WO2014051366A1 - Microwave plasma reformer - Google Patents

Microwave plasma reformer Download PDF

Info

Publication number
WO2014051366A1
WO2014051366A1 PCT/KR2013/008657 KR2013008657W WO2014051366A1 WO 2014051366 A1 WO2014051366 A1 WO 2014051366A1 KR 2013008657 W KR2013008657 W KR 2013008657W WO 2014051366 A1 WO2014051366 A1 WO 2014051366A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction space
supply pipe
plasma
carbon dioxide
hydrocarbon
Prior art date
Application number
PCT/KR2013/008657
Other languages
French (fr)
Korean (ko)
Inventor
홍용철
천세민
조성윤
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2014051366A1 publication Critical patent/WO2014051366A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0222Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma

Definitions

  • the present invention relates to a microwave plasma reformer, and more particularly, by reforming methane (CH 4 ) and carbon dioxide (CO 2 ) injected through the plasma (P) as a main component of hydrogen (H 2 ) and carbon monoxide (CO)
  • the present invention relates to a plasma reformer for reforming a synthesis gas.
  • Synthetic gas which is a mixture of hydrogen and carbon monoxide, is an important medium for synthesizing chemical raw materials such as ammonia, methanol, acetic acid, DME (DiMethyl Ether), synthetic gasoline and diesel, and environmentally clean fuels.
  • various molar ratios of hydrogen and carbon monoxide H 2 / CO
  • a molar ratio of 2/1 is required for synthesizing methanol
  • a molar ratio of 1/1 is required for synthesizing acetic acid, Methyl Formate, or DME.
  • syngas is made from coal, petroleum, natural gas, biomass and even organic wastes, but at present, natural gas is the largest source for syngas production. Source is increasingly used to produce syngas for the cheapest and most environmentally friendly reasons.
  • Techniques for producing syngas using natural gas include steam reforming (wet reforming) of methane, partial oxidation of methane, carbon dioxide reforming (dry reforming) of methane, and combinations of steam reforming and carbon dioxide reforming of methane.
  • steam reforming wet reforming
  • methane partial oxidation of methane
  • carbon dioxide reforming dry reforming
  • wet reforming This process is commonly referred to as wet reforming and the hydrogen / carbon monoxide molar ratio is 3 or more, and wet reforming is suitable for ammonia synthesis but requires extra hydrogen in methanol and many other synthetic processes. On the other hand, at least one mole of methane is required to make one mole of carbon monoxide in a wet process reaction.
  • CH 4 -CO 2 reforming not only reduces methane consumption, but also draws attention as a very attractive syngas production process because of the use of carbon dioxide.
  • CH 4 -CO 2 reformation requires 1 ⁇ 2 moles of methane to produce 1 mole of carbon monoxide, since carbon dioxide is also a carbon source.
  • CH 4 -CO 2 reforming has a hydrogen / carbon monoxide ratio of 1/1, but the hydrogen / carbon monoxide ratio can be controlled relatively easily by controlling the methane / carbon dioxide ratio in the feed of the process. Therefore, syngas from CH 4 -CO 2 reforming can be used in acetic acid or Methyl Formate manufacturing processes, as well as satisfying the hydrogen / carbon monoxide molar ratios needed to produce various materials when combined with wet processes.
  • the CH 4 -CO 2 catalytic reforming process is injected into the Tubiform fixed bed reactor filled with methane and carbon dioxide in the catalytic reaction process and the heat energy required for the reaction is supplied from the combustion energy of natural gas outside the reactor. do.
  • the CH 4 -CO 2 catalytic reforming reactor can be used with a methane wet reforming reactor, the biggest barrier to the CH 4 -CO 2 catalytic reforming process from the laboratory scale to the commercial scale is the catalyst deactivation. It is the carbon deposition of the catalyst surface which becomes a cause.
  • the plasma CH 4 -CO 2 reforming process was performed under very limited conditions using arc discharge. Compared with the catalytic reforming process, the plasma CH 4 -CO 2 reforming reaction with electron induction and thermochemical reactions showed high conversion and selectivity and no carbon deposition problems. Therefore, despite the problem of energy use of plasma generation, there has been an increasing interest in continuous research over the last decade.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2010-0017757 (2010.02.16), Method for producing a synthesis gas
  • the present invention was created to solve the above-mentioned problems, an object of the present invention is to uniformly mix the plasma generated in the reaction space and each gas injected into the inside, and to stably maintain the flame to be burned It is to provide a microwave plasma reformer.
  • Another object of the present invention is to combine the plasma wet process by injecting steam (H 2 O) to the dry reforming process using the plasma to control the hydrogen / carbon monoxide ratio while reducing the amount of electrical energy for the plasma to control various chemicals It is to provide a microwave plasma reformer that can be produced.
  • Another object of the present invention is to modify the methane (CH 4 ) and carbon dioxide (CO 2 ) injected through the plasma to produce a synthesis gas mainly composed of hydrogen (H 2 ) and carbon monoxide (CO), It is to provide a microwave plasma reformer that can reduce consumption and increase carbon dioxide consumption significantly.
  • Microwave plasma reformer for achieving the above object, by modifying the methane (CH 4 ) and carbon dioxide (CO 2 ) injected through the plasma (P) to hydrogen (H 2 ) and carbon monoxide (CO).
  • a reaction space 111 for generating the plasma P is formed therein, and a methane supply pipe for injecting the methane into the reaction space 111.
  • body parts 110 each having a carbon dioxide supply pipe 113 for injecting the carbon dioxide into the reaction space 111;
  • a discharge tube 120 mounted in the reaction space 111 of the body 110 and receiving a microwave of a preset frequency to generate a plasma in the reaction space 111;
  • a waveguide 135 fastened to the body 110 to be connected to the discharge tube 120 and receiving the microwaves and applying the microwaves to the discharge tube 120;
  • a hydrocarbon body supply pipe 140 disposed above the body part 110 and supplying a hydrocarbon body to the inside of the reaction space 111;
  • a chamber part 150 disposed inside the upper part of the body part 110 and protruding inwardly along a circumference to reduce an inner diameter of the reaction space 111.
  • a ring-shaped chamber space portion 151 through the circumference is formed in the chamber portion 150, the hydrocarbon supply pipe 140 is extended in the form to penetrate the body portion 110 In communication with the chamber space 151, the chamber 150 is connected to the inside of the chamber space 151 and the interior of the reaction space 111 by the hydrocarbon supply pipe 140 through the A plurality of split supply pipes 152 for injecting hydrocarbons injected into the chamber space 151 into the reaction space 111 may be spaced apart at regular intervals.
  • the split supply pipe 152, the chamber space 151 and the reaction space 111, the interior of the communication with each other, the end of the reaction space portion 111 is opened in the chamber portion 150 It may be formed on the protruding tip surface 153 of the).
  • the split supply pipe 152 may have a diameter smaller than the diameter of the hydrocarbon body supply pipe 140 and the chamber space portion 151.
  • the hydrocarbon body supply pipe 140 is formed in the form of a tangent (Tangent Line) with respect to the peripheral surface of the body portion 110, the hydrocarbon body supplied from the outside of the inner wall surface of the chamber space (151) ( Guided by 154 to form a vortex may be injected into the chamber space 151.
  • the split supply pipe 152 is formed in a tangent line shape with respect to the circumferential surface of the chamber portion 150, the hydrocarbon body injected from the chamber space portion 151 is the chamber portion 150 It may be guided by the front end surface 153 or the inner wall surface 115 of the body portion 110 to form a vortex and may be injected into the reaction space 111.
  • the split supply pipe 152 is disposed in a state inclined at a predetermined angle in the downward direction in the chamber portion 150 to inject the vortexed hydrocarbon body while descending into the reaction space 111. have.
  • the carbon dioxide supply pipe 113 is disposed around the side of the body portion 110, the reaction space portion 111 is disposed in an inclined state at an angle in the upper direction in the body portion 110. While vortexing carbon dioxide can be injected into the interior of the.
  • the carbon dioxide supply pipe 113 is formed in a tangent line shape with respect to the circumferential surface of the body portion 110, so that carbon dioxide supplied from the outside is inner wall surface 115 of the body portion 110. Guided by to form a vortex and flows into the reaction space 111 may be mixed with the plasma and methane and react.
  • hydrocarbons supplied to the hydrocarbon supply pipe 140 may be gaseous ethane, propane, ethylene, butane or liquid DME, gasoline, diesel, kerosene, bunker C oil, refined waste oil or solid state. It may be any one of coal and biomass.
  • the hydrocarbon body supply pipe 140 may inject a mixture of the hydrocarbon body and methane into the reaction space 111.
  • the carbon dioxide supply pipe 113 may inject a mixed gas of carbon dioxide and methane mixed into the reaction space 111.
  • the carbon dioxide supply pipe 113 injects a mixture of carbon dioxide and air or carbon dioxide and steam into the reaction space 111, or surrounds the body 110 with air or steam.
  • Supply pipes to be injected into the reaction space 111 may be formed separately.
  • an expansion space 170 may be formed at an upper end of the body 110 so that an inner diameter thereof is extended toward an upper direction.
  • the inclined surface of the expansion space 170 is formed to protrude upward, a plurality of flame induction blades 171 extending in the outward direction from the center of the body portion 110 are spaced at regular intervals and to be disposed radially Can be.
  • microwave plasma reformer According to the microwave plasma reformer according to the present invention,
  • the plasma (P) flame generated by protruding inwardly along the circumference in the upper inner part of the body part to reduce the pressure inside the reaction space where the reforming reaction occurs through the chamber to reduce the inner diameter of the reaction space.
  • reforming efficiency can be improved by mixing injected methane, carbon dioxide, a hydrocarbon body, etc. at high pressure.
  • the hydrocarbon material supplied through the hydrocarbon material supply pipe is branched through a plurality of split supply pipes and dispersed and injected into the reaction space part, the reforming efficiency is further improved by uniformly mixing the plasma P and the respective gas streams. You can increase it.
  • the split supply pipe is formed in a tangential form with respect to the circumferential surface of the chamber part, it is vortexed and injected into the reaction space part, so that the plasma P and the respective gas streams can be efficiently mixed and stably reacted chemically.
  • the high temperature plasma flame can protect the inner chamber surface of the discharge chamber portion, the discharge tube and the body portion.
  • the split supply pipe is inclined at a predetermined angle in the downward direction in the chamber portion to inject the vortexed hydrocarbon body while downward, and the carbon dioxide supply pipe for injecting carbon dioxide is inclined at a predetermined angle in the upper direction in the body portion
  • the upward air flow by the carbon dioxide injected from the carbon dioxide supply pipe acts as a forward vortex (Conventional Vortex Flow) with respect to the discharge direction of the reformed syngas
  • the airflow by the injected hydrocarbons acts as a reverse vortex flow with respect to the discharge direction of the reformed syngas, and the interaction of each gas flow causes plasma, carbon dioxide, methane and hydrocarbons to interact with each other in the reaction space.
  • a time that can be reacted and modified This modification of the efficiency is maximized while increasing.
  • the consumption of methane required to generate the synthesis gas can be reduced and the consumption of carbon dioxide can be greatly increased. That is, by using carbon dioxide, a global warming material, as a raw material, the carbon dioxide can be reduced.
  • 1 and 2 is a schematic view showing the configuration of a reformer using a conventional catalytic reformer
  • FIG. 3 is a cross-sectional view showing the configuration of a microwave plasma reformer according to a preferred embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing the operation principle of the carbon dioxide is vortex injected as the carbon dioxide supply pipe is disposed in a tangential form with the body portion according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the configuration of the microwave supply unit according to a preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating an operation principle in which the hydrocarbon is vortexed and injected as the hydrocarbon supply pipe and the split supply pipe are tangentially disposed in the body part and the chamber part according to the preferred embodiment of the present invention
  • Figure 7 is a cross-sectional view showing a configuration in which the divided supply pipe is inclined downward in the chamber portion according to a preferred embodiment of the present invention
  • FIGS. 8 and 9 are a perspective view and a plan view showing the configuration of the expansion space according to a preferred embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a state in which a photocatalyst is applied to a wall of a body of a plasma reformer according to a preferred embodiment of the present invention or a photocatalyst is filled in a wall thereof;
  • FIG. 11 is a graph showing the fraction of non-thermal carbon dioxide discharge energy transferred from plasma (P) electrons to various excitation paths (channels) of carbon dioxide molecules according to an exemplary embodiment of the present invention.
  • FIG. 12 is a graph showing an optical emission spectrum of pure CO 2 plasma (P) according to a preferred embodiment of the present invention.
  • the microwave plasma reformer according to a preferred embodiment of the present invention (hereinafter referred to as 'plasma reformer 100') is modified by hydrogen (CH 4 ) and carbon dioxide (CO 2 ) through plasma (P).
  • 'plasma reformer 100' is modified by hydrogen (CH 4 ) and carbon dioxide (CO 2 ) through plasma (P).
  • the plasma (P) generated in the reaction space 111 and the respective gases injected into the interior are uniformly mixed and burned.
  • the body portion 110, the discharge tube 120, the waveguide 135, the hydrocarbon supply tube 140, and the chamber portion 150 As shown in FIGS. 3 to 9, the body portion 110, the discharge tube 120, the waveguide 135, the hydrocarbon supply tube 140, and the chamber portion 150. It is provided including.
  • the body portion 110 is a component for forming a base of the plasma reformer 100 according to a preferred embodiment of the present invention
  • the reaction space portion 111 in which the plasma P is generated is formed
  • the methane supply pipe 112 for injecting the methane into the reaction space 111 and the carbon dioxide supply pipe 113 for injecting the carbon dioxide into the reaction space 111 are respectively formed.
