoelectric vibrators generate ultrasonic waves based on a drive signal supplied from a transmission unit 11 included in the apparatus main body 10 to be described later.
  • the ultrasonic probe 1 receives a reflected wave from the subject P and converts it into an electrical signal.
  • the ultrasonic probe 1 includes a matching layer provided in the piezoelectric vibrator, a backing material that prevents propagation of ultrasonic waves from the piezoelectric vibrator to the rear, and the like.
  • the ultrasonic probe 1 is detachably connected to the apparatus main body 10.
  • the transmitted ultrasonic waves are transmitted from the ultrasonic probe 1 to the subject P
  • the transmitted ultrasonic waves are reflected one after another at the discontinuous surface of the acoustic impedance in the body tissue of the subject P
  • the ultrasonic probe is used as a reflected wave signal. 1 is received by a plurality of piezoelectric vibrators.
  • the amplitude of the received reflected wave signal depends on the difference in acoustic impedance at the discontinuous surface where the ultrasonic wave is reflected.
  • the reflected wave signal when the transmitted ultrasonic pulse is reflected by the moving blood flow or the surface of the heart wall depends on the velocity component of the moving object in the ultrasonic transmission direction due to the Doppler effect. And undergoes a frequency shift.
  • the ultrasound probe 1 according to the first embodiment is an ultrasound probe capable of scanning the subject P in two dimensions with ultrasound and scanning the subject P in three dimensions.
  • the ultrasonic probe 1 according to the first embodiment swings a plurality of ultrasonic transducers that scan the subject P in two dimensions at a predetermined angle (swing angle), thereby This is a mechanical scan probe that scans the specimen P in three dimensions.
  • the ultrasonic probe 1 according to the first embodiment is a two-dimensional ultrasonic wave capable of ultrasonically scanning the subject P in three dimensions by arranging a plurality of ultrasonic transducers in a matrix. It is a probe.
  • the two-dimensional ultrasonic probe can also scan the subject P two-dimensionally by focusing and transmitting ultrasonic waves.
  • the input device 3 includes a mouse, a keyboard, a button, a panel switch, a touch command screen, a foot switch, a trackball, a joystick, etc., receives various setting requests from an operator of the ultrasonic diagnostic apparatus, The various setting requests received are transferred.
  • the monitor 2 displays a GUI (Graphical User Interface) for an operator of the ultrasonic diagnostic apparatus to input various setting requests using the input device 3, and displays an ultrasonic image generated in the apparatus main body 10. To do.
  • GUI Graphic User Interface
  • the monitor 2 displays a parallax image group that is a parallax image having a predetermined number of parallaxes with a parallax angle between images being a predetermined angle, and is stereoscopically recognized by the observer in a stereoscopic manner.
  • a monitor hereinafter, a stereoscopic display monitor.
  • the stereoscopic display monitor will be described.
  • an apparatus that outputs an image to the general-purpose monitor needs to display two parallax images that can be viewed stereoscopically by the observer in parallel by the parallel method or the intersection method. is there.
  • an apparatus that outputs an image to a general-purpose monitor uses an after-color method with an eyeglass that has a red cellophane attached to the left eye portion and a blue cellophane attached to the right eye portion. It is necessary to display a stereoscopically viewable image.
  • a stereoscopic display monitor there is a monitor (hereinafter referred to as a “two-parallax monitor”) that enables stereoscopic viewing by binocular parallax by displaying a two-parallax image (also referred to as a binocular parallax image).
  • FIGS. 2A and 2B are diagrams for explaining an example of a stereoscopic display monitor that performs stereoscopic display using two parallax images.
  • An example shown in FIGS. 2A and 2B is a stereoscopic display monitor that performs stereoscopic display by a shutter method, and shutter glasses are used as stereoscopic glasses worn by an observer who observes the monitor.
  • Such a stereoscopic display monitor emits two parallax images alternately on the monitor.
  • the monitor shown in FIG. 2A alternately emits a left-eye image and a right-eye image at 120 Hz.
  • the monitor is provided with an infrared emitting unit, and the infrared emitting unit controls the emission of infrared rays in accordance with the timing at which the image is switched.
  • the infrared light emitted from the infrared light emitting unit is received by the infrared light receiving unit of the shutter glasses shown in FIG. 2A.
  • a shutter is attached to each of the left and right frames of the shutter glasses, and the shutter glasses alternately switch the transmission state and the light shielding state of the left and right shutters according to the timing when the infrared light receiving unit receives the infrared rays.
  • the switching process between the transmission state and the light shielding state in the shutter will be described.
  • each shutter has an incident-side polarizing plate and an output-side polarizing plate, and further has a liquid crystal layer between the incident-side polarizing plate and the output-side polarizing plate.
  • the incident-side polarizing plate and the outgoing-side polarizing plate are orthogonal to each other.
  • the light passing through the incident-side polarizing plate is rotated 90 degrees by the action of the liquid crystal layer, and the outgoing-side polarizing plate is To Penetrate. That is, a shutter to which no voltage is applied is in a transmissive state.
  • the infrared emitting unit emits infrared rays while the image for the left eye is displayed on the monitor.
  • the infrared light receiving unit applies a voltage to the right-eye shutter without applying a voltage to the left-eye shutter during a period of receiving the infrared light.
  • the right-eye shutter is in a light-shielding state and the left-eye shutter is in a transmissive state, so that an image for the left eye enters the left eye of the observer.
  • the infrared ray emitting unit stops emitting infrared rays while the right-eye image is displayed on the monitor.
  • the infrared light receiving unit applies a voltage to the left-eye shutter without applying a voltage to the right-eye shutter during a period in which no infrared light is received. Accordingly, the left-eye shutter is in a light-shielding state and the right-eye shutter is in a transmissive state, so that an image for the right eye enters the right eye of the observer.
  • the stereoscopic display monitor illustrated in FIGS. 2A and 2B displays an image that can be viewed stereoscopically by the observer by switching the image displayed on the monitor and the state of the shutter in conjunction with each other.
  • the two-parallax monitor there are a device that performs stereoscopic display by the polarized glasses method, a device that performs stereoscopic display by the parallax barrier method, and the like in addition to a device that performs stereoscopic display by the shutter method.
  • a stereoscopic display monitor that allows a viewer to stereoscopically view a multi-parallax image such as a 9-parallax image with the naked eye by using a light controller such as a lenticular lens.
  • a light controller such as a lenticular lens.
  • Such a stereoscopic display monitor enables stereoscopic viewing based on binocular parallax, and also enables stereoscopic viewing based on motion parallax that also changes the image observed in accordance with the viewpoint movement of the observer.
  • FIG. 3 is a diagram for explaining an example of a stereoscopic display monitor that performs stereoscopic display with nine parallax images.
  • a light beam controller is arranged on the front surface of a flat display surface 200 such as a liquid crystal panel.
  • a vertical lenticular sheet 201 whose optical aperture extends in the vertical direction is attached to the front surface of the display surface 200 as a light beam controller.
  • the vertical lenticular sheet 201 is pasted so that the convex portion of the vertical lenticular sheet 201 becomes the front surface, but the convex portion of the vertical lenticular sheet 201 is pasted so as to face the display surface 200. There may be.
  • the display surface 200 has an aspect ratio of 3: 1 and pixels in which three sub-pixels, red (R), green (G), and blue (B), are arranged in the vertical direction. 202 are arranged in a matrix.
  • the stereoscopic display monitor shown in FIG. 3 converts a nine-parallax image composed of nine images into an intermediate image arranged in a predetermined format (for example, a lattice shape), and then outputs it to the display surface 200. That is, the stereoscopic display monitor shown in FIG. 3 assigns and outputs nine pixels at the same position in nine parallax images to nine columns of pixels 202.
  • the nine columns of pixels 202 constitute a unit pixel group 203 that simultaneously displays nine images with different viewpoint positions.
  • the nine-parallax images simultaneously output as the unit pixel group 203 on the display surface 200 are emitted as parallel light by, for example, an LED (Light Emitting Diode) backlight, and further emitted in multiple directions by the vertical lenticular sheet 201.
  • an LED Light Emitting Diode
  • the light incident on the right eye and the left eye of the observer changes in conjunction with the position of the observer (viewpoint position). That is, the parallax angle between the parallax image incident on the right eye and the parallax image incident on the left eye differs depending on the viewing angle of the observer.
  • the observer can visually recognize the photographing object in three dimensions at each of the nine positions shown in FIG. 3, for example.
  • the observer can view the image three-dimensionally in a state of facing the object to be imaged at the position “5” shown in FIG. 3, and at each position other than “5” shown in FIG. It can be visually recognized in a three-dimensional manner with the direction of the object changed.
  • the stereoscopic display monitor shown in FIG. 3 is merely an example.
  • the stereoscopic display monitor that displays a nine-parallax image may be a horizontal stripe liquid crystal of “RRR..., GGG..., BBB. .. ”” May be used.
  • FIG. 3 may be a vertical lens system in which the lenticular sheet is vertical as shown in FIG. 3 or a diagonal lens system in which the lenticular sheet is diagonal. There may be.
  • the stereoscopic display monitor described with reference to FIG. 3 is referred to as a 9-parallax monitor.
  • the two-parallax monitor displays a stereoscopic image that is stereoscopically recognized by the observer by displaying a parallax image group (two-parallax images) that are two parallax images having a predetermined parallax angle between images.
  • a parallax image group two-parallax images
  • the 9-parallax monitor displays a stereoscopic image that is stereoscopically recognized by the observer by displaying a parallax image group (9-parallax image) that is nine parallax images having a predetermined parallax angle between images.
  • 3D table monitor is a parallax image group (two-parallax images) that are two parallax images having a predetermined parallax angle between images.
  • the first embodiment can be applied even when the monitor 2 is a two-parallax monitor or a nine-parallax monitor.
  • the monitor 2 is a 9-parallax monitor.
  • the apparatus main body 10 is an apparatus that generates ultrasonic image data based on the reflected wave received by the ultrasonic probe 1.
  • the apparatus main body 10 according to the first embodiment is an apparatus that can generate three-dimensional ultrasonic image data based on three-dimensional reflected wave data received by the ultrasonic probe 1.
  • volume data the three-dimensional ultrasonic image data is referred to as “volume data”.
  • the apparatus main body 10 includes a transmission unit 11, a reception unit 12, a B-mode processing unit 13, a Doppler processing unit 14, an image generation unit 15, a volume data processing unit 16, and an image memory. 17, a control unit 18, and an internal storage unit 19.
  • the transmission unit 11 includes a trigger generation circuit, a transmission delay circuit, a pulser circuit, and the like, and supplies a drive signal to the ultrasonic probe 1.
  • the pulsar circuit repeatedly generates rate pulses for forming transmission ultrasonic waves at a predetermined rate frequency.
  • the transmission delay circuit also sets the delay time for each piezoelectric vibrator necessary for determining the transmission directivity by converging the ultrasonic wave generated from the ultrasonic probe 1 into a beam shape at each rate at which the pulsar circuit generates. Give to pulse.
  • the trigger generation circuit applies a drive signal (drive pulse) to the ultrasonic probe 1 at a timing based on the rate pulse. In other words, the delay circuit arbitrarily adjusts the transmission direction from the piezoelectric vibrator surface by changing the delay time given to each rate pulse.
  • the transmission unit 11 has a function capable of instantaneously changing a transmission frequency, a transmission drive voltage, and the like in order to execute a predetermined scan sequence based on an instruction from the control unit 18 described later.
  • the change of the transmission drive voltage is realized by a linear amplifier type transmission circuit capable of instantaneously switching its value or a mechanism for electrically switching a plurality of power supply units.
  • the receiving unit 12 includes an amplifier circuit, an A / D converter, an adder, and the like, and performs various processes on the reflected wave signal received by the ultrasonic probe 1 to generate reflected wave data.
  • the amplifier circuit amplifies the reflected wave signal for each channel and performs gain correction processing.
  • the A / D converter performs A / D conversion on the gain-corrected reflected wave signal and gives a delay time necessary for determining reception directivity to the digital data.
  • the adder performs an addition process of the reflected wave signal processed by the A / D converter to generate reflected wave data. By the addition processing of the adder, the reflection component from the direction corresponding to the reception directivity of the reflected wave signal is emphasized.
  • the transmission unit 11 and the reception unit 12 control transmission directivity and reception directivity in transmission / reception of ultrasonic waves.
  • the transmission unit 11 transmits a three-dimensional ultrasonic beam from the ultrasonic probe 1 to the subject P.
  • the receiving unit 12 according to the first embodiment generates three-dimensional reflected wave data from the three-dimensional reflected wave signal received by the ultrasonic probe 1.
  • the B-mode processing unit 13 receives the reflected wave data from the receiving unit 12, performs logarithmic amplification, envelope detection processing, and the like, and generates data (B-mode data) in which the signal intensity is expressed by brightness. .
  • the Doppler processing unit 14 performs frequency analysis on velocity information from the reflected wave data received from the receiving unit 12, extracts blood flow, tissue, and contrast agent echo components due to the Doppler effect, and moving body information such as average velocity, dispersion, and power. Is generated for multiple points (Doppler data).
  • the B-mode processing unit 13 and the Doppler processing unit 14 can process both two-dimensional reflected wave data and three-dimensional reflected wave data. That is, the B-mode processing unit 13 generates two-dimensional B-mode data from the two-dimensional reflected wave data, and generates three-dimensional B-mode data from the three-dimensional reflected wave data.
  • the Doppler processing unit 14 generates two-dimensional Doppler data from the two-dimensional reflected wave data, and generates three-dimensional Doppler data from the three-dimensional reflected wave data.
  • the image generation unit 15 generates ultrasonic image data from the data generated by the B-mode processing unit 13 and the Doppler processing unit 14. That is, the image generation unit 15 generates B-mode image data in which the intensity of the reflected wave is expressed by luminance from the two-dimensional B-mode data generated by the B-mode processing unit 13. Further, the image generation unit 15 generates color Doppler image data as an average velocity image, a dispersed image, a power image, or a combination image representing the moving body information from the two-dimensional Doppler data generated by the Doppler processing unit 14. To do.
  • the image generation unit 15 generally converts (scan converts) a scanning line signal sequence of ultrasonic scanning into a scanning line signal sequence of a video format represented by a television or the like, and displays ultrasonic waves for display. Generate image data. Specifically, the image generation unit 15 generates ultrasonic image data for display by performing coordinate conversion in accordance with the ultrasonic scanning mode of the ultrasonic probe 1. Further, the image generation unit 15 synthesizes character information, scales, body marks, and the like of various parameters with the ultrasonic image data.
  • the image generation unit 15 performs coordinate conversion on the three-dimensional B-mode data generated by the B-mode processing unit 13 to generate three-dimensional B-mode image data.
  • the image generation unit 15 performs coordinate conversion on the three-dimensional Doppler data generated by the Doppler processing unit 14 to generate three-dimensional color Doppler image data.
  • the image generation unit 15 generates “three-dimensional B-mode image data or three-dimensional color Doppler image data” as “volume data that is three-dimensional ultrasound image data”.
  • the volume data processing unit 16 generates ultrasonic image data for display from the volume data generated by the image generation unit 15.
