WO2012157871A2 - Plasma hydrogenation apparatus - Google Patents

Plasma hydrogenation apparatus Download PDF

Info

Publication number
WO2012157871A2
WO2012157871A2 PCT/KR2012/003476 KR2012003476W WO2012157871A2 WO 2012157871 A2 WO2012157871 A2 WO 2012157871A2 KR 2012003476 W KR2012003476 W KR 2012003476W WO 2012157871 A2 WO2012157871 A2 WO 2012157871A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
discharge tube
hydrogen
based compound
Prior art date
Application number
PCT/KR2012/003476
Other languages
French (fr)
Korean (ko)
Other versions
WO2012157871A3 (en
Inventor
홍용철
이봉주
신동훈
Original Assignee
(주)그린사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그린사이언스 filed Critical (주)그린사이언스
Publication of WO2012157871A2 publication Critical patent/WO2012157871A2/en
Publication of WO2012157871A3 publication Critical patent/WO2012157871A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/10Compounds containing silicon, fluorine, and other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas

Definitions

  • the present invention relates to a hydrogenation technique using plasma.
  • the present invention aims to produce Si-H-Cl based compounds economically and efficiently using plasma.
  • the electromagnetic wave supply unit for generating an electromagnetic wave of a predetermined frequency;
  • a discharge tube in which a plasma is generated from the electromagnetic wave supplied from the electromagnetic wave supply unit and a mixed gas including hydrogen gas or hydrogen;
  • a gas supply unit for injecting the hydrogen gas or the mixed gas including hydrogen into the discharge tube in a vortex form;
  • a reactant supply unit supplying a Si-Cl based compound to the plasma generated inside the discharge tube;
  • a reaction furnace in which a Si—H—Cl based compound is produced by a reaction between a hydrogen atom or a hydrogen ion dissociated by the generated plasma and the Si—Cl based compound;
  • a product discharge part for discharging the Si-H-Cl-based compound generated in the reactor.
  • an electromagnetic wave supply unit for generating an electromagnetic wave of a predetermined frequency
  • a discharge tube in which a plasma is generated from the electromagnetic wave supplied from the electromagnetic wave supply unit and a mixed gas including hydrogen gas or hydrogen
  • a gas and reactant supply unit for injecting a gaseous Si-Cl-based compound in a vortex form together with the hydrogen gas or the mixed gas including hydrogen into the discharge tube
  • a reaction furnace in which a Si—H—Cl based compound is produced by a reaction between a hydrogen atom or a hydrogen ion dissociated by the generated plasma and the Si—Cl based compound
  • a gas discharge part for discharging the Si-H-Cl-based compound generated in the reactor.
  • the present invention it is possible to produce a large amount of hydrogen-related species, in particular Si-H-Cl-based compounds using a plasma hydrogenation reaction.
  • the plasma hydrogenation reaction is generated in a high temperature region of 3000K to 5000K or more, the efficiency of compound generation can be improved, and since the plasma of the present invention is generated in an atmosphere of 1 atmosphere, there is an advantage that the size and control of the plasma gasifier can be facilitated.
  • FIG. 1 is a block diagram of a plasma hydrogenation apparatus 100 according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of a plasma hydrogenation apparatus 200 according to a second embodiment of the present invention.
  • 3 and 4 are vertical cross-sectional views showing a portion where the waveguide 112 and the discharge tube 114 are connected to the plasma hydrogenation reaction apparatus 100 or 200 according to the present invention.
  • 5A to 5C are horizontal cross-sectional views showing the detailed configuration of the gas supply unit 116 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention.
  • 6A and 6B are horizontal cross-sectional views illustrating detailed configurations of the reactant supply unit 118 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a plasma hydrogenation apparatus 100 according to a first embodiment of the present invention.
  • the plasma hydrogenation reaction apparatus 100 includes a power supply unit 102, an electromagnetic wave oscillator 104, a circulator 106, a directional coupler 108, a tuner 110, a waveguide 112, a discharge tube 114,
  • the gas supply unit 116, the reactant supply unit 118, the reactor 120, and the product discharge unit 122 may be further included.
  • the product separation unit 124 may be further included as necessary.
  • the power supply unit 102 supplies power required for driving the plasma hydrogenation reaction apparatus 100.
  • the electromagnetic wave oscillator 104 is connected to the power supply unit 102 and receives electric power from the power supply unit 102 to oscillate electromagnetic waves.
  • an electromagnetic wave oscillator (magnetron) of commercial frequency is used, for example, an electromagnetic wave oscillator having a frequency of 2.45 GHz, or an electromagnetic wave having a frequency range of 902 to 928 MHz (915 MHz magnetron) or 886 to 896 MHz (896 MHz magnetron).
  • An electromagnetic wave oscillator can be used.
  • the circulator 106 is connected to the electromagnetic wave oscillator 104, and outputs the electromagnetic wave oscillated by the electromagnetic wave oscillator 104, and simultaneously dissipates electromagnetic energy reflected by impedance mismatch to protect the electromagnetic wave oscillator 104.
  • the directional coupler 108 outputs electromagnetic waves transmitted through the circulator 106, and at the same time monitors the intensity of the incident wave and the reflected wave.
  • the tuner 110 adjusts the intensity of the incident wave and the reflected wave of the electromagnetic wave output from the directional coupler 108 to induce impedance matching so that the electric field induced by the electromagnetic wave is maximized in the discharge tube 114.
  • the waveguide 112 transmits electromagnetic waves input from the tuner 110 to the discharge tube 114.
  • the power supply unit 102, the electromagnetic wave oscillator 104, the circulator 106, the directional coupler 108, the tuner 110 and the waveguide 112 described above constitute the electromagnetic wave supply unit 126 in the present invention.
  • the electromagnetic wave supply unit 126 generates electromagnetic waves and supplies them to the discharge tube 114.
  • the discharge tube 114 generates a plasma from the electromagnetic wave and the mixed gas containing hydrogen gas or hydrogen supplied from the electromagnetic wave supply unit 126, and the hydrogen (H) contained in the hydrogen gas or the mixed gas using the generated plasma. 2 ) dissociates to generate hydrogen (H) in the atomic state or to generate hydrogen ions, and reacts the generated hydrogen atoms or hydrogen ions with the Si-Cl-based compound to generate a Si-H-Cl-based compound.
  • Si-Cl-based compound which is a reactant in the present invention may be, for example, SiCl 4 or SiCl 2 and the like, Si-H-Cl-based compounds generated therefrom may be SiHCl 3 or SiH 2 Cl 2 and the like.
  • the hydrogen gas or the mixed gas containing hydrogen injected into the discharge tube 114 stabilizes the generated plasma and forms a swirl in the discharge tube 114 to form an inner wall of the discharge tube 114 from a high temperature plasma flame. Will protect.
  • hydrogen contained in the hydrogen gas or the mixed gas is reacted with the Si-Cl-based compound in the plasma to generate a Si-H-Cl-based compound.
  • the mixed gas may be formed by mixing hydrogen with an inert gas containing at least one of argon, helium, or nitrogen.
  • the gas supply unit 116 injects hydrogen gas or a mixed gas containing hydrogen into the discharge tube 114 in a vortex form, and the reactant supply unit 118 supplies the Si-Cl-based compound to the plasma generated inside the discharge tube 114. do.
  • Reactor 120 is formed in a cylindrical shape is provided on the top of the discharge tube 114, between the hydrogen atoms or hydrogen ions dissociated by the generated plasma and the Si-Cl-based compound supplied from the reactant supply unit 118 It is a space where a Si-H-Cl-based compound is produced by the reaction.
  • gas supply unit 116, the reactant supply unit 118, and the reactor 120 will be described later.
  • the product discharge part 122 discharges the Si-H-Cl based compound generated by the plasma to the outside.
  • the plasma hydrogenation apparatus 100 may further include a product separation unit 124.
  • the product separator 124 separates impurities from the Si-H-Cl-based compound discharged from the product outlet 122 to discharge only pure Si-H-Cl-based compounds and reuses the separated impurities. .
  • Product discharged from the discharging part 122 to the gas state, trichlorosilane (TCS, SiHCl 3) in addition to Si-H-Cl based compounds, etc., the hydrogen gas supplied from the gas supply 116 or reactant supply 118 to The mixed gas, part of the Si-Cl-based compound remaining unreacted, and other impurities are included together.
  • the product separation unit 124 removes impurities and the like from these products to purify only pure Si-H-Cl based compounds.
  • the unreacted Si-Cl-based compound of the separated impurities in the reactor 120 is supplied to the reactant supply unit 118, the hydrogen gas or mixed gas containing hydrogen is supplied to the gas supply unit 116 to react Re-injection into the furnace 120 increases the reuse rate of the raw materials and at the same time reduces the manufacturing cost of the Si-H-Cl-based compound.
  • FIG. 2 is a block diagram of a plasma hydrogenation apparatus 200 according to a second embodiment of the present invention.