  • the carbon dioxide supply pipe 113 as shown in Figure 4 is spaced at equal intervals along the circumference of the body portion 110 is formed a plurality, tangent to the circumferential surface of the body portion 110 And the carbon dioxide supplied from the outside is guided by the inner wall surface 115 of the body portion 110 to form a vortex and flows into the reaction space 111 to form the plasma P and It may be provided to react with and intermix with methane.
  • the carbon dioxide supply pipe 113 is disposed in an inclined state at an angle upward in the body portion 110 as shown in FIG. 3 and is vortexed while being upwardly inside the reaction space 111. Carbon dioxide can be injected.
  • the air flow by the carbon dioxide injected from the carbon dioxide supply pipe 113 acts as a forward vortex (Conventional Vortex Flow) with respect to the discharge direction of the reformed synthesis gas, the carbon dioxide air flow injected into the lower portion of the plasma (P) By increasing the intensity, the plasma and carbon dioxide may be mixed more smoothly.
  • the carbon dioxide supply pipe 113 may inject a mixed gas of carbon dioxide and gaseous hydrocarbons (for example, methane) into the reaction space 111.
  • a mixed gas of carbon dioxide and gaseous hydrocarbons for example, methane
  • the carbon dioxide supply pipe 113 may inject a mixture of carbon dioxide and air, oxygen, or carbon dioxide and steam into the reaction space 111, and separately from the carbon dioxide supply pipe 113.
  • a supply tube (not shown) for injecting air, oxygen, or steam into the reaction space 111 may be formed around the body 110 or the discharge tube 120.
  • the carbon dioxide and air or oxygen are mixed with each other and injected into the carbon dioxide supply pipe 113 and supplied to the plasma formed inside the reaction space 111 to reform the temperature of the reactor through a partial oxidation or combustion process of methane (inside the reactor). Temperature can be maintained, and the production of carbon monoxide and hydrogen can be increased through the partial oxidation of methane by injecting the steam (H 2 O) (Ratio of H 2 O / CO 2 > 1). have. In addition, the ratio of H 2 / CO can be controlled by controlling the steam at all times.
  • the body portion 110 is preferably formed of a refractory insulation material so as not to be damaged or damaged by the high temperature of the high-temperature, high-pressure plasma (P) and flame generated inside.
  • P high-pressure plasma
  • the plasma reformer 100 by filling the photocatalyst in the inner wall or the inside of the body portion 110 to form a catalytic reaction space, it is possible to increase the reforming efficiency after plasma reforming.
  • FIG. 10 is a schematic view showing a state where the photocatalyst is filled in the inner wall or the inside of the body portion 110 according to the preferred embodiment of the present invention.
  • a general photocatalyst (ZnO, TiO2, etc.) is normally excited when subjected to energy of 3.2 eV to act as a photocatalyst.
  • most of the Vibrational Excitation modes excite carbon dioxide at an energy of 0.5 eV or more and emit as much light as the corresponding energy descends to the ground state.
  • the reforming efficiency can be improved by filling the photocatalyst on the inner wall or the inside of the plasma reformer (100,200), and as shown in FIG. 12, pure carbon dioxide plasma emits light of 300-400 nm ( ⁇ 3.2 eV) while for the same reason as described above.
  • the photocatalyst can be excited to enhance the modification effect.
  • the catalyst that can be filled in the body portion 110 is as shown in Table 1 below.
  • the discharge tube 120 is mounted in the reaction space 111 of the body portion 110, and receives a microwave of a predetermined frequency to generate a plasma in the reaction space 111, cylindrical It is formed on the vertically disposed on the inner wall surface 115 of the body portion 110 to form a concentric circle with the reaction space 111.
  • the position of the central axis of the discharge tube 120 depends on the microwave frequency input from the waveguide 135 and the waveguide 135, preferably 1/4 of the tube wavelength.
  • the waveguide 135 is fastened to the body 110 so as to be connected to the discharge tube 120, and is a component that receives the microwave and applies it to the discharge tube 120, the microwave supply unit as shown in FIG.
  • the microwave generated from the 130 is provided to be applied to the discharge tube 120.
  • the microwave supply unit 130 outputs microwaves oscillated by the high frequency oscillator 131 and the microwaves oscillated by the high frequency oscillator 131 by receiving driving power supplied from the outside and impedance mismatch.
  • the circulator 132 for protecting the high frequency oscillator 131 by extinguishing microwave energy reflected by the power source, a power monitor 133 disposed at the rear end of the circulator 132 and monitoring power, and an output from the circulator 132.
  • Including the tuner 134 and the waveguide 135 so that the electric field induced by the microwave is maximized in the discharge tube 120 by inducing impedance matching by adjusting the intensity of the incident wave and the reflected wave of the microwave. do.
  • the hydrocarbon supply pipe 140 is a component for supplying a hydrocarbon to the plasma P generated by the reaction space 111 by injecting a hydrocarbon into the reaction space 111, the body portion ( It is disposed above the 110 and supplies a hydrocarbon to the inside of the reaction space 111.
  • the hydrocarbon body supply pipe 140 like the carbon dioxide supply pipe 113 described above, at least one spaced apart at equal intervals along the circumference of the body portion 110 is formed, as shown in FIG. It is formed in the form of a tangent (Tangent Line) with respect to the peripheral surface of the body portion 110, the hydrocarbon body supplied from the outside is guided by the inner wall surface 115 of the body portion 110 to form a vortex and the reaction space While flowing into the unit 111, the carbon dioxide, plasma, and methane may be mixed with and reacted with each other.
  • tangent Tangent Line
  • the hydrocarbons supplied from the outside are guided by the inner wall surface 115 of the discharge tube 120 or the body portion 110 to form a vortex and flow into the reaction space 111 to be mixed with the plasma and react with each other.
  • the carbon dioxide, methane, plasma and hydrocarbons can be more uniformly mixed in the reaction space 111 and react chemically stably, and further increase the strength of the air flow vortexed in the reaction space 111. have.
  • the hydrocarbon supply pipe 140 is disposed in an inclined state at a predetermined angle in the downward direction in the chamber part 150 to vortex while descending into the reaction space 111. It is preferred to be provided to inject the carbon dioxide.
  • the ascending air flow by the carbon dioxide injected from the carbon dioxide supply pipe 113 acts as a forward vortex (Conventional Vortex Flow) with respect to the discharge direction of the modified synthesis gas, the hydrocarbon body injected from the hydrocarbon body supply pipe 140
  • the downward air flow by the gas acts as a reverse vortex (Reverse Vortex Flow) with respect to the discharge direction of the reformed synthesis gas, the plasma flame and carbon dioxide, methane and hydrocarbons in the reaction space 111 by the interaction of each gas flow Increasing the time that can be reacted and reformed can maximize the efficiency of the reforming.
  • the hydrocarbon is an organic compound mainly containing carbon and hydrogen, and means a hydrocarbon compound of gas, liquid, and solid.
  • the hydrocarbon body any one of gaseous methane, ethane, propane, ethylene, butane or liquid DME, gasoline, diesel, kerosene, bunker C oil, refined waste oil or solid coal, biomass Can be used.
  • a liquid or solid hydrocarbon body may be used as described above, but the mixing efficiency of plasma (P), flame, and carbon dioxide, and the reaction space part during combustion ( It is preferable to use a gaseous hydrocarbon body so as to minimize the stacking of the burned combustion oxide generated when the hydrocarbon body is burned on the inner wall of the 111.
  • the hydrocarbon body supply pipe 140 is provided so as to inject a mixture of the hydrocarbon body and methane into the plasma P formed inside the reaction space 111 when methane is not used as the hydrocarbon body. Can be.
  • the plasma formed in the reaction space 111 may not be maintained or may be unstable, so that the methane is mixed with the hydrocarbon body to supply a hydrocarbon body supply pipe ( 140 may be injected into the plasma.
  • the hydrocarbon body supply pipe 140, the carbon dioxide supply pipe 113 is formed in a form that is in contact with the chamber portion 150 in the same direction as the direction tangential to the body portion 110, the carbon dioxide supply pipe 113 By vortexing inside the reaction space 111 and allowing the hydrocarbon body to vortex and inject in the same direction as the injection direction of the injected carbon dioxide, further increasing the intensity of the vortexed airflow to cause plasma (P), flame and each gas flow Can be mixed at high pressure.
  • plasma plasma
  • the hydrocarbon body supply pipe 140 is formed in a form in which the carbon dioxide supply pipe 113 is tangential to the chamber portion 150 in a direction opposite to the direction tangential to the body portion 110, thereby providing the carbon dioxide supply pipe (
  • the hydrocarbon body is vortexed and injected in a direction opposite to the injection direction of the injected carbon dioxide, the air flow and the hydrocarbon of the carbon dioxide vortexed inside the reaction space 111
  • the airflow of the sieves may collide to increase the mixing ratio between the plasma P, the flame induction blade 171 and the gas streams, thereby further increasing the reforming reaction.
  • the hydrocarbon body supply pipe 140 the air flow of the hydrocarbon body is formed as the injection direction of the hydrocarbon body which is supplied to the inside of the reaction space 111 directly below in the reaction space 111
  • the reforming reaction time by the plasma P may be increased by injecting to a deep position inside the plasma P generated in the reaction space 111.
  • the chamber part 150 is a component that reduces the inner diameter of the reaction space 111 to generate a pressure change inside the reaction space 111 in which a reforming reaction occurs, and an upper inner side of the body 110.
  • the inner space of the reaction space 111 is partially formed to protrude inwardly along the circumference.
  • the chamber 150 is formed in a ring-shaped chamber space 151 through the circumference of the chamber 150, wherein the hydrocarbon supply pipe 140 has a body portion ( It extends in the form to penetrate through the 110 and communicates with the chamber space 151, the inside of the chamber space 151 and the reaction space 111 is in communication with the chamber portion 150 by the hydrocarbon
  • a plurality of split supply pipes 152 for injecting hydrocarbons injected into the chamber space 151 through the sieve supply pipe 140 into the reaction space 111 are spaced apart at regular intervals.
  • the divided supply pipe 152 communicates with the inside of the chamber space 151 and the reaction space 111, and ends open into the reaction space 111. Is preferably formed on the protruding end surface 153 of the chamber portion 150.
  • the split supply pipe 152 is formed to have a diameter smaller than the diameter of the hydrocarbon body supply pipe 140 and the chamber space 151, relative to the airflow of the hydrocarbon body supplied through the hydrocarbon body supply pipe 140 Hydrocarbons can be injected while pressurizing toward the reaction space 111 at a high pressure.
  • the hydrocarbon material supplied through the hydrocarbon material supply pipe 140 is branched through the plurality of split supply pipes 152 and dispersed and injected into the reaction space 111.
  • the plasma P and each gas are injected.
  • the overall efficiency of the reforming can be further increased by evenly mixing the streams.
  • the split supply pipe 152 is formed in a tangent line with respect to the circumferential surface of the chamber part 150, and hydrocarbons are injected from the chamber space part 151. It is preferable that the sieve is guided by the front end surface 153 of the chamber part 150 or the inner wall surface 115 of the body part 110 to form a vortex and injected into the reaction space 111.
  • the plasma P and the gas streams in the reaction space 111 may be more effectively mixed with each other, thereby stably chemically reacting, as well as the plasma chamber 150 having a high-temperature plasma flame and the discharge tube 120. And the inner wall surface 115 of the body portion 110 can be protected.
  • the split supply pipe 152 is disposed in an inclined state at a predetermined angle in the downward direction in the chamber part 150 and is vortexed downward in the reaction space 111. It is preferable to spray the hydrocarbon body which becomes.
  • the split supply pipe 152 sprays the vortexed hydrocarbon body while descending into the reaction space 111, and the carbon dioxide supply pipe 113 for injecting carbon dioxide is fixed upward in the body part 110.
  • the upward air flow by the carbon dioxide injected from the carbon dioxide supply pipe 113 acts as a forward vortex (Conventional Vortex Flow) with respect to the discharge direction of the reformed syngas.
  • the air flow by the hydrocarbon body injected from the split feed pipe 152 acts as a reverse vortex (Reverse Vortex Flow) to the discharge direction of the reformed synthesis gas, the reaction space portion 111 by the interaction of each gas flow ) Increases the time that the plasma (P), carbon dioxide, methane and hydrocarbons can be reacted with each other and reformed. The efficiency of reforming is maximized.
  • Reverse Vortex Flow reverse Vortex Flow
  • the inclined surface of the expansion space 170 is formed to protrude upward, the plurality of flame induction blades 171 extending in the outward direction from the center of the body portion 110 are spaced at regular intervals and arranged radially It is preferable to be.
  • the air flow is guided in the direction in which the inner diameter is extended by the flame-induced blade 171 and the plasma flame and each gas flow vortexed by the tangential structures of the carbon dioxide supply pipe 113 and the split supply pipe 152. As it rises, the airflow can be more stably formed.
  • a cylindrical nozzle portion 180 is mounted on the upper end of the body portion 110 to form a stable air flow through the expansion space 170, and induces the discharge of the flame and the modified synthesis gas discharged to the rear end. .
  • the plasma reformer 100 protruding inwardly along the circumference from the upper inner side of the body portion 110 to the By mixing the plasma (P) generated and the injected methane, carbon dioxide, hydrocarbons and the like at a high pressure through the chamber portion 150 to reduce the inner diameter to achieve a pressure change in the reaction space 111 where the reforming reaction occurs
  • the reforming efficiency may be increased, and the plasma P generated in the reaction space 111 may be uniformly mixed with the respective gas streams injected therein, and the combustion flame may be stably maintained.
  • various chemicals are controlled by controlling the hydrogen / carbon monoxide ratio while reducing the amount of electric energy used to generate the plasma (P). Can be generated.