  • the volume data processing unit 16 includes a rendering processing unit 16a and a parallax image synthesis unit 16b as shown in FIG.
  • the rendering processing unit 16a is a processing unit that performs rendering processing on volume data in order to generate various images (two-dimensional images) for displaying the volume data on the monitor 2.
  • the rendering processing performed by the rendering processing unit 16a includes processing for reconstructing an MPR image from volume data by performing a cross-section reconstruction method (MPR: Multi Planer Reconstruction).
  • MPR Multi Planer Reconstruction
  • the rendering processing performed by the rendering processing unit 16a includes processing for performing “Curved MPR” on volume data and processing for performing “Intensity Projection” on volume data.
  • the rendering processing performed by the rendering processing unit 16a includes volume rendering processing for generating a two-dimensional image (volume rendering image) reflecting three-dimensional information. That is, the rendering processing unit 16a generates a parallax image group by performing volume rendering processing from a plurality of viewpoints centering on the reference viewpoint on volume data that is three-dimensional ultrasound image data. Specifically, since the monitor 2 is a 9-parallax monitor, the rendering processing unit 16a generates a 9-parallax image by performing volume rendering processing from 9 viewpoints centering on the reference viewpoint on the volume data. To do.
  • the rendering processing unit 16a generates a nine-parallax image by performing a volume rendering process shown in FIG. 4 under the control of the control unit 18 described later.
  • FIG. 4 is a diagram for explaining an example of a volume rendering process for generating a parallax image group.
  • the rendering processing unit 16a accepts the parallel projection method as the rendering condition, and further, the reference viewpoint position (5) and the parallax angle “1”. ”Degree”. In such a case, the rendering processing unit 16a translates the viewpoint position from (1) to (9) so that the parallax angle is every "1 degree”, and uses the parallel projection method to change the parallax angle (between the gaze directions). Nine parallax images with different angles are generated by 1 degree.
  • the rendering processing unit 16a sets a light source that emits parallel light rays from infinity along the line-of-sight direction.
  • the rendering processing unit 16a accepts a perspective projection method as a rendering condition, and further, the reference viewpoint position (5) and the parallax angle “1”. ”Degree”. In such a case, the rendering processing unit 16a rotates the perspective position from (1) to (9) so that the parallax angle is "1 degree" around the center (center of gravity) of the volume data, and sees through. Nine parallax images having different parallax angles by 1 degree are generated by the projection method.
  • the rendering processing unit 16a sets a point light source and a surface light source that radiate light three-dimensionally around the line-of-sight direction at each viewpoint.
  • the viewpoints (1) to (9) may be moved in parallel depending on the rendering conditions.
  • the rendering processing unit 16a radiates light two-dimensionally radially around the line-of-sight direction with respect to the vertical direction of the displayed volume rendering image, and with respect to the horizontal direction of the displayed volume rendering image.
  • the volume rendering process using both the parallel projection method and the perspective projection method may be performed by setting a light source that emits parallel light rays from infinity along the line-of-sight direction.
  • the nine parallax images generated in this way are a group of parallax images. That is, the parallax image group is an ultrasonic image group for stereoscopic display generated from volume data.
  • the rendering processing unit 16a When the monitor 2 is a two-parallax monitor, the rendering processing unit 16a generates a two-parallax image by setting two viewpoints with a parallax angle “1 degree”, for example, with the reference viewpoint as the center. To do.
  • the image generation unit 15 synthesizes information (character information, scales, body marks, etc.) other than the parallax image group with the display parallax image group, and the monitor 2 as a video signal under the control of the control unit 18. Output to.
  • parallax image synthesis unit 16b illustrated in FIG. 1 generates a composite image group used as a parallax image group by synthesizing a plurality of parallax image groups generated by the rendering processing unit 16a using different reference viewpoints.
  • the parallax image synthesis unit 16b will be described in detail later.
  • the image memory 17 is a memory for storing image data generated by the image generation unit 15 and the volume data processing unit 16.
  • the image memory 17 can also store data generated by the B-mode processing unit 13 and the Doppler processing unit 14.
  • the internal storage unit 19 stores a control program for performing ultrasonic transmission / reception, image processing and display processing, diagnostic information (for example, patient ID, doctor's findings, etc.), various data such as a diagnostic protocol and various body marks. To do.
  • the internal storage unit 19 is also used for storing image data stored in the image memory 17 as necessary.
  • the control unit 18 controls the entire processing of the ultrasonic diagnostic apparatus. Specifically, the control unit 18 is based on various setting requests input from the operator via the input device 3 and various control programs and various data read from the internal storage unit 19. 12, controls the processing of the B-mode processing unit 13, the Doppler processing unit 14, the image generation unit 15, and the volume data processing unit 16.
  • control unit 18 performs control so that the display 2 displays ultrasonic image data for display stored in the image memory 17 or the internal storage unit 19.
  • control unit 18 converts the 9-parallax image into an intermediate image arranged in a predetermined format (for example, a lattice shape), and outputs the intermediate image to the monitor 2 as a stereoscopic display monitor.
  • a stereoscopic image recognized stereoscopically by an observer is displayed.
  • the ultrasonic diagnostic apparatus according to the first embodiment generates volume data that is three-dimensional ultrasonic image data, and generates a parallax image group from the generated ultrasonic volume data.
  • the ultrasonic diagnostic apparatus according to the first embodiment displays a parallax image group on the monitor 2. Thereby, an observer who is an operator of the ultrasonic diagnostic apparatus can observe the three-dimensional ultrasonic image data in a three-dimensional manner.
  • the stereoscopic image stereoscopically viewed on the monitor 2 that is a stereoscopic monitor uses a group of parallax images having a predetermined number of parallaxes such as a 9-parallax image, volume data cannot be observed simultaneously in a wide range. It was.
  • control unit 18 of the ultrasonic diagnostic apparatus performs the control described below so that the three-dimensional ultrasonic image data can be observed stereoscopically in a wide range simultaneously.
  • the control unit 18 receives the positions of a plurality of reference viewpoints as the positions of the reference viewpoints, and renders a parallax image group based on each of the received plurality of reference viewpoints. 16a.
  • the control unit 18 receives the positions of a plurality of reference viewpoints by sequentially receiving changes in the position of the reference viewpoint in time series. Therefore, whenever the control part 18 which concerns on 1st Embodiment receives the change of the position of a reference viewpoint as 1st control, it produces
  • FIGS. 5A and 5B are diagrams for explaining an example of a method for accepting a change in the position of the reference viewpoint.
  • FIG. 5A An example shown in FIG. 5A is a method of using a camera 2a attached to the monitor 2 as a detection unit for detecting the movement of the observer. That is, the camera 2a detects the movement of the observer by photographing the observer as shown in FIG. 5A. Then, as illustrated in FIG. 5A, the control unit 18 accepts a change in the position of the reference viewpoint based on the movement (movement amount and movement direction) of the observer with respect to the monitor 2 detected by the camera 2a serving as the detection unit.
  • the camera 2a has a face recognition function. Then, the camera 2a tracks (tracks) the observer's face in the real space by the face recognition function, and further transfers the amount and direction of movement of the recognized observer's face relative to the monitor 2 to the control unit 18.
  • the control unit 18 changes the position of the reference viewpoint with respect to the volume data in accordance with the amount and direction of movement of the observer's face relative to the monitor 2.
  • an example shown in FIG. 5B is a method using a joystick included in the input device 3. That is, the joystick included in the input device 3 accepts an operation for changing the position of the reference viewpoint as shown in FIG. 5B. Specifically, the joystick receives an operation for changing the position of the reference viewpoint from the observer of the monitor 2. Then, as illustrated in FIG. 5B, the control unit 18 receives a change in the position of the reference viewpoint based on the operation information of the observer received by the joystick included in the input device 3.
  • the observer moves the joystick in order to change the position of the reference viewpoint to the position that he wants to observe.
  • the joystick transfers the movement direction and movement amount of its own device to the control unit 18.
  • the control unit 18 changes the position of the reference viewpoint with respect to the volume data according to the movement amount and movement direction of the joystick.
  • the joystick is merely an example, and the input device 3 used when receiving a change in the position of the reference viewpoint based on the operation information of the observer may be a trackball or a mouse.
  • control unit 18 By accepting the change of the position of the reference viewpoint by such a method, the control unit 18 causes the rendering processing unit 16a to generate a parallax image group based on the changed reference viewpoint.
  • the control unit 18 allocates and displays each of the plurality of parallax image groups based on each of the plurality of reference viewpoints to each of the plurality of areas obtained by dividing the display area of the monitor 2.
  • the control unit 18 performs, as the second control, a parallax image group based on the changed reference viewpoint and a disparity based on the reference viewpoint before the change.
  • the image group is controlled to be allocated and displayed in each of a plurality of areas obtained by dividing the display area of the monitor 2.
  • first parallax image group the parallax image group based on the reference viewpoint after the change
  • second parallax image group the parallax image group based on the reference viewpoint before the change
  • the control unit 18 sets a plurality of display areas of the monitor 2 in order to simultaneously display the first parallax image group and the second parallax image group. Is divided into areas. Then, as the second control, the control unit 18 according to the first embodiment converts the composite image group of the first parallax image group and the second parallax image group into a parallax image according to the division pattern of the display area. It is generated by the synthesis unit 16b. Then, the control unit 18 according to the first embodiment causes the monitor 2 to display the combined image group generated by the parallax image combining unit 16b.
  • FIG. 6 is a diagram for explaining an example of division of the display area of the monitor.
  • the control unit 18 sets “area A” and “area B” obtained by dividing the display area of the monitor 2 into two in the horizontal direction.
  • the parallax image synthesis unit 16b generates a synthesized image group obtained by synthesizing the first parallax image group and the second parallax image group in parallel in the horizontal direction. That is, the control unit 18 allocates the first parallax image group and the second parallax image group to each of the plurality of regions by causing the parallax image synthesis unit 16b to generate a synthesized image group.
  • FIG. 7 is a diagram for explaining terms used for defining the reference viewpoint.
  • FIGS. 8A, 8B, 9A, 9B, 10 and 11 are performed by the control unit according to the first embodiment. It is a figure for demonstrating an example of a control process.
  • the definition shown in FIG. 7 is used to explain the position of the reference viewpoint.
  • the volume data is shown as a cube.
  • the surface located in front of the volume data is defined as “a”
  • the surface on the right side among the surfaces adjacent to the surface “a” is defined as “b”
  • the surface “a” The surface facing "" is defined as "c”.
  • the surface on the left side among the surfaces adjacent to the surface “a” is defined as “d”.
  • the upper surface among the surfaces adjacent to the surface “a” is defined as “e”
  • the lower surface among the surfaces adjacent to the surface “a” is defined as “f”. It is defined as
  • the viewpoint in the direction from the position facing the surface “a” toward the surface “a” is defined as “viewpoint a”.
  • the viewpoint in the direction from the position facing the surface “b” toward the surface “b” is defined as “viewpoint b”.
  • a viewpoint in a direction from the position facing the surface “c” toward the surface “c” is defined as “viewpoint c”.
  • a viewpoint in a direction from the position facing the surface “d” toward the surface “d” is defined as “viewpoint d”.
  • a viewpoint in a direction from the position facing the surface “e” toward the surface “e” is defined as “viewpoint e”.
  • a viewpoint in a direction from the position facing the surface “f” toward the surface “f” is defined as “viewpoint f”.
  • control unit 18 first receives “viewpoint a” as a reference viewpoint, as shown in FIG. 8A.
  • the control unit 18 sets nine viewpoints around the viewpoint a, thereby causing the rendering processing unit 16a to generate nine parallax images “a (1) to a (9)”.
  • the control unit 18 combines the nine parallax images “a (1) to a (9)” in the horizontal direction in the parallax image synthesis unit 16b.
  • An image group (9 synthesized images) is generated. That is, as shown in FIG.
  • the parallax image synthesis unit 16b reads “composite images“ a (1), a (1) ”, synthesized images“ a (2), a (2) ”,. ... Generate a composite image “a (9), a (9)” ”.
  • the control unit 18 displays the nine composite images shown in FIG. 8A on the monitor 2. Thereby, the observer can observe “stereoscopic image a” obtained by observing the volume data from the viewpoint a in each of the area A and the area B.
  • the control unit 18 has accepted that the reference viewpoint has been changed from “viewpoint a” to “viewpoint da” positioned between “viewpoint a” and “viewpoint d”. To do. In such a case, the control unit 18 sets nine viewpoints around the viewpoint da, thereby causing the rendering processing unit 16a to generate nine parallax images “da (1) to da (9)”. Then, as shown in FIG. 8B, the control unit 18 assigns the 9 parallax images “a (1) to a (9)” before the change to the region A to the parallax image synthesis unit 16b, and the 9 parallax images after the change.
  • “Da (1) to da (9)” are allocated to the region B and a combined image group (9 combined images) is generated. That is, as shown in FIG. 8B, the parallax image combining unit 16b “combined images“ a (1), da (1) ”, combined images“ a (2), da (2) ”,. The image “a (9), da (9)” ” is generated.
  • the control unit 18 displays the nine composite images shown in FIG. 8B on the monitor 2.
  • the observer can observe “stereoscopic image a” in which volume data is observed from the viewpoint a in the area A and “stereoscopic image da” in which volume data is observed from the viewpoint da in the area B.
  • the control unit 18 receives that the reference viewpoint has been changed from “viewpoint da” to “viewpoint ab” positioned between “viewpoint a” and “viewpoint b”. To do. In such a case, the control unit 18 sets nine viewpoints around the viewpoint ab, thereby causing the rendering processing unit 16a to generate nine parallax images “ab (1) to ab (9)”. Then, as illustrated in FIG. 9A, the control unit 18 assigns the 9 parallax images “a (1) to a (9)” before the change to the region A to the parallax image synthesis unit 16b, and the 9 parallax images after the change.
  • a composite image group (9 composite images) is generated by assigning “ab (1) to ab (9)” to the region B and combining them. That is, as illustrated in FIG. 9A, the parallax image combining unit 16b performs “composite image“ a (1), ab (1) ”, composite image“ a (2), ab (2) ”,. The image “a (9), ab (9)” ”is generated.
  • the control unit 18 displays the nine composite images shown in FIG. 9A on the monitor 2.
  • the observer can observe “stereoscopic image a” in which volume data is observed from viewpoint a in region A, and “stereoscopic image ab” in which volume data is observed from viewpoint ab in region B.
  • control unit 18 accepts that the reference viewpoint is changed from “viewpoint ab” to “viewpoint b” as shown in FIG. 9B.
  • the control unit 18 sets nine viewpoints around the viewpoint b, thereby causing the rendering processing unit 16a to generate nine parallax images “b (1) to b (9)”.
  • the control unit 18 assigns the 9 parallax images “a (1) to a (9)” before the change to the region A to the parallax image synthesis unit 16b, and the 9 parallax images after the change.
  • a composite image group (9 composite images) is generated by assigning “b (1) to b (9)” to the region B and combining them.
  • the parallax image combining unit 16b performs “composite images“ a (1), b (1) ”, composite images“ a (2), b (2) ”,.
  • the image “a (9), b (9)” ” is generated.