  • the components represented by the same reference numerals as those of FIG. 1 are configured to substantially perform the same functions as the first embodiment, and thus redundant descriptions thereof will be omitted.
  • the gas supply unit 116 and the reactant supply unit 118 are not separated from each other, and the gas and reactant supply unit 202 is included instead of the first embodiment.
  • the gas and reactant supply unit 202 is formed at the lower end of the discharge tube 114 to supply hydrogen gas or mixed gas and Si-Cl compound of the gas form in a swirl form to the discharge tube 114. It is composed.
  • the plasma hydrogenation reaction apparatus 200 may further comprise a separate product separation unit 204.
  • the product separator 204 separates impurities from the Si-H-Cl-based compound discharged from the product outlet 122 to discharge only pure Si-H-Cl-based compounds, and reuses the separated impurities.
  • the product discharged in the gaseous state from the product discharge unit 122 includes hydrogen gas supplied from the gas and the reactant supply unit 202 in addition to Si-H-Cl-based compounds such as trichlorosilane (TCS, SiHCl 3 ). To a portion of the mixed gas or the remaining Si-Cl-based compound that is not reacted, and other impurities are included.
  • the product separation unit 204 removes impurities and the like from these products to purify only pure Si-H-Cl based compounds.
  • the unreacted Si-Cl-based compound, hydrogen gas, or a mixed gas containing hydrogen in the reactor 120 among the impurities is supplied to the gas and the reactant supply unit 202 to be re-introduced into the reactor 120. Injecting increases the reuse rate of raw materials and at the same time reduces the manufacturing cost of Si-H-Cl based compounds.
  • 3 and 4 are vertical cross-sectional views showing a portion where the waveguide 112 and the discharge tube 114 are connected to the plasma hydrogenation reaction apparatus 100 or 200 according to the present invention.
  • the discharge tube 114 is connected to the waveguide 112 to provide a space 300 in which the plasma is generated by the electromagnetic waves input through the waveguide 112.
  • the discharge tube 114 is formed in a cylindrical shape to vertically align the waveguide 112 at a point corresponding to 1/8 to 1/2 of the wavelength in the waveguide 112, preferably 1/4, from the end of the waveguide 112. It may be installed to penetrate, and may be made of quartz, alumina, or ceramic for easy transmission of electromagnetic waves.
  • the discharge tube supporter 302 formed to surround the waveguide 112 at the outer surface of the waveguide 112 supports the discharge tube 114 such that the discharge tube 114 is stably inserted into the waveguide 112 and fixed.
  • the reactor 120 is formed on the upper end of the discharge tube 114, and is formed in a cylindrical shape having the same diameter as the discharge tube 114.
  • the gas supply unit 116 is formed at the lower end of the discharge tube 114, and the reactant supply unit 118 is formed at the lower end of the reactor 120 as shown in FIG. 3 or the discharge tube 114 as shown in FIG. 4. It may be formed at the lower end of the).
  • the gas supply unit 116 of FIGS. 3 and 4 serves as the gas and reactant supply unit 202.
  • a separate reactant supply unit 118 may be omitted. Therefore, the description of the gas supply unit 116 of the first embodiment is applicable to the gas and reactant supply unit 202 of the second embodiment as it is not otherwise mentioned in the following description.
  • 5A to 5C are horizontal cross-sectional views showing the detailed configuration of the gas supply unit 116 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention.
  • the gas supply unit 116 of the plasma hydrogenation reaction apparatus 100 includes one or more gas supply pipe 400.
  • Each of the gas supply pipes 400 is configured to supply hydrogen gas or a mixed gas containing hydrogen into the discharge tube 114, one end of which is connected to the inside of the discharge tube 114.
  • the gas supply pipe 400 may be formed in an appropriate number inside the gas supply unit 116 as necessary.
  • 4A illustrates an embodiment in which two gas supply pipes 400 are formed
  • FIGS. 4B and 4C illustrate embodiments in which four and six gas supply pipes 400 are formed, respectively.
  • the gas supply pipe 400 may be arranged at equal intervals around the discharge pipe 114 in the gas supply part 116.
  • the gas supply pipe 400 is supplied to the discharge tube 114 such that the supplied hydrogen gas or mixed gas rotates in a swirl form along the inner circumferential surface of the discharge tube 114.
  • the gas supply pipe 400 may be configured such that hydrogen gas or mixed gas discharged into the discharge tube 114 is discharged along the inner circumferential surface of the discharge tube 114 (ie, parallel to the inner circumferential surface). It is connected to the inside.
  • the gas supply pipe 400 is configured so that the advancing direction of the gas supply pipe 400 and the parallel to the inner peripheral surface of the discharge pipe 114 in the vicinity of one end connected to the discharge pipe (114). In this case, the supplied hydrogen gas or the mixed gas rotates in one direction in the discharge tube 114 to have a vortex shape.
  • 6A and 6B are horizontal cross-sectional views illustrating detailed configurations of the reactant supply unit 118 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention.
  • the reactant supply unit 118 of the plasma hydrogenation reaction apparatus 100 includes one or more reactant supply tubes 500, and the discharge tube 114 and the reactant supply tubes 500. Si-Cl-based compound is supplied to the plasma formed inside the reactor (120).
  • the reactant supply pipe 500 may also be formed in an appropriate number inside the reactant supply unit 118 as necessary. Like the gas supply pipe 400, the reactant supply pipe 500 may also be formed in the reactant supply unit 118. It can be arranged at equal intervals around.
  • the reactant supply pipe 500 may be supplied to the reactor 120 so that the supplied Si-Cl compound rotates in a vortex form along the inner circumferential surface of the reactor 120.
  • the reactant supply pipe 500 discharges Si-Cl based compounds discharged into the reactor 120 along the inner circumferential surface of the reactor 120 (ie, parallel to the inner circumferential surface). Is connected to the inside of the reactor 120 so as to.
  • the reactant supply pipe 500 should also be configured such that the advancing direction of the reactant supply pipe 500 is parallel to the inner circumferential surface of the reactor 120 near one end connected to the reactor 120.
  • the supplied Si-Cl-based compound rotates in one direction inside the reactor 120 to have a swirl shape.
  • the rotation direction of the vortex preferably corresponds to the rotation direction of hydrogen gas or mixed gas.
  • the reactant supply pipe 500 may be formed to face the center of the plasma formed inside the discharge pipe 114.
  • the Si-Cl-based compound ejected through the reactant supply pipe 500 is directly injected toward the center of the plasma having a high temperature, the reaction of the Si-Cl-based compound may occur more easily.
  • the reactor 120 is provided above the discharge tube 114, and is a space where plasma-hydrogenation reaction occurs by plasma formed in the discharge tube 114.
  • the plasma hydrogenation reaction is a concept that is distinguished from the general hydrogenation reaction, whereas the hydrogenation reaction generally means a chemical reaction between molecular hydrogen (H 2 ) and a compound or element in the presence of a catalyst, Means chemical reaction with dissociated hydrogen atoms or hydrogen ions in a chemically highly reactive plasma.
  • the hydrogen molecules In order to dissociate or ionize the hydrogen molecules as described above, the hydrogen molecules should be heated as shown in a graph of the relationship between dissociation degree and ionization degree according to the temperature of FIG. 7. It is very difficult to dissociate hydrogen. Accordingly, the present invention is configured to easily dissociate hydrogen molecules by using plasma, and to generate Si-H-Cl-based compounds from Si-Cl-based compounds.
  • hydrogen molecules begin to dissociate at 2000K and almost all hydrogen molecules dissociate when the temperature reaches about 7000K (0.23 at 3500K, 0.45 at 4000K, 0.75 at 4500K, 0.75 at 5000K). 0.9).
  • the slope of dissociation degree is greatest between 3000 and 5000K, and the number of highly reactive hydrogen atoms is rapidly increased.
  • the temperature of the space in which the plasma inside the reactor 120 is formed is configured to maintain a temperature between 3000K and 5000K, and if necessary, is provided with heat insulating means surrounding the inner circumferential surface of the reactor 120 or By providing at least one of the heat transfer means for maintaining the temperature inside the reactor 120 in the above range by receiving an external power source to ensure that the inside of the reactor 120 maintains the optimum temperature.
  • the above dissociation degree if SiCl 4 is injected into the reaction material to obtain SiHCl 3 , that is,
  • the optimum molar ratios of hydrogen and SiCl 4 to temperatures 3500K, 4000K, 4500K and 5000K are 5: 1, 2.2: 1, 1.3: 1 and 1.1: 1, respectively.
  • the generation mechanism of the Si-H-Cl-based compound generated in the reactor 120 by the plasma is as follows.
  • the present invention can produce a large amount of hydrogen-related species, especially Si-H-Cl-based compounds using the plasma hydrogenation reaction.
  • gas and reactant supply unit 300 plasma generation space