Abstract

The present invention relates to a plasma reformer which reforms methane (CH4) and carbon dioxide (CO2) which are injected through plasma (P) into a synthetic gas of which the main components are hydrogen (H2) and carbon monoxide (CO). The microwave plasma reformer according to the present invention includes: a body unit (110) having a reaction space portion (111) formed therein in which the plasma (P) is generated, a methane supply pipe (112) injecting the methane into the reaction space portion (111), and a carbon dioxide supply pipe (113) injecting the carbon dioxide into the reaction space portion (111), which are respectively formed in the reaction space portion (111); a discharge pipe (120) received in the reaction space portion (111) of the body unit (110) and supplied with microwaves of a preset frequency in order to generate plasma in the reaction space portion (111); a light guide pipe (135) coupled to the body unit (110) so as to be connected to the discharge pipe (120) and which applies the microwaves which are transmitted to the discharge pipe (120); a hydrocarbon body supply pipe (140) disposed in the upper part of the body unit (110) and supplying a hydrocarbon body into the reaction space portion (111); and a chamber part (150) disposed on the inner side of the upper part of the body unit (110) and formed so as to project in the inner side direction along the circumference in order to reduce the inner diameter of the reaction space portion (111).

Description

마이크로웨이브 플라즈마 개질기Microwave plasma reformer
본 발명은 마이크로웨이브 플라즈마 개질기에 관한 것으로, 보다 상세하게는 플라즈마(P)를 통해 주입된 메탄(CH4)과 이산화탄소(CO2)를 개질하여 수소(H2)와 일산화탄소(CO)를 주성분으로 하는 합성가스로 개질하는 플라즈마 개질기에 관한 것이다.The present invention relates to a microwave plasma reformer, and more particularly, by reforming methane (CH 4 ) and carbon dioxide (CO 2 ) injected through the plasma (P) as a main component of hydrogen (H 2 ) and carbon monoxide (CO) The present invention relates to a plasma reformer for reforming a synthesis gas.
일반적으로 수소와 일산화탄소의 혼합가스인 합성가스는 암모니아, 메탄올, 아세트산, DME(DiMethyl Ether), 합성 가솔린과 경유와 같은 화학원료와 환경적으로 청정 연료를 합성하는데에 있어서 중요한 매개체 물질이며 상기와 같은 생산물들을 합성하기 위해서는 수소와 일산화탄소의 다양한 몰비(H2/CO)가 필요하다. 예를 들어, 메탄올을 합성하기 위해서는 2/1의 몰비가, 아세트산 또는 Methyl Formate, DME를 합성하기 위해서는 1/1의 몰비가 필요하다.Synthetic gas, which is a mixture of hydrogen and carbon monoxide, is an important medium for synthesizing chemical raw materials such as ammonia, methanol, acetic acid, DME (DiMethyl Ether), synthetic gasoline and diesel, and environmentally clean fuels. In order to synthesize the products, various molar ratios of hydrogen and carbon monoxide (H 2 / CO) are required. For example, a molar ratio of 2/1 is required for synthesizing methanol, and a molar ratio of 1/1 is required for synthesizing acetic acid, Methyl Formate, or DME.
상기 합성가스는 석탄, 석유, 천연가스, 바이오매스(Biomass)로부터 만들어지며 심지어 유기화합물질의 폐기물(Organic Waste)들로부터도 만들어지고 있으나, 현재, 천연가스는 합성가스를 생산하는 데에 가장 큰 소스(Source)이며 가장 저렴하고 환경친화적인 이유로 합성가스를 생산하는 데에 그 사용이 점점 늘어나고 있다.The syngas is made from coal, petroleum, natural gas, biomass and even organic wastes, but at present, natural gas is the largest source for syngas production. Source is increasingly used to produce syngas for the cheapest and most environmentally friendly reasons.
천연가스를 이용하는 합성가스를 제조하는 기술에는, 메탄의 스팀 개질(습식 개질), 메탄의 부분 산화(Partial Oxidation), 메탄의 이산화탄소 개질(건식 개질) 및, 상기 메탄의 스팀 개질과 이산화탄소 개질의 조합된 방식을 이용할 수 있으나, 합성가스를 생산하는 전통적이고 잠재적 산업공정은 메탄의 스팀 개질 방법이다.Techniques for producing syngas using natural gas include steam reforming (wet reforming) of methane, partial oxidation of methane, carbon dioxide reforming (dry reforming) of methane, and combinations of steam reforming and carbon dioxide reforming of methane. Although traditional methods can be used, the traditional and potential industrial process for producing syngas is the steam reforming of methane.
이 방법은 일반적으로 습식 개질이라 하며 수소/일산화탄소 몰비는 3 또는 그 이상이며, 습식 개질은 암모니아 합성에 적당하지만 메탄올과 다른 많은 합성 공정들에서 여분의 수소를 필요로 한다. 반면에, 습식 공정 반응에서 1몰의 일산화탄소를 만드는 데에 최소한 1몰의 메탄이 필요하다. This process is commonly referred to as wet reforming and the hydrogen / carbon monoxide molar ratio is 3 or more, and wet reforming is suitable for ammonia synthesis but requires extra hydrogen in methanol and many other synthetic processes. On the other hand, at least one mole of methane is required to make one mole of carbon monoxide in a wet process reaction.
CH4 + H2O → CO + 3H2 ΔH = 206kJ/molCH 4 + H 2 O → CO + 3H 2 ΔH = 206 kJ / mol
CH4 + CO2 → 2CO + 2H2 ΔH = 247kJ/molCH 4 + CO 2 → 2CO + 2H 2 ΔH = 247 kJ / mol
CH4-CO2 개질은 메탄의 소비를 줄일 뿐만 아니라, 이산화탄소를 사용하기 때문에 매우 매력적인 합성가스 제조공정으로 관심을 끌고 있다.CH 4 -CO 2 reforming not only reduces methane consumption, but also draws attention as a very attractive syngas production process because of the use of carbon dioxide.
습식개질과 부분산화 공정과 비교했을 때, 이산화탄소 또한 탄소 소스(Carbon source)이기 때문에 화학양론적으로 CH4-CO2 개질은 1 몰의 일산화탄소를 만드는 데에 ½ 몰의 메탄을 필요로 한다. CH4-CO2 개질은 1/1의 수소/일산화탄소 몰비를 갖지만, 공정의 Feeding에서 메탄/이산화탄소 비율을 조절함으로서 수소/일산화탄소 몰비를 비교적 쉽게 제어할 수 있다. 그러므로, CH4-CO2 개질로부터 합성가스는 아세트산 또는 Methyl Formate 제조공정에서 사용할 수 있을 뿐만 아니라, 습식 공정과 결합시켰을 때, 다양한 물질을 제조하는 데에 필요한 수소/일산화탄소 몰비를 만족시킬 수 있다.Compared to wet reforming and partial oxidation processes, stoichiometrically, CH 4 -CO 2 reformation requires ½ moles of methane to produce 1 mole of carbon monoxide, since carbon dioxide is also a carbon source. CH 4 -CO 2 reforming has a hydrogen / carbon monoxide ratio of 1/1, but the hydrogen / carbon monoxide ratio can be controlled relatively easily by controlling the methane / carbon dioxide ratio in the feed of the process. Therefore, syngas from CH 4 -CO 2 reforming can be used in acetic acid or Methyl Formate manufacturing processes, as well as satisfying the hydrogen / carbon monoxide molar ratios needed to produce various materials when combined with wet processes.
그러나, CH4-CO2 개질 공정은 높은 흡열반응이며 산업에서 요구하는 조건을 만족시키기 위해서는 상당한 반응율(Reaction Rate)을 달성할 수 있는 특별한 방법들이 필요하다. 이런 맥락에서 촉매와 플라즈마 기술들은 산업에서 요구하는 조건을 만족시킬 수 있는 잠재적 기술로서 여겨져 왔지만, 지금까지 상업화되지 못하였다.However, the CH 4 -CO 2 reforming process is a high endothermic reaction and special methods are needed to achieve significant reaction rates to meet the requirements of the industry. In this context, catalyst and plasma technologies have been considered as potential technologies to meet the requirements of the industry, but so far they have not been commercialized.
도 1 및 도 2를 참고하면, CH4-CO2 촉매개질 공정은 그 촉매 반응 공정에서 메탄와 이산화탄소는 촉매로 채워진 Tubiform 고정층 반응기로 주입되며 반응에 필요한 열에너지는 반응기 외부에서 천연가스의 연소에너지로부터 공급된다. CH4-CO2 촉매개질 반응기가 메탄의 습식개질 반응기와 같이 사용될 수 있을지라도, CH4-CO2 촉매 개질 공정이 실험실 규모에서 상업화 규모로 넘어가는 데에 걸림돌이 되는 가장 큰 장벽은 촉매 비활성화의 원인이 되는 촉매 표면의 탄소 증착이다.1 and 2, the CH 4 -CO 2 catalytic reforming process is injected into the Tubiform fixed bed reactor filled with methane and carbon dioxide in the catalytic reaction process and the heat energy required for the reaction is supplied from the combustion energy of natural gas outside the reactor. do. Although the CH 4 -CO 2 catalytic reforming reactor can be used with a methane wet reforming reactor, the biggest barrier to the CH 4 -CO 2 catalytic reforming process from the laboratory scale to the commercial scale is the catalyst deactivation. It is the carbon deposition of the catalyst surface which becomes a cause.
한편, 플라즈마 CH4-CO2 개질 공정은 아크 방전을 이용하여 매우 제한적인 조건에서 수행되었다. 촉매 개질 공정과 비교하였을 때, 전자유도 화학반응과 열화학 반응을 가진 플라즈마 CH4-CO2 개질 반응은 높은 전환율과 선택성을 보여주었으며 탄소 증착의 문제가 없었다. 그러므로, 플라즈마 발생의 에너지 사용이라는 문제에도 불구하고 지난 10여년 동안 지속적 연구 관심의 증가를 보이고 있다.On the other hand, the plasma CH 4 -CO 2 reforming process was performed under very limited conditions using arc discharge. Compared with the catalytic reforming process, the plasma CH 4 -CO 2 reforming reaction with electron induction and thermochemical reactions showed high conversion and selectivity and no carbon deposition problems. Therefore, despite the problem of energy use of plasma generation, there has been an increasing interest in continuous research over the last decade.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 한국 공개특허공보 제2010-0017757호(2010.02.16), 합성 가스의 제조 방법(Patent Document 1) Korean Unexamined Patent Publication No. 2010-0017757 (2010.02.16), Method for producing a synthesis gas
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 반응공간부 내에서 생성되는 플라즈마와 내부로 주입되는 각 가스를 전반적으로 고르게 혼합시키며, 연소되는 화염을 안정적으로 유지할 수 있는 마이크로웨이브 플라즈마 개질기를 제공하는 것에 있다.The present invention was created to solve the above-mentioned problems, an object of the present invention is to uniformly mix the plasma generated in the reaction space and each gas injected into the inside, and to stably maintain the flame to be burned It is to provide a microwave plasma reformer.
또한, 본 발명의 다른 목적은 플라즈마를 이용한 건식 개질공정에 스팀(H2O)를 주입하여 플라즈마 습식공정을 결합시킴으로써 플라즈마를 위한 전기에너지 사용량은 감소시키면서 수소/일산화탄소 몰비를 제어하여 다양한 화학 물질을 생성할 수 있는 마이크로웨이브 플라즈마 개질기를 제공하는 것에 있다.In addition, another object of the present invention is to combine the plasma wet process by injecting steam (H 2 O) to the dry reforming process using the plasma to control the hydrogen / carbon monoxide ratio while reducing the amount of electrical energy for the plasma to control various chemicals It is to provide a microwave plasma reformer that can be produced.
더불어, 본 발명의 또 다른 목적은 플라즈마를 통해 주입된 메탄(CH4)과 이산화탄소(CO2)를 개질하여 수소(H2)와 일산화탄소(CO)를 주성분으로 하는 합성가스를 생성함으로써, 메탄의 소비는 감소시킴과 동시에 이산화탄소의 소비는 대폭 증가시킬 수 있는 마이크로웨이브 플라즈마 개질기를 제공하는 것에 있다.In addition, another object of the present invention is to modify the methane (CH 4 ) and carbon dioxide (CO 2 ) injected through the plasma to produce a synthesis gas mainly composed of hydrogen (H 2 ) and carbon monoxide (CO), It is to provide a microwave plasma reformer that can reduce consumption and increase carbon dioxide consumption significantly.
상기의 목적을 달성하기 위한 본 발명에 따른 마이크로웨이브 플라즈마 개질기는, 플라즈마(P)를 통해 주입된 메탄(CH4)과 이산화탄소(CO2)를 개질하여 수소(H2)와 일산화탄소(CO)를 주성분으로 하는 합성가스로 개질하는 플라즈마 개질기에 있어서, 내부에는 상기 플라즈마(P)가 생성되는 반응공간부(111)가 형성되고, 상기 메탄을 상기 반응공간부(111)의 내부로 주입하는 메탄공급관(112) 및, 상기 이산화탄소를 상기 반응공간부(111)의 내부로 주입하는 이산화탄소 공급관(113)이 각각 형성된 몸체부(110); 상기 몸체부(110)의 반응공간부(111) 내에 안착되며, 기 설정된 주파수의 마이크로웨이브를 공급받아 상기 반응공간부(111) 내에서 플라즈마를 생성하는 방전관(120); 상기 방전관(120)과 연결되도록 상기 몸체부(110)에 체결되며, 상기 마이크로웨이브를 전달받아 상기 방전관(120)에 인가하는 도파관(135); 상기 몸체부(110)의 상부에 배치되고 상기 반응공간부(111)의 내부로 탄화수소체를 공급하는 탄화수소체 공급관(140); 및 상기 몸체부(110)의 상부 내측에 배치되고, 원주를 따라 내측방향으로 돌출형성되어 상기 반응공간부(111)의 내경을 축소시키는 챔버부(150);를 포함한다.Microwave plasma reformer according to the present invention for achieving the above object, by modifying the methane (CH 4 ) and carbon dioxide (CO 2 ) injected through the plasma (P) to hydrogen (H 2 ) and carbon monoxide (CO). In the plasma reformer reforming with a syngas as a main component, a reaction space 111 for generating the plasma P is formed therein, and a methane supply pipe for injecting the methane into the reaction space 111. 112 and body parts 110 each having a carbon dioxide supply pipe 113 for injecting the carbon dioxide into the reaction space 111; A discharge tube 120 mounted in the reaction space 111 of the body 110 and receiving a microwave of a preset frequency to generate a plasma in the reaction space 111; A waveguide 135 fastened to the body 110 to be connected to the discharge tube 120 and receiving the microwaves and applying the microwaves to the discharge tube 120; A hydrocarbon body supply pipe 140 disposed above the body part 110 and supplying a hydrocarbon body to the inside of the reaction space 111; And a chamber part 150 disposed inside the upper part of the body part 110 and protruding inwardly along a circumference to reduce an inner diameter of the reaction space 111.
여기서, 상기 챔버부(150)의 내부에는 원주를 따라 통공된 링 형상의 챔버공간부(151)가 형성되되, 상기 탄화수소체 공급관(140)은 상기 몸체부(110)를 관통하는 형태로 연장되어 상기 챔버공간부(151)와 연통되고, 상기 챔버부(150)에는 상기 챔버공간부(151)의 내부와 반응공간부(111)의 내부를 상호 연통시켜 상기 탄화수소체 공급관(140)을 통해 상기 챔버공간부(151)의 내부로 주입된 탄화수소체를 상기 반응공간부(111)의 내부로 분사하는 복수 개의 분할공급관(152)이 일정간격으로 이격되어 형성될 수 있다.Here, a ring-shaped chamber space portion 151 through the circumference is formed in the chamber portion 150, the hydrocarbon supply pipe 140 is extended in the form to penetrate the body portion 110 In communication with the chamber space 151, the chamber 150 is connected to the inside of the chamber space 151 and the interior of the reaction space 111 by the hydrocarbon supply pipe 140 through the A plurality of split supply pipes 152 for injecting hydrocarbons injected into the chamber space 151 into the reaction space 111 may be spaced apart at regular intervals.
또한, 상기 분할공급관(152)은, 상기 챔버공간부(151)와 반응공간부(111)의 내부를 상호 연통시키되, 상기 반응공간부(111)의 내부로 개구된 단부는 상기 챔버부(150)의 돌출된 선단면(153) 상에 형성될 수 있다.In addition, the split supply pipe 152, the chamber space 151 and the reaction space 111, the interior of the communication with each other, the end of the reaction space portion 111 is opened in the chamber portion 150 It may be formed on the protruding tip surface 153 of the).
또한, 상기 분할공급관(152)은, 상기 탄화수소체 공급관(140) 및 챔버공간부(151)의 직경보다 작은 직경을 가질 수 있다.In addition, the split supply pipe 152 may have a diameter smaller than the diameter of the hydrocarbon body supply pipe 140 and the chamber space portion 151.
또한, 상기 탄화수소체 공급관(140)은, 상기 몸체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 탄화수소체가 상기 챔버공간부(151)의 내벽면(154)에 의해 안내되어 와류를 형성하며 상기 챔버공간부(151)로 주입될 수 있다.In addition, the hydrocarbon body supply pipe 140 is formed in the form of a tangent (Tangent Line) with respect to the peripheral surface of the body portion 110, the hydrocarbon body supplied from the outside of the inner wall surface of the chamber space (151) ( Guided by 154 to form a vortex may be injected into the chamber space 151.
