WO2022092433A1 - Apparatus for producing acetylene black using combination of plasma treatment and thermal decomposition - Google Patents

Apparatus for producing acetylene black using combination of plasma treatment and thermal decomposition Download PDF

Info

Publication number
WO2022092433A1
WO2022092433A1 PCT/KR2020/018824 KR2020018824W WO2022092433A1 WO 2022092433 A1 WO2022092433 A1 WO 2022092433A1 KR 2020018824 W KR2020018824 W KR 2020018824W WO 2022092433 A1 WO2022092433 A1 WO 2022092433A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
acetylene
unit
thermal decomposition
acetylene black
Prior art date
Application number
PCT/KR2020/018824
Other languages
French (fr)
Korean (ko)
Inventor
이승규
이경석
방윤혁
박규순
강승범
Original Assignee
재단법인 한국탄소융합기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소융합기술원 filed Critical 재단법인 한국탄소융합기술원
Publication of WO2022092433A1 publication Critical patent/WO2022092433A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/54Acetylene black; thermal black ; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/048Treatment with a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an acetylene black manufacturing apparatus, and more particularly, to an acetylene black manufacturing apparatus configured by combining a plasma treatment process and a thermal decomposition process.
  • Acetylene black is a kind of carbon black, and the raw material is acetylene gas.
  • Denka Black is an acetylene black produced by thermal decomposition of acetylene as a kind of carbon black. It has excellent high-purity conductivity, and its properties are used to prevent conduction and static electricity in the fields of battery raw materials, silicon products including power cables, and IC packaging materials. is becoming
  • Denka black that is, acetylene black
  • Denka black has greatly improved its properties as it is used in manganese batteries, and then it was used as a conductive material mainly for battery applications.
  • Recently, the use of lithium ion secondary batteries and fuel cells as a conductive agent is increasing.
  • Acetylene black is produced by the continuous thermal decomposition reaction of acetylene gas (2600 degrees Celsius; in fact, reaction is possible at around 1800 degrees Celsius due to heat dissipation or furnace protection, etc.), and more than 99% of the raw material is acetylene gas, and heavy oil is used. It does not contain impurities such as sulfur like furnace black.
  • Acetylene is generated from the by-product gas of naphtha cracking by adding water to calcium carbide or cracking, and its quality is determined by the type of cracking furnace, temperature distribution in the furnace, residence time in the furnace, and cooling method.
  • Acetylene black is composed of particles of colloidal size of carbon black, and has properties such as electrical conductivity, high water absorption, good thermal conductivity, and each particle of acetylene black is composed of large crystallites, forming a long chain structure. and has very few impurities compared to other carbon blacks.
  • acetylene black is produced by self-heating pyrolysis of acetylene gas and does not contain oxygen, it is highly purified and has a very low amount of hydrogen among non-decomposed residues.
  • oxygen does not exist even in the functional group, it has excellent conductivity properties.
  • Acetylene black has long been used as a basic material for batteries, and is a conductive rubber or plastic material with elasticity in industrial fields such as wires, cables, tires, belts, hoses, heaters, paints, adhesives, conductive agents, and many electronic fields. used as an antistatic additive in
  • General-purpose carbon black can be produced in all countries, and there are contact black, furnace black, thermal black, lamp black, etc., depending on the manufacturing method of carbon black. Most companies produce furnace black, and only a few companies such as Denka, Mitsubishi Chemical, and Carbot are producing high-purity acetylene black using the acetylene method.
  • the manufacturing apparatus of acetylene black usually includes an injection unit for injecting an injection gas, a preheating unit for preheating the injection gas, a decomposition unit for processing and decomposing the preheated injection gas, a cooling unit for cooling the decomposed gas, and a cooling unit. It consists of a collecting unit that collects acetylene black that is cooled and finally produced.
  • the present invention was created to solve the problems of the prior art as described above, and an object of the present invention is to provide an acetylene black manufacturing apparatus capable of efficiently producing acetylene black of high purity.
  • Acetylene black manufacturing apparatus an injection unit for injecting acetylene; a plasma unit configured to form a plasma so that acetylene supplied through the injection unit reacts with the plasma; and a thermal decomposition unit for receiving and thermally decomposing acetylene reacted with plasma from the plasma unit, wherein the thermal decomposition unit is configured in series with the plasma unit and disposed subsequent to the plasma unit.
  • the thermal decomposition unit may be disposed below the plasma unit, and may receive acetylene treated in the plasma unit through gravity to manufacture the acetylene as acetylene black.
  • the plasma unit may be configured to supply the acetylene to the thermal decomposition unit after the plasma plasma-treats the acetylene only with a first preset reactivity.
  • the first preset reactivity is the intensity generated when the intensity of the plasma is 10 Kw to 50 Kw of power and 60 Hz of frequency at an applied pressure of 0.05 to 50 torr, and the plasma temperature is 1,000 degrees Celsius to 3,000 degrees Celsius This may be the case reaction.
  • the thermal decomposition unit may receive the acetylene reacted with the plasma from the plasma unit and thermally decompose it at a second preset reactivity to produce the acetylene as acetylene black.
  • the second preset reactivity may be a reactivity when the temperature of thermal decomposition is 1,500 degrees Celsius to 2,200 degrees Celsius.
  • the volume of the plasma unit may have a preset ratio to the volume of the thermal decomposition unit.
  • the injection unit includes an acetylene supply for supplying the acetylene to the plasma unit, the plasma unit, three plasma torches for generating a plasma stream; a plasma reaction chamber providing temperature and pressure to react the plasma with the acetylene; and an inert gas supplier for supplying an inert gas
  • the thermal decomposition unit includes: a reactive acetylene injector for supplying acetylene reacted with plasma from the plasma unit; a reaction raw material injector for supplying a material for generating an exothermic reaction; and a pyrolysis reaction chamber providing pressure so that acetylene is thermally decomposed through heat generated by the reaction raw material, wherein the plasma reaction chamber has an inner diameter of 50 mm to 180 mm, and a length of 500 mm to 1800 mm, the pyrolysis reaction The chamber may have an inner diameter of 50 mm to 100 mm, and a length of 500 mm to 1,000 mm.
  • the acetylene black manufacturing apparatus has the effect of maximizing productivity as the decomposition efficiency of acetylene gas is improved by configuring the plasma treatment process and the thermal decomposition process in two stages in series.
  • high-temperature heat generated after decomposition of acetylene gas through the plasma treatment process at the top can be used in the pyrolysis process at the bottom, so that maintaining high temperature in the pyrolysis process is efficient As this is possible, there is an effect of remarkably reducing power consumption, and also it is not necessary to construct a separate preheating unit, thereby minimizing the size of the facility, thereby reducing the construction cost.
  • FIG. 1 is a conceptual diagram of an acetylene black manufacturing apparatus using a conventional plasma decomposition method.
  • FIG. 2 is a conceptual diagram of an acetylene black manufacturing apparatus using a conventional thermal decomposition method.
  • FIG. 3 is a conceptual diagram of an acetylene black manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of an acetylene black manufacturing apparatus using a conventional plasma decomposition method
  • FIG. 2 is a conceptual diagram of an acetylene black manufacturing apparatus using a conventional thermal decomposition method
  • FIG. 3 is a conceptual diagram of an acetylene black manufacturing apparatus according to an embodiment of the present invention am.
  • the acetylene black manufacturing apparatus 1 includes an injection unit 10 , a plasma unit 20 , a thermal decomposition unit 30 , a cooling unit 40 and a collecting unit. (50).