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Silicon Compounds (AREA)

Abstract

Disclosed is a plasma hydrogenation apparatus. According to one embodiment of the present invention, the plasma hydrogenation apparatus comprises: an electromagnetic wave supply portion for oscillating electromagnetic waves of preset frequency; a discharge tube for generating plasma from the electromagnetic waves supplied from the electromagnetic wave supply portion and a hydrogen gas or a mixture gas containing hydrogen; a gas supply portion for volutedly injecting the hydrogen gas or the mixture gas containing hydrogen into the discharge tube; a reactant supply portion for supplying a Si-Cl-based compound to the plasma generated inside the discharge tube; a reactor in which a Si-H-Cl-based compound is generated through the reaction of hydrogen atoms or ions dissociated by the generated plasma and the Si-Cl-based compound; and a product discharge portion for discharging the Si-H-Cl-based compound generated at the reactor.

Description

플라즈마 수소화 반응 장치Plasma hydrogenation reactor
본 발명은 플라즈마를 이용한 수소화 반응 기술과 관련된다.The present invention relates to a hydrogenation technique using plasma.
최근, 전세계적으로 에너지 소비량이 급등하고 화석 연료가 점차 고갈되어 가면서, 지속 가능한 에너지원으로서 태양광에 대한 관심이 집중되고 있다. 또한 태양광을 전기에너지로 변환하기 위해서는 태양전지 기판이 필요한 바, 태양전지 기판의 원료 물질인 폴리실리콘(Polycrystalline silicon)에 대한 수요가 급속히 증가하고 있다.In recent years, as energy consumption soars and fossil fuels are gradually exhausted around the world, attention has been focused on solar energy as a sustainable energy source. In addition, in order to convert solar light into electrical energy, a solar cell substrate is required, and demand for polycrystalline silicon, which is a raw material of the solar cell substrate, is rapidly increasing.
폴리실리콘을 제조하기 위해서는 원료물질로서 Si-H-Cl계 화합물(SiHxCly; x+y=4; 0≤x,y≤4)이 필요하며, 일반적으로 이 중 삼염화 실란(Trichloro-silane; SiHCl3) 또는 모노실란(Mono-silane; SiH4) 중 하나의 물질이 사용된다.In order to manufacture the poly-silicon as a raw material SiH-Cl compound (SiH x Cl y; x + y = 4; 0≤x, y≤4) is required and, in general, of the trichlorosilane (Trichloro-silane SiHCl 3 ) or monosilane (SiH 4 ) is used.
기존에는 상기 Si-H-Cl계 화합물을 생산하기 위하여 다량의 사염화규소(Silicon tetrachloride; SiCl4)를 발생시키고, 발생된 사염화규소를 삼염화실란으로 수소화반응(hydrogenation)시키는 것이 일반적이었다. 그러나 이러한 종래의 수소화반응을 이용한 공정의 경우 높은 압력이 필요하며, 변환 수율이 약 20% 이하로서 매우 낮아 효율적으로 삼염화실란 등의 Si-H-Cl계 화합물을 생산하는 데 어려움이 있었다. 또한 이에 따라 태양전지 기판의 원료물질인 폴리실리콘의 공급 또한 매우 부족하여 태양광발전의 비약적인 발전에 최대 걸림돌이 되어 왔다.Conventionally, a large amount of silicon tetrachloride (SiCl 4 ) is generated to produce the Si-H-Cl-based compound, and hydrogenation of the generated silicon tetrachloride with trichlorosilane is common. However, such a process using a conventional hydrogenation reaction requires a high pressure, the conversion yield is very low, about 20% or less, there was a difficulty in efficiently producing Si-H-Cl-based compounds such as trichlorosilane. In addition, the supply of polysilicon, which is a raw material of the solar cell substrate, is also very insufficient, which has been the biggest obstacle to the rapid development of solar power.
본 발명은 플라즈마를 이용하여 경제적이고 효율적으로 Si-H-Cl계 화합물을 제조하는 데 그 목적이 있다.The present invention aims to produce Si-H-Cl based compounds economically and efficiently using plasma.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 플라즈마 수소화 반응 장치는, 기 설정된 주파수의 전자파를 발진하는 전자파 공급부; 상기 전자파 공급부로부터 공급된 상기 전자파 및 수소가스 또는 수소를 포함하는 혼합가스로부터 플라즈마가 발생되는 방전관; 상기 방전관에 상기 수소가스 또는 상기 수소를 포함하는 혼합가스를 소용돌이 형태로 주입하는 가스 공급부; 상기 방전관 내부에서 생성된 상기 플라즈마에 Si-Cl계 화합물을 공급하는 반응물 공급부; 발생된 상기 플라즈마에 의하여 해리된 수소 원자 또는 수소 이온과 상기 Si-Cl계 화합물간의 반응에 의하여 Si-H-Cl계 화합물이 생성되는 반응로; 및 상기 반응로에서 생성된 상기 Si-H-Cl계 화합물을 배출하는 생성물 배출부를 포함한다.Plasma hydrogenation apparatus according to an embodiment of the present invention for solving the above problems, the electromagnetic wave supply unit for generating an electromagnetic wave of a predetermined frequency; A discharge tube in which a plasma is generated from the electromagnetic wave supplied from the electromagnetic wave supply unit and a mixed gas including hydrogen gas or hydrogen; A gas supply unit for injecting the hydrogen gas or the mixed gas including hydrogen into the discharge tube in a vortex form; A reactant supply unit supplying a Si-Cl based compound to the plasma generated inside the discharge tube; A reaction furnace in which a Si—H—Cl based compound is produced by a reaction between a hydrogen atom or a hydrogen ion dissociated by the generated plasma and the Si—Cl based compound; And a product discharge part for discharging the Si-H-Cl-based compound generated in the reactor.
또한, 상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 플라즈마 수소화 반응 장치는, 기 설정된 주파수의 전자파를 발진하는 전자파 공급부; 상기 전자파 공급부로부터 공급된 상기 전자파 및 수소가스 또는 수소를 포함하는 혼합가스로부터 플라즈마가 발생되는 방전관; 상기 방전관에 상기 수소가스 또는 상기 수소를 포함하는 혼합가스와 함께 가스 형태의 Si-Cl계 화합물을 소용돌이 형태로 주입하는 가스 및 반응물 공급부; 발생된 상기 플라즈마에 의하여 해리된 수소 원자 또는 수소 이온과 상기 Si-Cl계 화합물간의 반응에 의하여 Si-H-Cl계 화합물이 생성되는 반응로; 및 상기 반응로에서 생성된 상기 Si-H-Cl계 화합물을 배출하는 가스 배출부를 포함한다.In addition, the plasma hydrogenation reaction apparatus according to another embodiment of the present invention for solving the above problems, an electromagnetic wave supply unit for generating an electromagnetic wave of a predetermined frequency; A discharge tube in which a plasma is generated from the electromagnetic wave supplied from the electromagnetic wave supply unit and a mixed gas including hydrogen gas or hydrogen; A gas and reactant supply unit for injecting a gaseous Si-Cl-based compound in a vortex form together with the hydrogen gas or the mixed gas including hydrogen into the discharge tube; A reaction furnace in which a Si—H—Cl based compound is produced by a reaction between a hydrogen atom or a hydrogen ion dissociated by the generated plasma and the Si—Cl based compound; And a gas discharge part for discharging the Si-H-Cl-based compound generated in the reactor.
본 발명의 실시예들에 따를 경우 플라즈마 수소화 반응을 이용하여 다량의 수소 관련 종, 특히 Si-H-Cl 계열 화합물을 생산할 수 있다. 또한, 3000K 내지 5000K 이상의 고온 영역에서 플라즈마 수소화 반응을 발생시키므로 화합물 생성의 효율을 높일 수 있으며, 본 발명의 플라즈마는 1기압 환경에서 발생되므로 플라즈마 가스화기의 소형화 및 제어의 용이화가 가능한 장점이 있다.According to embodiments of the present invention it is possible to produce a large amount of hydrogen-related species, in particular Si-H-Cl-based compounds using a plasma hydrogenation reaction. In addition, since the plasma hydrogenation reaction is generated in a high temperature region of 3000K to 5000K or more, the efficiency of compound generation can be improved, and since the plasma of the present invention is generated in an atmosphere of 1 atmosphere, there is an advantage that the size and control of the plasma gasifier can be facilitated.
도 1은 본 발명의 실시예 1에 따른 플라즈마 수소화 반응 장치(100)의 블록 구성도이다.1 is a block diagram of a plasma hydrogenation apparatus 100 according to a first embodiment of the present invention.
도 2는 본 발명의 실시예 2에 따른 플라즈마 수소화 반응 장치(200)의 블록 구성도이다. 2 is a block diagram of a plasma hydrogenation apparatus 200 according to a second embodiment of the present invention.
도 3 및 도 4는 본 발명에 따른 플라즈마 수소화 반응 장치(100, 200)의 도파관(112)과 방전관(114)이 연결되는 부분을 도시한 수직 단면도이다.3 and 4 are vertical cross-sectional views showing a portion where the waveguide 112 and the discharge tube 114 are connected to the plasma hydrogenation reaction apparatus 100 or 200 according to the present invention.
도 5a 내지 5c는 본 발명의 일 실시예에 따른 플라즈마 수소화 반응 장치(100)의 가스 공급부(116)의 상세 구성을 나타낸 수평 단면도이다.5A to 5C are horizontal cross-sectional views showing the detailed configuration of the gas supply unit 116 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention.
도 6a 및 6b는 본 발명의 일 실시예에 따른 플라즈마 수소화 반응 장치(100)의 반응물 공급부(118)의 상세 구성을 나타낸 수평 단면도이다.6A and 6B are horizontal cross-sectional views illustrating detailed configurations of the reactant supply unit 118 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention.
도 7은 온도에 따른 수소 원자의 해리도 및 이온화도를 나타낸 그래프이다.7 is a graph showing the degree of dissociation and ionization of hydrogen atoms with temperature.
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, this is only an example and the present invention is not limited thereto.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하의 실시예는 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.The technical spirit of the present invention is determined by the claims, and the following embodiments are merely means for efficiently explaining the technical spirit of the present invention to those skilled in the art.
도 1은 본 발명의 실시예 1에 따른 플라즈마 수소화 반응 장치(100)의 블록 구성도이다.1 is a block diagram of a plasma hydrogenation apparatus 100 according to a first embodiment of the present invention.