  • the control unit 18 displays the nine composite images shown in FIG. 9B on the monitor 2. Accordingly, the observer can observe “stereoscopic image a” in which volume data is observed from the viewpoint a in the area A and “stereoscopic image b” in which volume data is observed from the viewpoint b in the area B.
  • the parallax image group before the change that is the first parallax image group is fixed to the parallax image group that uses the first received reference viewpoint.
  • the present embodiment may be a case where the parallax image group before the change is a parallax image group using the reference viewpoint received immediately before the change of the reference viewpoint under the control of the control unit 18.
  • control unit 18 performs control so that the parallax image group immediately before the change is allocated to the region A and the parallax image group after the change is allocated to the region B.
  • the control unit 18 first allocates 9 parallax images of “stereoscopic image a” to the area A and the area B.
  • control unit 18 allocates nine parallax images of “stereoscopic image a” to the area A as shown in FIG. 9 parallax images are assigned to the region B.
  • control unit 18 allocates nine parallax images of “stereoscopic image da” to region A as shown in FIG. 9 parallax images are assigned to the region B. Then, in accordance with the reference viewpoint change from “viewpoint ab” to “viewpoint b”, the control unit 18 allocates nine parallax images of “stereoscopic image ab” to region A as shown in FIG. 9 parallax images are assigned to the region B.
  • the control unit 18 sets “area A, area B, and area C” obtained by dividing the display area of the monitor 2 into three from the left to the right. By setting the three areas, the control unit 18 can perform the second control as shown in FIG. For example, similarly to the above, it is assumed that the reference viewpoint is changed in the order of “viewpoint a”, “viewpoint da”, “viewpoint ab”, and “viewpoint b”.
  • the control unit 18 first allocates nine parallax images of “stereoscopic image a” to the regions A, B, and C. Then, as the reference viewpoint is changed from “viewpoint a” to “viewpoint da” on the left side, the control unit 18 converts the nine-parallax image of “stereoscopic image a” into the region B as illustrated in FIG. And 9 parallax images of “stereoscopic image da” are allocated to the left area A.
  • the control unit 18 “stereoscopic image da” as shown in FIG. are assigned to the left region A, the 9-parallax image “stereoscopic image a” is assigned to the central region B, and the 9-parallax image “stereoscopic image ab” is assigned to the left region C.
  • the control unit 18 continues to display the nine parallax images of “stereoscopic image da” on the left side as shown in FIG.
  • the 9-parallax image of “stereoscopic image ab” is allocated by changing from the area C to the central area B, and the 9-parallax image of “stereoscopic image b” is allocated to the left area C.
  • the change direction of the position of the reference viewpoint is not limited to the horizontal direction, but may be, for example, the vertical direction.
  • the display area division direction is the horizontal direction, and the parallax image group based on the changed reference viewpoint and the parallax image based on the reference viewpoint before the change
  • the observer can observe the three-dimensional ultrasonic image data in a wide range.
  • the division direction of the display area is horizontal, the observer can change the reference viewpoint in the vertical direction, and the stereoscopic images before and after the change are displayed in the horizontal direction in order. is there.
  • control unit 18 may perform the following modification as the second control. That is, the control unit 18 changes the division direction of the plurality of regions according to the moving direction of the reference viewpoint position.
  • 12A, 12B, and 12C are diagrams for describing a modification example related to the division of the display area.
  • the control unit 18 sets “area A, area B” in which the display area of the monitor 2 is divided into two from the lower side to the upper side. .
  • a control part performs 2nd control by the pattern shown to FIG. 12A. To do. That is, as illustrated in FIG. 12A, the control unit 18 first allocates nine parallax images of “stereoscopic image a” to the region A and the region B. Then, as the reference viewpoint is changed from “viewpoint a” to “viewpoint ae”, the control unit 18 allocates nine parallax images of “stereoscopic image a” to the region A as shown in FIG. The 9-parallax image of “stereoscopic image ae” that is the 9-parallax image of “viewpoint ae” is allocated to the region B.
  • the control unit 18 allocates nine parallax images of “stereoscopic image a” to the region A as shown in FIG.
  • the 9-parallax image of “stereoscopic image e” that is the 9-parallax image of “viewpoint e” is allocated to the region B.
  • the control unit 18 allocates nine parallax images of “stereoscopic image a” to the area A as shown in FIG.
  • the 9-parallax image of “stereoscopic image f” that is the 9-parallax image of “viewpoint f” is allocated to the region B.
  • the control unit 18 when the parallax image group before the change that is the first parallax image group is allocated to the region A as the parallax image group immediately before the change, and the parallax image group after the change is allocated to the region B, the control unit The second control is performed with the pattern shown. That is, as illustrated in FIG. 12B, the control unit 18 first allocates nine parallax images of “stereoscopic image a” to the region A and the region B. Then, as the reference viewpoint is changed from “viewpoint a” to “viewpoint ae”, the control unit 18 allocates nine parallax images of “stereoscopic image a” to the region A as shown in FIG. Nine parallax images of “stereoscopic image ae” are allocated to region B.
  • the control unit 18 allocates nine parallax images of “stereoscopic image ae” to the region A as shown in FIG. Nine parallax images of “stereoscopic image e” are allocated to region B. Then, as the reference viewpoint is changed from “viewpoint e” to “viewpoint f”, the control unit 18 allocates nine parallax images of “stereoscopic image e” to region A, as shown in FIG. Nine parallax images of “stereoscopic image f” are allocated to region B.
  • the control unit 18 when the pre-change parallax image group which is the first parallax image group is set as the parallax image group immediately before the change and the parallax image group is allocated according to the change direction of the reference viewpoint, the control unit The second control is performed with the pattern shown in 12C. That is, as illustrated in FIG. 12C, the control unit 18 first allocates 9 parallax images of “stereoscopic image a” to the area A and the area B. Then, as the reference viewpoint is changed upward from “viewpoint a” to “viewpoint ae”, the control unit 18 converts the nine-parallax image of “stereoscopic image a” to the lower side as illustrated in FIG. 12C. The 9-parallax image of the “stereoscopic image ae” is allocated to the area A and is allocated to the upper area B.
  • the control unit 18 converts the nine-parallax image of “stereoscopic image ae” to the lower side as illustrated in FIG. 12C.
  • the 9-parallax image of “stereoscopic image e” is assigned to the area A and is assigned to the area A.
  • the control unit 18 displays the nine-parallax image of “stereoscopic image f” on the lower side as shown in FIG. 12C. And the nine parallax images of “stereoscopic image e” are allocated to the upper region B.
  • the control by the control unit 18 described in the present embodiment is performed in the display area dividing direction. Can be executed even when the reference viewpoint changing direction is an oblique direction in a state where is fixed in the horizontal direction or the vertical direction.
  • the present embodiment may be a case in which the parallax image group based on the position of the first reference viewpoint is displayed as it is on the entire display area of the monitor 2.
  • control unit 18 generates a composite image group obtained by combining the parallax image groups before and after the change according to the division pattern of the display area and displays the composite image group on the monitor 2 that is a stereoscopic monitor. Can stereoscopically observe three-dimensional medical image data in a wide range simultaneously.
  • FIG. 13 is a flowchart for explaining processing of the ultrasonic diagnostic apparatus according to the first embodiment.
  • processing after a parallax image group is generated from volume data based on the position of the first reference viewpoint and displayed will be described.
  • the control unit 18 of the ultrasonic diagnostic apparatus determines whether or not a request for changing the reference viewpoint has been received (step S101). If the reference viewpoint change request is not received (No at Step S101), the control unit 18 waits until a reference viewpoint change request is received.
  • Step S101 when a request for changing the reference viewpoint is received (Yes at Step S101), the rendering processing unit 16a generates a parallax image group based on the changed reference viewpoint under the control of the control unit 18 (Step S102).
  • the parallax image synthesis unit 16b generates a composite image group of the post-change parallax image group and the pre-change parallax image group based on the division pattern of the display area of the monitor 2 ( Step S103).
  • the monitor 2 displays the composite image group (step S104) and ends the process.
  • the ultrasound diagnostic apparatus according to the first embodiment repeatedly executes the processes of steps S102 to S104 each time a request for changing the reference viewpoint is received.
  • the control unit 18 receives a change in the position of the reference viewpoint, and generates a parallax image group based on the received reference viewpoint after the change. Then, the control unit 18 divides the first parallax image group based on the reference viewpoint after the change and the second parallax image group based on the reference viewpoint before the change into a plurality of areas obtained by dividing the display area of the monitor 2. Allocate and display. Specifically, the control unit 18 generates a composite image group obtained by combining the parallax image groups before and after the change according to the division pattern of the display area, and displays the composite image group on the monitor 2 that is a stereoscopic monitor.
  • three-dimensional ultrasonic image data can be stereoscopically observed over a wide range at the same time.
  • the observer can observe a stereoscopic image of the coronary artery using multiple viewpoints simultaneously with a wide viewing angle. Can do.
  • the observer since the request for changing the position of the reference viewpoint is acquired from the observer by using the camera 2a, the input device 3, or the like as an interface, the observer can select a stereoscopic image from any of a plurality of viewpoints. Can be easily observed.
  • the observer can observe a stereoscopic image from any of multiple viewpoints without a sense of incongruity. Can do.
  • the control unit 18 may perform reduction control of the number of parallaxes as described below.
  • the control unit 18 has, as one of the parallax image groups based on the reference viewpoint, the number of parallax images obtained by reducing the number of parallaxes centered on the reference viewpoint from the predetermined number of parallaxes.
  • the rendering processor 16a generates a parallax image group with a reduced parallax number.
  • the control unit 18 controls to display at least one of a plurality of parallax image groups based on each of the plurality of reference viewpoints as a parallax number reduced parallax image group.
  • control unit 18 controls to display at least one of the first parallax image group and the second parallax image group as a parallax number reduced parallax image group.
  • control unit 18 performs control so that the parallax number reduced parallax image group based on the changed reference viewpoint and the parallax number reduced parallax image group based on the changed reference viewpoint are allocated and displayed in each of a plurality of regions. .
  • FIG. 14 is a diagram for explaining a modification of the first embodiment.
  • the control unit 18 sets to reduce the number of parallaxes of the nine parallax images displayed on the monitor 2 to “3”.
  • viewpoint (5) is set as a reference viewpoint.
  • the control unit 18 uses the reference viewpoint (5) and the viewpoint (4) and viewpoint (6) with the parallax angle “1 degree” around the reference viewpoint (5) as a parallax image with three parallaxes. It is set when the rendering processing unit 16a generates (3-parallax image).
  • control unit 18 renders, for example, an image in which the color of all pixels is white as an image instead of the parallax image group using the viewpoint (1) to the viewpoint (3) and the viewpoint (7) to the viewpoint (9). It is set when the processing unit 16a generates the data. Assume that the control unit 18 accepts that the reference viewpoint has been changed from “viewpoint a” to “viewpoint da” via the input device 3 in such a state as shown in FIG.
  • the control unit 18 sets the three viewpoints around the viewpoint da, thereby causing the rendering processing unit 16a to generate the three parallax images “da (3), da (4), da (5)”.
  • the rendering processing unit 16a generates three parallax images “a (3), a (4), a (5)” from three viewpoints centered on the viewpoint a.
  • the control unit 18 causes the parallax image synthesizing unit 16 b to display “synthesized image“ a (4), da (4) ”, synthesized image“ a (5), da (5) ”, A composite image group of composite images “a (6), da (6)” ”is generated.
  • the control unit 18 originally synthesized an image in which the colors of all the pixels are white instead of the composite image group using the viewpoint (1) to the viewpoint (3) and the viewpoint (7) to the viewpoint (9).
  • a composite image group is generated.
  • the control unit 18 causes the monitor 2 to display the composite image group generated in this way. Accordingly, as shown in FIG. 14, the observer observes “stereoscopic image a” in which volume data is observed from viewpoint a in area A, and “stereoscopic image da” in which volume data is observed from viewpoint da in area B. Can be observed. However, the region where the observer observes the “stereoscopic image a” and the “stereoscopic image da” at the same time is narrowed as shown in FIG. In this modification, it is desirable that the reference viewpoint change request is made via the input device 3 that does not involve the movement of the observer.
  • the stereoscopic images displayed as the parallax image group with the reduced number of parallaxes may be both the first parallax image group and the second parallax image group as described above, or the first parallax image group.
  • either one of the second parallax image groups may be used. Such selection may be performed manually by the operator, or may be performed by the control unit 18 automatically determining according to the processing load of the rendering processing unit 16a, for example. .
  • the parallax image group before and after the change of the position of the reference viewpoint is displayed simultaneously with the number of parallaxes being reduced. Real-time property can be secured.
  • FIGS. 15A, 15B, and 15C are diagrams for explaining the second embodiment.
  • the positions of the examiner and the subject P lying on the bed are determined in advance.
  • the viewpoint position (observation position) of the examiner with respect to the monitor 2 and the viewpoint position (observation position) of the subject P with respect to the monitor 2 are determined in advance as shown in FIG. 15A. Therefore, in the second embodiment, the viewpoint position of the examiner with respect to the monitor 2 and the viewpoint position of the subject P with respect to the monitor 2 are stored in advance as preset information in the internal storage unit 19.
  • control based on the preset information is performed so that the examiner and the subject P can simultaneously refer to a stereoscopic image based on the same composite image group.
  • the control unit 18 when the observation positions of a plurality of observers observing the monitor 2 are set in advance, the control unit 18 has the same image that each of the plurality of observers refers to at each observation position.
  • An image group is selected from the parallax image group, and control is performed so that the selected image group is displayed in each of a plurality of regions.
  • the control unit 18 selects “a viewpoint (3) parallax image, a viewpoint (4) parallax image from among a parallax image of the viewpoint (1) to a parallax image of the viewpoint (9)”.
  • the parallax image of the reference viewpoint (5) and the parallax image of the viewpoint (6) ” are selected as a display parallax image group.
  • the control unit 18 determines that the display parallax image group is arranged as shown in FIG. 15B so that the examiner and the subject P can observe each other.
  • control unit 18 selects a parallax image group for display from “viewpoint (3) to viewpoint (6) parallax images, color of all pixels” in nine columns of pixels 202 (see FIG. 3). Are arranged in the order of “white images (hereinafter referred to as image W), parallax images from viewpoint (3) to viewpoint (6)”.
  • the control unit 18 accepts that the reference viewpoint has been changed from “viewpoint ab” to “viewpoint b” in a state where such setting has been made.
  • the control unit 18 sets four viewpoints with the viewpoint b as the center, whereby the four-parallax images “b (3), b (4), b (5), and b (6) are displayed in the rendering processing unit 16a. Is generated.
  • the rendering processing unit 16a generates four parallax images “ab (3), ab (4), ab (5), ab (6)” from three viewpoints centered on the viewpoint ab.
  • control unit 18 sends to the parallax image synthesis unit 16b “composite images“ ab (3), b (3) ”, composite images“ ab (4), b (4) ”, and composite image“ ab (5) ”.
  • B (5) composite image“ ab (6), b (6) ”, composite image“ image W, image W ””.
  • each observer can observe three-dimensional ultrasonic image data in a wide range at the same time in a three-dimensional manner.