  • FIG. 1 is a conceptual diagram of an acetylene black manufacturing apparatus 1a using a conventional plasma decomposition method.
  • the acetylene black manufacturing apparatus 1a using the plasma decomposition method generates plasma P through the plasma torch 12a with the inert gas supplied from the inert gas supply 10a, and injects the generated plasma P
  • the acetylene supplied in step 10a and the plasma react with each other in the plasma chamber 13a to decompose the acetylene, and then cool by the cooling unit 14a to manufacture acetylene black.
  • the acetylene black manufacturing apparatus 1a using this plasma decomposition method has a disadvantage in that the yield is low due to a large amount of undecomposed acetylene gas, and the power consumption for plasma generation is very large, so that economic efficiency is lowered.
  • FIG. 2 is a conceptual diagram of an acetylene black manufacturing apparatus 1b using a conventional thermal decomposition method.
  • the acetylene black manufacturing apparatus 1b using the pyrolysis method receives acetylene from the acetylene supply unit 10a, receives the high-temperature combustion gas from the burner 11b, pyrolyzes it in the pyrolysis chamber 12b, and then the cooling unit 13b ) through cooling to produce acetylene as acetylene black.
  • the acetylene black manufacturing apparatus 1b using this pyrolysis method has a disadvantage in that the length of the pyrolysis chamber 12b is long to control the residence time for gas decomposition, so that the size of the equipment increases, and the high temperature of the pyrolysis chamber 12b There is a disadvantage that high power is required for maintenance.
  • the injection unit 10 injects acetylene.
  • the injection unit 10 may be disposed above the plasma unit 20 to supply acetylene gas to the plasma unit 20 .
  • the injection unit 10 may include an acetylene supplier 11 for supplying acetylene to the plasma unit 20 .
  • a plurality of acetylene feeders 11 may be formed on the upper surface of the plasma unit 20 in parallel.
  • the plasma unit 20 is configured to form a plasma P, and acetylene supplied through the injection unit 10 reacts with the plasma P, and is configured in series with the thermal decomposition unit 30 .
  • the plasma unit 20 includes a plasma torch 21 generating a plasma (P) stream, a plasma reaction chamber 22 providing temperature and pressure so that the plasma P and acetylene react, and an inert gas supplying an inert gas.
  • a feeder 23 may be included.
  • the plasma torch 21 may be formed to pass through the upper portion of the plasma reaction chamber 22, and form a plasma stream of at least 1,000 degrees Celsius or more (preferably 1,000 degrees Celsius to 3,000 degrees Celsius) by direct current arc discharge. can do.
  • the DC arc discharge may be generated by a power of 10 kw to 50 kw and a frequency of 60 Hz.
  • the plasma torch 21 may be configured in three phases, which has the advantage of improving the plasma generation effect compared to the plasma torch consisting of a single phase (one), thereby increasing the decomposition efficiency of acetylene gas there is
  • the plasma reaction chamber 22 is used in connection with the plasma torch 21 and the inert gas supply 23, and has a structure in which the stream of plasma P generated in the plasma torch 21 and acetylene can be mixed well. It may have the form of a chamber.
  • a shield gas outlet may be configured to prevent carbon black from being deposited on the top and inner walls of the plasma reaction chamber 22 .
  • the plasma reaction chamber 22 may be used as a heat-resistant and heat insulating material capable of increasing energy efficiency while being able to withstand the high temperature of plasma.
  • the plasma reaction chamber 22 is formed to withstand a pressure of 0.05 torr to 50 torr to generate a pressure of 0.05 to 50 torr, and through this pressure, plasma generation can be optimized. At a pressure greater than the pressure of 50 torr, the plasma generation rate is lowered and the plasma production rate is lowered, and in the present invention, in order to prevent such a decrease in the plasma production rate, the plasma reaction chamber 22 has a pressure of 0.05 to 50 torr as described above. It can be supplied so that plasma can be easily formed.
  • the plasma reaction chamber 22 may have, for example, a cylindrical shape, and may have an inner diameter of 50 mm to 180 mm and a length of 500 mm to 1800 mm. Plasma reaction chamber 22, by having the optimal dimensions of such an inner diameter and length, there is an effect that can minimize the generation of undecomposed acetylene gas.
  • the inert gas supply 23 may be formed to pass through the upper portion of the plasma reaction chamber 22 , and nitrogen, argon, or the like may be used as the inert gas.
  • the plasma unit 20 generates a plasma P through the plasma torch 21 using an inert gas supplied from the inert gas supplier 23 , and acetylene supplied from the injection unit 10 by applying the generated plasma P to the injection unit 10 . react with each other to cause the plasma to pyrolyze at least a portion of the acetylene.
  • the thermal decomposition reaction may mainly occur at the lower end of the plasma torch 21 and inside the plasma reaction chamber 22 .
  • the plasma unit 20 may be configured to supply acetylene to the thermal decomposition unit 30 after plasma-treating the acetylene with only a first preset reactivity.
  • the first preset reactivity may be a reactivity when the plasma intensity is the preset intensity. That is, the intensity of the plasma is the intensity generated when the applied pressure is 0.05 to 50 torr, the electric power is 10 Kw to 50Kw, and the frequency is 60 Hz, and the plasma temperature may be the reactivity in the case of 1,000 degrees Celsius to 3,000 degrees Celsius.
  • the volume of the plasma unit 20 may have a predetermined ratio to the volume of the pyrolysis unit 30 .
  • This ratio may be a ratio in which the plasma reaction chamber 22 is formed to have an inner diameter of 50 mm to 180 mm and a length of 500 mm to 1800 mm, as described above.
  • the thermal decomposition unit 30 pyrolyzes acetylene and is configured in series with the plasma unit 20 .
  • the thermal decomposition unit 30 is disposed following the plasma unit 20, is disposed below the plasma unit 20, and receives acetylene that has been at least partially processed in the plasma unit 20 through gravity to supply acetylene to acetylene black.
  • the thermal decomposition unit 30 is not necessary to install a separate preheating unit upstream of the thermal decomposition unit 30 (acetylene generates an exothermic reaction during decomposition due to plasma and emits heat) and at the same time, it is possible to avoid building a separate pump, There is an effect that the construction cost is reduced and the manufacturing cost is reduced.
  • the thermal decomposition unit 30 includes a reactive acetylene injector 31 for supplying acetylene reacted with plasma from the plasma unit 20, a reactive raw material injector 32 for supplying a material that generates an exothermic reaction, and a reaction raw material generated by It may include a pyrolysis reaction chamber 33 that provides pressure to pyrolyze acetylene through heat.
  • the reactive acetylene injector 31 is formed between the plasma unit 20 and the thermal decomposition unit 30 and may have a tube shape, for example. Specifically, the reactive acetylene injector 31 may have a tube shape formed between the pyrolysis reaction chamber 33 and the plasma reaction chamber 22 .
  • the reactive acetylene injector 31 may have a separate opening/closing valve therein, and the supply amount of acetylene reacted with the plasma supplied from the plasma unit 20 to the pyrolysis unit 30 through this opening/closing valve can be adjusted. there is.
  • the reaction raw material injector 32 may be, for example, a high-temperature combustion gas, a burner, or the like, and may be formed on a sidewall of the pyrolysis reaction chamber 33 .