도시된 바와 같이, 플라즈마 수소화 반응 장치(100)는 전원부(102), 전자파 발진기(104), 순환기(106), 방향성 결합기(108), 튜너(110), 도파관(112), 방전관(114), 가스 공급부(116), 반응물 공급부(118), 반응로(120), 및 생성물 배출부(122)를 포함하며, 필요에 따라 생성물 분리부(124)를 더 포함할 수 있다.As shown, the plasma hydrogenation reaction apparatus 100 includes a power supply unit 102, an electromagnetic wave oscillator 104, a circulator 106, a directional coupler 108, a tuner 110, a waveguide 112, a discharge tube 114, The gas supply unit 116, the reactant supply unit 118, the reactor 120, and the product discharge unit 122 may be further included. The product separation unit 124 may be further included as necessary.
전원부(102)는 플라즈마 수소화 반응 장치(100)의 구동에 필요한 전력을 공급한다.The power supply unit 102 supplies power required for driving the plasma hydrogenation reaction apparatus 100.
전자파 발진기(104)는 전원부(102)와 연결되며, 전원부(102)로부터 전력을 공급받아 전자파를 발진한다. 본 발명에서는 상용주파수의 전자파 발진기(마그네트론)를 이용하며, 예를 들어 2.45GHz의 주파수를 갖는 전자파 발진기, 또는 902~928MHz(915MHz 마그네트론) 또는 886~896MHz(896MHz 마그네트론)의 주파수 범위를 갖는 전자파를 발진하는 전자파 발진기를 사용할 수 있다.The electromagnetic wave oscillator 104 is connected to the power supply unit 102 and receives electric power from the power supply unit 102 to oscillate electromagnetic waves. In the present invention, an electromagnetic wave oscillator (magnetron) of commercial frequency is used, for example, an electromagnetic wave oscillator having a frequency of 2.45 GHz, or an electromagnetic wave having a frequency range of 902 to 928 MHz (915 MHz magnetron) or 886 to 896 MHz (896 MHz magnetron). An electromagnetic wave oscillator can be used.
순환기(106)는 전자파 발진기(104)와 연결되며, 전자파 발진기(104)에서 발진된 전자파를 출력함과 동시에 임피던스 부정합으로 반사되는 전자파 에너지를 소멸시켜 전자파 발진기(104)를 보호한다.The circulator 106 is connected to the electromagnetic wave oscillator 104, and outputs the electromagnetic wave oscillated by the electromagnetic wave oscillator 104, and simultaneously dissipates electromagnetic energy reflected by impedance mismatch to protect the electromagnetic wave oscillator 104.
방향성 결합기(108)는 순환기(106)를 통해 전송된 전자파를 출력하며, 이와 동시에 입사파와 반사파의 세기를 모니터링한다.The directional coupler 108 outputs electromagnetic waves transmitted through the circulator 106, and at the same time monitors the intensity of the incident wave and the reflected wave.
튜너(110)는 방향성 결합기(108)로부터 출력된 전자파의 입사파와 반사파의 세기를 조절하여 임피던스 정합을 유도함으로써 상기 전자파로 유도된 전기장이 방전관(114) 내에서 최대가 되도록 한다.The tuner 110 adjusts the intensity of the incident wave and the reflected wave of the electromagnetic wave output from the directional coupler 108 to induce impedance matching so that the electric field induced by the electromagnetic wave is maximized in the discharge tube 114.
도파관(112)은 튜너(110)로부터 입력되는 전자파를 방전관(114)으로 전송한다. The waveguide 112 transmits electromagnetic waves input from the tuner 110 to the discharge tube 114.
도시된 바와 같이, 전술한 전원부(102), 전자파 발진기(104), 순환기(106), 방향성 결합기(108), 튜너(110) 및 도파관(112)은 본 발명에서 전자파 공급부(126)를 구성하며, 전자파 공급부(126)는 전자파를 발생시켜 방전관(114)으로 공급하는 역할을 수행한다.As shown, the power supply unit 102, the electromagnetic wave oscillator 104, the circulator 106, the directional coupler 108, the tuner 110 and the waveguide 112 described above constitute the electromagnetic wave supply unit 126 in the present invention. The electromagnetic wave supply unit 126 generates electromagnetic waves and supplies them to the discharge tube 114.
방전관(114)은 전자파 공급부(126)로부터 공급된 상기 전자파 및 수소가스 또는 수소를 포함하는 혼합가스로부터 플라즈마를 생성하며, 생성된 상기 플라즈마를 이용하여 상기 수소가스 또는 혼합가스에 포함된 수소(H2)를 해리하여 원자 상태의 수소(H)를 생성하거나 또는 수소 이온을 생성하고, 생성된 상기 수소 원자 또는 수소 이온과 Si-Cl계 화합물을 반응시켜 Si-H-Cl계 화합물을 생성한다. 본 발명에서 반응물인 Si-Cl계 화합물은 예를 들어 SiCl4 또는 SiCl2 등이 될 수 있으며, 이로부터 생성되는 Si-H-Cl계 화합물은 SiHCl3 또는 SiH2Cl2 등이 될 수 있다.The discharge tube 114 generates a plasma from the electromagnetic wave and the mixed gas containing hydrogen gas or hydrogen supplied from the electromagnetic wave supply unit 126, and the hydrogen (H) contained in the hydrogen gas or the mixed gas using the generated plasma. 2 ) dissociates to generate hydrogen (H) in the atomic state or to generate hydrogen ions, and reacts the generated hydrogen atoms or hydrogen ions with the Si-Cl-based compound to generate a Si-H-Cl-based compound. Si-Cl-based compound which is a reactant in the present invention may be, for example, SiCl 4 or SiCl 2 and the like, Si-H-Cl-based compounds generated therefrom may be SiHCl 3 or SiH 2 Cl 2 and the like.
상기와 같이 방전관(114) 내부에 주입된 수소가스 또는 수소를 포함하는 혼합가스는 생성된 플라즈마를 안정화시키고 방전관(114) 내에 소용돌이(swirl)를 형성하여 고온의 플라즈마 화염으로부터 방전관(114)의 내벽을 보호하게 된다. 또한 상기 수소가스 또는 혼합가스에 포함된 수소는 상기 플라즈마 내에서 Si-Cl계 화합물과 반응하여 Si-H-Cl계 화합물을 생성하게 된다. 상기 혼합가스는 아르곤, 헬륨, 또는 질소 중 하나 이상을 포함하는 불활성가스에 수소를 혼합하여 형성될 수 있다.As described above, the hydrogen gas or the mixed gas containing hydrogen injected into the discharge tube 114 stabilizes the generated plasma and forms a swirl in the discharge tube 114 to form an inner wall of the discharge tube 114 from a high temperature plasma flame. Will protect. In addition, hydrogen contained in the hydrogen gas or the mixed gas is reacted with the Si-Cl-based compound in the plasma to generate a Si-H-Cl-based compound. The mixed gas may be formed by mixing hydrogen with an inert gas containing at least one of argon, helium, or nitrogen.
가스 공급부(116)는 방전관(114)에 수소가스 또는 수소를 포함하는 혼합가스를 소용돌이 형태로 주입하며, 반응물 공급부(118)는 방전관(114) 내부에서 생성된 플라즈마에 Si-Cl계 화합물을 공급한다. The gas supply unit 116 injects hydrogen gas or a mixed gas containing hydrogen into the discharge tube 114 in a vortex form, and the reactant supply unit 118 supplies the Si-Cl-based compound to the plasma generated inside the discharge tube 114. do.
반응로(120)는 원통 형태로 형성되어 방전관(114)의 상단에 구비되며, 발생된 상기 플라즈마에 의하여 해리된 수소 원자 또는 수소 이온 및 반응물 공급부(118)에서 공급된 상기 Si-Cl계 화합물간의 반응에 의하여 Si-H-Cl계 화합물이 생성되는 공간이다. 가스 공급부(116), 반응물 공급부(118) 및 반응로(120)의 구체적인 구성에 대해서는 후술하기로 한다. Reactor 120 is formed in a cylindrical shape is provided on the top of the discharge tube 114, between the hydrogen atoms or hydrogen ions dissociated by the generated plasma and the Si-Cl-based compound supplied from the reactant supply unit 118 It is a space where a Si-H-Cl-based compound is produced by the reaction. Detailed configurations of the gas supply unit 116, the reactant supply unit 118, and the reactor 120 will be described later.
생성물 배출부(122)는 플라즈마에 의하여 생성된 상기 Si-H-Cl계 화합물을 외부로 배출한다.The product discharge part 122 discharges the Si-H-Cl based compound generated by the plasma to the outside.
한편, 전술한 바와 같이 본 실시예에 따른 플라즈마 수소화 반응 장치(100)는 생성물 분리부(124)를 더 포함하여 구성될 수 있다. 생성물 분리부(124)는 생성물 배출부(122)에서 배출된 상기 Si-H-Cl계 화합물에서 불순물을 분리하여 순수 Si-H-Cl계 화합물만을 배출하고, 분리된 상기 불순물을 재사용하기 위한 것이다. 생성물 배출부(122)에서 기체 상태로 배출된 생성물에는 삼염화실란(TCS, SiHCl3) 등의 Si-H-Cl계 화합물 이외에, 가스 공급부(116) 또는 반응물 공급부(118)에서 공급된 수소가스 내지 혼합가스, 또는 반응되지 않고 남은 Si-Cl계 화합물의 일부 및 기타 불순물 등이 함께 포함되어 있다. 생성물 분리부(124)는 이와 같은 생성물들에서 불순물 등을 제거하여 순수 Si-H-Cl계 화합물만을 정제한다. 또한, 분리된 상기 불순물 중 반응로(120)에서 미반응된 Si-Cl계 화합물은 반응물 공급부(118)로 공급하고, 수소가스 또는 수소를 포함하는 혼합가스는 가스 공급부(116)로 공급하여 반응로(120) 내부로 재주입함으로써 원료의 재사용률을 높이는 동시에 Si-H-Cl계 화합물의 제조 단가를 낮출 수 있도록 한다.Meanwhile, as described above, the plasma hydrogenation apparatus 100 according to the present exemplary embodiment may further include a product separation unit 124. The product separator 124 separates impurities from the Si-H-Cl-based compound discharged from the product outlet 122 to discharge only pure Si-H-Cl-based compounds and reuses the separated impurities. . Product The product discharged from the discharging part 122 to the gas state, trichlorosilane (TCS, SiHCl 3) in addition to Si-H-Cl based compounds, etc., the hydrogen gas supplied from the gas supply 116 or reactant supply 118 to The mixed gas, part of the Si-Cl-based compound remaining unreacted, and other impurities are included together. The product separation unit 124 removes impurities and the like from these products to purify only pure Si-H-Cl based compounds. In addition, the unreacted Si-Cl-based compound of the separated impurities in the reactor 120 is supplied to the reactant supply unit 118, the hydrogen gas or mixed gas containing hydrogen is supplied to the gas supply unit 116 to react Re-injection into the furnace 120 increases the reuse rate of the raw materials and at the same time reduces the manufacturing cost of the Si-H-Cl-based compound.
도 2는 본 발명의 실시예 2에 따른 플라즈마 수소화 반응 장치(200)의 블록 구성도이다. 도시된 실시예에서, 도 1과 동일한 도면부호로서 표현된 구성요소들은 실질적으로 실시예 1과 동일한 기능을 수행하도록 구성되는 바, 중복된 설명은 생략하기로 한다.2 is a block diagram of a plasma hydrogenation apparatus 200 according to a second embodiment of the present invention. In the illustrated embodiment, the components represented by the same reference numerals as those of FIG. 1 are configured to substantially perform the same functions as the first embodiment, and thus redundant descriptions thereof will be omitted.