또한, 상기 분할공급관(152)은, 상기 챔버부(150)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 상기 챔버공간부(151)로부터 주입되는 탄화수소체가 상기 챔버부(150)의 선단면(153) 또는 몸체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)로 분사될 수 있다.In addition, the split supply pipe 152 is formed in a tangent line shape with respect to the circumferential surface of the chamber portion 150, the hydrocarbon body injected from the chamber space portion 151 is the chamber portion 150 It may be guided by the front end surface 153 or the inner wall surface 115 of the body portion 110 to form a vortex and may be injected into the reaction space 111.
또한, 상기 분할공급관(152)은, 상기 챔버부(150) 내에서 하부방향으로 일정각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 하향하면서 와류되는 탄화수소체를 분사할 수 있다.In addition, the split supply pipe 152 is disposed in a state inclined at a predetermined angle in the downward direction in the chamber portion 150 to inject the vortexed hydrocarbon body while descending into the reaction space 111. have.
또한, 상기 이산화탄소 공급관(113)은, 상기 몸체부(110)의 측부 둘레에 배치되되, 상기 몸체부(110) 내에서 상부방향으로 일정각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 상향하면서 와류되는 이산화탄소를 주입할 수 있다.In addition, the carbon dioxide supply pipe 113 is disposed around the side of the body portion 110, the reaction space portion 111 is disposed in an inclined state at an angle in the upper direction in the body portion 110. While vortexing carbon dioxide can be injected into the interior of the.
또한, 상기 이산화탄소 공급관(113)은, 상기 몸체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 이산화탄소가 상기 몸체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)으로 유입되면서 상기 플라즈마 및 메탄과 상호 혼합되며 반응할 수 있다.In addition, the carbon dioxide supply pipe 113 is formed in a tangent line shape with respect to the circumferential surface of the body portion 110, so that carbon dioxide supplied from the outside is inner wall surface 115 of the body portion 110. Guided by to form a vortex and flows into the reaction space 111 may be mixed with the plasma and methane and react.
또한, 상기 탄화수소체 공급관(140)으로 공급되는 탄화수소체는, 기체상태의 에탄, 프로판, 에틸렌, 부탄 또는, 액체상태의 DME, 가솔린, 경유, 등유, 벙커 C유, 정제된 폐유 또는 고체상태의 석탄, 바이오매스 중 어느 하나일 수 있다.In addition, the hydrocarbons supplied to the hydrocarbon supply pipe 140 may be gaseous ethane, propane, ethylene, butane or liquid DME, gasoline, diesel, kerosene, bunker C oil, refined waste oil or solid state. It may be any one of coal and biomass.
또한, 상기 탄화수소체 공급관(140)은, 상기 탄화수소체와 메탄이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부로 주입할 수 있다.In addition, the hydrocarbon body supply pipe 140 may inject a mixture of the hydrocarbon body and methane into the reaction space 111.
또한, 상기 이산화탄소 공급관(113)은, 이산화탄소와 메탄이 상호 혼합된 혼합가스를 상기 반응공간부(111)의 내부로 주입할 수 있다.In addition, the carbon dioxide supply pipe 113 may inject a mixed gas of carbon dioxide and methane mixed into the reaction space 111.
또한, 상기 이산화탄소 공급관(113)은, 이산화탄소와 공기 또는 이산화탄소와 스팀이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부로 주입하거나, 상기 몸체부(110)의 둘레에는, 공기 또는 스팀을 상기 반응공간부(111)의 내부로 주입하는 공급관이 별도로 형성될 수 있다.In addition, the carbon dioxide supply pipe 113 injects a mixture of carbon dioxide and air or carbon dioxide and steam into the reaction space 111, or surrounds the body 110 with air or steam. Supply pipes to be injected into the reaction space 111 may be formed separately.
또한, 상기 몸체부(110)의 상단에는 상부방향으로 갈수록 내경이 확장되는 형태로 형성된 확장공간부(170)가 형성될 수 있다.In addition, an expansion space 170 may be formed at an upper end of the body 110 so that an inner diameter thereof is extended toward an upper direction.
한편, 상기 확장공간부(170)의 경사면에는, 상향 돌출되게 형성되며, 상기 몸체부(110)의 중앙에서 외측방향으로 연장형성된 복수 개의 화염유도 블레이드(171)가 일정간격 이격되며 방사형으로 배치될 수 있다.On the other hand, the inclined surface of the expansion space 170, is formed to protrude upward, a plurality of flame induction blades 171 extending in the outward direction from the center of the body portion 110 are spaced at regular intervals and to be disposed radially Can be.
본 발명에 따른 마이크로웨이브 플라즈마 개질기에 의하면,According to the microwave plasma reformer according to the present invention,
첫째, 몸체부의 상부 내측에서 원주를 따라 내측방향으로 돌출형성되어 반응공간부의 내경을 축소시키는 챔버부를 통해 개질반응이 발생하는 반응공간부 내부의 압력변화를 도모하여, 생성된 플라즈마(P), 화염 및, 주입된 메탄, 이산화탄소, 탄화수소체 등을 고압으로 혼합시킴으로써 개질효율을 증대시킬 수 있다.First, the plasma (P), flame generated by protruding inwardly along the circumference in the upper inner part of the body part to reduce the pressure inside the reaction space where the reforming reaction occurs through the chamber to reduce the inner diameter of the reaction space. And reforming efficiency can be improved by mixing injected methane, carbon dioxide, a hydrocarbon body, etc. at high pressure.
둘째, 탄화수소체 공급관을 통해 공급된 탄화수소체는 다수 개의 분할공급관을 통해 분기되며 상기 반응공간부의 내부로 분산되며 주입되므로, 상기 플라즈마(P)와 각 가스류들을 전반적으로 고르게 혼합시킴으로써 개질효율을 더욱 증대시킬 수 있다.Second, since the hydrocarbon material supplied through the hydrocarbon material supply pipe is branched through a plurality of split supply pipes and dispersed and injected into the reaction space part, the reforming efficiency is further improved by uniformly mixing the plasma P and the respective gas streams. You can increase it.
셋째, 상기 분할공급관은 챔버부의 둘레면에 대하여 접선된 형태로 형성되어, 상기 반응공간부의 내부로 와류되며 분사되므로, 상기 플라즈마(P)와 각 가스류들을 보다 효과적으로 혼합되면서 안정적으로 화학적 반응할 수 있음은 물론, 고온의 플라즈마 화염으로브터 챔버부, 방전관 및 몸체부의 내벽면을 보호할 수 있다.Third, since the split supply pipe is formed in a tangential form with respect to the circumferential surface of the chamber part, it is vortexed and injected into the reaction space part, so that the plasma P and the respective gas streams can be efficiently mixed and stably reacted chemically. Of course, the high temperature plasma flame can protect the inner chamber surface of the discharge chamber portion, the discharge tube and the body portion.
넷째, 상기 분할공급관은 챔버부 내에서 하부방향으로 일정각도로 기울어진 상태로 배치되어 하향하면서 와류되는 탄화수소체를 분사하며, 이산화탄소를 주입하는 이산화탄소 공급관은 몸체부 내에서 상부방향으로 일정각도로 기울어진 상태로 배치되어 상향하면서 와류되는 이산화탄소를 주입함으로써, 상기 이산화탄소 공급관으로부터 주입되는 이산화탄소에 의한 상승 기류는 개질된 합성가스의 배출방향에 대하여 순방향 와류(Conventional Vortex Flow)로서 작용하며, 상기 분할공급관으로부터 주입되는 탄화수소체에 의한 기류는 개질된 합성가스의 배출방향에 대하여 역방향 와류(Reverse Vortex Flow)로서 작용하게 되어, 각 가스 유동의 상호작용으로 반응공간부 내부에서 플라즈마, 이산화탄소, 메탄 및 탄화수소체가 상호 반응되어 개질될 수 있는 시간이 증가하면서 개질의 효율성이 극대화된다.Fourth, the split supply pipe is inclined at a predetermined angle in the downward direction in the chamber portion to inject the vortexed hydrocarbon body while downward, and the carbon dioxide supply pipe for injecting carbon dioxide is inclined at a predetermined angle in the upper direction in the body portion By injecting carbon dioxide vortexed while being placed in an upward position and vortexing, the upward air flow by the carbon dioxide injected from the carbon dioxide supply pipe acts as a forward vortex (Conventional Vortex Flow) with respect to the discharge direction of the reformed syngas, The airflow by the injected hydrocarbons acts as a reverse vortex flow with respect to the discharge direction of the reformed syngas, and the interaction of each gas flow causes plasma, carbon dioxide, methane and hydrocarbons to interact with each other in the reaction space. A time that can be reacted and modified This modification of the efficiency is maximized while increasing.
다섯째, 플라즈마를 통해 주입된 메탄과 이산화탄소를 개질하여 수소와 일산화탄소를 주성분으로 하는 합성가스를 생성함으로써, 상기 합성가스를 생성하는데 필요한 메탄의 소비는 감소시킴과 동시에 이산화탄소의 소비는 대폭 증가시킬 수 있다. 즉, 지구온난화 물질인 이산화탄소를 원료로 사용함으로써 이산화탄소를 저감할 수 있는 효과를 구현한다.Fifth, by modifying the methane and carbon dioxide injected through the plasma to generate a synthesis gas mainly composed of hydrogen and carbon monoxide, the consumption of methane required to generate the synthesis gas can be reduced and the consumption of carbon dioxide can be greatly increased. . That is, by using carbon dioxide, a global warming material, as a raw material, the carbon dioxide can be reduced.
섯째, 플라즈마를 이용한 건식 개질공정에 스팀(H2O)를 주입하여 플라즈마 습식공정을 결합시킴으로써 플라즈마 생성을 위한 전기에너지 사용량은 감소시키면서 수소/일산화탄소 몰비를 제어하여 다양한 화학 물질을 생성할 수 있다.Fifth, by combining the plasma wet process by injecting steam (H 2 O) to the dry reforming process using the plasma it is possible to produce a variety of chemicals by controlling the hydrogen / carbon monoxide ratio while reducing the amount of electrical energy used for plasma generation.
도 1 및 도 2는 종래의 촉매개질기를 이용한 개질장치의 구성을 나타낸 개략도,1 and 2 is a schematic view showing the configuration of a reformer using a conventional catalytic reformer,
도 3은 본 발명의 바람직한 실시예에 따른 마이크로웨이브 플라즈마 개질기의 구성을 나타낸 단면도,3 is a cross-sectional view showing the configuration of a microwave plasma reformer according to a preferred embodiment of the present invention;
도 4는 본 발명의 바람직한 실시예에 따른 이산화탄소 공급관이 몸체부와 접선된 형태로 배치됨에 따라 이산화탄소가 와류되며 주입되는 동작원리를 나타낸 단면도,Figure 4 is a cross-sectional view showing the operation principle of the carbon dioxide is vortex injected as the carbon dioxide supply pipe is disposed in a tangential form with the body portion according to an embodiment of the present invention,
도 5는 본 발명의 바람직한 실시예에 따른 마이크로웨이브 공급부의 구성을 나타낸 개략도,Figure 5 is a schematic diagram showing the configuration of the microwave supply unit according to a preferred embodiment of the present invention,
도 6은 본 발명의 바람직한 실시예에 따른 탄화수소체 공급관 및 분할공급관이 몸체부 및 챔버부에 각각 접선된 형태로 배치됨에 따라 탄화수소체가 와류되며 주입되는 동작원리를 나타낸 단면도,6 is a cross-sectional view illustrating an operation principle in which the hydrocarbon is vortexed and injected as the hydrocarbon supply pipe and the split supply pipe are tangentially disposed in the body part and the chamber part according to the preferred embodiment of the present invention;
도 7은 본 발명의 바람직한 실시예에 따른 분할공급관이 챔버부 내에서 하부방향으로 기울어진 상태로 배치된 구성을 나타낸 단면도,Figure 7 is a cross-sectional view showing a configuration in which the divided supply pipe is inclined downward in the chamber portion according to a preferred embodiment of the present invention,
도 8 및 도 9는 본 발명의 바람직한 실시예에 따른 확장공간부의 구성을 나타낸 사시도 및 평면도,8 and 9 are a perspective view and a plan view showing the configuration of the expansion space according to a preferred embodiment of the present invention,
도 10은 본 발명의 바람직한 실시예에 따른 플라즈마 개질기의 몸체부 벽면에 광촉매가 도포되거나 벽면 내부에 광촉매가 채워진 상태를 나타낸 개략도,10 is a schematic diagram showing a state in which a photocatalyst is applied to a wall of a body of a plasma reformer according to a preferred embodiment of the present invention or a photocatalyst is filled in a wall thereof;
도 11은 본 발명의 바람직한 실시예에 따른 플라즈마(P) 전자로부터 이산화탄소 분자의 다양한 여기경로(채널)들로 전달되는 비열 이산화탄소 방전 에너지의 분율을 나타낸 그래프,FIG. 11 is a graph showing the fraction of non-thermal carbon dioxide discharge energy transferred from plasma (P) electrons to various excitation paths (channels) of carbon dioxide molecules according to an exemplary embodiment of the present invention.
도 12는 본 발명의 바람직한 실시예에 따른 순수 CO2 플라즈마(P)의 Optical Emission Spectrum을 나타낸 그래프이다.12 is a graph showing an optical emission spectrum of pure CO 2 plasma (P) according to a preferred embodiment of the present invention.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
본 발명의 바람직한 실시예에 따른 마이크로웨이브 플라즈마 개질기(이하에서는 '플라즈마 개질기(100)'라 명칭함)는, 플라즈마(P)를 통해 메탄(CH4)과 이산화탄소(CO2)를 개질하여 수소(H2)와 일산화탄소(CO)를 주성분으로 하는 합성가스로 개질함에 있어서, 반응공간부(111) 내에서 생성되는 플라즈마(P)와 내부로 주입되는 각 가스를 전반적으로 고르게 혼합시키며, 연소되는 플라즈마 화염을 안정적으로 유지할 수 있는 개질기로서, 도 3 내지 도 9에 도시된 바와 같이, 몸체부(110), 방전관(120), 도파관(135), 탄화수소체 공급관(140) 및, 챔버부(150)를 포함하여 구비된다.The microwave plasma reformer according to a preferred embodiment of the present invention (hereinafter referred to as 'plasma reformer 100') is modified by hydrogen (CH 4 ) and carbon dioxide (CO 2 ) through plasma (P). In reforming the synthesis gas containing H 2 ) and carbon monoxide (CO) as a main component, the plasma (P) generated in the reaction space 111 and the respective gases injected into the interior are uniformly mixed and burned. As a reformer capable of stably maintaining the flame, as shown in FIGS. 3 to 9, the body portion 110, the discharge tube 120, the waveguide 135, the hydrocarbon supply tube 140, and the chamber portion 150. It is provided including.
먼저, 상기 몸체부(110)는, 본 발명의 바람직한 실시예에 따른 플라즈마 개질기(100)의 베이스를 형성하는 구성요소로서, 내부에는 상기 플라즈마(P)가 생성되는 반응공간부(111)가 형성되고, 상기 메탄을 반응공간부(111)의 내부로 주입하는 메탄공급관(112) 및, 상기 이산화탄소를 반응공간부(111)의 내부로 주입하는 이산화탄소 공급관(113)이 각각 형성된다.First, the body portion 110 is a component for forming a base of the plasma reformer 100 according to a preferred embodiment of the present invention, the reaction space portion 111 in which the plasma P is generated is formed The methane supply pipe 112 for injecting the methane into the reaction space 111 and the carbon dioxide supply pipe 113 for injecting the carbon dioxide into the reaction space 111 are respectively formed.
여기서, 상기 이산화탄소 공급관(113)은, 도 4에 도시된 바와 같이 몸체부(110)의 둘레를 따라 등간격으로 이격되어 복수 개가 형성되되, 상기 몸체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 이산화탄소가 상기 몸체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)으로 유입되면서 상기 플라즈마(P) 및 메탄과 상호 혼합되며 반응하도록 구비될 수 있다.Here, the carbon dioxide supply pipe 113, as shown in Figure 4 is spaced at equal intervals along the circumference of the body portion 110 is formed a plurality, tangent to the circumferential surface of the body portion 110 And the carbon dioxide supplied from the outside is guided by the inner wall surface 115 of the body portion 110 to form a vortex and flows into the reaction space 111 to form the plasma P and It may be provided to react with and intermix with methane.