  • the monitor 2 is a 9-parallax monitor has been described.
  • the first and second embodiments described above are applicable even when the monitor 2 is a two-parallax monitor.
  • first and second embodiments described above a case has been described in which a plurality of reference viewpoint positions are received by sequentially receiving changes in the position of the reference viewpoint in time series.
  • the above-described first and second embodiments can be applied even when the positions of a plurality of reference viewpoints are received collectively.
  • 16 and 17 are diagrams for explaining modifications of the first embodiment and the second embodiment.
  • the observer designates “viewpoint a” and “viewpoint da” as two reference viewpoints using a joystick, a trackball, a mouse, or the like.
  • the control unit 18 accepts “viewpoint a” and “viewpoint da” as two reference viewpoints.
  • the rendering processing unit 16 a performs 9 parallax images “a (1) to a (9)” with “viewpoint a” as the reference viewpoint and 9 with “viewpoint da” as the reference viewpoint.
  • the parallax images “da (1) to da (9)” are generated.
  • the parallax image synthesis unit 16b generates each of the 9 parallax images “a (1) to a (9)” and each of the 9 parallax images “da (1) to da (9)”.
  • a synthesized composite image group is generated.
  • the monitor 2 displays the “stereoscopic image a” in the region A and displays the “stereoscopic image da” in the region B.
  • the control unit 18 may receive three or more reference viewpoint positions at a time. For example, as shown in FIG. 17, the observer designates “viewpoint a”, “viewpoint da”, and “viewpoint ab” as the three reference viewpoints. As a result, the control unit 18 receives “viewpoint a” and “viewpoint da” as three reference viewpoints. Then, under the control of the control unit 18, the rendering processing unit 16 a has nine parallax images “a (1) to a (9)” with “viewpoint a” as a reference viewpoint, and 9 with “viewpoint da” as a reference viewpoint.
  • Parallax images “da (1) to da (9)” and 9 parallax images “ab (1) to ab (9)” with “viewpoint ab” as a reference viewpoint are generated.
  • the parallax image synthesis unit 16b includes each of the 9 parallax images “a (1) to a (9)” and each of the 9 parallax images “da (1) to da (9)”.
  • a composite image group is generated by combining the nine parallax images “ab (1) to ab (9)”.
  • the monitor 2 displays “stereoscopic image da” in the region A, displays “stereoscopic image a” in the region B, and displays “stereoscopic image ab” in the region C. To do.
  • the position of the reference viewpoint that the control unit 18 collectively receives in the present modification may be specified by the observer, or may be a case where the position is initially set in advance. good. Also in this modified example, a parallax image group with a reduced number of parallaxes may be used.
  • the ultrasonic diagnostic apparatus that is a medical image diagnostic apparatus
  • three-dimensional ultrasonic image data for three-dimensionally observing simultaneously in a wide range.
  • the case where the control is performed has been described.
  • the processing described in the first embodiment, the second embodiment, and the modification described above is not limited to the ultrasonic diagnostic apparatus, but an X-ray CT apparatus that can generate volume data that is three-dimensional medical image data.
  • a medical image diagnostic apparatus such as an MRI apparatus.
  • the processing described in the first embodiment, the second embodiment, and the modification described above may be executed by an image processing apparatus installed independently of the medical image diagnostic apparatus.
  • the image processing apparatus having the functions of the volume data processing unit 16 and the control unit 18 shown in FIG. 1 manages a database of PACS (Picture Archiving and Communication Systems), which is a system for managing various medical image data.
  • the volume data which is three-dimensional medical image data, is received from a database or the like of an electronic medical record system that manages an electronic medical record to which a medical image is attached, and is described in the first embodiment, the second embodiment, and the modified example. It is also possible to perform the above-described processing.
  • three-dimensional medical image data can be observed stereoscopically in a wide range simultaneously.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Graphics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)

Abstract

 実施形態の超音波診断装置は、モニタ(2)と、レンダリング処理部(16a)と、制御部(18)とを備える。モニタ(2)は、所定視差数の視差画像である視差画像群を表示し、観察者により立体的に認識される立体画像を表示する。レンダリング処理部(16a)は、ボリュームデータに対して基準視点を中心とする複数視点からボリュームレンダリング処理を行なうことで視差画像群を生成する。制御部(18)は、基準視点の位置として複数の基準視点の位置を受け付け、当該受け付けた複数の基準視点それぞれに基づく視差画像群をレンダリング処理部(16a)に生成させる。そして、制御部(18)は、複数の基準視点それぞれに基づく複数の視差画像群それぞれを、モニタ(2)の表示領域を分割した複数の領域それぞれに割り振って表示させるように制御する。

Description

医用画像診断装置、画像処理装置及び超音波診断装置
 本発明の実施形態は、医用画像診断装置、画像処理装置及び超音波診断装置に関する。
 従来、2つの視点から撮影された2つの視差画像をモニタに表示することで、例えば、立体視用メガネ等の専用機器を用いた観察者が立体的に認識できる立体画像を表示する技術がある。また、近年、レンチキュラーレンズ等の光線制御子を用いて、複数の視点から撮影された多視差画像(例えば、9つの視差画像)をモニタに表示することで、裸眼の観察者に立体画像を表示する技術がある。
 一方、超音波診断装置やX線CT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置等の医用画像診断装置では、3次元の医用画像データ(ボリュームデータ)を生成可能な装置が実用化されている。従来、かかる医用画像診断装置により生成されたボリュームデータは、種々の画像処理(レンダリング処理)により2次元画像(レンダリング画像)とされ、汎用モニタ上にて2次元表示される。例えば、医用画像診断装置により生成されたボリュームデータは、ボリュームレンダリングにより3次元の情報を反映した2次元画像(ボリュームレンダリング画像)とされ、汎用モニタ上にて2次元表示される。
 また、医用画像診断装置により生成されたボリュームデータに対して多視点からボリュームレンダリングすることで生成されたボリュームレンダリング画像を、上記の立体視可能なモニタにて立体的に表示させることが検討されている。しかし、立体視可能なモニタで立体視される立体画像は、所定視差数の視差画像群を用いているため、ボリュームデータを広範囲で同時に観察することができなかった。
特開2005-86414号公報
 本発明が解決しようとする課題は、3次元の医用画像データを広範囲で同時に立体的に観察することができる医用画像診断装置、画像処理装置及び超音波診断装置提供することである。
 実施形態の医用画像診断装置は、表示部と、レンダリング処理部と、第1制御部と、第2制御部とを備える。表示部は、画像間の視差角が所定角度となる所定視差数の視差画像である視差画像群を表示し、観察者により立体的に認識される立体画像を表示する。レンダリング処理部は、3次元の医用画像データであるボリュームデータに対して基準視点を中心とする複数視点からボリュームレンダリング処理を行なうことで前記視差画像群を生成する。第1制御部は、前記基準視点の位置として複数の基準視点の位置を受け付け、当該受け付けた複数の基準視点それぞれに基づく視差画像群を前記レンダリング処理部に生成させる。第2制御部は、前記複数の基準視点それぞれに基づく複数の視差画像群それぞれを、前記表示部の表示領域を分割した複数の領域それぞれに割り振って表示させるように制御する。
図1は、第1の実施形態に係る超音波診断装置の構成例を説明するための図である。 図2Aは、2視差画像により立体表示を行なう立体表示モニタの一例を説明するための図(1)である。 図2Bは、2視差画像により立体表示を行なう立体表示モニタの一例を説明するための図(2)である。 図3は、9視差画像により立体表示を行なう立体表示モニタの一例を説明するための図である。 図4は、視差画像群を生成するためのボリュームレンダリング処理の一例を説明するための図である。 図5Aは、基準視点の位置の変更を受け付ける方法の一例を説明するための図(1)である。 図5Bは、基準視点の位置の変更を受け付ける方法の一例を説明するための図(2)である。 図6は、モニタの表示領域の分割例を説明するための図である。 図7は、基準視点の定義に用いる用語を説明するための図である。 図8Aは、第1の実施形態に係る制御部が行なう制御処理の一例を説明するための図(1)である。 図8Bは、第1の実施形態に係る制御部が行なう制御処理の一例を説明するための図(2)である。 図9Aは、第1の実施形態に係る制御部が行なう制御処理の一例を説明するための図(3)である。 図9Bは、第1の実施形態に係る制御部が行なう制御処理の一例を説明するための図(4)である。 図10は、第1の実施形態に係る制御部が行なう制御処理の一例を説明するための図(5)である。 図11は、第1の実施形態に係る制御部が行なう制御処理の一例を説明するための図(6)である。 図12Aは、表示領域の分割に係る変形例を説明するための図(1)である。 図12Bは、表示領域の分割に係る変形例を説明するための図(2)である。 図12Cは、表示領域の分割に係る変形例を説明するための図(3)である。 図13は、第1の実施形態に係る超音波診断装置の処理を説明するためのフローチャートである。 図14は、第1の実施形態の変形例を説明するための図である。 図15Aは、第2の実施形態を説明するための図(1)である。 図15Bは、第2の実施形態を説明するための図(2)である。 図15Cは、第2の実施形態を説明するための図(3)である。 図16は、第1の実施形態及び第2の実施形態の変形例を説明するための図(1)である。 図17は、第1の実施形態及び第2の実施形態の変形例を説明するための図(2)である。
 以下、添付図面を参照して、超音波診断装置の実施形態を詳細に説明する。
 最初に、以下の実施形態で用いる用語について説明すると、「視差画像群」とは、ボリュームデータに対して、所定の視差角ずつ視点位置を移動させてボリュームレンダリング処理を行なうことで生成された画像群のことである。すなわち、「視差画像群」は、「視点位置」が異なる複数の「視差画像」から構成される。また、「視差角」とは、「視差画像群」を生成するために設定された各視点位置のうち隣接する視点位置とボリュームデータによって表される空間内の所定位置(例えば、空間の中心)とにより定まる角度のことである。また、「視差数」とは、立体表示モニタにて立体視されるために必要となる「視差画像」の数のことである。また、以下で記載する「9視差画像」とは、9つの「視差画像」から構成される「視差画像群」のことである。また、以下で記載する「2視差画像」とは、2つの「視差画像」から構成される「視差画像群」のことである。また、「立体画像」とは、「視差画像群」を表示する立体表示モニタを参照する観察者により立体視される画像のことである。
(第1の実施形態)
 まず、第1の実施形態に係る超音波診断装置の構成について説明する。図1は、第1の実施形態に係る超音波診断装置の構成例を説明するための図である。図1に示すように、第1の実施形態に係る超音波診断装置は、超音波プローブ1と、モニタ2と、入力装置3と、装置本体10とを有する。