본 실시예의 경우, 가스 공급부(116)와 반응물 공급부(118)가 분리되어 있지 않고, 대신 가스 및 반응물 공급부(202)를 포함하고 있다는 점이 실시예 1과 상이하다. 이와 같은 가스 및 반응물 공급부(202)는 방전관(114)의 하단부에 형성되어 방전관(114)의 내부로 수소가스 또는 혼합가스 및 상기 가스 형태의 Si-Cl계 화합물을 소용돌이(swirl) 형태로 공급하도록 구성된다.In the present embodiment, the gas supply unit 116 and the reactant supply unit 118 are not separated from each other, and the gas and reactant supply unit 202 is included instead of the first embodiment. The gas and reactant supply unit 202 is formed at the lower end of the discharge tube 114 to supply hydrogen gas or mixed gas and Si-Cl compound of the gas form in a swirl form to the discharge tube 114. It is composed.
한편, 본 실시예에 따른 플라즈마 수소화 반응 장치(200)에서도 별도의 생성물 분리부(204)를 더 포함하여 구성될 수 있다. 생성물 분리부(204)는 생성물 배출부(122)에서 배출된 상기 Si-H-Cl계 화합물에서 불순물을 분리하여 순수 Si-H-Cl계 화합물만을 배출하고, 분리된 상기 불순물을 재사용하기 위한 것이다. 전술한 바와 같이, 생성물 배출부(122)에서 기체 상태로 배출된 생성물에는 삼염화실란(TCS, SiHCl3) 등의 Si-H-Cl계 화합물 이외에, 가스 및 반응물 공급부(202)에서 공급된 수소가스 내지 혼합가스 또는 반응되지 않고 남은 Si-Cl계 화합물의 일부 및 기타 불순물 등이 함께 포함되어 있다. 생성물 분리부(204)는 이와 같은 생성물들에서 불순물 등을 제거하여 순수 Si-H-Cl계 화합물만을 정제한다. 또한, 분리된 상기 불순물 중 반응로(120)에서 미반응된 Si-Cl계 화합물, 수소가스 또는 수소를 포함하는 혼합가스는 가스 및 반응물 공급부(202)로 공급하여 반응로(120) 내부로 재주입함으로써 원료의 재사용률을 높이는 동시에 Si-H-Cl계 화합물의 제조 단가를 낮출 수 있도록 한다.On the other hand, the plasma hydrogenation reaction apparatus 200 according to the present embodiment may further comprise a separate product separation unit 204. The product separator 204 separates impurities from the Si-H-Cl-based compound discharged from the product outlet 122 to discharge only pure Si-H-Cl-based compounds, and reuses the separated impurities. . As described above, the product discharged in the gaseous state from the product discharge unit 122 includes hydrogen gas supplied from the gas and the reactant supply unit 202 in addition to Si-H-Cl-based compounds such as trichlorosilane (TCS, SiHCl 3 ). To a portion of the mixed gas or the remaining Si-Cl-based compound that is not reacted, and other impurities are included. The product separation unit 204 removes impurities and the like from these products to purify only pure Si-H-Cl based compounds. In addition, the unreacted Si-Cl-based compound, hydrogen gas, or a mixed gas containing hydrogen in the reactor 120 among the impurities is supplied to the gas and the reactant supply unit 202 to be re-introduced into the reactor 120. Injecting increases the reuse rate of raw materials and at the same time reduces the manufacturing cost of Si-H-Cl based compounds.
도 3 및 도 4는 본 발명에 따른 플라즈마 수소화 반응 장치(100, 200)의 도파관(112)과 방전관(114)이 연결되는 부분을 도시한 수직 단면도이다.3 and 4 are vertical cross-sectional views showing a portion where the waveguide 112 and the discharge tube 114 are connected to the plasma hydrogenation reaction apparatus 100 or 200 according to the present invention.
도시된 바와 같이, 방전관(114)은 도파관(112)과 연결되어 도파관(112)을 통해 입력되는 전자파에 의해 플라즈마가 생성되는 공간(300)을 제공한다. 방전관(114)은 원통형으로 형성되어 도파관(112)의 종단으로부터 도파관(112) 내 파장의 1/8~1/2 사이, 바람직하게는 1/4에 해당하는 지점에서 도파관(112)을 수직하게 관통하도록 설치될 수 있으며, 전자파의 용이한 투과를 위해 석영, 알루미나, 또는 세라믹으로 구성될 수 있다. 도파관(112)의 외부면에서 도파관(112)을 감싸도록 형성된 방전관 지지체(302)는 방전관(114)이 안정적으로 도파관(112) 내부에 삽입되어 고정되도록 방전관(114)을 지지한다.As shown, the discharge tube 114 is connected to the waveguide 112 to provide a space 300 in which the plasma is generated by the electromagnetic waves input through the waveguide 112. The discharge tube 114 is formed in a cylindrical shape to vertically align the waveguide 112 at a point corresponding to 1/8 to 1/2 of the wavelength in the waveguide 112, preferably 1/4, from the end of the waveguide 112. It may be installed to penetrate, and may be made of quartz, alumina, or ceramic for easy transmission of electromagnetic waves. The discharge tube supporter 302 formed to surround the waveguide 112 at the outer surface of the waveguide 112 supports the discharge tube 114 such that the discharge tube 114 is stably inserted into the waveguide 112 and fixed.
반응로(120)는 방전관(114)의 상단에 형성되며, 방전관(114)과 동일한 직경을 가지는 원통형으로 형성된다.The reactor 120 is formed on the upper end of the discharge tube 114, and is formed in a cylindrical shape having the same diameter as the discharge tube 114.
가스 공급부(116)는 방전관(114)의 하단부에 형성되며, 반응물 공급부(118)는 도 3에 도시된 것과 같이 반응로(120)의 하단부에 형성되거나 또는 도 4에 도시된 것과 같이 방전관(114)의 하단부에 형성될 수 있다. 또한 실시예 2에서와 같이 수소가스 또는 혼합가스와 가스 형태의 Si-Cl계 화합물이 함께 주입될 경우에는 도 3 및 도 4의 가스 공급부(116)가 가스 및 반응물 공급부(202)의 역할을 하게 되며, 이 경우 별도의 반응물 공급부(118)는 생략될 수 있다. 따라서 이하의 설명에서 별도의 언급이 없더라도 실시예 1의 가스 공급부(116)에 대한 설명은 실시예 2의 가스 및 반응물 공급부(202)에도 그대로 적용 가능함을 유의한다.The gas supply unit 116 is formed at the lower end of the discharge tube 114, and the reactant supply unit 118 is formed at the lower end of the reactor 120 as shown in FIG. 3 or the discharge tube 114 as shown in FIG. 4. It may be formed at the lower end of the). In addition, when the hydrogen gas or the mixed gas and the Si-Cl-based compound in the form of gas are injected together as in Example 2, the gas supply unit 116 of FIGS. 3 and 4 serves as the gas and reactant supply unit 202. In this case, a separate reactant supply unit 118 may be omitted. Therefore, the description of the gas supply unit 116 of the first embodiment is applicable to the gas and reactant supply unit 202 of the second embodiment as it is not otherwise mentioned in the following description.
도 5a 내지 5c는 본 발명의 일 실시예에 따른 플라즈마 수소화 반응 장치(100)의 가스 공급부(116)의 상세 구성을 나타낸 수평 단면도이다.5A to 5C are horizontal cross-sectional views showing the detailed configuration of the gas supply unit 116 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention.
도시된 바와 같이, 본 발명의 일 실시예에 따른 플라즈마 수소화 반응 장치(100)의 가스 공급부(116)는 하나 이상의 가스 공급관(400)을 포함한다. 가스 공급관(400)은 각각 일단이 방전관(114)의 내부와 연결되어 방전관(114) 내부로 수소가스 또는 수소를 포함하는 혼합가스를 공급하도록 구성된다.As shown, the gas supply unit 116 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention includes one or more gas supply pipe 400. Each of the gas supply pipes 400 is configured to supply hydrogen gas or a mixed gas containing hydrogen into the discharge tube 114, one end of which is connected to the inside of the discharge tube 114.
가스 공급관(400)은 필요에 따라 가스 공급부(116)의 내부에 적정한 개수로 형성될 수 있다. 도 4a는 2개의 가스 공급관(400)이 형성된 실시예를, 도 4b 및 4c는 각각 4개 및 6개의 가스 공급관(400)이 형성된 실시예를 도시한 것이다. 가스 공급관(400)은 가스 공급부(116) 내에서 방전관(114) 주위에 동일 간격으로 배치될 수 있다. The gas supply pipe 400 may be formed in an appropriate number inside the gas supply unit 116 as necessary. 4A illustrates an embodiment in which two gas supply pipes 400 are formed, and FIGS. 4B and 4C illustrate embodiments in which four and six gas supply pipes 400 are formed, respectively. The gas supply pipe 400 may be arranged at equal intervals around the discharge pipe 114 in the gas supply part 116.
가스 공급관(400)은 공급된 수소가스 또는 혼합가스가 방전관(114)의 내주면을 따라 소용돌이(swirl) 형태로 회전하도록 방전관(114)으로 공급된다. 이를 위하여, 도시된 바와 같이 가스 공급관(400)은 방전관(114) 내부로 배출되는 수소가스 또는 혼합가스가 방전관(114)의 내주면을 따라 (즉, 내주면과 평행하게) 배출되도록 방전관(114)의 내부와 연결된다. 이를 위하여, 가스 공급관(400)이 방전관(114)과 연결되는 일단 부근에서는 가스 공급관(400) 및 의 진행 방향이 방전관(114)의 내주면과 평행하도록 구성된다. 이렇게 구성될 경우, 공급된 수소가스 또는 혼합가스는 방전관(114)의 내부에서 일방향으로 회전하여 소용돌이 형태를 띄게 된다.The gas supply pipe 400 is supplied to the discharge tube 114 such that the supplied hydrogen gas or mixed gas rotates in a swirl form along the inner circumferential surface of the discharge tube 114. To this end, as shown, the gas supply pipe 400 may be configured such that hydrogen gas or mixed gas discharged into the discharge tube 114 is discharged along the inner circumferential surface of the discharge tube 114 (ie, parallel to the inner circumferential surface). It is connected to the inside. To this end, the gas supply pipe 400 is configured so that the advancing direction of the gas supply pipe 400 and the parallel to the inner peripheral surface of the discharge pipe 114 in the vicinity of one end connected to the discharge pipe (114). In this case, the supplied hydrogen gas or the mixed gas rotates in one direction in the discharge tube 114 to have a vortex shape.
도 6a 및 6b는 본 발명의 일 실시예에 따른 플라즈마 수소화 반응 장치(100)의 반응물 공급부(118)의 상세 구성을 나타낸 수평 단면도이다.6A and 6B are horizontal cross-sectional views illustrating detailed configurations of the reactant supply unit 118 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention.
도시된 바와 같이, 본 발명의 일 실시예에 따른 플라즈마 수소화 반응 장치(100)의 반응물 공급부(118)는 하나 이상의 반응물 공급관(500)을 포함하며, 반응물 공급관(500)을 통하여 방전관(114) 및 반응로(120) 내부에 형성된 플라즈마에 Si-Cl계 화합물을 공급하게 된다.As shown, the reactant supply unit 118 of the plasma hydrogenation reaction apparatus 100 according to an embodiment of the present invention includes one or more reactant supply tubes 500, and the discharge tube 114 and the reactant supply tubes 500. Si-Cl-based compound is supplied to the plasma formed inside the reactor (120).