이로 인해, 외부로부터 공급되는 이산화탄소가 와류를 형성하며 상기 반응공간부(111)로 유입되면서 플라즈마와 상호 혼합되며 반응함으로써, 이산화탄소, 메탄, 플라즈마 및 탄화수소체가 반응공간부(111) 내에서 균일하게 혼합되면서 안정적으로 화학적 반응할 수 있음은 물론, 고온의 플라즈마 화염으로부터 방전관(120) 및 몸체부(110)의 내벽면(115)을 보호할 수 있는 것이다.As a result, carbon dioxide supplied from the outside forms a vortex and flows into the reaction space 111 so as to be mixed with the plasma and react with each other, so that carbon dioxide, methane, plasma, and hydrocarbons are uniformly mixed in the reaction space 111. While being able to chemically react stably, it is possible to protect the inner wall surface 115 of the discharge tube 120 and the body portion 110 from a high temperature plasma flame.
또한, 상기 이산화탄소 공급관(113)은 도 3에 도시된 바와 같이 상기 몸체부(110) 내에서 상부방향으로 일정각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 상향하면서 와류되는 이산화탄소를 주입할 수 있다.In addition, the carbon dioxide supply pipe 113 is disposed in an inclined state at an angle upward in the body portion 110 as shown in FIG. 3 and is vortexed while being upwardly inside the reaction space 111. Carbon dioxide can be injected.
이로 인해, 상기 이산화탄소 공급관(113)으로부터 주입되는 이산화탄소에 의한 기류는 개질된 합성가스의 배출방향에 대하여 순방향 와류(Conventional Vortex Flow)로서 작용하게 되어, 플라즈마(P)의 하부로 주입되는 이산화탄소 기류의 세기를 증가시켜 상기 플라즈마와 이산화탄소가 보다 원활하게 혼합될 수 있다.As a result, the air flow by the carbon dioxide injected from the carbon dioxide supply pipe 113 acts as a forward vortex (Conventional Vortex Flow) with respect to the discharge direction of the reformed synthesis gas, the carbon dioxide air flow injected into the lower portion of the plasma (P) By increasing the intensity, the plasma and carbon dioxide may be mixed more smoothly.
더불어, 상기 이산화탄소 공급관(113)은 이산화탄소와 기체상의 탄화수소체(예를 들면, 메탄)이 상호 혼합된 혼합가스를 상기 반응공간부(111)의 내부로 주입할 수 있다.In addition, the carbon dioxide supply pipe 113 may inject a mixed gas of carbon dioxide and gaseous hydrocarbons (for example, methane) into the reaction space 111.
그리고, 상기 이산화탄소 공급관(113)은 이산화탄소와 공기, 산소 또는, 이산화탄소와 스팀이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부로 주입할 수 있으며, 상기 이산화탄소 공급관(113)과는 별개로 상기 몸체부(110) 또는 방전관(120)의 둘레에는 공기, 산소 또는, 스팀을 상기 반응공간부(111)의 내부로 주입하는 공급관(미도시)이 형성될 수 있다.In addition, the carbon dioxide supply pipe 113 may inject a mixture of carbon dioxide and air, oxygen, or carbon dioxide and steam into the reaction space 111, and separately from the carbon dioxide supply pipe 113. A supply tube (not shown) for injecting air, oxygen, or steam into the reaction space 111 may be formed around the body 110 or the discharge tube 120.
이와 같이, 상기 이산화탄소와 공기 또는 산소를 상호 혼합시켜 이산화탄소 공급관(113)으로 주입하여 반응공간부(111) 내부에 형성된 플라즈마에 공급함으로써 메탄의 부분산화 또는 연소 공정을 통한 반응기의 개질온도(반응기 내부의 온도 유지)를 제공할 수 있으며, 상기 스팀(H2O)을 주입(단, Ratio of H2O/CO2 > 1)함으로써 메탄의 부분산화 공정을 통해 일산화탄소와 수소의 생산을 증가시킬 수 있다. 또한, 상시 스팀을 제어함으로써 Ratio of H2/CO를 제어할 수 있다.As such, the carbon dioxide and air or oxygen are mixed with each other and injected into the carbon dioxide supply pipe 113 and supplied to the plasma formed inside the reaction space 111 to reform the temperature of the reactor through a partial oxidation or combustion process of methane (inside the reactor). Temperature can be maintained, and the production of carbon monoxide and hydrogen can be increased through the partial oxidation of methane by injecting the steam (H 2 O) (Ratio of H 2 O / CO 2 > 1). have. In addition, the ratio of H 2 / CO can be controlled by controlling the steam at all times.
또한, 상기 몸체부(110)는, 내부에서 생성되는 고온 고압의 플라즈마(P) 및 화염의 고열에 의해 훼손되거나 파손되지 않도록 내화단열재 재질로 형성되는 것이 바람직하다.In addition, the body portion 110 is preferably formed of a refractory insulation material so as not to be damaged or damaged by the high temperature of the high-temperature, high-pressure plasma (P) and flame generated inside.
한편, 본 발명의 바람직한 실시예에 따른 플라즈마 개질기(100)에서는, 상기 몸체부(110)의 내벽 또는 내부에 광촉매를 채워 촉매반응 공간을 구성함으로써, 플라즈마 개질후 개질 효율을 증대시킬 수 있다. On the other hand, in the plasma reformer 100 according to the preferred embodiment of the present invention, by filling the photocatalyst in the inner wall or the inside of the body portion 110 to form a catalytic reaction space, it is possible to increase the reforming efficiency after plasma reforming.
여기서, 도 10에는 본 발명의 바람직한 실시예에 따른 몸체부(110)의 내벽 또는 내부에 광촉매가 채워진 상태를 나타낸 개략도가 도시되어 있다.Here, FIG. 10 is a schematic view showing a state where the photocatalyst is filled in the inner wall or the inside of the body portion 110 according to the preferred embodiment of the present invention.
일반적인 광촉매(ZnO, TiO2, 등)는 통상 3.2eV의 에너지를 받게 되면 여기되어 광촉매 역할을 하게 된다. 도 11에서 보듯이 Vibrational Excitation 모드들의 대부분은 0.5eV 이상의 에너지에서 이산화탄소를 여기시키고 바닥상태로 내려오면서 해당되는 에너지 만큼의 빛을 낸다. 이런 이유로 플라즈마 개질기(100,200)의 내벽 또는 내부에 광촉매를 채움으로서 개질 효율을 높일 수 있고, 도 12에서 보듯이 순수 이산화탄소 플라즈마는 300-400 nm(~3.2 eV 근처)의 빛은 내면서 상기와 같은 이유로 광촉매를 여기시켜 개질 효과를 높일 수 있다.A general photocatalyst (ZnO, TiO2, etc.) is normally excited when subjected to energy of 3.2 eV to act as a photocatalyst. As shown in FIG. 11, most of the Vibrational Excitation modes excite carbon dioxide at an energy of 0.5 eV or more and emit as much light as the corresponding energy descends to the ground state. For this reason, the reforming efficiency can be improved by filling the photocatalyst on the inner wall or the inside of the plasma reformer (100,200), and as shown in FIG. 12, pure carbon dioxide plasma emits light of 300-400 nm (~ 3.2 eV) while for the same reason as described above. The photocatalyst can be excited to enhance the modification effect.
상기 몸체부(110)에 채울수 있는 촉매는 하기의 [표 1]과 같다.The catalyst that can be filled in the body portion 110 is as shown in Table 1 below.
표 1
Catalysts component
Mn-Based Oxide Catalysts Mn-O/SiO2
Cr-Based Oxide Catalysts Cr2O3/SiO2Cr2O3/ZrO2Cr2O3/Al2O3Cr2O3/TiO2
Ga-Based Oxide Catalysts Ga2O3/TiO2
Ce-Based Oxide Catalysts CeO2CaO-CeO2
Other Catalysts Ni/Al2O3Ni/SiO2Ni/MgORu/MgORu/Eu2O2Ru/Al2O3Ru/Al2O3Ru/MgOPt/MgOPt/ZrO2Pd/MgOCu/SiO2
Table 1
Catalysts component
Mn-Based Oxide Catalysts Mn-O / SiO 2
Cr-Based Oxide Catalysts Cr 2 O 3 / SiO 2 Cr 2 O 3 / ZrO 2 Cr 2 O 3 / Al 2 O 3 Cr 2 O 3 / TiO 2
Ga-Based Oxide Catalysts Ga 2 O 3 / TiO 2
Ce-Based Oxide Catalysts CeO 2 CaO-CeO 2
Other catalysts Ni / Al 2 O 3 Ni / SiO 2 Ni / MgORu / MgORu / Eu 2 O 2 Ru / Al 2 O 3 Ru / Al 2 O 3 Ru / MgOPt / MgOPt / ZrO 2 Pd / MgOCu / SiO 2
상기 방전관(120)은, 몸체부(110)의 반응공간부(111) 내에 안착되며, 기 설정된 주파수의 마이크로웨이브를 공급받아 상기 반응공간부(111) 내에서 플라즈마를 생성하는 구성요소로서, 원통형상으로 형성되어 상기 반응공간부(111)과 동심원을 형성하도록 상기 몸체부(110)의 내벽면(115) 상에 수직배치된다.The discharge tube 120 is mounted in the reaction space 111 of the body portion 110, and receives a microwave of a predetermined frequency to generate a plasma in the reaction space 111, cylindrical It is formed on the vertically disposed on the inner wall surface 115 of the body portion 110 to form a concentric circle with the reaction space 111.
여기서, 상기 방전관(120)의 중심축의 위치는 상기 도파관(135)으로부터 입력되는 마이크로웨이브 주파수와 상기 도파관(135)에 따라 달라지며, 관내파장의 1/4인 것이 바람직하다.Here, the position of the central axis of the discharge tube 120 depends on the microwave frequency input from the waveguide 135 and the waveguide 135, preferably 1/4 of the tube wavelength.
상기 도파관(135)은, 방전관(120)과 연결되도록 몸체부(110)에 체결되며, 상기 마이크로웨이브를 전달받아 방전관(120)에 인가하는 구성요소로서, 도 5에 도시된 바와 같이 마이크로웨이브 공급부(130)로부터 발생된 마이크로웨이브를 전달받아 상기 방전관(120)에 인가하도록 구비된다.The waveguide 135 is fastened to the body 110 so as to be connected to the discharge tube 120, and is a component that receives the microwave and applies it to the discharge tube 120, the microwave supply unit as shown in FIG. The microwave generated from the 130 is provided to be applied to the discharge tube 120.
여기서, 상기 마이크로웨이브 공급부(130)는, 외부로부터 공급되는 구동전력을 인가받아 마이크로웨이브를 발진하는 고주파발진기(131)와, 상기 고주파발진기(131)에서 발진된 마이크로웨이브를 출력함과 동시에 임피던스 부정합으로 반사되는 마이크로웨이브 에너지를 소멸시켜 상기 고주파발진기(131)를 보호하는 순환기(132), 상기 순환기(132)의 후단에 배치되며 파워를 모니터링하는 파워모니터(133), 상기 순환기(132)로부터 출력된 마이크로웨이브의 입사파와 반사파의 세기를 조절하여 임피던스 정합을 유도함으로써 상기 마이크로웨이브로 유도된 전기장이 방전관(120) 내에서 최대가 되도록 하는 튜너(134) 및, 상기 도파관(135)을 포함하여 구비된다.Here, the microwave supply unit 130 outputs microwaves oscillated by the high frequency oscillator 131 and the microwaves oscillated by the high frequency oscillator 131 by receiving driving power supplied from the outside and impedance mismatch. The circulator 132 for protecting the high frequency oscillator 131 by extinguishing microwave energy reflected by the power source, a power monitor 133 disposed at the rear end of the circulator 132 and monitoring power, and an output from the circulator 132. Including the tuner 134 and the waveguide 135 so that the electric field induced by the microwave is maximized in the discharge tube 120 by inducing impedance matching by adjusting the intensity of the incident wave and the reflected wave of the microwave. do.
상기 탄화수소체 공급관(140)은 상기 반응공간부(111)의 내부로 탄화수소체를 주입하여 반응공간부(111)에서 생성된 플라즈마(P)에 탄화수소체를 공급하는 구성요소로서, 상기 몸체부(110)의 상부에 배치되고 반응공간부(111)의 내부로 탄화수소체를 공급한다.The hydrocarbon supply pipe 140 is a component for supplying a hydrocarbon to the plasma P generated by the reaction space 111 by injecting a hydrocarbon into the reaction space 111, the body portion ( It is disposed above the 110 and supplies a hydrocarbon to the inside of the reaction space 111.
여기서, 상기 탄화수소체 공급관(140)은, 상술한 이산화탄소 공급관(113)과 마찬가지로, 몸체부(110)의 둘레를 따라 등간격으로 이격되어 적어도 하나 이상이 형성되되, 도 6에 도시된 바와 같이 상기 몸체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 탄화수소체가 상기 몸체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)으로 유입되면서 상기 이산화탄소, 플라즈마 및 메탄과 상호 혼합되며 반응하도록 구비될 수 있다.Here, the hydrocarbon body supply pipe 140, like the carbon dioxide supply pipe 113 described above, at least one spaced apart at equal intervals along the circumference of the body portion 110 is formed, as shown in FIG. It is formed in the form of a tangent (Tangent Line) with respect to the peripheral surface of the body portion 110, the hydrocarbon body supplied from the outside is guided by the inner wall surface 115 of the body portion 110 to form a vortex and the reaction space While flowing into the unit 111, the carbon dioxide, plasma, and methane may be mixed with and reacted with each other.
이로 인해, 외부로부터 공급되는 탄화수소체가 상기 방전관(120) 또는 몸체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)로 유입되면서 플라즈마와 상호 혼합되며 반응함으로써, 이산화탄소, 메탄, 플라즈마 및 탄화수소체가 반응공간부(111) 내에서 더욱 균일하게 혼합되면서 안정적으로 화학적 반응할 수 있으며, 상기 반응공간부(111) 내에서 와류되는 기류의 세기를 더욱 증대시킬 수 있다.As a result, the hydrocarbons supplied from the outside are guided by the inner wall surface 115 of the discharge tube 120 or the body portion 110 to form a vortex and flow into the reaction space 111 to be mixed with the plasma and react with each other. By doing so, the carbon dioxide, methane, plasma and hydrocarbons can be more uniformly mixed in the reaction space 111 and react chemically stably, and further increase the strength of the air flow vortexed in the reaction space 111. have.
또한, 도 3에 도시된 바와 같이 상기 탄화수소체 공급관(140)은 상기 챔버부(150) 내에서 하부방향으로 일정각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 하향하면서 와류되는 이산화탄소를 주입하도록 구비되는 것이 바람직하다.In addition, as shown in FIG. 3, the hydrocarbon supply pipe 140 is disposed in an inclined state at a predetermined angle in the downward direction in the chamber part 150 to vortex while descending into the reaction space 111. It is preferred to be provided to inject the carbon dioxide.
이로 인해, 상기 이산화탄소 공급관(113)으로부터 주입되는 이산화탄소에 의한 상승 기류는 개질된 합성가스의 배출방향에 대하여 순방향 와류(Conventional Vortex Flow)로서 작용하며, 상기 탄화수소체 공급관(140)으로부터 주입되는 탄화수소체에 의한 하강 기류는 개질된 합성가스의 배출방향에 대하여 역방향 와류(Reverse Vortex Flow)로서 작용하게 되어, 각 가스 유동의 상호작용으로 반응공간부(111) 내부에서 플라즈마 화염과 이산화탄소, 메탄 및 탄화수소체가 상호 반응되어 개질될 수 있는 시간이 증가하면서 개질의 효율성을 극대화할 수 있다.For this reason, the ascending air flow by the carbon dioxide injected from the carbon dioxide supply pipe 113 acts as a forward vortex (Conventional Vortex Flow) with respect to the discharge direction of the modified synthesis gas, the hydrocarbon body injected from the hydrocarbon body supply pipe 140 The downward air flow by the gas acts as a reverse vortex (Reverse Vortex Flow) with respect to the discharge direction of the reformed synthesis gas, the plasma flame and carbon dioxide, methane and hydrocarbons in the reaction space 111 by the interaction of each gas flow Increasing the time that can be reacted and reformed can maximize the efficiency of the reforming.
상기 탄화수소체는 탄소와 수소를 주로 포함하는 유기화합물로서, 기체, 액체, 고체의 탄화수소 화합물을 의미한다. 여기서, 상기 탄화수소체로서, 기체상태의 메탄, 에탄, 프로판, 에틸렌, 부탄 또는, 액체상태의 DME, 가솔린, 경유, 등유, 벙커 C유, 정제된 폐유 또는 고체상태의 석탄, 바이오매스 중 어느 하나를 이용할 수 있다. The hydrocarbon is an organic compound mainly containing carbon and hydrogen, and means a hydrocarbon compound of gas, liquid, and solid. Here, as the hydrocarbon body, any one of gaseous methane, ethane, propane, ethylene, butane or liquid DME, gasoline, diesel, kerosene, bunker C oil, refined waste oil or solid coal, biomass Can be used.
여기서, 본 발명의 바람직한 실시예에 따른 플라즈마 개질기(100)에서는 상기와 같이 액체 또는 고체상의 탄화수소체를 이용할 수 있으나, 플라즈마(P), 화염, 이산화탄소와의 혼합효율 및, 연소시 반응공간부(111)의 내부벽면 상에 탄화수소체가 연소되면서 발생되는 연소된 연소산화물이 적층되는 현상이 최소화되도록 기체상의 탄화수소체를 이용하는 것이 바람직하다.Here, in the plasma reformer 100 according to the preferred embodiment of the present invention, a liquid or solid hydrocarbon body may be used as described above, but the mixing efficiency of plasma (P), flame, and carbon dioxide, and the reaction space part during combustion ( It is preferable to use a gaseous hydrocarbon body so as to minimize the stacking of the burned combustion oxide generated when the hydrocarbon body is burned on the inner wall of the 111.
또한, 상기 탄화수소체 공급관(140)은, 상기 탄화수소체로 메탄을 이용하지 않는 경우, 탄화수소체와 메탄이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부에 형성된 플라즈마(P)로 주입하도록 구비될 수 있다.In addition, the hydrocarbon body supply pipe 140 is provided so as to inject a mixture of the hydrocarbon body and methane into the plasma P formed inside the reaction space 111 when methane is not used as the hydrocarbon body. Can be.