  • the reaction raw material injector 32 may be supplied with a high-temperature combustion gas having a temperature of 1,400 degrees Celsius to 2,200 degrees Celsius (preferably 1,500 degrees Celsius to 2,200 degrees Celsius), and the supplied combustion gas is a reaction acetylene injector ( 31) can pyrolyze acetylene supplied from. At this time, acetylene supplied from the reactive acetylene injector 31 may be completely decomposed by a high-temperature combustion gas having a heat of 1,500 to 2,200 degrees Celsius.
  • the pyrolysis reaction chamber 33 is used in connection with the reaction acetylene injector 31 and the reaction raw material injector 32, and has a structure in which the high temperature heat supplied from the reaction raw material injector 32 and acetylene can be mixed well. may have the form of a chamber).
  • the pyrolysis reaction chamber 33 may be used as a heat-resistant and heat-insulating material whose material can withstand high temperatures and increase energy efficiency.
  • the pyrolysis reaction chamber 33 may have, for example, a cylindrical shape, and may have an inner diameter of 50 mm to 100 mm and a length of 500 mm to 1000 mm.
  • the thermal decomposition reaction chamber 33 has an advantage in that it is possible to maintain a uniform temperature in the chamber by having such optimal dimensions of the inner diameter and length, so that acetylene black having the same characteristics can be produced.
  • the thermal decomposition unit 30 may receive acetylene reacted with the plasma from the plasma unit 20 and thermally decompose it in a second preset reactivity to manufacture acetylene into acetylene black.
  • the second preset reactivity may be a reactivity when the temperature of thermal decomposition is a preset temperature, and may be, for example, 1,500 to 2,200 degrees Celsius. That is, it may be a reactivity when the temperature of the thermal decomposition is 1,500 degrees Celsius to 2,200 degrees Celsius.
  • partial decomposition of acetylene starts at approximately 1,400 to 1,500 degrees Celsius to generate nuclei (step 1), and the nuclei generated in this way collide with each other to form a chain structure (step 2), and finally form a crystal layer (Step 3) to produce acetylene black.
  • the length of the reactor is an important variable for the growth process time of acetylene black
  • the inner diameter of the reactor is an important variable for the decomposition efficiency according to the amount of acetylene gas.
  • the first plasma unit 20 and the second thermal decomposition unit 30 are configured in series connection, the plasma reaction chamber 22, the inner diameter is 50mm to 180mm, the length is 500mm to 1800mm, the pyrolysis reaction
  • the chamber 33 is formed to have an inner diameter of 50 mm to 100 mm and a length of 500 mm to 1000 mm, thereby minimizing the generation of undecomposed acetylene gas and maintaining a uniform temperature in the chamber, resulting in the generation of acetylene black having the same characteristics.
  • the cooling unit 40 may be disposed below the thermal decomposition unit 30 , and may cool the acetylene black produced by thermal decomposition in the thermal decomposition unit 30 .
  • the cooling unit 40 may receive vacuum, for example, to cool the acetylene black produced by thermal decomposition in the pyrolysis unit 30, and a vacuum unit (not shown) for forming a vacuum may be connected to the side. .
  • the collecting unit 50 may be disposed below the cooling unit 40 , and may collect the acetylene black cooled by the cooling unit 40 .
  • the collecting unit 50 may finally collect the acetylene black produced in the plasma unit 20 and the thermal decomposition unit 30, and the collected acetylene black is supplied to and stored in a separate storage (not shown). It can be processed into the final product.
  • the plasma treatment process and the thermal decomposition process are configured in two stages in series, and as the decomposition efficiency of acetylene gas is improved, productivity is maximized.
  • acetylene black manufacturing apparatus 1 in the acetylene black manufacturing apparatus 1 according to an embodiment of the present invention, high-temperature heat generated after decomposition of acetylene gas through the plasma treatment process at the top can be used in the pyrolysis process at the bottom, so that the high temperature in the pyrolysis process Since maintenance is efficiently possible, there is an effect of remarkably reducing power consumption, and also, it is not necessary to construct a separate preheating unit, so the size of the facility can be minimized, thereby reducing the construction cost.

Abstract

An apparatus for producing acetylene black according to one embodiment of the present invention comprises: an inflow unit through which acetylene is added; a plasma unit for forming plasma, the acetylene supplied via the inflow unit reacting with the plasma; and a thermal decomposition unit for receiving and thermally decomposing the acetylene reacted with plasma in the plasma unit, wherein the thermal decomposition unit is provided in series with the plasma unit but is positioned to follow same.

Description

플라즈마 처리와 열분해 복합화를 이용한 아세틸렌 블랙 제조장치Acetylene black manufacturing apparatus using plasma treatment and pyrolysis complex
본 발명은 아세틸렌 블랙 제조장치에 관한 것으로, 구체적으로는 플라즈마 처리 공정과 열분해 공정을 복합화하여 구성되는 아세틸렌 블랙 제조장치에 관한 것이다.The present invention relates to an acetylene black manufacturing apparatus, and more particularly, to an acetylene black manufacturing apparatus configured by combining a plasma treatment process and a thermal decomposition process.
아세틸렌 블랙은 카본 블랙의 일종으로, 원료가 아세틸렌 가스이며, 일본 내에서는 Denka Company Limited만이 무려 60년 이상 제조하여 판매해오고 있어, 보통 덴카 블랙으로 불리운다. 덴카 블랙은 카본 블랙의 일종으로 아세틸렌의 열분해에 의해 생산되는 아세틸렌 블랙이며, 고순도 전도성이 우수하고 배터리의 원료, 전력 케이블을 비롯한 실리콘 제품, IC 포장재 등의 분야에서 도전과 정전기 방지에 그 특성이 활용되고 있다. Acetylene black is a kind of carbon black, and the raw material is acetylene gas. In Japan, only Denka Company Limited has been manufacturing and selling for over 60 years, so it is commonly called Denka Black. Denka Black is an acetylene black produced by thermal decomposition of acetylene as a kind of carbon black. It has excellent high-purity conductivity, and its properties are used to prevent conduction and static electricity in the fields of battery raw materials, silicon products including power cables, and IC packaging materials. is becoming
이러한 덴카 블랙 즉, 아세틸렌 블랙은 망간 건전지에 사용되면서 그 특성이 크게 개선되었는데, 이후 전지 용도를 중심으로 전도 소재로 사용되었다. 최근에는 리튬이온 이차전지, 연료 전지의 도전제로서 활용이 늘어나고 있는 추세다.Denka black, that is, acetylene black, has greatly improved its properties as it is used in manganese batteries, and then it was used as a conductive material mainly for battery applications. Recently, the use of lithium ion secondary batteries and fuel cells as a conductive agent is increasing.
아세틸렌 블랙은 아세틸렌 가스의 연속적 열분해 반응(섭씨 2600도; 실제는 방열이나 노재 보호 등으로 섭씨 1800도 전후에서 반응이 가능함)에 의해 생성되며, 원료는 99% 이상이 아세틸렌 가스이고, 중질유를 사용하는 퍼니스 블랙 처럼 유황 등 불순물이 포함되지 않는다. Acetylene black is produced by the continuous thermal decomposition reaction of acetylene gas (2600 degrees Celsius; in fact, reaction is possible at around 1800 degrees Celsius due to heat dissipation or furnace protection, etc.), and more than 99% of the raw material is acetylene gas, and heavy oil is used. It does not contain impurities such as sulfur like furnace black.