반응물 공급관(500) 또한 필요에 따라 반응물 공급부(118)의 내부에 적정한 개수로 형성될 수 있으며, 가스 공급관(400)과 마찬가지로 반응물 공급관(500) 또한 반응물 공급부(118) 내에서 반응로(120) 주위에 동일 간격으로 배치될 수 있다.The reactant supply pipe 500 may also be formed in an appropriate number inside the reactant supply unit 118 as necessary. Like the gas supply pipe 400, the reactant supply pipe 500 may also be formed in the reactant supply unit 118. It can be arranged at equal intervals around.
일 실시예에서, 반응물 공급관(500)은 공급된 Si-Cl계 화합물이 반응로(120)의 내주면을 따라 소용돌이 형태로 회전하도록 반응로(120)로 공급될 수 있다. 이를 위하여, 도 6a에 도시된 바와 같이, 반응물 공급관(500)은 반응로(120) 내부로 배출되는 Si-Cl계 화합물이 반응로(120)의 내주면을 따라 (즉, 내주면과 평행하게) 배출되도록 반응로(120)의 내부와 연결된다. 이를 위하여, 가스 공급관(400)과 마찬가지로 반응물 공급관(500) 또한 반응로(120)와 연결되는 일단 부근에서는 반응물 공급관(500)의 진행 방향이 반응로(120)의 내주면과 평행하도록 구성되어야 한다. 이렇게 구성될 경우, 공급된 Si-Cl계 화합물은 반응로(120)의 내부에서 일방향으로 회전하여 소용돌이(swirl) 형태를 띄게 된다. 이때 상기 소용돌이의 회전 방향은 수소가스 또는 혼합가스의 회전 방향과 일치하는 것이 바람직하다.In one embodiment, the reactant supply pipe 500 may be supplied to the reactor 120 so that the supplied Si-Cl compound rotates in a vortex form along the inner circumferential surface of the reactor 120. To this end, as shown in FIG. 6A, the reactant supply pipe 500 discharges Si-Cl based compounds discharged into the reactor 120 along the inner circumferential surface of the reactor 120 (ie, parallel to the inner circumferential surface). Is connected to the inside of the reactor 120 so as to. To this end, like the gas supply pipe 400, the reactant supply pipe 500 should also be configured such that the advancing direction of the reactant supply pipe 500 is parallel to the inner circumferential surface of the reactor 120 near one end connected to the reactor 120. In this case, the supplied Si-Cl-based compound rotates in one direction inside the reactor 120 to have a swirl shape. At this time, the rotation direction of the vortex preferably corresponds to the rotation direction of hydrogen gas or mixed gas.
도 6b에 도시된 다른 실시예에서는, 반응물 공급관(500)이 방전관(114) 내부에 형성된 플라즈마의 중심부를 향하도록 형성될 수 있다. 이 경우에는 반응물 공급관(500)을 통하여 분출된 Si-Cl계 화합물이 고온을 띄는 플라즈마의 중심부를 향하여 직접 분사됨으로써 Si-Cl계 화합물의 반응이 좀 더 용이하게 일어날 수 있다.In another embodiment shown in FIG. 6B, the reactant supply pipe 500 may be formed to face the center of the plasma formed inside the discharge pipe 114. In this case, since the Si-Cl-based compound ejected through the reactant supply pipe 500 is directly injected toward the center of the plasma having a high temperature, the reaction of the Si-Cl-based compound may occur more easily.
이하에서는 반응로(120) 및 반응로(120) 내분에서의 반응에 대하여 설명한다.Hereinafter, the reaction in the reactor 120 and the reactor 120 will be described.
반응로(120)는 방전관(114)의 상부에 구비되며, 방전관(114)에서 형성된 플라즈마에 의한 플라즈마 수소화 반응(Plasma-Hydrogenation)이 일어나는 공간이다. 이러한 플라즈마 수소화 반응은 일반적인 수소화 반응(Hydrogenation)과는 구별되는 개념으로서, 수소화 반응이 일반적으로 촉매의 존재 하에서 분자 수소(H2)와 화합물 또는 원소 사이의 화학반응을 의미하는 데 비해, 플라즈마 수소화 반응은 화학적으로 매우 반응성이 높은 플라즈마에서 해리(Dissociation)된 수소 원자들 또는 수소 이온들과의 화학반응을 의미한다.The reactor 120 is provided above the discharge tube 114, and is a space where plasma-hydrogenation reaction occurs by plasma formed in the discharge tube 114. The plasma hydrogenation reaction is a concept that is distinguished from the general hydrogenation reaction, whereas the hydrogenation reaction generally means a chemical reaction between molecular hydrogen (H 2 ) and a compound or element in the presence of a catalyst, Means chemical reaction with dissociated hydrogen atoms or hydrogen ions in a chemically highly reactive plasma.
이와 같이 수소 분자를 해리하거나 또는 이온화하기 위하여서는 도 7의 온도에 따른 해리도(dissociation degree)와 이온화도(ionization degree)의 관계 그래프에서 알 수 있는 바와 같이 수소 분자를 가열하여야 하나, 일반적인 방법으로는 수소를 해리하기 매우 어렵다. 이에 본 발명은 플라즈마를 이용함으로써 수소 분자를 용이하게 해리하고, 이를 이용하여 Si-Cl계 화합물로부터 Si-H-Cl계 화합물을 생성하도록 구성하였다.In order to dissociate or ionize the hydrogen molecules as described above, the hydrogen molecules should be heated as shown in a graph of the relationship between dissociation degree and ionization degree according to the temperature of FIG. 7. It is very difficult to dissociate hydrogen. Accordingly, the present invention is configured to easily dissociate hydrogen molecules by using plasma, and to generate Si-H-Cl-based compounds from Si-Cl-based compounds.
도 7에서 알 수 있는 바와 같이, 수소 분자는 온도가 2000K에서 해리하기 시작하여 온도가 약 7000K에 이르면 거의 모든 수소분자가 해리된다(3500K에서 해리도는 0.2, 4000K에서는 0.45, 4500K에서는 0.75, 5000K에서는 0.9). 또한, 3000~5000K 사이에서 해리도의 기울기가 가장 크며, 이에 따라 반응성이 큰 수소원자들의 수가 급격히 늘어나게 된다. 따라서 본 발명에서는 반응로(120) 내부의 플라즈마가 형성되는 공간의 온도가 3000K 내지 5000K 사이의 온도를 유지하도록 구성되며, 필요에 따라 반응로(120)의 내주 면을 감싸는 단열 수단을 구비하거나 또는 외부의 전원을 공급받아 반응로(120) 내부의 온도를 상기 범위 내로 유지하는 전열 수단 중 하나 이상을 구비함으로써 반응로(120) 내부가 최적의 온도를 유지할 수 있도록 한다. 한편, 상술한 해리도를 고려하여 볼 때, 만약 반응 물질로 SiCl4를 주입하여 SiHCl3를 얻으려 할 경우, 즉As can be seen in FIG. 7, hydrogen molecules begin to dissociate at 2000K and almost all hydrogen molecules dissociate when the temperature reaches about 7000K (0.23 at 3500K, 0.45 at 4000K, 0.75 at 4500K, 0.75 at 5000K). 0.9). In addition, the slope of dissociation degree is greatest between 3000 and 5000K, and the number of highly reactive hydrogen atoms is rapidly increased. Therefore, in the present invention, the temperature of the space in which the plasma inside the reactor 120 is formed is configured to maintain a temperature between 3000K and 5000K, and if necessary, is provided with heat insulating means surrounding the inner circumferential surface of the reactor 120 or By providing at least one of the heat transfer means for maintaining the temperature inside the reactor 120 in the above range by receiving an external power source to ensure that the inside of the reactor 120 maintains the optimum temperature. On the other hand, in view of the above dissociation degree, if SiCl 4 is injected into the reaction material to obtain SiHCl 3 , that is,
H2 + SiCl4 -> SiHCl3 + HClH 2 + SiCl 4- > SiHCl 3 + HCl
과 같은 반응이 일어날 경우 온도 3500K, 4000K, 4500K, 5000K에 대한 수소와 SiCl4의 최적 몰 비는 각각 5:1, 2.2:1, 1.3:1, 1.1:1이 된다.When the reaction occurs, the optimum molar ratios of hydrogen and SiCl 4 to temperatures 3500K, 4000K, 4500K and 5000K are 5: 1, 2.2: 1, 1.3: 1 and 1.1: 1, respectively.
상기 플라즈마에 의하여 반응로(120) 내부에서 일어나는 Si-H-Cl계 화합물의 생성 매커니즘은 다음과 같다.The generation mechanism of the Si-H-Cl-based compound generated in the reactor 120 by the plasma is as follows.
H2 -> 2HㆍH 2- > 2H
H2 -> H2 + + eH 2- > H 2 + + e
Hㆍ + SiCl4 -> SiCl3ㆍ + HClH. + SiCl 4- > SiCl 3. + HCl
SiCl3ㆍ + Hㆍ -> SiHCl3 SiCl 3 ㆍ + H ·-> SiHCl 3
SiCl4 + e -> SiCl2 + Cl2 - SiCl 4 + e -> SiCl 2 + Cl 2 -
SiCl2 + H2 -> SiH2Cl2 SiCl 2 + H 2- > SiH 2 Cl 2
SiCl2 + Hㆍ -> SiH2Cl2 SiCl 2 + H-> SiH 2 Cl 2
SiCl2 + Hㆍ -> SiClㆍ + HClSiCl 2 + H--> SiCl
SiClㆍ + Hㆍ -> Si + HClSiCl + H--> Si + HCl
H2 + + Cl2- -> 2HClH 2 + + Cl 2 --> 2HCl
상술한 구성에 따를 경우, 본 발명은 플라즈마 수소화 반응을 이용하여 다량의 수소 관련 종, 특히 Si-H-Cl 계열 화합물을 생산할 수 있다. 또한, 플라즈마를 이용하여 3000K 내지 5000K 이상의 고온 영역을 이용할 수 있어 화합물 생성의 효율을 높일 수 있으며, 본 발명의 플라즈마는 1기압 환경에서 발생되므로 플라즈마 가스화기의 소형화 및 제어의 용이화가 가능한 장점이 있다.According to the above-described configuration, the present invention can produce a large amount of hydrogen-related species, especially Si-H-Cl-based compounds using the plasma hydrogenation reaction. In addition, it is possible to use the high temperature region of more than 3000K to 5000K by using the plasma to increase the efficiency of compound generation, and since the plasma of the present invention is generated in an atmosphere of 1 atm, there is an advantage that the size and control of the plasma gasifier can be facilitated. .
이상에서 대표적인 실시예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. Although the present invention has been described in detail with reference to exemplary embodiments above, those skilled in the art to which the present invention pertains can make various modifications to the above-described embodiments without departing from the scope of the present invention. Will understand.
그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
[부호의 설명][Description of the code]
100, 200: 플라즈마 수소화 반응 장치100, 200: plasma hydrogenation reaction device
102: 전원부 104: 전자파 발진기102: power supply unit 104: electromagnetic wave oscillator
106: 순환기 108: 방향성 결합기106: circulator 108: directional coupler
110: 튜너 112: 도파관110: tuner 112: waveguide
114: 방전관 116: 가스 공급부114: discharge tube 116: gas supply unit
118: 반응물 공급부 120: 반응로118: reactant supply 120: reactor
122: 생성물 배출부 124, 204: 생성물 분리부122: product outlet 124, 204: product separator
202: 가스 및 반응물 공급부 300: 플라즈마 생성 공간202: gas and reactant supply unit 300: plasma generation space
302: 방전관 지지체302: discharge tube support