따라서, 상기 탄화수소체로 고체 또는 액체의 탄화수소 화합물을 이용하는 경우, 반응공간부(111) 내에 형성된 플라즈마를 유지하지 못하거나 또는 불안정하게 유지될 수 있으므로, 상기 메탄을 해당 탄화수소체에 혼합하여 탄화수소체 공급관(140)을 통해 플라즈마로 주입할 수 있다.Therefore, in the case of using a solid or liquid hydrocarbon compound as the hydrocarbon body, the plasma formed in the reaction space 111 may not be maintained or may be unstable, so that the methane is mixed with the hydrocarbon body to supply a hydrocarbon body supply pipe ( 140 may be injected into the plasma.
한편, 탄화수소체 공급관(140)은, 상기 이산화탄소 공급관(113)이 몸체부(110)에 대하여 접선된 방향과 같은 방향으로 챔버부(150)에 대하여 접선되는 형태로 형성됨으로써, 상기 이산화탄소 공급관(113)으로부터 반응공간부(111)의 내부로 와류되며 주입되는 이산화탄소의 주입방향과 같은 방향으로 탄화수소체가 와류되며 주입되도록 함으로써, 와류되는 기류의 세기를 더욱 증대시켜 플라즈마(P), 화염 및 각 가스류를 고압으로 혼합시킬 수 있다.On the other hand, the hydrocarbon body supply pipe 140, the carbon dioxide supply pipe 113 is formed in a form that is in contact with the chamber portion 150 in the same direction as the direction tangential to the body portion 110, the carbon dioxide supply pipe 113 By vortexing inside the reaction space 111 and allowing the hydrocarbon body to vortex and inject in the same direction as the injection direction of the injected carbon dioxide, further increasing the intensity of the vortexed airflow to cause plasma (P), flame and each gas flow Can be mixed at high pressure.
또한, 상기 탄화수소체 공급관(140)은, 상기 이산화탄소 공급관(113)이 몸체부(110)에 대하여 접선된 방향과 반대 방향으로 챔버부(150)에 대하여 접선되는 형태로 형성됨으로써, 상기 이산화탄소 공급관(113)으로부터 반응공간부(111)의 내부로 와류되며 주입되는 이산화탄소의 주입방향과 반대 방향으로 탄화수소체가 와류되며 주입되도록 함으로써, 상기 반응공간부(111)의 내부에서 상기 와류되는 이산화탄소의 기류와 탄화수소체의 기류가 충돌하도록 하여 플라즈마(P), 화염유도 블레이드(171) 및 각 가스류간의 혼합률을 증대시켜 개질반응을 더욱 증대시킬 수 있다.In addition, the hydrocarbon body supply pipe 140 is formed in a form in which the carbon dioxide supply pipe 113 is tangential to the chamber portion 150 in a direction opposite to the direction tangential to the body portion 110, thereby providing the carbon dioxide supply pipe ( By vortexing from the 113 into the reaction space 111, the hydrocarbon body is vortexed and injected in a direction opposite to the injection direction of the injected carbon dioxide, the air flow and the hydrocarbon of the carbon dioxide vortexed inside the reaction space 111 The airflow of the sieves may collide to increase the mixing ratio between the plasma P, the flame induction blade 171 and the gas streams, thereby further increasing the reforming reaction.
더불어, 상기 탄화수소체 공급관(140)은, 상기 반응공간부(111)의 내부로 공공급되는 탄화수소체의 주입방향을 반응공간부(111) 내에서 직하방으로 형성됨에 따라 상기 탄화수소체의 기류가 반응공간부(111) 내에서 생성된 플라즈마(P)의 내부 깊은 위치까지 주입시켜 플라즈마(P)에 의한 개질반응 시간이 증대되도록 구비될 수도 있다.In addition, the hydrocarbon body supply pipe 140, the air flow of the hydrocarbon body is formed as the injection direction of the hydrocarbon body which is supplied to the inside of the reaction space 111 directly below in the reaction space 111 The reforming reaction time by the plasma P may be increased by injecting to a deep position inside the plasma P generated in the reaction space 111.
상기 챔버부(150)는, 반응공간부(111)의 내경을 축소시켜 개질반응이 발생하는 반응공간부(111) 내부의 압력변화를 발생시키는 구성요소로서, 상기 몸체부(110)의 상부 내측에 배치되고, 원주를 따라 내측방향으로 돌출형성되어 상기 반응공간부(111)의 내경을 부분적으로 축소시킨다.The chamber part 150 is a component that reduces the inner diameter of the reaction space 111 to generate a pressure change inside the reaction space 111 in which a reforming reaction occurs, and an upper inner side of the body 110. The inner space of the reaction space 111 is partially formed to protrude inwardly along the circumference.
여기서, 도 3 및 도 6에 도시된 바와 같이 상기 챔버부(150)의 내부에는 원주를 따라 통공된 링 형상의 챔버공간부(151)가 형성되되, 상기 탄화수소체 공급관(140)은 몸체부(110)를 관통하는 형태로 연장되어 상기 챔버공간부(151)과 연통되고, 상기 챔버부(150)에는 챔버공간부(151)의 내부와 반응공간부(111)의 내부를 상호 연통시켜 상기 탄화수소체 공급관(140)을 통해 챔버공간부(151)의 내부로 주입된 탄화수소체를 반응공간부(111)의 내부로 분사하는 복수 개의 분할공급관(152)이 일정간격으로 이격되어 형성된다.Here, as shown in FIGS. 3 and 6, the chamber 150 is formed in a ring-shaped chamber space 151 through the circumference of the chamber 150, wherein the hydrocarbon supply pipe 140 has a body portion ( It extends in the form to penetrate through the 110 and communicates with the chamber space 151, the inside of the chamber space 151 and the reaction space 111 is in communication with the chamber portion 150 by the hydrocarbon A plurality of split supply pipes 152 for injecting hydrocarbons injected into the chamber space 151 through the sieve supply pipe 140 into the reaction space 111 are spaced apart at regular intervals.
또한, 도 3에 도시된 바와 같이 상기 분할공급관(152)은, 챔버공간부(151)와 반응공간부(111)의 내부를 상호 연통시키되, 상기 반응공간부(111)의 내부로 개구된 단부는 상기 챔버부(150)의 돌출된 선단면(153) 상에 형성되는 것이 바람직하다.In addition, as shown in FIG. 3, the divided supply pipe 152 communicates with the inside of the chamber space 151 and the reaction space 111, and ends open into the reaction space 111. Is preferably formed on the protruding end surface 153 of the chamber portion 150.
더불어, 상기 분할공급관(152)은, 탄화수소체 공급관(140) 및 챔버공간부(151)의 직경보다 작은 직경을 갖도록 형성되어, 상기 탄화수소체 공급관(140)을 통해 공급되는 탄화수소체의 기류보다 상대적으로 높은 압력으로 상기 반응공간부(111)을 향해 가압하면서 탄화수소체를 분사할 수 있다.In addition, the split supply pipe 152 is formed to have a diameter smaller than the diameter of the hydrocarbon body supply pipe 140 and the chamber space 151, relative to the airflow of the hydrocarbon body supplied through the hydrocarbon body supply pipe 140 Hydrocarbons can be injected while pressurizing toward the reaction space 111 at a high pressure.
이와 같이, 탄화수소체 공급관(140)을 통해 공급된 탄화수소체는 다수 개의 분할공급관(152)을 통해 분기되며 상기 반응공간부(111)의 내부로 분산되며 주입되므로, 상기 플라즈마(P)와 각 가스류들을 전반적으로 고르게 혼합시킴으로써 개질효율을 더욱 증대시킬 수 있다.As such, the hydrocarbon material supplied through the hydrocarbon material supply pipe 140 is branched through the plurality of split supply pipes 152 and dispersed and injected into the reaction space 111. Thus, the plasma P and each gas are injected. The overall efficiency of the reforming can be further increased by evenly mixing the streams.
그리고, 상기 분할공급관(152)은 도 6에 도시된 바와 같이, 상기 챔버부(150)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 상기 챔버공간부(151)로부터 주입되는 탄화수소체가 상기 챔버부(150)의 선단면(153) 또는 몸체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)로 분사되는 것이 바람직하다.As shown in FIG. 6, the split supply pipe 152 is formed in a tangent line with respect to the circumferential surface of the chamber part 150, and hydrocarbons are injected from the chamber space part 151. It is preferable that the sieve is guided by the front end surface 153 of the chamber part 150 or the inner wall surface 115 of the body part 110 to form a vortex and injected into the reaction space 111.
이로 인해, 상기 반응공간부(111) 내에서 플라즈마(P)와 각 가스류들을 보다 효과적으로 혼합되면서 안정적으로 화학적 반응할 수 있음은 물론, 고온의 플라즈마 화염으로브터 챔버부(150), 방전관(120) 및 몸체부(110)의 내벽면(115)을 보호할 수 있다.As a result, the plasma P and the gas streams in the reaction space 111 may be more effectively mixed with each other, thereby stably chemically reacting, as well as the plasma chamber 150 having a high-temperature plasma flame and the discharge tube 120. And the inner wall surface 115 of the body portion 110 can be protected.
더불어, 도 7에도시된 바와 같이 상기 분할공급관(152)은, 상기 챔버부(150) 내에서 하부방향으로 일정각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 하향하면서 와류되는 탄화수소체를 분사하는 것이 바람직하다.In addition, as shown in FIG. 7, the split supply pipe 152 is disposed in an inclined state at a predetermined angle in the downward direction in the chamber part 150 and is vortexed downward in the reaction space 111. It is preferable to spray the hydrocarbon body which becomes.
이와 같이, 상기 분할공급관(152)은 반응공간부(111)의 내부로 하향하면서 와류되는 탄화수소체를 분사하며, 이산화탄소를 주입하는 이산화탄소 공급관(113)은 몸체부(110) 내에서 상부방향으로 일정각도로 기울어진 상태로 배치되어 상향하면서 와류되는 이산화탄소를 주입함으로써, 상기 이산화탄소 공급관(113)으로부터 주입되는 이산화탄소에 의한 상승 기류는 개질된 합성가스의 배출방향에 대하여 순방향 와류(Conventional Vortex Flow)로서 작용하며, 상기 분할공급관(152)으로부터 주입되는 탄화수소체에 의한 기류는 개질된 합성가스의 배출방향에 대하여 역방향 와류(Reverse Vortex Flow)로서 작용하게 되어, 각 가스 유동의 상호작용으로 반응공간부(111) 내부에서 플라즈마(P), 이산화탄소, 메탄 및 탄화수소체가 상호 반응되어 개질될 수 있는 시간이 증가하면서 개질의 효율성이 극대화된다.As such, the split supply pipe 152 sprays the vortexed hydrocarbon body while descending into the reaction space 111, and the carbon dioxide supply pipe 113 for injecting carbon dioxide is fixed upward in the body part 110. By injecting carbon dioxide vortexed while being disposed at an angle and upward, the upward air flow by the carbon dioxide injected from the carbon dioxide supply pipe 113 acts as a forward vortex (Conventional Vortex Flow) with respect to the discharge direction of the reformed syngas. In addition, the air flow by the hydrocarbon body injected from the split feed pipe 152 acts as a reverse vortex (Reverse Vortex Flow) to the discharge direction of the reformed synthesis gas, the reaction space portion 111 by the interaction of each gas flow ) Increases the time that the plasma (P), carbon dioxide, methane and hydrocarbons can be reacted with each other and reformed. The efficiency of reforming is maximized.
한편, 도 3, 도 8 및 도 9에 도시된 바와 같이 상기 몸체부(110)의 상단 즉, 상기 챔버부(150)의 직상부에는 상부방향으로 갈수록 내경이 확장되는 형태로 형성된 확장공간부(170)가 형성되어, 상기 챔버부(150)를 거쳐 상기 확장공간부(170)로 유입되면서 상기 플라즈마(P) 및 각 가스류와 연소되는 화염은 오리피스 효과에 의해 유속이 증대된 상태로 상호 혼합되어 개질반응을 발생시킬 수 있음은 물론, 상기 화염이 보다 넓은 범위로 연소할 수 있게 되므로 개질효율을 보다 증대시킬 수 있다.On the other hand, as shown in Figure 3, 8 and 9 the upper end of the body portion 110, that is, the upper portion of the chamber portion 150, the expansion space formed in the form of the inner diameter is extended toward the upper direction ( 170 is formed, the flame that is combusted with the plasma (P) and the respective gas streams are introduced into the expansion space (170) through the chamber portion 150, the flow rate is increased by the orifice effect mixed with each other It is possible to generate a reforming reaction, as well as the flame can be burned in a wider range can further increase the reforming efficiency.
여기서, 상기 상기 확장공간부(170)의 경사면에는, 상향 돌출되게 형성되며, 상기 몸체부(110)의 중앙에서 외측방향으로 연장형성된 복수 개의 화염유도 블레이드(171)가 일정간격 이격되며 방사형으로 배치되는 것이 바람직하다. 이로 인해, 상기 이산화탄소 공급관(113) 및 분할공급관(152)의 접선된 구조에 의해 와류되며 상승하는 플라즈마 화염 및 각 가스류는 상기 화염유도 블레이드(171)에 의해 내경이 확장되는 방향으로 기류가 안내되면서 상승하게 되어, 보다 안정적인 기류형성을 도모할 수 있게 된다.Here, the inclined surface of the expansion space 170, is formed to protrude upward, the plurality of flame induction blades 171 extending in the outward direction from the center of the body portion 110 are spaced at regular intervals and arranged radially It is preferable to be. As a result, the air flow is guided in the direction in which the inner diameter is extended by the flame-induced blade 171 and the plasma flame and each gas flow vortexed by the tangential structures of the carbon dioxide supply pipe 113 and the split supply pipe 152. As it rises, the airflow can be more stably formed.
그리고, 상기 몸체부(110)의 상단에는 원통형상의 노즐부(180)가 장착되어 상기 확장공간부(170)을 통해 안정적인 기류를 형성하며 후단으로 배출되는 화염 및 개질된 합성가스의 배출을 유도한다.In addition, a cylindrical nozzle portion 180 is mounted on the upper end of the body portion 110 to form a stable air flow through the expansion space 170, and induces the discharge of the flame and the modified synthesis gas discharged to the rear end. .
상술한 바와 같은 본 발명의 바람직한 실시예에 따른 플라즈마 개질기(100)의 각 구성 및 기능에 의해, 몸체부(110)의 상부 내측에서 원주를 따라 내측방향으로 돌출형성되어 반응공간부(111)의 내경을 축소시키는 챔버부(150)를 통해 개질반응이 발생하는 반응공간부(111) 내부의 압력변화를 도모하여 생성된 플라즈마(P) 및 주입된 메탄, 이산화탄소, 탄화수소체 등을 고압으로 혼합시킴으로써 개질효율을 증대시킬 수 있음은 물론, 반응공간부(111) 내에서 생성되는 플라즈마(P)와 내부로 주입되는 각 가스류들을 전반적으로 고르게 혼합시키며, 연소되는 화염을 안정적으로 유지할 수 있다.By the respective configurations and functions of the plasma reformer 100 according to the preferred embodiment of the present invention as described above, protruding inwardly along the circumference from the upper inner side of the body portion 110 to the By mixing the plasma (P) generated and the injected methane, carbon dioxide, hydrocarbons and the like at a high pressure through the chamber portion 150 to reduce the inner diameter to achieve a pressure change in the reaction space 111 where the reforming reaction occurs In addition, the reforming efficiency may be increased, and the plasma P generated in the reaction space 111 may be uniformly mixed with the respective gas streams injected therein, and the combustion flame may be stably maintained.
또한, 플라즈마(P)를 통해 주입된 메탄과 이산화탄소를 개질하여 수소와 일산화탄소를 주성분으로 하는 합성가스를 생성함으로써, 상기 합성가스를 생성하는데 필요한 메탄의 소비는 감소시킴과 동시에 이산화탄소의 소비는 대폭 증가시킬 수 있다. 즉, 지구온난화 물질인 이산화탄소를 원료로 사용함으로써 이산화탄소를 저감할 수 있는 효과를 구현할 수 있다.In addition, by reforming the methane and carbon dioxide injected through the plasma (P) to generate a synthesis gas mainly composed of hydrogen and carbon monoxide, the consumption of methane required to generate the synthesis gas is reduced while the consumption of carbon dioxide is greatly increased. You can. That is, by using carbon dioxide, a global warming material, as a raw material, the effect of reducing carbon dioxide can be realized.
더욱이, 플라즈마(P)를 이용한 건식 개질공정에 스팀(H2O)를 주입하여 플라즈마 습식공정을 결합시킴으로써 플라즈마(P) 생성을 위한 전기에너지 사용량은 감소시키면서 수소/일산화탄소 몰비를 제어하여 다양한 화학 물질을 생성할 수 있다.Moreover, by incorporating the plasma wet process by injecting steam (H 2 O) into the dry reforming process using the plasma (P), various chemicals are controlled by controlling the hydrogen / carbon monoxide ratio while reducing the amount of electric energy used to generate the plasma (P). Can be generated.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.
[부호의 설명][Description of the code]
100...플라즈마 개질기 110...몸체부100.Plasma reformer 110.Body
111...반응공간부 112...메탄공급관111 Reaction space 112 Methane supply pipe
113...이산화탄소 공급관 120...방전관113 carbon dioxide supply pipe 120 discharge tube
135...도파관 140...탄화수소체 공급관135 ... waveguide 140 ... hydrocarbon feed pipe
150...챔버부 151...챔버공간부150 ... chamber part 151 ... chamber space part
152...분할공급관 153...선단면152 ... Split supply pipe 153 ... Cross section
170...확장공간부 171...화염유도 블레이드 170.Expansion space 171 ... Flame guide blade
180...노즐부180.Nozzle part
P...플라즈마P ... plasma