아세틸렌은 탄화칼슘에 물을 가하거나, 나프타의 크래킹의 부생가스에서 발생되며, 분해로의 형태, 노 내의 온도 분포, 노 내의 체류 시간 및 냉각 방법 등에 의해 품질이 결정된다. Acetylene is generated from the by-product gas of naphtha cracking by adding water to calcium carbide or cracking, and its quality is determined by the type of cracking furnace, temperature distribution in the furnace, residence time in the furnace, and cooling method.
아세틸렌 블랙은 카본 블랙의 콜로이드 사이즈의 입자로 구성되어 있고, 전기 전도도, 용액의 높은 흡수성, 양호한 열전도도 등의 성질을 가지며, 아세틸렌 블랙의 각 입자는 큰 결정자로 구성되어 있고, 긴 사슬 구조를 형성하며, 다른 카본 블랙에 비해 불순물이 매우 적은 특성을 가진다. 또한, 아세틸렌 블랙은 아세틸렌 가스의 자기 가열 열분해로 제조되어 산소가 들어가지 않기 때문에, 고순도이며 비분해 잔사 중에서도 수소의 양이 굉장히 낮다. 더욱이 작용기에도 산소가 존재하지 않기 때문에, 탁월한 전도도의 특성을 가진다. Acetylene black is composed of particles of colloidal size of carbon black, and has properties such as electrical conductivity, high water absorption, good thermal conductivity, and each particle of acetylene black is composed of large crystallites, forming a long chain structure. and has very few impurities compared to other carbon blacks. In addition, since acetylene black is produced by self-heating pyrolysis of acetylene gas and does not contain oxygen, it is highly purified and has a very low amount of hydrogen among non-decomposed residues. Moreover, since oxygen does not exist even in the functional group, it has excellent conductivity properties.
아세틸렌 블랙은, 건전지의 기본적 재료로 오래 전부터 사용되어 왔으며, 전선이나 케이블, 타이어, 벨트, 호스, 히터, 페인트, 접착제, 도전제 및 많은 전자 분야 등의 공업 분야에서 탄력을 갖는 전도성 고무나 플라스틱 재료의 정전 방지 첨가제로 사용된다. Acetylene black has long been used as a basic material for batteries, and is a conductive rubber or plastic material with elasticity in industrial fields such as wires, cables, tires, belts, hoses, heaters, paints, adhesives, conductive agents, and many electronic fields. used as an antistatic additive in
최근에는 전기 자동차 리튬 이온 전지 및 수소 전기 자동차 연료 전지의 전극으로 각광받고 있으며, 국내에서는 아세틸렌 블랙 함량과 체적 저항 및 열 전도 측성, HDPE에 아세틸렌 블랙을 복합재료로 형성하는 연구가 이루어지고 있다. Recently, it has been spotlighted as an electrode for electric vehicle lithium ion batteries and hydrogen electric vehicle fuel cells. In Korea, research on acetylene black content, volume resistance and thermal conductivity, and forming acetylene black as a composite material in HDPE is being conducted.
플라스틱 및 잉크 분야에서 사용되는 저부가가치 특수카본블랙은 국내에서 대량생산되어 수출까지 하고 있지만, 도전재 및 페인트에 사용되는 아세틸렌 블랙 등 고부가가치 특수카본블랙은 국내 생산량이 미미하여 거의 전량 수입에 의존하고 있다. Low value-added special carbon black used in plastics and ink fields is mass-produced and exported in Korea, but high value-added special carbon black such as acetylene black used in conductive materials and paints is largely dependent on imports as domestic production is insignificant. .
최근 세계 카본 블랙 주요 기업들이 미국, 서유럽 등지의 설비를 폐쇄하는 반면, 중국을 중심으로 한 아시아, 중미, 동유럽 등지의 설비 투자를 지속하고 있다. 이에 따라서 한국에서도 도전재 및 페인트 등에 사용되는 고부가가치 특수 카본 블랙을 개발하여 관련 시장의 수입 대체 및 기술 자립도를 높여야할 필요성이 증대되고 있다. While major global carbon black companies have recently closed their facilities in the US and Western Europe, they are continuing to invest in facilities in Asia, Central America, and Eastern Europe, centering on China. Accordingly, in Korea, there is an increasing need to develop high value-added special carbon black used in conductive materials and paints to replace imports in the relevant market and increase the degree of technological independence.
범용 카본 블랙은 각국에서 모두 생산이 가능하며, 카본 블랙은 그 제법에 따라 컨택트 블랙(contact black), 퍼니스 블랙(furnace black), 써멀 블랙(thermal black), 램프 블랙(lamp black) 등이 있는데, 대부분의 업체가 퍼니스 블랙을 생산하며 덴카, 미쓰비시 화학, 카봇 등의 일부 업체에서만 아세틸렌 공법으로 고순도의 아세틸렌 블랙을 생산하고 있다. General-purpose carbon black can be produced in all countries, and there are contact black, furnace black, thermal black, lamp black, etc., depending on the manufacturing method of carbon black. Most companies produce furnace black, and only a few companies such as Denka, Mitsubishi Chemical, and Carbot are producing high-purity acetylene black using the acetylene method.
즉, 아세틸렌 블랙의 생산은 특성을 향상시켜야 하기에 제조 공정의 기술 개발이 매우 어렵고, 대부분의 연구는 제조된 카본 블랙을 응용하는 수준에 그치고 있다. That is, since the production of acetylene black has to improve properties, it is very difficult to develop a technology for the manufacturing process, and most of the research is limited to the level of applying the manufactured carbon black.
한편, 아세틸렌 블랙의 제조 장치는, 보통 주입가스를 주입하는 주입부, 주입가스를 예열하는 예열부, 예열된 주입가스를 처리하여 분해하는 분해부, 분해된 가스를 냉각시키는 냉각부, 냉각부에서 냉각되어 최종 생산되는 아세틸렌 블랙을 포집하는 포집부로 이루어진다. On the other hand, the manufacturing apparatus of acetylene black usually includes an injection unit for injecting an injection gas, a preheating unit for preheating the injection gas, a decomposition unit for processing and decomposing the preheated injection gas, a cooling unit for cooling the decomposed gas, and a cooling unit. It consists of a collecting unit that collects acetylene black that is cooled and finally produced.
이러한 아세틸렌 블랙의 제조 장치의 구성들에 대해서, 당 업계에서는, 최적화, 비용 절감, 효율화 등을 얻기 위해 다양한 연구 및 개발이 활발하게 이루어지고 있는 실정이다. With respect to the configurations of the acetylene black manufacturing apparatus, various research and development are being actively conducted in the industry to obtain optimization, cost reduction, efficiency, and the like.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은, 고순도의 아세틸렌 블랙을 효율적으로 생산할 수 있는 아세틸렌블랙 제조장치를 제공하기 위한 것이다. The present invention was created to solve the problems of the prior art as described above, and an object of the present invention is to provide an acetylene black manufacturing apparatus capable of efficiently producing acetylene black of high purity.
본 발명의 일 실시 예에 따른 아세틸렌 블랙 제조장치는, 아세틸렌을 주입하는 주입부; 플라즈마를 형성시키되, 상기 주입부를 통해 공급되는 아세틸렌이 상기 플라즈마와 반응하도록 구성되는 플라즈마부; 및 상기 플라즈마부에서 플라즈마와 반응한 아세틸렌을 공급받아 열분해하는 열분해부를 포함하고, 상기 열분해부는, 상기 플라즈마부와 직렬로 구성되되, 상기 플라즈마부에 후속하여 배치되는 것을 특징으로 한다. Acetylene black manufacturing apparatus according to an embodiment of the present invention, an injection unit for injecting acetylene; a plasma unit configured to form a plasma so that acetylene supplied through the injection unit reacts with the plasma; and a thermal decomposition unit for receiving and thermally decomposing acetylene reacted with plasma from the plasma unit, wherein the thermal decomposition unit is configured in series with the plasma unit and disposed subsequent to the plasma unit.