Claims (21)

  1. 기 설정된 주파수의 전자파를 발진하는 전자파 공급부;An electromagnetic wave supply unit oscillating an electromagnetic wave of a preset frequency;
    상기 전자파 공급부로부터 공급된 상기 전자파 및 수소가스 또는 수소를 포함하는 혼합가스로부터 플라즈마가 발생되는 방전관;A discharge tube in which a plasma is generated from the electromagnetic wave supplied from the electromagnetic wave supply unit and a mixed gas including hydrogen gas or hydrogen;
    상기 방전관에 상기 수소가스 또는 상기 수소를 포함하는 혼합가스를 소용돌이 형태로 주입하는 가스 공급부;A gas supply unit for injecting the hydrogen gas or the mixed gas including hydrogen into the discharge tube in a vortex form;
    상기 방전관 내부에서 생성된 상기 플라즈마에 Si-Cl계 화합물을 공급하는 반응물 공급부;A reactant supply unit supplying a Si-Cl based compound to the plasma generated inside the discharge tube;
    발생된 상기 플라즈마에 의하여 해리된 수소 원자 또는 수소 이온과 상기 Si-Cl계 화합물간의 반응에 의하여 Si-H-Cl계 화합물이 생성되는 반응로; 및A reaction furnace in which a Si—H—Cl based compound is produced by a reaction between a hydrogen atom or a hydrogen ion dissociated by the generated plasma and the Si—Cl based compound; And
    상기 반응로에서 생성된 상기 Si-H-Cl계 화합물을 배출하는 생성물 배출부를 포함하는 플라즈마 수소화 반응 장치.Plasma hydrogenation apparatus comprising a product outlet for discharging the Si-H-Cl-based compound produced in the reactor.
  2. 제1항에 있어서,The method of claim 1,
    상기 전자파 공급부에서 발진되는 전자파는 2.45GHz, 902~928MHz 또는 886~896MHz의 주파수 범위를 갖는, 플라즈마 수소화 반응 장치.The electromagnetic wave oscillated by the electromagnetic wave supply unit has a frequency range of 2.45 GHz, 902 to 928 MHz or 886 to 896 MHz.
  3. 제1항에 있어서,The method of claim 1,
    상기 혼합가스는 아르곤, 헬륨, 또는 질소 중 하나 이상을 포함하는 불활성가스에 수소를 혼합하여 구성되는, 플라즈마 수소화 반응 장치.The mixed gas is configured by mixing hydrogen with an inert gas containing at least one of argon, helium, or nitrogen, plasma hydrogenation reaction apparatus.
  4. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 가스 공급부는, 상기 방전관의 하단부에 형성되어 상기 방전관의 내부로 상기 수소가스 또는 상기 혼합가스를 공급하는 하나 이상의 가스 공급관을 포함하는, 플라즈마 수소화 반응 장치.The gas supply unit, at least one gas supply pipe formed in the lower end of the discharge tube for supplying the hydrogen gas or the mixed gas into the discharge tube, plasma hydrogenation apparatus.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 하나 이상의 가스 공급관은, 상기 방전관의 내부로 공급되는 상기 수소가스 또는 상기 혼합가스가 상기 방전관의 내주면과 평행하게 배출되도록 상기 방전관의 내부와 연결됨으로써, 상기 방전관의 내부로 공급되는 상기 수소가스 또는 상기 혼합가스가 상기 방전관의 내부에서 소용돌이(swirl)를 형성하도록 구성되는, 플라즈마 수소화 반응 장치.The one or more gas supply pipes may be connected to an inside of the discharge tube so that the hydrogen gas or the mixed gas supplied into the discharge tube is discharged in parallel with the inner circumferential surface of the discharge tube, thereby supplying the hydrogen gas supplied into the discharge tube. And the mixed gas is configured to form a swirl in the discharge tube.
  6. 제1항에 있어서,The method of claim 1,
    상기 반응물 공급부는, 상기 반응로의 하단부에 형성되어 상기 반응로의 내부로 상기 Si-Cl계 화합물을 공급하는 하나 이상의 반응물 공급관을 포함하는, 플라즈마 수소화 반응 장치.The reactant supply unit, at least one reactant supply pipe is formed in the lower end of the reactor to supply the Si-Cl-based compound into the reactor, plasma hydrogenation reactor.
  7. 제6항에 있어서,The method of claim 6,
    상기 하나 이상의 반응물 공급관은, 상기 반응로의 내부와 연결되는 일단이 상기 반응로 내부에 형성된 플라즈마의 중심부를 향하도록 형성됨으로써, 상기 반응물 공급관을 통하여 공급되는 상기 Si-Cl계 화합물이 상기 플라즈마의 중심부를 향하여 분출되도록 구성되는, 플라즈마 수소화 반응 장치.The one or more reactant supply tubes are formed such that one end connected to the inside of the reactor faces the center of the plasma formed inside the reactor, such that the Si-Cl compound supplied through the reactant supply tubes is the central portion of the plasma. A plasma hydrogenation reaction device, configured to be ejected toward.
  8. 제6항에 있어서,The method of claim 6,
    상기 하나 이상의 반응물 공급관은, 상기 반응로의 내부로 공급되는 상기 Si-Cl계 화합물이 상기 반응로의 내주면과 평행하게 배출되도록 상기 반응로의 내부와 연결됨으로써, 상기 반응로의 내부로 공급되는 상기 Si-Cl계 화합물이 상기 반응로의 내부에서 소용돌이(swirl)를 형성하도록 구성되는, 플라즈마 수소화 반응 장치.The one or more reactant supply pipes are connected to the inside of the reactor so that the Si-Cl-based compound supplied into the reactor is discharged in parallel with the inner circumferential surface of the reactor, thereby supplying the inside of the reactor. The Si-Cl-based compound is configured to form a swirl in the interior of the reactor, the plasma hydrogenation reaction apparatus.
  9. 제8항에 있어서,The method of claim 8,
    상기 하나 이상의 반응물 공급관은, 배출되는 Si-Cl계 화합물이 상기 가스 공급부에서 공급되는 수소가스 또는 혼합가스와 동일한 방향의 소용돌이를 형성하도록 구성되는, 플라즈마 수소화 반응 장치.The at least one reactant supply pipe is configured to form a vortex in the same direction as the hydrogen gas or the mixed gas supplied from the gas supply unit Si-Cl-based compound discharged, the plasma hydrogenation reaction apparatus.
  10. 제1항에 있어서,The method of claim 1,
    상기 반응물 공급부는, 상기 방전관의 하단부에 형성되어 상기 방전관의 내부로 상기 Si-Cl계 화합물을 공급하는 하나 이상의 반응물 공급관을 포함하는, 플라즈마 수소화 반응 장치.The reactant supply unit, at least one of the reactant supply tube is formed in the lower end of the discharge tube for supplying the Si-Cl-based compound into the discharge tube, plasma hydrogenation apparatus.
  11. 제1항에 있어서,The method of claim 1,
    상기 반응로는, 플라즈마가 형성되는 내부 공간이 3000K 내지 5000K 사이의 온도를 유지하도록 상기 반응로의 내주 면을 감싸는 단열 수단 또는 전열 수단 중 하나 이상을 포함하는, 플라즈마 수소화 반응 장치.The reactor includes at least one of thermal insulation means or heat transfer means surrounding the inner circumferential surface of the reactor so that the inner space in which the plasma is formed maintains a temperature between 3000K and 5000K.
  12. 제1항에 있어서,The method of claim 1,
    상기 플라즈마 수소화 반응 장치는, 상기 생성물 배출부에서 배출된 상기 Si-H-Cl계 화합물에서 불순물을 분리하여 순수 Si-H-Cl계 화합물만을 배출하는 생성물 분리부를 더 포함하는, 플라즈마 수소화 반응 장치.The plasma hydrogenation reaction apparatus further comprises a product separation unit for separating impurities from the Si-H-Cl-based compound discharged from the product discharge unit to discharge only pure Si-H-Cl-based compound.
  13. 제12항에 있어서,The method of claim 12,
    상기 생성물 분리부는, 분리된 상기 불순물 중 상기 반응로에서 미반응된 Si-Cl계 화합물은 상기 반응물 공급부로 공급하고, 수소가스 또는 수소를 포함하는 혼합가스는 상기 가스 공급부로 공급하는, 플라즈마 수소화 반응 장치.The product separation unit, the unreacted Si-Cl compound of the separated impurities in the reactor to supply the reactant supply unit, the hydrogen gas or a mixed gas containing hydrogen to the gas supply unit, plasma hydrogenation reaction Device.
  14. 기 설정된 주파수의 전자파를 발진하는 전자파 공급부;An electromagnetic wave supply unit oscillating an electromagnetic wave of a preset frequency;
    상기 전자파 공급부로부터 공급된 상기 전자파 및 수소가스 또는 수소를 포함하는 혼합가스로부터 플라즈마가 발생되는 방전관;A discharge tube in which a plasma is generated from the electromagnetic wave supplied from the electromagnetic wave supply unit and a mixed gas including hydrogen gas or hydrogen;
    상기 방전관에 상기 수소가스 또는 상기 수소를 포함하는 혼합가스와 함께 가스 형태의 Si-Cl계 화합물을 소용돌이 형태로 주입하는 가스 및 반응물 공급부;A gas and reactant supply unit for injecting a gaseous Si-Cl-based compound in a vortex form together with the hydrogen gas or the mixed gas including hydrogen into the discharge tube;
    발생된 상기 플라즈마에 의하여 해리된 수소 원자 또는 수소 이온과 상기 Si-Cl계 화합물간의 반응에 의하여 Si-H-Cl계 화합물이 생성되는 반응로; 및A reaction furnace in which a Si—H—Cl based compound is produced by a reaction between a hydrogen atom or a hydrogen ion dissociated by the generated plasma and the Si—Cl based compound; And
    상기 반응로에서 생성된 상기 Si-H-Cl계 화합물을 배출하는 가스 배출부를 포함하는 플라즈마 수소화 반응 장치.Plasma hydrogenation apparatus comprising a gas discharge for discharging the Si-H-Cl-based compound generated in the reactor.
  15. 제14항에 있어서,The method of claim 14,
    상기 전자파 공급부에서 발진되는 전자파는 2.45GHz, 902~928MHz 또는 886~896MHz의 주파수 범위를 갖는, 플라즈마 수소화 반응 장치.The electromagnetic wave oscillated by the electromagnetic wave supply unit has a frequency range of 2.45 GHz, 902 to 928 MHz or 886 to 896 MHz.
  16. 제14항에 있어서,The method of claim 14,
    상기 혼합가스는 아르곤, 헬륨, 또는 질소 중 하나 이상을 포함하는 불활성가스에 수소를 혼합하여 구성되는, 플라즈마 수소화 반응 장치.The mixed gas is configured by mixing hydrogen with an inert gas containing at least one of argon, helium, or nitrogen, plasma hydrogenation reaction apparatus.
  17. 제14항 또는 제16항에 있어서,The method according to claim 14 or 16,
    상기 가스 및 반응물 공급부는, 상기 방전관의 하단부에 형성되어 상기 방전관의 내부로 상기 수소가스 또는 상기 혼합가스 및 상기 가스 형태의 Si-Cl계 화합물을 공급하는 하나 이상의 가스 및 반응물 공급관을 포함하는, 플라즈마 수소화 반응 장치.The gas and reactant supply unit includes a plasma and at least one gas and reactant supply tube formed at a lower end of the discharge tube to supply the hydrogen gas or the mixed gas and the Si-Cl based compound in the form of gas into the discharge tube. Hydrogenation reactor.
  18. 제17항에 있어서,The method of claim 17,
    상기 하나 이상의 가스 및 반응물 공급관은, 상기 방전관의 내부로 공급되는 상기 수소가스 또는 상기 혼합가스 및 상기 가스 형태의 Si-Cl계 화합물이 상기 방전관의 내주면과 평행하게 배출되도록 상기 방전관의 내부와 연결됨으로써, 상기 방전관의 내부로 공급되는 상기 수소가스 또는 상기 혼합가스 및 상기 가스 형태의 Si-Cl계 화합물이 상기 방전관의 내부에서 소용돌이(swirl)를 형성하도록 구성되는, 플라즈마 수소화 반응 장치.The one or more gas and reactant supply tubes are connected to the inside of the discharge tube such that the hydrogen gas or the mixed gas and the Si-Cl compound in the form of the gas supplied into the discharge tube are discharged in parallel with the inner circumferential surface of the discharge tube. And the hydrogen gas or the mixed gas supplied to the inside of the discharge tube and the Si-Cl based compound in the gas form form a swirl in the inside of the discharge tube.
  19. 제14항에 있어서,The method of claim 14,
    상기 반응로는, 플라즈마가 형성되는 내부 공간이 3000K 내지 5000K 사이의 온도를 유지하도록 상기 반응로의 내주 면을 감싸는 단열 수단 또는 전열 수단 중 하나 이상을 포함하는, 플라즈마 수소화 반응 장치.The reactor includes at least one of thermal insulation means or heat transfer means surrounding the inner circumferential surface of the reactor so that the inner space in which the plasma is formed maintains a temperature between 3000K and 5000K.
  20. 제14항에 있어서,The method of claim 14,
    상기 플라즈마 수소화 반응 장치는, 상기 생성물 배출부에서 배출된 상기 Si-H-Cl계 화합물에서 불순물을 분리하여 순수 Si-H-Cl계 화합물만을 배출하는 생성물 분리부를 더 포함하는, 플라즈마 수소화 반응 장치.The plasma hydrogenation reaction apparatus further comprises a product separation unit for separating impurities from the Si-H-Cl-based compound discharged from the product discharge unit to discharge only pure Si-H-Cl-based compound.
  21. 제20항에 있어서,The method of claim 20,
    상기 생성물 분리부는, 분리된 상기 불순물 중 상기 반응로에서 미반응된 Si-Cl계 화합물 및 수소가스 또는 수소를 포함하는 혼합가스를 상기 가스 및 반응물 공급부로 공급하는, 플라즈마 수소화 반응 장치.The product separation unit, the plasma hydrogenation apparatus for supplying a mixed gas containing an unreacted Si-Cl compound and hydrogen gas or hydrogen in the reaction furnace of the separated impurities to the gas and reactant supply unit.
PCT/KR2012/003476 2011-05-18 2012-05-03 Plasma hydrogenation apparatus WO2012157871A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0047020 2011-05-18
KR1020110047020A KR101329750B1 (en) 2011-05-18 2011-05-18 Plasma hydrogenation apparatus