 超音波プローブ1は、複数の圧電振動子を有し、これら複数の圧電振動子は、後述する装置本体10が有する送信部11から供給される駆動信号に基づき超音波を発生する。また、超音波プローブ1は、被検体Pからの反射波を受信して電気信号に変換する。また、超音波プローブ1は、圧電振動子に設けられる整合層と、圧電振動子から後方への超音波の伝播を防止するバッキング材等を有する。なお、超音波プローブ1は、装置本体10と着脱自在に接続される。
 超音波プローブ1から被検体Pに超音波が送信されると、送信された超音波は、被検体Pの体内組織における音響インピーダンスの不連続面で次々と反射され、反射波信号として超音波プローブ1が有する複数の圧電振動子にて受信される。受信される反射波信号の振幅は、超音波が反射される不連続面における音響インピーダンスの差に依存する。なお、送信された超音波パルスが、移動している血流や心臓壁等の表面で反射された場合の反射波信号は、ドプラ効果により、移動体の超音波送信方向に対する速度成分に依存して、周波数偏移を受ける。
 ここで、第1の実施形態に係る超音波プローブ1は、超音波により被検体Pを2次元で走査するとともに、被検体Pを3次元で走査することが可能な超音波プローブである。具体的には、第1の実施形態に係る超音波プローブ1は、被検体Pを2次元で走査する複数の超音波振動子を所定の角度(揺動角度)で揺動させることで、被検体Pを3次元で走査するメカニカルスキャンプローブである。或いは、第1の実施形態に係る超音波プローブ1は、複数の超音波振動子がマトリックス状に配置されることで、被検体Pを3次元で超音波走査することが可能な2次元超音波プローブである。なお、2次元超音波プローブは、超音波を集束して送信することで、被検体Pを2次元で走査することも可能である。
 入力装置3は、マウス、キーボード、ボタン、パネルスイッチ、タッチコマンドスクリーン、フットスイッチ、トラックボール、ジョイスティック等を有し、超音波診断装置の操作者からの各種設定要求を受け付け、装置本体10に対して受け付けた各種設定要求を転送する。
 モニタ2は、超音波診断装置の操作者が入力装置3を用いて各種設定要求を入力するためのGUI(Graphical User Interface)を表示したり、装置本体10において生成された超音波画像等を表示したりする。
 ここで、第1の実施形態に係るモニタ2は、画像間の視差角が所定角度となる所定視差数の視差画像である視差画像群を表示し、観察者により立体的に認識される立体画像を表示するモニタ(以下、立体表示モニタ)である。以下、立体表示モニタについて説明する。
 現在最も普及している一般的な汎用モニタは、2次元画像を2次元で表示するものであり、2次元画像を立体表示することができない。仮に、観察者が汎用モニタにて立体視を要望する場合、汎用モニタに対して画像を出力する装置は、平行法や交差法により観察者が立体視可能な2視差画像を並列表示させる必要がある。又は、汎用モニタに対して画像を出力する装置は、例えば、左目用の部分に赤色のセロハンが取り付けられ、右目用の部分に青色のセロハンが取り付けられたメガネを用いて余色法により観察者が立体視可能な画像を表示する必要がある。
 一方、立体表示モニタとしては、2視差画像(両眼視差画像とも称する)を表示することで、両眼視差による立体視を可能とするモニタ(以下、2視差モニタと記載する)がある。
 図2A及び図2Bは、2視差画像により立体表示を行なう立体表示モニタの一例を説明するための図である。図2A及び図2Bに示す一例は、シャッター方式により立体表示を行なう立体表示モニタであり、モニタを観察する観察者が装着する立体視用メガネとしてシャッターメガネが用いられる。かかる立体表示モニタは、モニタにて2視差画像を交互に出射する。例えば、図2Aに示すモニタは、左目用の画像と右目用の画像を、120Hzにて交互に出射する。ここで、モニタには、図2Aに示すように、赤外線出射部が設置され、赤外線出射部は、画像が切り替わるタイミングに合わせて赤外線の出射を制御する。
 また、赤外線出射部から出射された赤外線は、図2Aに示すシャッターメガネの赤外線受光部により受光される。シャッターメガネの左右それぞれの枠には、シャッターが取り付けられており、シャッターメガネは、赤外線受光部が赤外線を受光したタイミングに合わせて左右のシャッターそれぞれの透過状態及び遮光状態を交互に切り替える。以下、シャッターにおける透過状態及び遮光状態の切り替え処理について説明する。
 各シャッターは、図2Bに示すように、入射側の偏光板と出射側の偏光板とを有し、更に、入射側の偏光板と出射側の偏光板との間に液晶層を有する。また、入射側の偏光板と出射側の偏光板とは、図2Bに示すように、互いに直交している。ここで、図2Bに示すように、電圧が印加されていない「OFF」の状態では、入射側の偏光板を通った光は、液晶層の作用により90度回転し、出射側の偏光板を透過する。すなわち、電圧が印加されていないシャッターは、透過状態となる。
 一方、図2Bに示すように、電圧が印加された「ON」の状態では、液晶層の液晶分子による偏光回転作用が消失するため、入射側の偏光板を通った光は、出射側の偏光板で遮られてしまう。すなわち、電圧が印加されたシャッターは、遮光状態となる。
 そこで、例えば、赤外線出射部は、モニタ上に左目用の画像が表示されている期間、赤外線を出射する。そして、赤外線受光部は、赤外線を受光している期間、左目のシャッターに電圧を印加せず、右目のシャッターに電圧を印加させる。これにより、図2Aに示すように、右目のシャッターが遮光状態となり、左目のシャッターが透過状態となるため、観察者の左目に左目用の画像が入射する。一方、赤外線出射部は、モニタ上に右目用の画像が表示されている期間、赤外線の出射を停止する。そして、赤外線受光部は、赤外線が受光されない期間、右目のシャッターに電圧を印加せず、左目のシャッターに電圧を印加させる。これにより、左目のシャッターが遮光状態となり、右目のシャッターが透過状態であるため、観察者の右目に右目用の画像が入射する。このように、図2A及び図2Bに示す立体表示モニタは、モニタに表示される画像とシャッターの状態を連動させて切り替えることで、観察者が立体視可能な画像を表示させる。
 なお、2視差モニタとしては、シャッター方式により立体表示を行なう装置以外にも、偏光メガネ方式により立体表示を行なう装置や、視差バリア方式により立体表示を行なう装置等がある。
 更に、近年実用化された立体表示モニタとしては、レンチキュラーレンズ等の光線制御子を用いることで、例えば、9視差画像等の多視差画像を観察者が裸眼にて立体視可能とするものがある。かかる立体表示モニタは、両眼視差による立体視を可能とし、更に、観察者の視点移動に合わせて観察される映像も変化する運動視差による立体視も可能とする。
 図3は、9視差画像により立体表示を行なう立体表示モニタの一例を説明するための図である。図3に示す立体表示モニタには、液晶パネル等の平面状の表示面200の前面に、光線制御子が配置される。例えば、図3に示す立体表示モニタには、光線制御子として、光学開口が垂直方向に延びる垂直レンチキュラーシート201が表示面200の前面に貼り付けられている。なお、図3に示す一例では、垂直レンチキュラーシート201の凸部が前面となるように貼り付けられているが、垂直レンチキュラーシート201の凸部が表示面200に対向するように貼り付けられる場合であっても良い。
 表示面200には、図3に示すように、縦横比が3:1であり、縦方向にサブ画素である赤(R)、緑(G)、青(B)の3つが配置された画素202がマトリクス状に配置される。図3に示す立体表示モニタは、9つの画像により構成される9視差画像を、所定フォーマット(例えば格子状)に配置した中間画像に変換したうえで、表示面200に出力する。すなわち、図3に示す立体表示モニタは、9視差画像にて同一位置にある9つの画素それぞれを、9列の画素202に割り振って出力させる。9列の画素202は、視点位置の異なる9つの画像を同時に表示する単位画素群203となる。
 表示面200において単位画素群203として同時に出力された9視差画像は、例えば、LED(Light Emitting Diode)バックライトにより平行光として放射され、更に、垂直レンチキュラーシート201により、多方向に放射される。9視差画像の各画素の光が多方向に放射されることにより、観察者の右目及び左目に入射する光は、観察者の位置(視点の位置)に連動して変化する。すなわち、観察者の見る角度により、右目に入射する視差画像と左目に入射する視差画像とは、視差角が異なる。これにより、観察者は、例えば、図3に示す9つの位置それぞれにおいて、撮影対象を立体的に視認できる。また、観察者は、例えば、図3に示す「5」の位置において、撮影対象に対して正対した状態で立体的に視認できるとともに、図3に示す「5」以外それぞれの位置において、撮影対象の向きを変化させた状態で立体的に視認できる。なお、図3に示す立体表示モニタは、あくまでも一例である。9視差画像を表示する立体表示モニタは、図3に示すように、「RRR・・・、GGG・・・、BBB・・・」の横ストライプ液晶である場合であっても良いし、「RGBRGB・・・」の縦ストライプ液晶である場合であっても良い。また、図3に示す立体表示モニタは、図3に示すように、レンチキュラーシートが垂直となる縦レンズ方式である場合であっても良いし、レンチキュラーシートが斜めとなる斜めレンズ方式である場合であっても良い。以下、図3を用いて説明した立体表示モニタを9視差モニタと記載する。
 すなわち、2視差モニタは、画像間の視差角が所定角度となる2つの視差画像である視差画像群(2視差画像)を表示することで、観察者により立体的に認識される立体画像を表示する立体表示モニタである。また、9視差モニタは、画像間の視差角が所定角度となる9つの視差画像である視差画像群(9視差画像)を表示することで、観察者により立体的に認識される立体画像を表示する立体表モニタである。
 なお、第1の実施形態は、モニタ2が2視差モニタである場合であっても、9視差モニタである場合であっても適用可能である。以下では、モニタ2が9視差モニタである場合について説明する。
 図1に戻って、装置本体10は、超音波プローブ1が受信した反射波に基づいて超音波画像データを生成する装置である。具体的には、第1の実施形態に係る装置本体10は、超音波プローブ1が受信した3次元の反射波データに基づいて3次元の超音波画像データを生成可能な装置である。以下、3次元の超音波画像データを「ボリュームデータ」と記載する。
 装置本体10は、図1に示すように、送信部11と、受信部12と、Bモード処理部13と、ドプラ処理部14と、画像生成部15と、ボリュームデータ処理部16と、画像メモリ17と、制御部18と、内部記憶部19とを有する。
 送信部11は、トリガ発生回路、送信遅延回路及びパルサ回路等を有し、超音波プローブ1に駆動信号を供給する。パルサ回路は、所定のレート周波数で、送信超音波を形成するためのレートパルスを繰り返し発生する。また、送信遅延回路は、超音波プローブ1から発生される超音波をビーム状に集束して送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルサ回路が発生する各レートパルスに対し与える。また、トリガ発生回路は、レートパルスに基づくタイミングで、超音波プローブ1に駆動信号(駆動パルス)を印加する。すなわち、遅延回路は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面からの送信方向を任意に調整する。
 なお、送信部11は、後述する制御部18の指示に基づいて、所定のスキャンシーケンスを実行するために、送信周波数、送信駆動電圧等を瞬時に変更可能な機能を有している。特に、送信駆動電圧の変更は、瞬間にその値を切り替え可能なリニアアンプ型の発信回路、または、複数の電源ユニットを電気的に切り替える機構によって実現される。
 受信部12は、アンプ回路、A/D変換器、加算器等を有し、超音波プローブ1が受信した反射波信号に対して各種処理を行なって反射波データを生成する。アンプ回路は、反射波信号をチャンネルごとに増幅してゲイン補正処理を行なう。A/D変換器は、ゲイン補正された反射波信号をA/D変換し、デジタルデータに受信指向性を決定するのに必要な遅延時間を与える。加算器は、A/D変換器によって処理された反射波信号の加算処理を行なって反射波データを生成する。加算器の加算処理により、反射波信号の受信指向性に応じた方向からの反射成分が強調される。
 このように、送信部11及び受信部12は、超音波の送受信における送信指向性と受信指向性とを制御する。
 ここで、第1の実施形態に係る送信部11は、超音波プローブ1から被検体Pに対して3次元の超音波ビームを送信させる。そして、第1の実施形態に係る受信部12は、超音波プローブ1が受信した3次元の反射波信号から3次元の反射波データを生成する。
 Bモード処理部13は、受信部12から反射波データを受信し、対数増幅、包絡線検波処理等を行なって、信号強度が輝度の明るさで表現されるデータ(Bモードデータ)を生成する。
 ドプラ処理部14は、受信部12から受信した反射波データから速度情報を周波数解析し、ドプラ効果による血流や組織、造影剤エコー成分を抽出し、平均速度、分散、パワー等の移動体情報を多点について抽出したデータ(ドプラデータ)を生成する。
 なお、第1の実施形態に係るBモード処理部13及びドプラ処理部14は、2次元の反射波データ及び3次元の反射波データの両方について処理可能である。すなわち、Bモード処理部13は、2次元の反射波データから2次元のBモードデータを生成し、3次元の反射波データから3次元のBモードデータを生成する。また、ドプラ処理部14は、2次元の反射波データから2次元のドプラデータを生成し、3次元の反射波データから3次元のドプラデータを生成する。
 画像生成部15は、Bモード処理部13及びドプラ処理部14が生成したデータから超音波画像データを生成する。すなわち、画像生成部15は、Bモード処理部13が生成した2次元のBモードデータから反射波の強度を輝度にて表したBモード画像データを生成する。また、画像生成部15は、ドプラ処理部14が生成した2次元のドプラデータから移動体情報を表す平均速度画像、分散画像、パワー画像、又は、これらの組み合わせ画像としてのカラードプラ画像データを生成する。
 ここで、画像生成部15は、一般的には、超音波走査の走査線信号列を、テレビなどに代表されるビデオフォーマットの走査線信号列に変換(スキャンコンバート)し、表示用の超音波画像データを生成する。具体的には、画像生成部15は、超音波プローブ1による超音波の走査形態に応じて座標変換を行なうことで、表示用の超音波画像データを生成する。また、画像生成部15は、超音波画像データに、種々のパラメータの文字情報、目盛り、ボディーマーク等を合成する。
 更に、画像生成部15は、Bモード処理部13が生成した3次元のBモードデータに対して座標変換を行なうことで、3次元のBモード画像データを生成する。また、画像生成部15は、ドプラ処理部14が生成した3次元のドプラデータに対して座標変換を行なうことで、3次元のカラードプラ画像データを生成する。すなわち、画像生成部15は、「3次元のBモード画像データや3次元のカラードプラ画像データ」を「3次元の超音波画像データであるボリュームデータ」として生成する。
 ボリュームデータ処理部16は、画像生成部15が生成したボリュームデータから表示用の超音波画像データを生成する。
 具体的には、ボリュームデータ処理部16は、図1に示すように、レンダリング処理部16a及び視差画像合成部16bを有する。
 レンダリング処理部16aは、ボリュームデータをモニタ2にて表示するための各種画像(2次元画像)を生成するために、ボリュームデータに対してレンダリング処理を行なう処理部である。レンダリング処理部16aが行なうレンダリング処理としては、断面再構成法(MPR:Multi Planer Reconstruction)を行なってボリュームデータからMPR画像を再構成する処理がある。また、レンダリング処理部16aが行なうレンダリング処理としては、ボリュームデータに対して「Curved MPR」を行なう処理や、ボリュームデータに対して「Intensity Projection」を行なう処理がある。
 更に、レンダリング処理部16aが行なうレンダリング処理としては、3次元の情報を反映した2次元画像(ボリュームレンダリング画像)を生成するボリュームレンダリング処理がある。すなわち、レンダリング処理部16aは、3次元の超音波画像データであるボリュームデータに対して基準視点を中心とする複数視点からボリュームレンダリング処理を行なうことで視差画像群を生成する。具体的には、レンダリング処理部16aは、モニタ2が9視差モニタであることから、ボリュームデータに対して基準視点を中心とする9つの視点からボリュームレンダリング処理を行なうことで、9視差画像を生成する。
 レンダリング処理部16aは、後述する制御部18の制御の下、図4に示すボリュームレンダリング処理を行なうことで9視差画像を生成する。図4は、視差画像群を生成するためのボリュームレンダリング処理の一例を説明するための図である。
 例えば、レンダリング処理部16aが、図4の「9視差画像生成方式(1)」に示すように、レンダリング条件として、平行投影法を受け付け、更に、基準視点の位置(5)と視差角「1度」とを受け付けたとする。かかる場合、レンダリング処理部16aは、視差角が「1度」おきとなるように、視点の位置を(1)~(9)に平行移動して、平行投影法により視差角(視線方向間の角度)が1度ずつ異なる9つの視差画像を生成する。なお、平行投影法を行なう場合、レンダリング処理部16aは、視線方向に沿って無限遠から平行な光線を照射する光源を設定する。
 或いは、レンダリング処理部16aが、図4の「9視差画像生成方式(2)」に示すように、レンダリング条件として、透視投影法を受け付け、更に、基準視点の位置(5)と視差角「1度」とを受け付けたとする。かかる場合、レンダリング処理部16aは、ボリュームデータの中心(重心)を中心に視差角が「1度」おきとなるように、視点の位置を(1)~(9)に回転移動して、透視投影法により視差角が1度ずつ異なる9つの視差画像を生成する。なお、透視投影法を行なう場合、レンダリング処理部16aは、視線方向を中心に光を3次元的に放射状に照射する点光源や面光源を各視点にて設定する。また、透視投影法を行なう場合、レンダリング条件によっては、視点(1)~(9)は、平行移動される場合であってもよい。