구체적으로, 상기 열분해부는, 상기 플라즈마부보다 하측에 배치되어, 상기 플라즈마부에서 처리된 아세틸렌을 중력을 통해 공급받아 상기 아세틸렌을 아세틸렌 블랙으로 제조할 수 있다. Specifically, the thermal decomposition unit may be disposed below the plasma unit, and may receive acetylene treated in the plasma unit through gravity to manufacture the acetylene as acetylene black.
구체적으로, 상기 플라즈마부는, 상기 플라즈마가 상기 아세틸렌을 제1 기설정 반응도로만 플라즈마 처리한 후 상기 열분해부로 상기 아세틸렌을 공급하도록 구성될 수 있다. Specifically, the plasma unit may be configured to supply the acetylene to the thermal decomposition unit after the plasma plasma-treats the acetylene only with a first preset reactivity.
구체적으로, 상기 제1 기설정 반응도는, 상기 플라즈마의 세기가 적용 압력이 0.05 내지 50 torr에서 전력 10 Kw 내지 50Kw 및 주파수 60Hz인 경우에서 발생되는 세기이며, 플라즈마 온도가 섭씨 1,000도 내지 섭씨 3,000도인 경우의 반응도일 수 있다. Specifically, the first preset reactivity is the intensity generated when the intensity of the plasma is 10 Kw to 50 Kw of power and 60 Hz of frequency at an applied pressure of 0.05 to 50 torr, and the plasma temperature is 1,000 degrees Celsius to 3,000 degrees Celsius This may be the case reaction.
구체적으로, 상기 열분해부는, 상기 플라즈마부에서 상기 플라즈마와 반응한 아세틸렌을 공급받아 제2 기설정 반응도로 열분해 처리하여 상기 아세틸렌을 아세틸렌 블랙으로 제조할 수 있다. Specifically, the thermal decomposition unit may receive the acetylene reacted with the plasma from the plasma unit and thermally decompose it at a second preset reactivity to produce the acetylene as acetylene black.
구체적으로, 상기 제2 기설정 반응도는, 열분해의 온도가 섭씨 1,500도 내지 섭씨 2,200도인 경우의 반응도일 수 있다. Specifically, the second preset reactivity may be a reactivity when the temperature of thermal decomposition is 1,500 degrees Celsius to 2,200 degrees Celsius.
구체적으로, 상기 플라즈마부는, 체적이 상기 열분해부의 체적 대비 기설정비율을 가질 수 있다. Specifically, the volume of the plasma unit may have a preset ratio to the volume of the thermal decomposition unit.
구체적으로, 상기 주입부는, 상기 아세틸렌을 상기 플라즈마부에 공급하는 아세틸렌 공급기를 포함하고, 상기 플라즈마부는, 플라즈마스트림을 발생시키는 세 개의 플라즈마 토치; 상기 플라즈마와 상기 아세틸렌이 반응하도록 온도와 압력을 제공하는 플라즈마 반응 챔버; 및 불활성 가스를 공급하는 불활성 가스 공급기를 포함하고, 상기 열분해부는, 상기 플라즈마부로부터 플라즈마와 반응한 아세틸렌을 공급하는 반응 아세틸렌 주입기; 발열 반응을 발생시키는 재료를 공급하는 반응 원료 주입기; 및 상기 반응 원료에 의해 발생하는 열을 통해 아세틸렌이 열분해되도록 압력을 제공하는 열분해 반응 챔버를 포함하며, 상기 플라즈마 반응 챔버는, 내경이 50mm 내지 180mm이고, 길이는 500mm 내지 1,800mm이며, 상기 열분해 반응 챔버는, 내경이 50mm 내지 100mm이고, 길이는 500mm 내지 1,000mm일 수 있다. Specifically, the injection unit includes an acetylene supply for supplying the acetylene to the plasma unit, the plasma unit, three plasma torches for generating a plasma stream; a plasma reaction chamber providing temperature and pressure to react the plasma with the acetylene; and an inert gas supplier for supplying an inert gas, wherein the thermal decomposition unit includes: a reactive acetylene injector for supplying acetylene reacted with plasma from the plasma unit; a reaction raw material injector for supplying a material for generating an exothermic reaction; and a pyrolysis reaction chamber providing pressure so that acetylene is thermally decomposed through heat generated by the reaction raw material, wherein the plasma reaction chamber has an inner diameter of 50 mm to 180 mm, and a length of 500 mm to 1800 mm, the pyrolysis reaction The chamber may have an inner diameter of 50 mm to 100 mm, and a length of 500 mm to 1,000 mm.
본 발명의 실시 예에 따른 아세틸렌 블랙 제조장치는, 플라즈마 처리 공정과 열분해 공정을 직렬로 2단 구성하여, 아세틸렌 가스의 분해 효율이 향상됨에 따라 생산성이 극대화되는 효과가 있다. The acetylene black manufacturing apparatus according to an embodiment of the present invention has the effect of maximizing productivity as the decomposition efficiency of acetylene gas is improved by configuring the plasma treatment process and the thermal decomposition process in two stages in series.
또한, 본 발명의 실시 예에 따른 아세틸렌 블랙 제조장치는, 상단의 플라즈마 처리 공정을 통해 아세틸렌 가스의 분해 후 발생되는 고온의 열을 하단의 열분해 공정에서 이용할 수 있어, 열분해 공정에서의 고온 유지가 효율적으로 가능하게 되므로, 전력 소비를 획기적으로 줄일 수 있는 효과가 있고, 또한 별도의 예열부를 구축할 필요가 없어 설비 규모를 최소화할 수 있어, 구축 비용이 절감되는 효과가 있다. In addition, in the acetylene black manufacturing apparatus according to an embodiment of the present invention, high-temperature heat generated after decomposition of acetylene gas through the plasma treatment process at the top can be used in the pyrolysis process at the bottom, so that maintaining high temperature in the pyrolysis process is efficient As this is possible, there is an effect of remarkably reducing power consumption, and also it is not necessary to construct a separate preheating unit, thereby minimizing the size of the facility, thereby reducing the construction cost.
도 1은 종래의 플라즈마 분해 방식을 이용한 아세틸렌 블랙 제조장치의 개념도이다. 1 is a conceptual diagram of an acetylene black manufacturing apparatus using a conventional plasma decomposition method.
도 2는 종래의 열분해 방식을 이용한 아세틸렌 블랙 제조장치의 개념도이다. 2 is a conceptual diagram of an acetylene black manufacturing apparatus using a conventional thermal decomposition method.
도 3은 본 발명의 실시 예에 따른 아세틸렌 블랙 제조 장치의 개념도이다. 3 is a conceptual diagram of an acetylene black manufacturing apparatus according to an embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시 예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments taken in conjunction with the accompanying drawings. In the present specification, in adding reference numbers to the components of each drawing, it should be noted that only the same components are given the same number as possible even though they are indicated on different drawings. In addition, in describing the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 종래의 플라즈마 분해 방식을 이용한 아세틸렌 블랙 제조장치의 개념도, 도 2는 종래의 열분해 방식을 이용한 아세틸렌 블랙 제조장치의 개념도이고, 도 3은 본 발명의 실시 예에 따른 아세틸렌 블랙 제조 장치의 개념도이다. 1 is a conceptual diagram of an acetylene black manufacturing apparatus using a conventional plasma decomposition method, FIG. 2 is a conceptual diagram of an acetylene black manufacturing apparatus using a conventional thermal decomposition method, and FIG. 3 is a conceptual diagram of an acetylene black manufacturing apparatus according to an embodiment of the present invention am.