Publications (2)

Publication Number Publication Date
WO2012157871A2 true WO2012157871A2 (en) 2012-11-22
WO2012157871A3 WO2012157871A3 (en) 2013-01-24

Family

ID=47177434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003476 WO2012157871A2 (en) 2011-05-18 2012-05-03 Plasma hydrogenation apparatus

Country Status (2)

Country Link
KR (1) KR101329750B1 (en)
WO (1) WO2012157871A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173574A1 (en) * 2013-04-24 2014-10-30 Evonik Degussa Gmbh Process and apparatus for preparation of octachlorotrisilane
CN112456456A (en) * 2019-09-09 2021-03-09 Mak股份有限公司 Nitric oxide generating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479212B (en) * 2020-12-16 2022-06-28 亚洲硅业(青海)股份有限公司 Hexachlorodisilane purification device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933985A (en) * 1971-09-24 1976-01-20 Motorola, Inc. Process for production of polycrystalline silicon
US4102985A (en) * 1977-01-06 1978-07-25 Westinghouse Electric Corp. Arc heater production of silicon involving a hydrogen reduction
US4309259A (en) * 1980-05-09 1982-01-05 Motorola, Inc. High pressure plasma hydrogenation of silicon tetrachloride
JP2727728B2 (en) * 1990-03-19 1998-03-18 三菱マテリアル株式会社 Pure substance production apparatus and pure substance production method
KR20070056965A (en) * 2005-11-29 2007-06-04 칫소가부시키가이샤 Production process for high purity polycrystal silicon and production apparatus for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933985A (en) * 1971-09-24 1976-01-20 Motorola, Inc. Process for production of polycrystalline silicon
US4102985A (en) * 1977-01-06 1978-07-25 Westinghouse Electric Corp. Arc heater production of silicon involving a hydrogen reduction
US4309259A (en) * 1980-05-09 1982-01-05 Motorola, Inc. High pressure plasma hydrogenation of silicon tetrachloride
JP2727728B2 (en) * 1990-03-19 1998-03-18 三菱マテリアル株式会社 Pure substance production apparatus and pure substance production method
KR20070056965A (en) * 2005-11-29 2007-06-04 칫소가부시키가이샤 Production process for high purity polycrystal silicon and production apparatus for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014173574A1 (en) * 2013-04-24 2014-10-30 Evonik Degussa Gmbh Process and apparatus for preparation of octachlorotrisilane
US9845248B2 (en) 2013-04-24 2017-12-19 Evonik Degussa Gmbh Process and apparatus for preparation of octachlorotrisilane
CN112456456A (en) * 2019-09-09 2021-03-09 Mak股份有限公司 Nitric oxide generating device

Also Published As

Publication number Publication date
KR101329750B1 (en) 2013-11-14
WO2012157871A3 (en) 2013-01-24
KR20130027616A (en) 2013-03-18

Similar Documents

Publication Publication Date Title
US8399072B2 (en) Process for improved chemcial vapor deposition of polysilicon
JP4855462B2 (en) System and method for producing SI2H6 and higher order silanes
WO2014051366A1 (en) Microwave plasma reformer
CN101297062B (en) Plasma reactor
JP5415290B2 (en) Plasma assisted synthesis
WO2014038907A1 (en) Plasma dry reforming apparatus
WO2012157871A2 (en) Plasma hydrogenation apparatus
CN102205967A (en) Energy-saving polysilicon reduction furnace and manufacturing method for polysilicon
RU2010118427A (en) METHOD FOR PRODUCING LIQUID FUEL AND HYDROGEN FROM BIOMASS OR MINERAL COAL USING SOLAR ENERGY, MICROWAVES AND PLASMA
WO2015142091A1 (en) Electromagnetic wave plasma torch
JP5119856B2 (en) Trichlorosilane production equipment
CN101696013B (en) Method and device for producing polysilicon by using plasma assisting fluidized bed process
JPS6117765B2 (en)
CN101734666B (en) Method for preparing trichlorosilane and dichlorosilane by hydrogenating silicon tetrachloride through microwave plasma
CN101759184B (en) System for making polysilicon with assistance of hydrogen plasmas and method therefor
CN110255532A (en) A kind of magnanimity prepares the method and device of carbon silicon nano material
WO2015141947A1 (en) Apparatus for manufacturing negative electrode active material for secondary battery
WO2014109458A1 (en) Carbon dioxide reusing system
KR101640286B1 (en) Apparatus and method for producing polysilicon using streamer discharge
CN104261413B (en) Plasma deoxidization in low termprature producing trichlorosilane by using silicon tetrachloride method and device thereof
WO2022092433A1 (en) Apparatus for producing acetylene black using combination of plasma treatment and thermal decomposition
CN107473228A (en) A kind of nanoscale crystalline silicon and preparation method thereof
CN113603093A (en) Method and equipment for preparing micro silicon powder
CN210366998U (en) Device for macro preparation of carbon-silicon nano material
WO2015174705A1 (en) Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/03/2014).

122 Ep: pct application non-entry in european phase

Ref document number: 12786207

Country of ref document: EP

Kind code of ref document: A2