Claims (17)

  1. 플라즈마(P)를 통해 주입된 메탄(CH4)과 이산화탄소(CO2)를 개질하여 수소(H2)와 일산화탄소(CO)를 포함하는 합성가스로 개질하는 플라즈마 개질기에 있어서,In the plasma reformer reforming methane (CH 4 ) and carbon dioxide (CO 2 ) injected through the plasma (P) to a synthesis gas containing hydrogen (H 2 ) and carbon monoxide (CO),
    내부에는 상기 플라즈마(P)가 생성되는 반응공간부(111)가 형성되고, 상기 메탄을 상기 반응공간부(111)의 내부로 주입하는 메탄공급관(112) 및, 상기 이산화탄소를 상기 반응공간부(111)의 내부로 주입하는 이산화탄소 공급관(113)이 각각 형성된 몸체부(110);A reaction space 111 for generating the plasma P is formed therein, a methane supply pipe 112 for injecting the methane into the reaction space 111, and the carbon dioxide in the reaction space portion ( Body parts 110 are formed with a carbon dioxide supply pipe 113 for injecting into the 111;
    상기 몸체부(110)의 반응공간부(111) 내에 안착되며, 기 설정된 주파수의 마이크로웨이브를 공급받아 상기 반응공간부(111) 내에서 플라즈마를 생성하는 방전관(120);A discharge tube 120 seated in the reaction space 111 of the body part 110 and receiving a microwave of a preset frequency to generate a plasma in the reaction space 111;
    상기 방전관(120)과 연결되도록 상기 몸체부(110)에 체결되며, 상기 마이크로웨이브를 전달받아 상기 방전관(120)에 인가하는 도파관(135);A waveguide 135 fastened to the body part 110 to be connected to the discharge tube 120 and receiving the microwaves and applying the microwaves to the discharge tube 120;
    상기 몸체부(110)의 상부에 배치되고 상기 반응공간부(111)의 내부로 탄화수소체를 공급하는 탄화수소체 공급관(140); 및A hydrocarbon body supply pipe 140 disposed above the body part 110 and supplying a hydrocarbon body to the inside of the reaction space 111; And
    상기 몸체부(110)의 상부 내측에 배치되고, 원주를 따라 내측방향으로 돌출형성되어 상기 반응공간부(111)의 내경을 축소시키는 챔버부(150);를 포함하는 플라즈마 개질기.Plasma reformer is disposed inside the upper portion of the body portion 110, protruding inwardly along the circumference to reduce the inner diameter of the reaction space (111).
  2. 제 1항에 있어서,The method of claim 1,
    상기 챔버부(150)의 내부에는 원주를 따라 통공된 링 형상의 챔버공간부(151)가 형성되되,In the chamber 150, a ring-shaped chamber space portion 151 is formed through the circumference is formed,
    상기 탄화수소체 공급관(140)은 상기 몸체부(110)를 관통하는 형태로 연장되어 상기 챔버공간부(151)와 연통되고,The hydrocarbon body supply pipe 140 extends in a form penetrating through the body portion 110 to communicate with the chamber space portion 151,
    상기 챔버부(150)에는 상기 챔버공간부(151)의 내부와 반응공간부(111)의 내부를 상호 연통시켜 상기 탄화수소체 공급관(140)을 통해 상기 챔버공간부(151)의 내부로 주입된 탄화수소체를 상기 반응공간부(111)의 내부로 분사하는 복수 개의 분할공급관(152)이 일정간격으로 이격되어 형성된 것을 특징으로 하는 플라즈마 개질기.The chamber 150 is connected to the inside of the chamber space 151 and the inside of the reaction space 111 to be injected into the chamber space 151 through the hydrocarbon supply pipe 140. Plasma reformer characterized in that a plurality of divided supply pipes (152) for injecting hydrocarbons into the reaction space (111) spaced apart at regular intervals.
  3. 제 2항에 있어서,The method of claim 2,
    상기 분할공급관(152)은, The split supply pipe 152 is,
    상기 챔버공간부(151)와 반응공간부(111)의 내부를 상호 연통시키되,While communicating the interior of the chamber space 151 and the reaction space 111,
    상기 반응공간부(111)의 내부로 개구된 단부는 상기 챔버부(150)의 돌출된 선단면(153) 상에 형성된 것을 특징으로 하는 플라즈마 개질기.An end portion which is opened into the reaction space portion 111 is formed on the protruding tip surface 153 of the chamber portion 150.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 분할공급관(152)은,The split supply pipe 152 is,
    상기 탄화수소체 공급관(140) 및 챔버공간부(151)의 직경보다 작은 직경을 갖는 것을 특징으로 하는 플라즈마 개질기.Plasma reformer having a diameter smaller than the diameter of the hydrocarbon supply pipe (140) and the chamber space (151).
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 탄화수소체 공급관(140)은,The hydrocarbon body supply pipe 140,
    상기 몸체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 탄화수소체가 상기 챔버공간부(151)의 내벽면(154)에 의해 안내되어 와류를 형성하며 상기 챔버공간부(151)로 주입되는 것을 특징으로 하는 플라즈마 개질기.It is formed in the form of a tangent (Tangent Line) with respect to the circumferential surface of the body portion 110, the hydrocarbon body supplied from the outside is guided by the inner wall surface 154 of the chamber space 151 to form a vortex Plasma reformer which is injected into the chamber space 151.
  6. 제 5항에 있어서,The method of claim 5,
    상기 분할공급관(152)은,The split supply pipe 152 is,
    상기 챔버부(150)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 상기 챔버공간부(151)로부터 주입되는 탄화수소체가 상기 챔버부(150)의 선단면(153) 또는 몸체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)로 분사되는 것을 특징으로 하는 플라즈마 개질기.It is formed in the form of a tangent (Tangent Line) with respect to the circumferential surface of the chamber portion 150, the hydrocarbon body injected from the chamber space portion 151 is the front end surface 153 or the body portion of the chamber portion 150 ( The plasma reformer is guided by the inner wall surface 115 of the 110 to form a vortex and injected into the reaction space 111.
  7. 제 6항에 있어서,The method of claim 6,
    상기 분할공급관(152)은,The split supply pipe 152 is,
    상기 챔버부(150) 내에서 하부방향으로 일정각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 하향하면서 와류되는 탄화수소체를 분사하는 것을 특징으로 하는 플라즈마 개질기.Plasma reformer, characterized in that inclined at a predetermined angle in the downward direction in the chamber portion 150 to inject the vortexing hydrocarbon body downwards inside the reaction space (111).
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 이산화탄소 공급관(113)은,The carbon dioxide supply pipe 113,
    상기 몸체부(110)의 측부 둘레에 배치되되, 상기 몸체부(110) 내에서 상부방향으로 일정각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 상향하면서 와류되는 이산화탄소를 주입하는 것을 특징으로 하는 플라즈마 건식 개질기.It is disposed around the side of the body portion 110, is disposed in a state inclined at an angle in the upper direction in the body portion 110 is injected into the inside of the reaction space 111, the vortex injected carbon dioxide Plasma dry reformer, characterized in that.
  9. 제 8항에 있어서,The method of claim 8,
    상기 이산화탄소 공급관(113)은,The carbon dioxide supply pipe 113,
    상기 몸체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 이산화탄소가 상기 몸체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)으로 유입되면서 상기 플라즈마 및 메탄과 상호 혼합되며 반응하는 것을 특징으로 하는 플라즈마 건식 개질기.It is formed in a form tangent to the circumferential surface of the body portion 110, the carbon dioxide supplied from the outside is guided by the inner wall surface 115 of the body portion 110 to form a vortex and the reaction Plasma dry reformer, characterized in that the mixture is introduced into the space portion 111 and reacted with the plasma and methane.
  10. 제 9항에 있어서,The method of claim 9,
    상기 탄화수소체 공급관(140)으로 공급되는 탄화수소체는,Hydrocarbon body supplied to the hydrocarbon body supply pipe 140,
    기체상태의 에탄, 프로판, 에틸렌, 부탄 또는, 액체상태의 DME, 가솔린, 경유, 등유, 벙커 C유, 정제된 폐유 또는 고체상태의 석탄, 바이오매스 중 어느 하나인 것을 특징으로 하는 플라즈마 건식 개질기.A gaseous ethane, propane, ethylene, butane or liquid DME, gasoline, diesel, kerosene, bunker C oil, refined waste oil or solid coal, biomass plasma dry reformer, characterized in that any one.
  11. 제 1항에 있어서,The method of claim 1,
    상기 탄화수소체 공급관(140)은,The hydrocarbon body supply pipe 140,
    상기 탄화수소체와 메탄이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부로 주입하는 것을 특징으로 하는 플라즈마 건식 개질기.Plasma dry reformer, characterized in that the mixture of the hydrocarbon and methane mixed with each other is injected into the reaction space (111).
  12. 제 1항에 있어서,The method of claim 1,
    상기 이산화탄소 공급관(113)은,The carbon dioxide supply pipe 113,
    이산화탄소와 메탄이 상호 혼합된 혼합가스를 상기 반응공간부(111)의 내부로 주입하는 것을 특징으로 하는 플라즈마 건식 개질기.And a mixed gas in which carbon dioxide and methane are mixed with each other and injected into the reaction space 111.
  13. 제 1항에 있어서,The method of claim 1,
    상기 이산화탄소 공급관(113)은, 이산화탄소와 공기 또는 이산화탄소와 스팀이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부로 주입하거나,The carbon dioxide supply pipe 113 may inject a mixture of carbon dioxide and air or carbon dioxide and steam into the reaction space 111.
    상기 몸체부(110)의 둘레에는, 공기 또는 스팀을 상기 반응공간부(111)의 내부로 주입하는 공급관이 별도로 형성된 것을 특징으로 하는 플라즈마 개질기.The plasma reformer, characterized in that the supply pipe for injecting air or steam into the reaction space 111 is formed around the body portion (110).
  14. 제 1항 내지 제 13항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 13,
    상기 몸체부(110)의 상단에는 상부방향으로 갈수록 내경이 확장되는 형태로 형성된 확장공간부(170)가 형성된 것을 특징으로 하는 플라즈마 개질기.Plasma reformer, characterized in that the upper end of the body portion 110 is formed with an expansion space 170 formed in the form of the inner diameter is extended toward the upper direction.
  15. 제 14항에 있어서,The method of claim 14,
    상기 확장공간부(170)의 경사면에는,On the inclined surface of the expansion space 170,
    상향 돌출되게 형성되며, 상기 몸체부(110)의 중앙에서 외측방향으로 연장형성된 복수 개의 화염유도 블레이드(171)가 일정간격 이격되며 방사형으로 배치되는 것을 특징으로 하는 플라즈마 개질기.Is formed to protrude upward, the plasma reformer characterized in that the plurality of flame induction blades (171) extending in the outward direction from the center of the body portion 110 is spaced apart at regular intervals and arranged radially.
  16. 제 1항 내지 제 13항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 13,
    상기 몸체부(110)의 내벽 또는 내부에는 광촉매가 채워진 촉매반응공간이 형성된 것을 특징으로 하는 플라즈마 개질기.Plasma reformer, characterized in that the catalytic reaction space is formed on the inner wall or the inside of the body portion 110 is filled with a photocatalyst.
  17. 제 1항 내지 제 13항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 13,
    상기 몸체부(110)는, 내화단열재 재질로 형성된 것을 특징으로 하는 플라즈마 개질기.The body portion 110, the plasma reformer, characterized in that formed of a refractory insulating material.
PCT/KR2013/008657 2012-09-28 2013-09-27 Microwave plasma reformer WO2014051366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120108460A KR101277122B1 (en) 2012-09-28 2012-09-28 Microwave plasma dry reformer
KR10-2012-0108460 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014051366A1 true WO2014051366A1 (en) 2014-04-03