도 3에 도시된 바와 같이, 본 발명의 실시 예에 따른 아세틸렌 블랙 제조 장치(1)는, 주입부(10), 플라즈마부(20), 열분해부(30), 냉각부(40) 및 포집부(50)를 포함한다.As shown in FIG. 3 , the acetylene black manufacturing apparatus 1 according to an embodiment of the present invention includes an injection unit 10 , a plasma unit 20 , a thermal decomposition unit 30 , a cooling unit 40 and a collecting unit. (50).
상기의 본 발명의 실시 예에 따른 아세틸렌 블랙 제조 장치(1)를 설명하기에 앞서 먼저, 종래의 아세틸렌 블랙 제조 장치(1a, 1b)에 대해서 설명하도록 한다. Prior to describing the acetylene black manufacturing apparatus 1 according to the embodiment of the present invention, the conventional acetylene black manufacturing apparatus 1a and 1b will be described.
도 1은 종래의 플라즈마 분해 방식을 이용한 아세틸렌 블랙 제조장치(1a)의 개념도이다. 플라즈마 분해 방식을 이용한 아세틸렌 블랙 제조장치(1a)는, 불활성 가스 공급기(10a)로부터 공급되는 불활성 가스를 플라즈마토치(12a)를 통해 플라즈마(P)를 발생시키며, 발생된 플라즈마(P)를 주입부(10a)에서 공급되는 아세틸렌과 플라즈마챔버(13a) 안에서 서로 반응하여 플라즈마가 아세틸렌을 분해한 후 냉각부(14a)에 의해서 냉각하여 아세틸렌 블랙을 제조할 수 있다. 1 is a conceptual diagram of an acetylene black manufacturing apparatus 1a using a conventional plasma decomposition method. The acetylene black manufacturing apparatus 1a using the plasma decomposition method generates plasma P through the plasma torch 12a with the inert gas supplied from the inert gas supply 10a, and injects the generated plasma P The acetylene supplied in step 10a and the plasma react with each other in the plasma chamber 13a to decompose the acetylene, and then cool by the cooling unit 14a to manufacture acetylene black.
그러나, 이러한 플라즈마 분해 방식을 이용한 아세틸렌 블랙 제조장치(1a)는, 미분해되는 아세틸렌 가스의 양이 많아 수득률이 낮은 단점이 있고, 플라즈마 발생을 위한 전력 소모가 매우 커서 경제성이 떨어지는 단점이 있다. However, the acetylene black manufacturing apparatus 1a using this plasma decomposition method has a disadvantage in that the yield is low due to a large amount of undecomposed acetylene gas, and the power consumption for plasma generation is very large, so that economic efficiency is lowered.
도 2는 종래의 열분해 방식을 이용한 아세틸렌 블랙 제조장치(1b)의 개념도이다. 열분해 방식을 이용한 아세틸렌 블랙 제조장치(1b)는, 아세틸렌 공급기(10a)에서 아세틸렌을 공급받고 버너(11b)로부터 고온의 연소 기체를 공급받아 열분해 챔버(12b) 내에서 열분해 처리한 후 냉각부(13b)를 통해 냉각하여 아세틸렌을 아세틸렌 블랙으로 제조할 수 있다.2 is a conceptual diagram of an acetylene black manufacturing apparatus 1b using a conventional thermal decomposition method. The acetylene black manufacturing apparatus 1b using the pyrolysis method receives acetylene from the acetylene supply unit 10a, receives the high-temperature combustion gas from the burner 11b, pyrolyzes it in the pyrolysis chamber 12b, and then the cooling unit 13b ) through cooling to produce acetylene as acetylene black.
그러나, 이러한 열분해 방식을 이용한 아세틸렌 블랙 제조장치(1b)는, 가스 분해를 위한 체류 시간 조절을 위해 열분해 챔버(12b)의 길이가 길어 장비의 크기가 커지는 단점이 있으며, 열분해 챔버(12b)의 고온 유지를 위해서 높은 전력이 요구되는 단점이 있다. However, the acetylene black manufacturing apparatus 1b using this pyrolysis method has a disadvantage in that the length of the pyrolysis chamber 12b is long to control the residence time for gas decomposition, so that the size of the equipment increases, and the high temperature of the pyrolysis chamber 12b There is a disadvantage that high power is required for maintenance.
따라서, 플라즈마 분해 방식을 이용한 아세틸렌 블랙 제조장치(1a) 및 열분해 방식을 이용한 아세틸렌 블랙 제조장치(1b) 각각에서 발생되는 단점을 해결하기 위해서, 본 출원인은 본 발명의 아세틸렌 제조장치(1)를 개발하였다. Therefore, in order to solve the disadvantages occurring in each of the acetylene black manufacturing apparatus 1a using the plasma decomposition method and the acetylene black manufacturing apparatus 1b using the thermal decomposition method, the present applicant developed the acetylene black manufacturing apparatus 1 of the present invention did
이하 도 3을 통해서 본 발명의 실시 예에 따른 아세틸렌 블랙 제조 장치(1)에 대해서 상세히 설명하도록 한다. Hereinafter, an acetylene black manufacturing apparatus 1 according to an embodiment of the present invention will be described in detail with reference to FIG. 3 .
주입부(10)는, 아세틸렌을 주입한다. 구체적으로, 주입부(10)는, 플라즈마부(20)의 상측에 배치되어, 플라즈마부(20)에 아세틸렌 가스를 공급할 수 있다. The injection unit 10 injects acetylene. Specifically, the injection unit 10 may be disposed above the plasma unit 20 to supply acetylene gas to the plasma unit 20 .
주입부(10)는, 아세틸렌을 플라즈마부(20)에 공급하도록 하는 아세틸렌 공급기(11)를 포함할 수 있다. 아세틸렌 공급기(11)는, 복수 개 형성되어 병렬로 상기 플라즈마부(20)의 상측면에 형성될 수 있다.The injection unit 10 may include an acetylene supplier 11 for supplying acetylene to the plasma unit 20 . A plurality of acetylene feeders 11 may be formed on the upper surface of the plasma unit 20 in parallel.
플라즈마부(20)는, 플라즈마(P)를 형성시키되, 주입부(10)를 통해 공급되는 아세틸렌이 플라즈마(P)와 반응하도록 구성되며, 열분해부(30)와 직렬로 구성된다.The plasma unit 20 is configured to form a plasma P, and acetylene supplied through the injection unit 10 reacts with the plasma P, and is configured in series with the thermal decomposition unit 30 .
플라즈마부(20)는, 플라즈마(P) 스트림을 발생시키는 플라즈마 토치(21), 플라즈마(P)와 아세틸렌이 반응하도록 온도와 압력을 제공하는 플라즈마 반응 챔버(22) 및 불활성 가스를 공급하는 불활성 가스 공급기(23)를 포함할 수 있다. The plasma unit 20 includes a plasma torch 21 generating a plasma (P) stream, a plasma reaction chamber 22 providing temperature and pressure so that the plasma P and acetylene react, and an inert gas supplying an inert gas. A feeder 23 may be included.