 なお、レンダリング処理部16aは、表示されるボリュームレンダリング画像の縦方向に対しては、視線方向を中心に光を2次元的に放射状に照射し、表示されるボリュームレンダリング画像の横方向に対しては、視線方向に沿って無限遠から平行な光線を照射する光源を設定することで、平行投影法と透視投影法とを併用したボリュームレンダリング処理を行なってもよい。
 このようにして生成された9つの視差画像が、視差画像群である。すなわち、視差画像群は、ボリュームデータから生成された立体表示用の超音波画像群である。
 なお、モニタ2が2視差モニタである場合、レンダリング処理部16aは、基準視点を中心にして、例えば、視差角が「1度」となる2つの視点を設定することで、2視差画像を生成する。
 ここで、画像生成部15は、表示用の視差画像群に、視差画像群以外の情報(文字情報、目盛り、ボディーマーク等)を合成し、制御部18の制御の下、ビデオ信号としてモニタ2に出力する。
 また、図1に示す視差画像合成部16bは、レンダリング処理部16aが異なる基準視点を用いて生成した複数の視差画像群を合成することで、視差画像群として用いられる合成画像群を生成する。なお、視差画像合成部16bについては、後に詳述する。
 画像メモリ17は、画像生成部15及びボリュームデータ処理部16が生成した画像データを記憶するメモリである。また、画像メモリ17は、Bモード処理部13やドプラ処理部14が生成したデータを記憶することも可能である。
 内部記憶部19は、超音波送受信、画像処理及び表示処理を行なうための制御プログラムや、診断情報(例えば、患者ID、医師の所見等)や、診断プロトコルや各種ボディーマーク等の各種データを記憶する。また、内部記憶部19は、必要に応じて、画像メモリ17が記憶する画像データの保管等にも使用される。
 制御部18は、超音波診断装置の処理全体を制御する。具体的には、制御部18は、入力装置3を介して操作者から入力された各種設定要求や、内部記憶部19から読込んだ各種制御プログラム及び各種データに基づき、送信部11、受信部12、Bモード処理部13、ドプラ処理部14、画像生成部15及びボリュームデータ処理部16の処理を制御する。
 また、制御部18は、画像メモリ17や内部記憶部19が記憶する表示用の超音波画像データをモニタ2にて表示するように制御する。具体的には、第1の実施形態に係る制御部18は、9視差画像を所定フォーマット(例えば格子状)に配置した中間画像に変換し、立体表示モニタとしてのモニタ2に出力することで、観察者(超音波診断装置の操作者)により立体的に認識される立体画像を表示させる。
 以上、第1の実施形態に係る超音波診断装置の全体構成について説明した。かかる構成のもと、第1の実施形態に係る超音波診断装置は、3次元の超音波画像データであるボリュームデータを生成し、生成した超音波ボリュームデータから視差画像群を生成する。そして、第1の実施形態に係る超音波診断装置は、モニタ2にて視差画像群を表示する。これにより、超音波診断装置の操作者である観察者は、3次元の超音波画像データを立体的に観察することができる。
 しかし、立体視モニタであるモニタ2で立体視される立体画像は、9視差画像のように、所定視差数の視差画像群を用いているため、ボリュームデータを広範囲で同時に観察することができなかった。
 そこで、第1の実施形態に係る超音波診断装置の制御部18は、3次元の超音波画像データを広範囲で同時に立体的に観察することができるように、以下に説明する制御を行なう。
 すなわち、第1の実施形態に係る制御部18は、第1制御において、基準視点の位置として複数の基準視点の位置を受け付け、当該受け付けた複数の基準視点それぞれに基づく視差画像群をレンダリング処理部16aに生成させる。以下に説明する第1の実施形態では、制御部18は、基準視点の位置の変更を時系列に沿って順次受け付けることで、複数の基準視点の位置を受け付ける。従って、第1の実施形態に係る制御部18は、第1制御として、基準視点の位置の変更を受け付けるごとに、当該受け付けた変更後の基準視点に基づく視差画像群をレンダリング処理部16aに生成させる。
 第1制御において、制御部18が基準視点の位置の変更を受け付ける方法について、図5A及び図5Bを用いて説明する。図5A及び図5Bは、基準視点の位置の変更を受け付ける方法の一例を説明するための図である。
 図5Aに示す一例は、観察者の移動を検出する検出部として、モニタ2に取り付けたカメラ2aを用いる方法である。すなわち、カメラ2aは、図5Aに示すように、観察者を撮影することで、観察者の移動を検出する。そして、制御部18は、図5Aに示すように、検出部であるカメラ2aが検出した観察者のモニタ2に対する移動(移動量及び移動方向)に基づいて、基準視点の位置の変更を受け付ける。
 具体的には、カメラ2aは、顔認識機能を有する。そして、カメラ2aは、実空間における観察者の顔を顔認識機能により追跡(トラッキング)し、更に、認識した観察者の顔のモニタ2に対する移動量及び移動方向を制御部18に転送する。制御部18は、観察者の顔のモニタ2に対する移動量及び移動方向に応じて、ボリュームデータに対する基準視点の位置を変更する。
 一方、図5Bに示す一例は、入力装置3が有するジョイスティックを用いる方法である。すなわち、入力装置3が有するジョイスティックは、図5Bに示すように、基準視点の位置を変更する操作を受け付ける。具体的には、ジョイスティックは、モニタ2の観察者から基準視点の位置を変更する操作を受け付ける。そして、制御部18は、図5Bに示すように、入力装置3が有するジョイスティックが受け付けた観察者の操作情報に基づいて、基準視点の位置の変更を受け付ける。
 具体的には、観察者は、自身が観察したい位置に基準視点の位置を変更させるために、ジョイスティックを移動させる。ジョイスティックは、自装置の移動方向及び移動量を制御部18に転送する。制御部18は、ジョイスティックの移動量及び移動方向に応じて、ボリュームデータに対する基準視点の位置を変更する。なお、ジョイスティックはあくまでも一例であり、観察者の操作情報により基準視点の位置の変更を受け付ける場合に用いられる入力装置3は、トラックボールやマウス等であっても良い。
 かかる方法により基準視点の位置の変更を受け付けることで、制御部18は、変更後の基準視点に基づく視差画像群をレンダリング処理部16aに生成させる。
 そして、第1の実施形態に係る制御部18は、第2制御として、複数の基準視点それぞれに基づく複数の視差画像群それぞれを、モニタ2の表示領域を分割した複数の領域それぞれに割り振って表示させるように制御する。基準視点の位置の変更を時系列に沿って順次受け付ける第1の実施形態では、制御部18は、第2制御として、変更後の基準視点に基づく視差画像群と変更前の基準視点に基づく視差画像群とを、モニタ2の表示領域を分割した複数の領域それぞれに割り振って表示させるように制御する。なお、以下では、変更後の基準視点に基づく視差画像群を「第1の視差画像群」と記載し、変更前の基準視点に基づく視差画像群を「第2の視差画像群」と記載する場合がある。
 具体的には、第1の実施形態に係る制御部18は、第2制御として、第1の視差画像群と第2の視差画像群とを同時に表示するために、モニタ2の表示領域を複数の領域に分割する。そして、第1の実施形態に係る制御部18は、第2制御として、第1の視差画像群と第2の視差画像群との合成画像群を、表示領域の分割パターンに応じて、視差画像合成部16bに生成させる。そして、第1の実施形態に係る制御部18は、視差画像合成部16bが生成した合成画像群をモニタ2に表示させる。
 第2制御において、制御部18がモニタ2の表示領域を分割する一例について、図6を用いて説明する。図6は、モニタの表示領域の分割例を説明するための図である。
 例えば、制御部18は、図6に示すように、モニタ2の表示領域を、横方向に2つに分割した「領域A」及び「領域B」を設定する。かかる設定により、視差画像合成部16bは、第1の視差画像群と第2の視差画像群とを横方向に並列して合成した合成画像群を生成する。すなわち、制御部18は、視差画像合成部16bに合成画像群を生成させることで、第1の視差画像群と第2の視差画像群とを複数の領域それぞれに割り振る。
 上述した制御部18が実行する第1制御及び第2制御について、図7、図8A、図8B、図9A、図9B、図10及び図11を用いて、より詳細に説明する。図7は、基準視点の定義に用いる用語を説明するための図であり、図8A、図8B、図9A、図9B、図10及び図11は、第1の実施形態に係る制御部が行なう制御処理の一例を説明するための図である。
 以下では、基準視点の位置を説明するために、図7に示す定義を用いる。図7に示す一例では、ボリュームデータを立方体で示している。そして、図7に示す一例では、ボリュームデータの手前に位置する面を「a」と定義し、面「a」に隣り合う面のうち右側にある面を「b」と定義し、面「a」に向かい合う面を「c」と定義する。また、図7に示す一例では、面「a」に隣り合う面のうち左側にある面を「d」と定義する。また、図7に示す一例では、面「a」に隣り合う面のうち上側にある面を「e」と定義し、面「a」に隣り合う面のうち下側にある面を「f」と定義する。
 そして、面「a」に正対する位置から面「a」に向かう方向の視点を「視点a」と定義する。同様に、面「b」に正対する位置から面「b」に向かう方向の視点を「視点b」と定義する。同様に、面「c」に正対する位置から面「c」に向かう方向の視点を「視点c」と定義する。同様に、面「d」に正対する位置から面「d」に向かう方向の視点を「視点d」と定義する。同様に、面「e」に正対する位置から面「e」に向かう方向の視点を「視点e」と定義する。同様に、面「f」に正対する位置から面「f」に向かう方向の視点を「視点f」と定義する。
 まず、制御部18が、図8Aに示すように、基準視点として「視点a」を最初に受け付けたとする。かかる場合、制御部18は、視点aを中心として9つの視点を設定することで、レンダリング処理部16aに9視差画像「a(1)~a(9)」を生成させる。そして、制御部18は、図8の(A)に示すように、視差画像合成部16bに、9視差画像「a(1)~a(9)」それぞれを横方向に重複して合成した合成画像群(9つの合成画像)を生成させる。すなわち、視差画像合成部16bは、図8の(A)に示すように、『合成画像「a(1),a(1)」、合成画像「a(2),a(2)」、・・・、合成画像「a(9),a(9)」』を生成する。
 制御部18は、図8Aに示す9つの合成画像をモニタ2に表示させる。これにより、観察者は、領域A及び領域Bそれぞれで、ボリュームデータを視点aから観察した「立体画像a」を観察することができる。
 続いて、制御部18が、図8Bに示すように、基準視点が「視点a」から、「視点a」と「視点d」の中間に位置する「視点da」に変更されたことを受け付けたとする。かかる場合、制御部18は、視点daを中心として9つの視点を設定することで、レンダリング処理部16aに9視差画像「da(1)~da(9)」を生成させる。そして、制御部18は、図8Bに示すように、視差画像合成部16bに、変更前の9視差画像「a(1)~a(9)」を領域Aに割り振り、変更後の9視差画像「da(1)~da(9)」を領域Bに割り振って合成した合成画像群(9つの合成画像)を生成させる。すなわち、視差画像合成部16bは、図8Bに示すように、『合成画像「a(1),da(1)」、合成画像「a(2),da(2)」、・・・、合成画像「a(9),da(9)」』を生成する。
 そして、制御部18は、図8Bに示す9つの合成画像をモニタ2に表示させる。これにより、観察者は、領域Aでボリュームデータを視点aから観察した「立体画像a」を観察し、領域Bでボリュームデータを視点daから観察した「立体画像da」を観察することができる。
 続いて、制御部18が、図9Aに示すように、基準視点が「視点da」から、「視点a」と「視点b」の中間に位置する「視点ab」に変更されたことを受け付けたとする。かかる場合、制御部18は、視点abを中心として9つの視点を設定することで、レンダリング処理部16aに9視差画像「ab(1)~ab(9)」を生成させる。そして、制御部18は、図9Aに示すように、視差画像合成部16bに、変更前の9視差画像「a(1)~a(9)」を領域Aに割り振り、変更後の9視差画像「ab(1)~ab(9)」を領域Bに割り振って合成した合成画像群(9つの合成画像)を生成させる。すなわち、視差画像合成部16bは、図9Aに示すように、『合成画像「a(1),ab(1)」、合成画像「a(2),ab(2)」、・・・、合成画像「a(9),ab(9)」』を生成する。
 そして、制御部18は、図9Aに示す9つの合成画像をモニタ2に表示させる。これにより、観察者は、領域Aでボリュームデータを視点aから観察した「立体画像a」を観察し、領域Bでボリュームデータを視点abから観察した「立体画像ab」を観察することができる。
 続いて、制御部18が、図9Bに示すように、基準視点が「視点ab」から「視点b」に変更されたことを受け付けたとする。かかる場合、制御部18は、視点bを中心として9つの視点を設定することで、レンダリング処理部16aに9視差画像「b(1)~b(9)」を生成させる。そして、制御部18は、図9Bに示すように、視差画像合成部16bに、変更前の9視差画像「a(1)~a(9)」を領域Aに割り振り、変更後の9視差画像「b(1)~b(9)」を領域Bに割り振って合成した合成画像群(9つの合成画像)を生成させる。すなわち、視差画像合成部16bは、図9Bに示すように、『合成画像「a(1),b(1)」、合成画像「a(2),b(2)」、・・・、合成画像「a(9),b(9)」』を生成する。
 そして、制御部18は、図9Bに示す9つの合成画像をモニタ2に表示させる。これにより、観察者は、領域Aでボリュームデータを視点aから観察した「立体画像a」を観察し、領域Bでボリュームデータを視点bから観察した「立体画像b」を観察することができる。
 なお、図8A、図8B、図9A及び図9Bに示す一例では、第1の視差画像群である変更前の視差画像群を、最初に受け付けた基準視点を用いた視差画像群に固定する場合について説明した。しかし、本実施形態は、制御部18の制御により、変更前の視差画像群を、基準視点の変更直前に受け付けた基準視点を用いた視差画像群とする場合であっても良い。
 具体的には、制御部18は、変更直前の視差画像群を領域Aに割り振り、変更後の視差画像群を領域Bに割り振るように制御する。例えば、図8A、図8B、図9A及び図9Bに示すように、「視点a」、「視点da」、「視点ab」、「視点b」の順に基準視点が変更されたとする。かかる場合、制御部18は、図10に示すように、最初に、「立体画像a」の9視差画像を領域A及び領域Bに割り振る。そして、「視点a」から「視点da」への基準視点変更にともない、制御部18は、図10に示すように、「立体画像a」の9視差画像を領域Aに割り振り、「立体画像da」の9視差画像を領域Bに割り振る。
 そして、「視点da」から「視点ab」への基準視点変更にともない、制御部18は、図10に示すように、「立体画像da」の9視差画像を領域Aに割り振り、「立体画像ab」の9視差画像を領域Bに割り振る。そして、「視点ab」から「視点b」への基準視点変更にともない、制御部18は、図10に示すように、「立体画像ab」の9視差画像を領域Aに割り振り、「立体画像b」の9視差画像を領域Bに割り振る。
 また、上記の一例では、表示領域が2つに分割される場合について説明した。しかし、本実施形態は、表示領域が3つ以上に分割される場合であっても良い。例えば、制御部18は、図11に示すように、モニタ2の表示領域を左側から右側方向に3つに分割した「領域A、領域B、領域C」を設定する。3つの領域を設定することで、制御部18は、図11に示すような第2制御を行なうことができる。例えば、上記と同様に、「視点a」、「視点da」、「視点ab」、「視点b」の順に基準視点が変更されたとする。
 かかる場合、制御部18は、図11に示すように、最初に、「立体画像a」の9視差画像を領域A、領域B及び領域Cに割り振る。そして、「視点a」から「視点da」へと、基準視点が左側に変更されたことにともない、制御部18は、図11に示すように、「立体画像a」の9視差画像を領域B及び領域Cに割り振り、「立体画像da」の9視差画像を左側の領域Aに割り振る。
 そして、基準視点が、「視点da」から「視点a」を超えて更に右側の「視点ab」へ変更されたことにともない、制御部18は、図11に示すように、「立体画像da」の9視差画像を左側の領域Aに割り振り、「立体画像a」の9視差画像を中央の領域Bに割り振り、「立体画像ab」の9視差画像を左側の領域Cに割り振る。
 そして、基準視点が、「視点ab」から更に右側の「視点b」へ変更されたことにともない、制御部18は、図11に示すように、「立体画像da」の9視差画像を引き続き左側の領域Aに割り振り、「立体画像ab」の9視差画像を領域Cから中央の領域Bに変更して割り振り、「立体画像b」の9視差画像を左側の領域Cに割り振る。
 ところで、上記の説明では、表示領域の分割方向が横方向であり、基準視点の位置の変更方向が横方向である場合について説明した。かかる場合、表示領域の分割方向と基準視点の位置の変更方向とが一致していることから、観察者にとって、ボリュームデータを違和感無く観察することができる。
 しかし、基準視点の位置の変更方向は、横方向だけでなく、例えば、縦方向である場合もある。基準視点の位置の変更方向が縦方向であっても、上記のように、表示領域の分割方向を横方向として、変更後の基準視点に基づく視差画像群と変更前の基準視点に基づく視差画像群とを同時に表示させることで、観察者は、3次元の超音波画像データを広範囲で観察することができる。ただし、表示領域の分割方向が横方向であると、観察者は、基準視点を縦方向に変更させたにも関わらず、変更前後の立体画像が横方向に順次切り替わって表示させるので、違和感がある。