Family

ID=48867426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008657 WO2014051366A1 (en) 2012-09-28 2013-09-27 Microwave plasma reformer

Country Status (2)

Country Link
KR (1) KR101277122B1 (en)
WO (1) WO2014051366A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107006112A (en) * 2014-12-11 2017-08-01 绿色科学有限公司 Possesses the plasma flare for being formed with the waveguide pipe that vortical flow disintegrates gas supply department
WO2020043985A1 (en) * 2018-08-28 2020-03-05 Europlasma Method for producing a synthesis gas by treating a gas stream containing co2 and one or more hydrocarbons
WO2020197703A1 (en) 2019-03-25 2020-10-01 Recarbon, Inc. Thermal management of plasma reactors
WO2020223789A1 (en) * 2019-05-09 2020-11-12 Pyrogenesis Canada Inc. Production of syngas using recycled co2 via combined dry and steam reforming of methane
WO2022226380A1 (en) * 2021-04-22 2022-10-27 Bionatus, LLC Systems and methods for producing hydrogen and byproducts from natural gas
EP3948928A4 (en) * 2019-03-25 2023-01-04 Recarbon, Inc. Systems for controlling plasma reactors

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101326670B1 (en) * 2013-06-07 2013-11-08 한국에너지기술연구원 Circulating fluidized bed plasma gasifier with microwave plasma torch
KR101401423B1 (en) * 2013-08-16 2014-06-02 한국에너지기술연구원 Combustible syngas production apparatus and method from carbon dioxide using microwave plasma-catalyst hybrid process
KR101560781B1 (en) * 2014-01-16 2015-10-15 한국기계연구원 Plasma injector
KR101632633B1 (en) * 2014-08-20 2016-06-22 고등기술연구원연구조합 Plasma/catalyst-integrated gas reforming device having double-pipe structure and method for reforming the gas
KR101557690B1 (en) 2014-10-31 2015-10-07 한국기초과학지원연구원 Hybrid Reforming System Using Carbon Dioxide Plasma And Catalyst
KR101662646B1 (en) * 2014-10-31 2016-10-07 한국기초과학지원연구원 Hydrocarbon Reforming System Using Steamplasma
KR101666094B1 (en) * 2014-12-24 2016-10-13 강원대학교산학협력단 Method to convert from greenhouse gases to synthesis gas using catalytic complexes and apparatus used for conversion to synthesis gas
KR101743954B1 (en) 2015-12-09 2017-06-07 고등기술연구원연구조합 Hybrid reformer using plasma and catalyst
JP7380300B2 (en) * 2020-02-18 2023-11-15 株式会社豊田自動織機 Combustor, reformer and reforming system
KR102427054B1 (en) * 2020-06-24 2022-08-01 정종현 Dual Plasma Thermal Oxidation System for Malodorous Gas Treatment
CN112915940B (en) * 2021-02-10 2022-07-08 河北龙亿环境工程有限公司 Microreactor, parallel high-efficiency microreactor and application of microreactor and parallel high-efficiency microreactor
KR102479600B1 (en) 2021-05-18 2022-12-21 한국이미지시스템(주) Decomposition Apparatus For Mixed Gased Using Microwave Plasma - Catalyst Hyrbid Process
KR102587639B1 (en) * 2021-06-25 2023-10-10 황대석 Microwave plasma torch device with vortex generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100581476B1 (en) * 2004-08-23 2006-05-23 엄환섭 Method for carbon dioxide reforming of methane using microwave plasma torch
KR100864695B1 (en) * 2007-03-23 2008-10-23 엄환섭 Apparatus for generating a pure steam torch powered by microwaves and apparatus for generating hydrogen by using the same
KR100945038B1 (en) * 2008-01-22 2010-03-05 주식회사 아론 Plasma reactor and plasma scrubber using the same
KR20120060273A (en) * 2010-12-01 2012-06-12 한국기초과학지원연구원 Power generation system using plasma gasifier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757499B1 (en) 1996-12-24 2001-09-14 Etievant Claude HYDROGEN GENERATOR
WO2012031338A1 (en) 2010-09-08 2012-03-15 Ecoplasma B.V.B.A. Method and apparatus for generating a fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100581476B1 (en) * 2004-08-23 2006-05-23 엄환섭 Method for carbon dioxide reforming of methane using microwave plasma torch
KR100864695B1 (en) * 2007-03-23 2008-10-23 엄환섭 Apparatus for generating a pure steam torch powered by microwaves and apparatus for generating hydrogen by using the same
KR100945038B1 (en) * 2008-01-22 2010-03-05 주식회사 아론 Plasma reactor and plasma scrubber using the same
KR20120060273A (en) * 2010-12-01 2012-06-12 한국기초과학지원연구원 Power generation system using plasma gasifier

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107006112A (en) * 2014-12-11 2017-08-01 绿色科学有限公司 Possesses the plasma flare for being formed with the waveguide pipe that vortical flow disintegrates gas supply department
WO2020043985A1 (en) * 2018-08-28 2020-03-05 Europlasma Method for producing a synthesis gas by treating a gas stream containing co2 and one or more hydrocarbons
FR3085370A1 (en) * 2018-08-28 2020-03-06 Europlasma PROCESS FOR PRODUCING SYNTHESIS GAS BY TREATING A GAS STREAM CONTAINING CO2 AND ONE OR MORE HYDROCARBONS
WO2020197703A1 (en) 2019-03-25 2020-10-01 Recarbon, Inc. Thermal management of plasma reactors
EP3948926A4 (en) * 2019-03-25 2022-12-28 Recarbon, Inc. Plasma reactor for processing gas
EP3948928A4 (en) * 2019-03-25 2023-01-04 Recarbon, Inc. Systems for controlling plasma reactors
EP3948930A4 (en) * 2019-03-25 2023-01-11 Recarbon, Inc. Thermal management of plasma reactors
EP3948929A4 (en) * 2019-03-25 2023-01-11 Recarbon, Inc. Plasma reactors having recuperators
WO2020223789A1 (en) * 2019-05-09 2020-11-12 Pyrogenesis Canada Inc. Production of syngas using recycled co2 via combined dry and steam reforming of methane
WO2022226380A1 (en) * 2021-04-22 2022-10-27 Bionatus, LLC Systems and methods for producing hydrogen and byproducts from natural gas

Also Published As

Publication number Publication date
KR101277122B1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
WO2014051366A1 (en) Microwave plasma reformer
WO2014038907A1 (en) Plasma dry reforming apparatus
US20130252115A1 (en) Power generation system using plasma gasifier
JP5919393B2 (en) Method and apparatus for converting carbon dioxide to carbon monoxide
US9834442B2 (en) Gliding arc plasmatron reactor with reverse vortex for the conversion of hydrocarbon fuel into synthesis gas
AU2007235669B2 (en) Hydrogen production
EP1423561B1 (en) Method for combustion synthesis of fullerenes
KR101326670B1 (en) Circulating fluidized bed plasma gasifier with microwave plasma torch
KR101982171B1 (en) Plasma and catalyst type dry reforming apparatus and method
BR0008048B1 (en) secondary reform process and burner.
KR20130112940A (en) Method for producing syngas containing carbon monoxide(co) and hydrogen(h2)
CN106854127B (en) Method and device for preparing acetylene and/or synthesis gas from hydrocarbon
KR20110012175A (en) Plasma gasifier for integrated gasification combined cycle
RU2374173C1 (en) Method of producing synthetic gas
CN101618303B (en) Process and reactor for oxidation of hydrocarbon
KR100988470B1 (en) Apparatus for producing hyrdogen
KR101752979B1 (en) System for hydrogen production using plasma
US11807531B2 (en) Method and apparatus for processing of materials using high-temperature torch
CN115298154B (en) Method for converting hydrocarbon-based material into acetylene or ethylene and apparatus therefor
WO2012112065A1 (en) Method and device for generating synthesis gas
WO2014027930A2 (en) Method for the microwave conversion of a methane-water mixture into synthesis gas
KR100834173B1 (en) The burner of reactor for reforming the natural gas into clean energy
RU2699124C1 (en) Plasma-chemical synthesis gas production method and installation for its implementation
KR101704766B1 (en) gasifier
RU2075432C1 (en) Method of generating synthesis gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841062

Country of ref document: EP

Kind code of ref document: A1