플라즈마 토치(21)는, 플라즈마 반응 챔버(22)의 상부를 관통하도록 형성될 수 있으며, 직류 아크 방전에 의해 적어도 섭씨 1,000도 이상(바람직하게는 섭씨 1,000도 내지 섭씨 3,000도)의 플라즈마 스트림을 형성할 수 있다. 여기서 직류 아크 방전은, 전력 10kw 내지 50kw 및 주파수 60Hz에 의해 발생될 수 있다. The plasma torch 21 may be formed to pass through the upper portion of the plasma reaction chamber 22, and form a plasma stream of at least 1,000 degrees Celsius or more (preferably 1,000 degrees Celsius to 3,000 degrees Celsius) by direct current arc discharge. can do. Here, the DC arc discharge may be generated by a power of 10 kw to 50 kw and a frequency of 60 Hz.
플라즈마 토치(21)는, 3상으로 구성될 수 있으며, 이는 단상(1개)으로 구성되는 플라즈마 토치에 비해 플라즈마 발생효과를 향상시킬 수 있는 이점이 있고, 그로 인해 아세틸렌 가스의 분해 효율이 높아지는 효과가 있다. The plasma torch 21 may be configured in three phases, which has the advantage of improving the plasma generation effect compared to the plasma torch consisting of a single phase (one), thereby increasing the decomposition efficiency of acetylene gas there is
플라즈마 반응 챔버(22)는, 플라즈마토치(21) 및 불활성 가스 공급기(23)와 체결되어 사용되며, 플라즈마토치(21)에서 발생하는 플라즈마(P)의 스트림과 아세틸렌이 잘 혼합할 수 있는 구조인 챔버(chamber)의 형태를 가질 수 있다. The plasma reaction chamber 22 is used in connection with the plasma torch 21 and the inert gas supply 23, and has a structure in which the stream of plasma P generated in the plasma torch 21 and acetylene can be mixed well. It may have the form of a chamber.
플라즈마 반응 챔버(22)는, 플라즈마 반응에 의해 아세틸렌이 열분해되는 경우, 플라즈마 반응 챔버(22)의 상부와 내벽에 카본 블랙이 적층되는 것을 방지하기 위해서 쉴드(shield) 가스 출구가 구성될 수 있다. In the plasma reaction chamber 22 , when acetylene is thermally decomposed by the plasma reaction, a shield gas outlet may be configured to prevent carbon black from being deposited on the top and inner walls of the plasma reaction chamber 22 .
플라즈마 반응 챔버(22)는, 그 재질이 플라즈마의 고온에 견딜 수 있으면서 에너지 효율을 높일 수 있는 내열 및 단열 재로로 이용될 수 있다. The plasma reaction chamber 22 may be used as a heat-resistant and heat insulating material capable of increasing energy efficiency while being able to withstand the high temperature of plasma.
플라즈마 반응 챔버(22)는, 압력이 0.05torr 내지 50torr를 견딜 수 있도록 형성되어, 0.05torr 내지 50torr의 압력을 생성하며, 이러한 압력을 통해서 플라즈마 발생이 최적이 되도록 할 수 있다. 상기 압력 50torr보다 큰 압력에서는 플라즈마 발생률이 저하되어 플라즈마 생산률이 저하되며, 본 발명에서는 이러한 플라즈마 생산률 저하를 방지하기 위해서 상기 기술한 바와 같이 플라즈마 반응 챔버(22)가 0.05torr 내지 50torr의 압력을 공급받아 플라즈마가 용이하게 형성되도록 할 수 있다.The plasma reaction chamber 22 is formed to withstand a pressure of 0.05 torr to 50 torr to generate a pressure of 0.05 to 50 torr, and through this pressure, plasma generation can be optimized. At a pressure greater than the pressure of 50 torr, the plasma generation rate is lowered and the plasma production rate is lowered, and in the present invention, in order to prevent such a decrease in the plasma production rate, the plasma reaction chamber 22 has a pressure of 0.05 to 50 torr as described above. It can be supplied so that plasma can be easily formed.
플라즈마 반응 챔버(22)는, 일례로 원통의 형태를 가질 수 있고, 내경이 50mm 내지 180mm 길이가 500mm 내지 1800mm일 수 있다. 플라즈마 반응 챔버(22)는, 이러한 내경 및 길이의 최적 치수를 가짐으로써, 미분해된 아세틸렌 가스 발생을 최소화할 수 있는 효과가 있다. The plasma reaction chamber 22 may have, for example, a cylindrical shape, and may have an inner diameter of 50 mm to 180 mm and a length of 500 mm to 1800 mm. Plasma reaction chamber 22, by having the optimal dimensions of such an inner diameter and length, there is an effect that can minimize the generation of undecomposed acetylene gas.
불활성 가스 공급기(23)는, 플라즈마 반응 챔버(22)의 상부를 관통하도록 형성될 수 있으며, 불활성 가스로는 질소, 아르곤 등이 사용될 수 있다. The inert gas supply 23 may be formed to pass through the upper portion of the plasma reaction chamber 22 , and nitrogen, argon, or the like may be used as the inert gas.
플라즈마부(20)는, 불활성 가스 공급기(23)로부터 공급되는 불활성 가스를 플라즈마 토치(21)를 통해 플라즈마(P)를 발생시키며, 발생된 플라즈마(P)를 주입부(10)에서 공급되는 아세틸렌과 서로 반응하여 플라즈마가 아세틸렌을 적어도 일부만 열분해하도록 할 수 있다. The plasma unit 20 generates a plasma P through the plasma torch 21 using an inert gas supplied from the inert gas supplier 23 , and acetylene supplied from the injection unit 10 by applying the generated plasma P to the injection unit 10 . react with each other to cause the plasma to pyrolyze at least a portion of the acetylene.
플라즈마부(20)에서 플라즈마 토치(21)에 의해서 발생되는 플라즈마가 아세틸렌과 반응하여 열분해되면, 카본 블랙이 적어도 일부 생성될 수 있다. 이때, 열분해 반응은 주로 플라즈마 토치(21)의 하단과 플라즈마 반응 챔버(22)의 내부에서 일어날 수 있다. When the plasma generated by the plasma torch 21 in the plasma unit 20 reacts with acetylene for thermal decomposition, at least a part of carbon black may be generated. In this case, the thermal decomposition reaction may mainly occur at the lower end of the plasma torch 21 and inside the plasma reaction chamber 22 .
플라즈마부(20)는, 아세틸렌을 제1 기설정 반응도로만 플라즈마 처리한 후 열분해부(30)로 아세틸렌을 공급하도록 구성될 수 있다. 여기서 제1 기설정 반응도는 플라즈마의 세기가 기설정 세기인 경우의 반응도일 수 있다. 즉, 플라즈마의 세기가 적용 압력이 0.05 내지 50 torr에서 전력 10 Kw 내지 50Kw 및 주파수 60Hz인 경우에서 발생되는 세기이며, 플라즈마 온도가 섭씨 1,000도 내지 섭씨 3,000도인 경우의 반응도일 수 있다.The plasma unit 20 may be configured to supply acetylene to the thermal decomposition unit 30 after plasma-treating the acetylene with only a first preset reactivity. Here, the first preset reactivity may be a reactivity when the plasma intensity is the preset intensity. That is, the intensity of the plasma is the intensity generated when the applied pressure is 0.05 to 50 torr, the electric power is 10 Kw to 50Kw, and the frequency is 60 Hz, and the plasma temperature may be the reactivity in the case of 1,000 degrees Celsius to 3,000 degrees Celsius.