 そこで、制御部18は、第2制御として、以下の変形例を行なっても良い。すなわち、制御部18は、基準視点の位置の移動方向に応じて、複数の領域の分割方向を変更する。図12A、図12B及び図12Cは、表示領域の分割に係る変形例を説明するための図である。
 例えば、基準視点が、「視点a」、「視点a」と「視点e」の中間に位置する「視点ae」、「視点e」、「視点f」の順に基準視点が縦方向に変更されたとする。かかる場合、制御部18は、例えば、図12A、図12B及び図12Cに示すように、モニタ2の表示領域を下側から上側方向に2つに分割した「領域A、領域B」を設定する。
 ここで、第1の視差画像群である変更前の視差画像群を、最初に受け付けた基準視点を用いた視差画像群に固定する場合は、制御部は、図12Aに示すパターンで第2制御を行なう。すなわち、制御部18は、図12Aに示すように、最初に、「立体画像a」の9視差画像を領域A及び領域Bに割り振る。そして、「視点a」から「視点ae」へと基準視点が変更されたことにともない、制御部18は、図12Aに示すように、「立体画像a」の9視差画像を領域Aに割り振り、「視点ae」の9視差画像である「立体画像ae」の9視差画像を領域Bに割り振る。
 そして、「視点ae」から「視点e」へと基準視点が変更されたことにともない、制御部18は、図12Aに示すように、「立体画像a」の9視差画像を領域Aに割り振り、「視点e」の9視差画像である「立体画像e」の9視差画像を領域Bに割り振る。そして、「視点e」から「視点f」へと基準視点が変更されたことにともない、制御部18は、図12Aに示すように、「立体画像a」の9視差画像を領域Aに割り振り、「視点f」の9視差画像である「立体画像f」の9視差画像を領域Bに割り振る。
 或いは、第1の視差画像群である変更前の視差画像群を変更直前の視差画像群として領域Aに割り振り、変更後の視差画像群を領域Bに割り振る場合は、制御部は、図12Bに示すパターンで第2制御を行なう。すなわち、制御部18は、図12Bに示すように、最初に、「立体画像a」の9視差画像を領域A及び領域Bに割り振る。そして、「視点a」から「視点ae」へと基準視点が変更されたことにともない、制御部18は、図12Bに示すように、「立体画像a」の9視差画像を領域Aに割り振り、「立体画像ae」の9視差画像を領域Bに割り振る。
 そして、「視点ae」から「視点e」へと基準視点が変更されたことにともない、制御部18は、図12Bに示すように、「立体画像ae」の9視差画像を領域Aに割り振り、「立体画像e」の9視差画像を領域Bに割り振る。そして、「視点e」から「視点f」へと基準視点が変更されたことにともない、制御部18は、図12Bに示すように、「立体画像e」の9視差画像を領域Aに割り振り、「立体画像f」の9視差画像を領域Bに割り振る。
 或いは、第1の視差画像群である変更前の視差画像群を変更直前の視差画像群とし、かつ、視差画像群の割り振りを基準視点の変更方向に応じて行なう場合は、制御部は、図12Cに示すパターンで第2制御を行なう。すなわち、制御部18は、図12C示すように、最初に、「立体画像a」の9視差画像を領域A及び領域Bに割り振る。そして、「視点a」から「視点ae」へと基準視点が上側に変更されたことにともない、制御部18は、図12Cに示すように、「立体画像a」の9視差画像を下側の領域Aに割り振り、「立体画像ae」の9視差画像を上側の領域Bに割り振る。
 そして、「視点ae」から「視点e」へと基準視点が上側に変更されたことにともない、制御部18は、図12Cに示すように、「立体画像ae」の9視差画像を下側の領域Aに割り振り、「立体画像e」の9視差画像を上側の領域Bに割り振る。そして、「視点e」から「視点f」へと基準視点が下側に変更されたことにともない、制御部18は、図12Cに示すように、「立体画像f」の9視差画像を下側の領域Aに割り振り、「立体画像e」の9視差画像を上側の領域Bに割り振る。
 なお、図8~図12を用いた一例では、基準視点の変更方向が横方向や縦方向である場合について説明したが、本実施形態で説明した制御部18による制御は、表示領域の分割方向を横方向や縦方向に固定した状態で、基準視点の変更方向が斜め方向である場合であっても実行可能である。また、図8~図12を用いた一例では、最初の基準視点の位置に基づく視差画像群を並列させた合成画像群が表示される場合について説明した。しかし、本実施形態は、最初の基準視点の位置に基づく視差画像群をそのままモニタ2の表示領域全体にて表示させる場合であっても良い。
 このように、制御部18が変更前後の視差画像群を合成した合成画像群を表示領域の分割パターンに応じて生成させて、立体視モニタであるモニタ2に表示させるので、モニタ2の観察者は、3次元の医用画像データを広範囲で同時に立体的に観察することができる。
 次に、図13を用いて、第1の実施形態に係る超音波診断装置の処理について説明する。図13は、第1の実施形態に係る超音波診断装置の処理を説明するためのフローチャートである。なお、以下では、最初の基準視点の位置に基づいてボリュームデータから視差画像群が生成されて表示された後の処理について説明する。
 図13に示すように、第1の実施形態に係る超音波診断装置の制御部18は、基準視点の変更要求を受け付けたか否かを判定する(ステップS101)。ここで、基準視点の変更要求を受け付けない場合(ステップS101否定)、制御部18は、基準視点の変更要求を受け付けるまで待機する。
 一方、基準視点の変更要求を受け付けた場合(ステップS101肯定)、制御部18の制御により、レンダリング処理部16aは、変更後の基準視点に基づく視差画像群を生成する(ステップS102)。
 そして、制御部18の制御により、視差画像合成部16bは、モニタ2の表示領域の分割パターンに基づいて、変更後の視差画像群と変更前の視差画像群との合成画像群を生成する(ステップS103)。
 そして、制御部18の制御により、モニタ2は、合成画像群を表示し(ステップS104)、処理を終了する。なお、第1の実施形態に係る超音波診断装置は、基準視点の変更要求を受け付けるたびに、ステップS102~S104の処理を繰り返し実行する。
 上述してきたように、第1の実施形態では、制御部18は、基準視点の位置の変更を受け付け、当該受け付けた変更後の基準視点に基づく視差画像群を生成させる。そして、制御部18は、変更後の基準視点に基づく第1の視差画像群と変更前の基準視点に基づく第2の視差画像群とを、モニタ2の表示領域を分割した複数の領域それぞれに割り振って表示させる。具体的には、制御部18は、変更前後の視差画像群を合成した合成画像群を表示領域の分割パターンに応じて生成させ、合成画像群を立体視モニタであるモニタ2に表示させる。従って、第1の実施形態では、3次元の超音波画像データを広範囲で同時に立体的に観察することができる。例えば、冠動脈のように心臓を取り囲むように走行する血管を観察する際に、かかる制御を行なうことで、観察者は、複数視点を用いた冠動脈の立体画像を、広い視野角で同時に観察することができる。
 また、第1の実施形態では、観察者から基準視点の位置の変更要求を、カメラ2aや入力装置3等をインタフェースとして用いることで取得するので、観察者は、任意の複数視点からの立体画像を簡易に観察することができる。
 また、第1の実施形態では、表示領域の分割パターンを基準視点の位置の変更方向に応じて変更することができるので、観察者は、任意の複数視点からの立体画像を違和感なく観察することができる。
 ところで、上記の実施形態では、基準視点が変更されるごとに、例えば、9視差画像を生成する必要があるため、レンダリング処理部16aの処理負荷が増大し、合成画像群の表示におけるリアルタイム性が低下してしまう場合がある。そこで、制御部18は、以下に説明するように、視差数の減少制御を行なっても良い。
 すなわち、第1の実施形態の変形例において、制御部18は、基準視点に基づく視差画像群の1つとして、当該基準視点を中心とする視差数を所定視差数より減少させた数の視差画像である視差数減少視差画像群をレンダリング処理部16aに生成させる。そして、制御部18は、複数の基準視点それぞれに基づく複数の視差画像群の少なくとも1つを視差数減少視差画像群として表示させるように制御する。具体的には、制御部18は、第1の視差画像群と第2の視差画像群の少なくともいずれか一方を視差数減少視差画像群として表示させるように制御する。例えば、制御部18は、変更後の基準視点に基づく視差数減少視差画像群と変更前の基準視点に基づく視差数減少視差画像群とを、複数の領域それぞれに割り振って表示させるように制御する。
 図14は、第1の実施形態の変形例を説明するための図である。例えば、制御部18は、モニタ2で表示させる9視差画像の視差数を「3」に減少させると設定する。仮に、9視差画像の生成に用いられる視点(1)~(9)のうち、視点(5)を基準視点とする。かかる場合、制御部18は、基準視点(5)と、基準視点(5)を中心として視差角が「1度」となる視点(4)及び視点(6)とを用いて3視差の視差画像(3視差画像)をレンダリング処理部16aに生成させると設定する。
 更に、制御部18は、視点(1)~視点(3)及び視点(7)~視点(9)を用いた視差画像群に代わる画像として、例えば、全画素の色彩が白となる画像をレンダリング処理部16aに生成させると設定する。かかる設定が行なわれた状態で、入力装置3を介して制御部18が、図14に示すように、基準視点が「視点a」から「視点da」に変更されたことを受け付けたとする。
 かかる場合、制御部18は、視点daを中心として3つの視点を設定することで、レンダリング処理部16aに3視差画像「da(3)、da(4)、da(5)」を生成させる。なお、レンダリング処理部16aは、視点aを中心とする3つの視点から3視差画像「a(3)、a(4)、a(5)」を生成している。そして、制御部18は、図14に示すように、視差画像合成部16bに、『合成画像「a(4),da(4)」、合成画像「a(5),da(5)」、合成画像「a(6),da(6)」』の合成画像群を生成させる。また、本来、制御部18は、視点(1)~視点(3)及び視点(7)~視点(9)を用いた合成画像群に代わって、全画素の色彩が白となる画像を合成した合成画像群を生成させる。
 このようにして生成された合成画像群を、制御部18は、モニタ2に表示させる。これにより、観察者は、図14に示すように、領域Aでボリュームデータを視点aから観察した「立体画像a」を観察し、領域Bでボリュームデータを視点daから観察した「立体画像da」を観察することができる。ただし、観察者が「立体画像a」及び「立体画像da」を同時に観察される領域は、視差数が減少しているため、図14に示すように狭まることとなる。本変形例では、基準視点の変更要求は、観察者自身の移動をともなわない入力装置3を介して行なわれることが望ましい。なお、視差数減少視差画像群として表示される立体画像は、上記のように、第1の視差画像群及び第2の視差画像群双方の場合であっても良いし、第1の視差画像群又は第2の視差画像群のいずれか一方の場合であっても良い。かかる選択は、操作者により手動で行なわれる場合であっても良いし、例えば、レンダリング処理部16aの処理負荷の状況に応じて、制御部18が自動的に判定して行なう場合であって良い。
 上述してきたように、第1の実施形態の変形例では、視差数を減少させた状態で、基準視点の位置の変更前後の視差画像群を同時に表示するので、複数視点の立体画像の表示におけるリアルタイム性を確保することができる。
(第2の実施形態)
 第2の実施形態では、立体表示モニタの観察者が複数である場合に、制御部18が実行する制御処理について、図15A、図15B及び図15Cを用いて説明する。図15A、図15B及び図15Cは、第2の実施形態を説明するための図である。
 例えば、超音波検査時では、検査者とベッドに横臥する被検体Pとの位置は、予め決まっている。換言すると、検査者のモニタ2に対する視点位置(観察位置)と、被検体Pのモニタ2に対する視点位置(観察位置)とは、図15Aに示すように、予め決まっている。そこで、第2の実施形態では、内部記憶部19に、検査者のモニタ2に対する視点位置と、被検体Pのモニタ2に対する視点位置とをプリセット情報として予め格納しておく。そして、第2の実施形態では、検査者と被検体Pとが、同時に同じ合成画像群に基づく立体画像を参照できるように、プリセット情報に基づく制御を行なう。
 すなわち、第2の実施形態では、モニタ2を観察する複数の観察者の観察位置が予め設定される場合、制御部18は、複数の観察者それぞれが各観察位置において参照する画像が同一となる画像群を視差画像群から選択し、当該選択した画像群を複数の領域それぞれにおいて表示させるように制御する。
 例えば、制御部18は、プリセット情報に基づいて、視点(1)の視差画像~視点(9)の視差画像の9視差画像のうち「視点(3)の視差画像、視点(4)の視差画像、基準視点(5)の視差画像、視点(6)の視差画像」を表示用の視差画像群として選択する。そして、制御部18は、検査者及び被検体Pそれぞれが観察できるように、表示用の視差画像群を図15Bに示すように配列すると決定する。
 図15Bに示す一例では、制御部18は、9列の画素202(図3を参照)において、表示用の視差画像群を「視点(3)~視点(6)の視差画像、全画素の色彩が白となる画像(以下、画像W)、視点(3)~視点(6)の視差画像」の順に配列すると決定する。
 かかる設定が行なわれた状態で、制御部18が、基準視点が「視点ab」から「視点b」に変更されたことを受け付けたとする。かかる場合、制御部18は、視点bを中心として4つの視点を設定することで、レンダリング処理部16aに4視差画像「b(3)、b(4)、b(5)、b(6)」を生成させる。なお、レンダリング処理部16aは、視点abを中心とする3つの視点から4視差画像「ab(3)、ab(4)、ab(5)、ab(6)」を生成している。そして、制御部18は、視差画像合成部16bに、『合成画像「ab(3),b(3)」、合成画像「ab(4),b(4)」、合成画像「ab(5),b(5)」、合成画像「ab(6),b(6)」、合成画像「画像W,画像W」』を生成させる。
 そして、図15Bで説明した配列に応じて、制御部18は、図15Cに示すように、『合成画像「ab(3),b(3)」~合成画像「ab(6),b(6)」、合成画像「画像W,画像W」、合成画像「ab(3),b(3)」~合成画像「ab(6),b(6)」』を、モニタ2に表示させる。これにより、検査者及び被検体Pそれぞれは、領域Aでボリュームデータを視点abから観察した「立体画像ab」を観察し、領域Bでボリュームデータを視点bから観察した「立体画像b」を観察することができる。
 上述したように、第2の実施形態では、観察者が複数の場合であっても、各観察者が、3次元の超音波画像データを広範囲で同時に立体的に観察することができる。
 なお、上述した第1及び第2の実施形態では、モニタ2が9視差モニタである場合について説明した。しかし、上述した第1及び第2の実施形態は、モニタ2が2視差モニタである場合であっても適用可能である。
 また、上述した第1及び第2の実施形態では、基準視点の位置の変更を時系列に沿って順次受け付けることで、複数の基準視点の位置を受け付ける場合について説明した。しかし、上述した第1及び第2の実施形態は、複数の基準視点の位置を一括して受け付ける場合であっても適用可能である。図16及び図17は、第1の実施形態及び第2の実施形態の変形例を説明するための図である。
 例えば、観察者は、図16に示すように、ジョイスティックやトラックボール、マウス等を用いて、2つの基準視点として「視点a」及び「視点da」を指定する。これにより、制御部18は、「視点a」及び「視点da」を2つの基準視点として受け付ける。そして、制御部18の制御により、レンダリング処理部16aは、「視点a」を基準視点とする9視差画像「a(1)~a(9)」と、「視点da」を基準視点とする9視差画像「da(1)~da(9)」とを生成する。そして、制御部18の制御により、視差画像合成部16bは、9視差画像「a(1)~a(9)」それぞれと、9視差画像「da(1)~da(9)」それぞれとを合成した合成画像群を生成する。これにより、モニタ2は、例えば、図16に示すように、「立体画像a」を領域Aに表示し、「立体画像da」を領域Bに表示する。
 また、本変形例で制御部18が一括して受け付ける基準視点の位置は、3つ以上である場合であっても良い。例えば、観察者は、図17に示すように、3つの基準視点として「視点a」、「視点da」及び「視点ab」を指定する。これにより、制御部18は、「視点a」及び「視点da」を3つの基準視点として受け付ける。そして、制御部18の制御により、レンダリング処理部16aは、「視点a」を基準視点とする9視差画像「a(1)~a(9)」と、「視点da」を基準視点とする9視差画像「da(1)~da(9)」と、「視点ab」を基準視点とする9視差画像「ab(1)~ab(9)」とを生成する。そして、制御部18の制御により、視差画像合成部16bは、9視差画像「a(1)~a(9)」それぞれと、9視差画像「da(1)~da(9)」それぞれと、9視差画像「ab(1)~ab(9)」それぞれとを合成した合成画像群を生成する。これにより、モニタ2は、例えば、図17に示すように、「立体画像da」を領域Aに表示し、「立体画像a」を領域Bに表示し、「立体画像ab」を領域Cに表示する。
 また、本変形例で制御部18が一括して受け付ける基準視点の位置は、上述したように、観察者により指定される場合であっても良いし、予め初期設定されている場合であっても良い。また、本変形例においても、視差数減少視差画像群が用いられる場合であっても良い。
 また、上述した第1の実施形態、第2の実施形態及び変形例では、医用画像診断装置である超音波診断装置において、3次元の超音波画像データを広範囲で同時に立体的に観察するための制御が行なわれる場合について説明した。しかし、上述した第1の実施形態、第2の実施形態及び変形例で説明した処理は、超音波診断装置以外にも、3次元の医用画像データであるボリュームデータを生成可能なX線CT装置やMRI装置等の医用画像診断装置において実行される場合であっても良い。
 また、上述した第1の実施形態、第2の実施形態及び変形例で説明した処理は、医用画像診断装置とは独立に設置された画像処理装置により実行される場合であっても良い。具体的には、図1に示すボリュームデータ処理部16及び制御部18の機能を有する画像処理装置が、各種の医用画像のデータを管理するシステムであるPACS(Picture Archiving and Communication Systems)のデータベースや、医用画像が添付された電子カルテを管理する電子カルテシステムのデータベース等から3次元の医用画像データであるボリュームデータを受信して、第1の実施形態、第2の実施形態及び変形例で説明した処理を行なう場合であってもよい。
 以上、説明したとおり、第1の実施形態、第2の実施形態及び変形例によれば、3次元の医用画像データを広範囲で同時に立体的に観察することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (9)

  1.  画像間の視差角が所定角度となる所定視差数の視差画像である視差画像群を表示し、観察者により立体的に認識される立体画像を表示する表示部と、
     3次元の医用画像データであるボリュームデータに対して基準視点を中心とする複数視点からボリュームレンダリング処理を行なうことで前記視差画像群を生成するレンダリング処理部と、
     前記基準視点の位置として複数の基準視点の位置を受け付け、当該受け付けた複数の基準視点それぞれに基づく視差画像群を前記レンダリング処理部に生成させる第1制御部と、
     前記複数の基準視点それぞれに基づく複数の視差画像群それぞれを、前記表示部の表示領域を分割した複数の領域それぞれに割り振って表示させるように制御する第2制御部と、
     を備える、医用画像診断装置。
  2.  前記基準視点の位置の変更を時系列に沿って順次受け付けることで、前記複数の基準視点の位置を受け付ける場合であって、
     前記第1制御部は、基準位置の変更を受け付けるごとに、当該受け付けた変更後の基準視点に基づく視差画像群を前記レンダリング処理部に生成させ、
     前記第2制御部は、前記変更後の基準視点に基づく第1の視差画像群と変更前の基準視点に基づく第2の視差画像群とを、前記表示部の表示領域を分割した複数の領域それぞれに割り振って表示させるように制御する、請求項1に記載の医用画像診断装置。
  3.  前記観察者の移動を検出する検出部、
     を更に備え、
     前記第1制御部は、前記検出部が検出した前記観察者の前記表示部に対する移動に基づいて、前記基準視点の位置の変更を受け付ける、請求項2に記載の医用画像診断装置。
  4.  前記基準視点の位置を変更する操作を受け付ける入力部、
     を更に備え、
     前記第1制御部は、前記入力部が受け付けた前記観察者の操作情報に基づいて、前記基準視点の位置の変更を受け付ける、請求項2に記載の医用画像診断装置。
  5.  前記第2制御部は、前記基準視点の位置の移動方向に応じて、前記複数の領域の分割方向を変更する、請求項2に記載の医用画像診断装置。
  6.  前記第1制御部は、前記基準視点に基づく視差画像群の1つとして、当該基準視点を中心とする視差数を前記所定視差数より減少させた数の視差画像である視差数減少視差画像群を前記レンダリング処理部に生成させ、
     前記第2制御部は、前記複数の基準視点それぞれに基づく複数の視差画像群の少なくとも1つを前記視差数減少視差画像群として表示させるように制御する、請求項1に記載の医用画像診断装置。
  7.  前記表示部を観察する複数の観察者の観察位置が予め設定される場合であって、
     前記第2制御部は、
     前記複数の観察者それぞれが各観察位置において参照する画像が同一となる画像群を前記視差画像群から選択し、当該選択した画像群を前記複数の領域それぞれにおいて表示させるように制御する、請求項1に記載の医用画像診断装置。
  8.  画像間の視差角が所定角度となる所定視差数の視差画像である視差画像群を表示し、観察者により立体的に認識される立体画像を表示する表示部と、
     3次元の医用画像データであるボリュームデータに対して基準視点を中心とする複数視点からボリュームレンダリング処理を行なうことで前記視差画像群を生成するレンダリング処理部と、
     前記基準視点の位置として複数の基準視点の位置を受け付け、当該受け付けた複数の基準視点それぞれに基づく視差画像群を前記レンダリング処理部に生成させる第1制御部と、
     前記複数の基準視点それぞれに基づく複数の視差画像群それぞれを、前記表示部の表示領域を分割した複数の領域それぞれに割り振って表示させるように制御する第2制御部と、
     を備える、画像処理装置。
  9.  画像間の視差角が所定角度となる所定視差数の視差画像である視差画像群を表示し、観察者により立体的に認識される立体画像を表示する表示部と、
     3次元の超音波画像データであるボリュームデータに対して基準視点を中心とする複数視点からボリュームレンダリング処理を行なうことで前記視差画像群を生成するレンダリング処理部と、
     前記基準視点の位置として複数の基準視点の位置を受け付け、当該受け付けた複数の基準視点それぞれに基づく視差画像群を前記レンダリング処理部に生成させる第1制御部と、
     前記複数の基準視点それぞれに基づく複数の視差画像群それぞれを、前記表示部の表示領域を分割した複数の領域それぞれに割り振って表示させるように制御する第2制御部と、
     を備える、超音波診断装置。
PCT/JP2012/062551 2011-05-23 2012-05-16 医用画像診断装置、画像処理装置及び超音波診断装置 WO2012161054A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280000696.7A CN102985013B (zh) 2011-05-23 2012-05-16 医用图像诊断装置、图像处理装置以及超声波诊断装置
US14/076,493 US20140063208A1 (en) 2011-05-23 2013-11-11 Medical image diagnostic apparatus, image processing apparatus, and ultrasonic diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-114918 2011-05-23
JP2011114918 2011-05-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/076,493 Continuation US20140063208A1 (en) 2011-05-23 2013-11-11 Medical image diagnostic apparatus, image processing apparatus, and ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
WO2012161054A1 true WO2012161054A1 (ja) 2012-11-29

Family

ID=47217134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062551 WO2012161054A1 (ja) 2011-05-23 2012-05-16 医用画像診断装置、画像処理装置及び超音波診断装置

Country Status (4)

Country Link
US (1) US20140063208A1 (ja)
JP (1) JP2013006019A (ja)
CN (1) CN102985013B (ja)
WO (1) WO2012161054A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305242B2 (ja) * 2014-06-25 2018-04-04 三菱電機株式会社 マルチ画面表示装置
WO2016041045A1 (en) * 2014-09-15 2016-03-24 Synaptive Medical (Barbados) Inc. System and method for image processing
US10522248B2 (en) 2017-12-27 2019-12-31 International Business Machines Corporation Automatic creation of imaging story boards from medical imaging studies
US11080326B2 (en) 2017-12-27 2021-08-03 International Business Machines Corporation Intelligently organizing displays of medical imaging content for rapid browsing and report creation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155861A (ja) * 1997-09-25 1999-06-15 Toshiba Corp 超音波診断装置
JP2004258210A (ja) * 2003-02-25 2004-09-16 Toshiba Corp 三次元画像表示装置及び画像表示方法
JP2006142021A (ja) * 2004-11-23 2006-06-08 General Electric Co <Ge> ボリューム・レンダリング表示プロトコルのための方法及び装置
JP2007006052A (ja) * 2005-06-23 2007-01-11 Alpine Electronics Inc 立体画像表示システム
JP2007047563A (ja) * 2005-08-11 2007-02-22 Fujifilm Corp 表示装置及び表示方法
JP2008173174A (ja) * 2007-01-16 2008-07-31 Toshiba Corp 超音波診断装置
JP2008188288A (ja) * 2007-02-06 2008-08-21 Toshiba Corp 超音波診断装置及び超音波画像表示装置
JP2009053391A (ja) * 2007-08-27 2009-03-12 Seiko Epson Corp 表示素子
JP2010259017A (ja) * 2009-04-28 2010-11-11 Nikon Corp 表示装置、表示方法、および表示プログラム
JP2011212218A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 画像再構成装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003337303A (ja) * 2002-05-17 2003-11-28 Canon Inc 立体画像表示装置および立体画像表示システム
JP4015090B2 (ja) * 2003-09-08 2007-11-28 株式会社東芝 立体表示装置および画像表示方法
US7525541B2 (en) * 2004-04-05 2009-04-28 Actuality Systems, Inc. Data processing for three-dimensional displays
JP2006030507A (ja) * 2004-07-15 2006-02-02 Toshiba Corp 三次元空間画像表示装置及び三次元空間画像表示方法
CN101535828A (zh) * 2005-11-30 2009-09-16 布拉科成像S.P.A.公司 用于扩散张量成像的方法和系统
CN101553168A (zh) * 2006-10-03 2009-10-07 杜克大学 用于使用超极化129xe mri估计肺部的气体传递的系统和方法
JP2009075869A (ja) * 2007-09-20 2009-04-09 Toshiba Corp 多視点画像描画装置、方法及びプログラム
JP2009077234A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 三次元画像処理装置、方法及びプログラム
JP4876182B2 (ja) * 2009-11-26 2012-02-15 キヤノン株式会社 立体映像表示装置およびカーソル表示方法、プログラム、記憶媒体
JP5572437B2 (ja) * 2010-03-29 2014-08-13 富士フイルム株式会社 3次元医用画像に基づいて立体視用画像を生成する装置および方法、並びにプログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155861A (ja) * 1997-09-25 1999-06-15 Toshiba Corp 超音波診断装置
JP2004258210A (ja) * 2003-02-25 2004-09-16 Toshiba Corp 三次元画像表示装置及び画像表示方法
JP2006142021A (ja) * 2004-11-23 2006-06-08 General Electric Co <Ge> ボリューム・レンダリング表示プロトコルのための方法及び装置
JP2007006052A (ja) * 2005-06-23 2007-01-11 Alpine Electronics Inc 立体画像表示システム
JP2007047563A (ja) * 2005-08-11 2007-02-22 Fujifilm Corp 表示装置及び表示方法
JP2008173174A (ja) * 2007-01-16 2008-07-31 Toshiba Corp 超音波診断装置
JP2008188288A (ja) * 2007-02-06 2008-08-21 Toshiba Corp 超音波診断装置及び超音波画像表示装置
JP2009053391A (ja) * 2007-08-27 2009-03-12 Seiko Epson Corp 表示素子
JP2010259017A (ja) * 2009-04-28 2010-11-11 Nikon Corp 表示装置、表示方法、および表示プログラム
JP2011212218A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 画像再構成装置

Also Published As

Publication number Publication date
US20140063208A1 (en) 2014-03-06
JP2013006019A (ja) 2013-01-10
CN102985013B (zh) 2015-04-01
CN102985013A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
JP6058283B2 (ja) 超音波診断装置
JP6058282B2 (ja) 医用画像診断装置及び画像処理装置
US9479753B2 (en) Image processing system for multiple viewpoint parallax image group
US9578303B2 (en) Image processing system, image processing apparatus, and image processing method for displaying a scale on a stereoscopic display device
JP5868026B2 (ja) 超音波診断装置
US9426443B2 (en) Image processing system, terminal device, and image processing method
JP5972533B2 (ja) 画像処理システム及び方法
JP2014161444A (ja) 超音波診断装置、医用画像処理装置及び制御プログラム
US9224240B2 (en) Depth-based information layering in medical diagnostic ultrasound
WO2012161054A1 (ja) 医用画像診断装置、画像処理装置及び超音波診断装置
JP2013025486A (ja) 画像処理装置、画像処理方法及び医用画像診断装置
US20120320043A1 (en) Image processing system, apparatus, and method
JP6017124B2 (ja) 画像処理システム、画像処理装置、医用画像診断装置、画像処理方法及び画像処理プログラム
JP6005913B2 (ja) 報知装置、報知方法及び医用画像診断装置
JP2013097772A (ja) 医用画像診断装置及び画像処理装置
JP2013121453A (ja) 超音波診断装置及び画像処理装置
JP6104982B2 (ja) 画像処理装置、画像処理方法及び医用画像診断装置
JP5835975B2 (ja) 画像処理システム、装置、方法及び医用画像診断装置
JP2013017056A (ja) 画像処理装置、画像処理方法及び医用画像診断装置
JP2011234788A (ja) 超音波診断装置、超音波画像処理方法及び超音波画像処理プログラム
JP5835980B2 (ja) 画像処理システム、装置、方法及び医用画像診断装置
JP2012223447A (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000696.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789097

Country of ref document: EP

Kind code of ref document: A1