플라즈마부(20)는, 체적이 열분해부(30)의 체적 대비 기설정 비율을 가질 수 있다. 이 비율은 상기 기술한 바와 같이 플라즈마 반응 챔버(22)가 내경이 50mm 내지 180mm 길이가 500mm 내지 1800mm로 형성되는 비율일 수 있다.The volume of the plasma unit 20 may have a predetermined ratio to the volume of the pyrolysis unit 30 . This ratio may be a ratio in which the plasma reaction chamber 22 is formed to have an inner diameter of 50 mm to 180 mm and a length of 500 mm to 1800 mm, as described above.
열분해부(30)는, 아세틸렌을 열분해하며 플라즈마부(20)와 직렬로 구성된다. The thermal decomposition unit 30 pyrolyzes acetylene and is configured in series with the plasma unit 20 .
열분해부(30)는, 플라즈마부(20)에 후속하여 배치되되, 플라즈마부(20)보다 하측에 배치되어, 플라즈마부(20)에서 적어도 일부 처리된 아세틸렌을 중력을 통해 공급받아 아세틸렌을 아세틸렌 블랙으로 제조할 수 있다. 이를 통해서 본 발명에서는, 열분해부(30)의 상류에 별도로 예열부를 설치하지 않아도 됨(아세틸렌은 플라즈마로 인해 분해 시 발열반응이 일어나 열을 발산함)과 동시에 별도의 펌프를 구축하지 않을 수 있어, 구축 비용이 절감되고 제조 비용이 절감되는 효과가 있다. The thermal decomposition unit 30 is disposed following the plasma unit 20, is disposed below the plasma unit 20, and receives acetylene that has been at least partially processed in the plasma unit 20 through gravity to supply acetylene to acetylene black. can be manufactured with Through this, in the present invention, it is not necessary to install a separate preheating unit upstream of the thermal decomposition unit 30 (acetylene generates an exothermic reaction during decomposition due to plasma and emits heat) and at the same time, it is possible to avoid building a separate pump, There is an effect that the construction cost is reduced and the manufacturing cost is reduced.
열분해부(30)는, 플라즈마부(20)로부터 플라즈마와 반응한 아세틸렌을 공급하는 반응 아세틸렌 주입기(31), 발열 반응을 발생시키는 재료를 공급하는 반응 원료 주입기(32) 및 반응 원료에 의해 발생하는 열을 통해 아세틸렌이 열분해되도록 압력을 제공하는 열분해 반응 챔버(33)를 포함할 수 있다. The thermal decomposition unit 30 includes a reactive acetylene injector 31 for supplying acetylene reacted with plasma from the plasma unit 20, a reactive raw material injector 32 for supplying a material that generates an exothermic reaction, and a reaction raw material generated by It may include a pyrolysis reaction chamber 33 that provides pressure to pyrolyze acetylene through heat.
반응 아세틸렌 주입기(31)는, 플라즈마부(20)와 열분해부(30) 사이에 형성되며 일례로 관(tube)의 형태를 가질 수 있다. 구체적으로, 반응 아세틸렌 주입기(31)는, 열분해 반응 챔버(33)와 플라즈마 반응 챔버(22) 사이에 형성되는 관의 형태를 가질 수 있다. The reactive acetylene injector 31 is formed between the plasma unit 20 and the thermal decomposition unit 30 and may have a tube shape, for example. Specifically, the reactive acetylene injector 31 may have a tube shape formed between the pyrolysis reaction chamber 33 and the plasma reaction chamber 22 .
이때 반응 아세틸렌 주입기(31)는, 내부에 별도의 개폐 밸브를 구비할 수 있으며, 이 개폐 밸브를 통해서 플라즈마부(20)에서 열분해부(30)로 공급되는 플라즈마와 반응한 아세틸렌의 공급량을 조절할 수 있다.At this time, the reactive acetylene injector 31 may have a separate opening/closing valve therein, and the supply amount of acetylene reacted with the plasma supplied from the plasma unit 20 to the pyrolysis unit 30 through this opening/closing valve can be adjusted. there is.
반응 원료 주입기(32)는, 일례로 고온의 연소 기체일 수 있으며, 버너(burner) 등일 수 있고, 열분해 반응 챔버(33)의 측벽에 형성될 수 있다. The reaction raw material injector 32 may be, for example, a high-temperature combustion gas, a burner, or the like, and may be formed on a sidewall of the pyrolysis reaction chamber 33 .
반응 원료 주입기(32)는, 일례로 섭씨 1,400도 내지 2,200도(바람직하게는 섭씨 1,500도 내지 2,200도)의 온도를 가지는 고온의 연소 기체가 공급될 수 있으며, 공급된 연소 기체는 반응 아세틸렌 주입기(31)로부터 공급되는 아세틸렌을 열분해할 수 있다. 이때, 반응 아세틸렌 주입기(31)로부터 공급되는 아세틸렌은, 섭씨 1,500도 내지 2,200도의 열을 가지는 고온의 연소 기체에 의해 완전 분해될 수 있다. The reaction raw material injector 32, for example, may be supplied with a high-temperature combustion gas having a temperature of 1,400 degrees Celsius to 2,200 degrees Celsius (preferably 1,500 degrees Celsius to 2,200 degrees Celsius), and the supplied combustion gas is a reaction acetylene injector ( 31) can pyrolyze acetylene supplied from. At this time, acetylene supplied from the reactive acetylene injector 31 may be completely decomposed by a high-temperature combustion gas having a heat of 1,500 to 2,200 degrees Celsius.
열분해 반응 챔버(33)는, 반응 아세틸렌 주입기(31) 및 반응 원료 주입기(32)와 체결되어 사용되며, 반응 원료 주입기(32)에서 공급되는 고온의 열과 아세틸렌이 잘 혼합할 수 있는 구조인 챔버(chamber)의 형태를 가질 수 있다. The pyrolysis reaction chamber 33 is used in connection with the reaction acetylene injector 31 and the reaction raw material injector 32, and has a structure in which the high temperature heat supplied from the reaction raw material injector 32 and acetylene can be mixed well. may have the form of a chamber).
열분해 반응 챔버(33)는, 그 재질이 고온에 견딜 수 있으면서 에너지 효율을 높일 수 있는 내열 및 단열 재로로 이용될 수 있다. The pyrolysis reaction chamber 33 may be used as a heat-resistant and heat-insulating material whose material can withstand high temperatures and increase energy efficiency.
열분해 반응 챔버(33)는, 일례로 원통의 형태를 가질 수 있고, 내경이 50mm 내지 100mm 길이가 500mm 내지 1000mm일 수 있다. 열분해 반응 챔버(33)는, 이러한 내경 및 길이의 최적 치수를 가짐으로써, 챔버 내의 균일한 온도 유지가 가능해져 동일한 특성의 아세틸렌 블랙의 생성이 가능해지는 장점이 있다. The pyrolysis reaction chamber 33 may have, for example, a cylindrical shape, and may have an inner diameter of 50 mm to 100 mm and a length of 500 mm to 1000 mm. The thermal decomposition reaction chamber 33 has an advantage in that it is possible to maintain a uniform temperature in the chamber by having such optimal dimensions of the inner diameter and length, so that acetylene black having the same characteristics can be produced.
열분해부(30)는, 플라즈마부(20)에서 플라즈마와 반응한 아세틸렌을 공급받아 제2 기설정반응도로 열분해 처리하여 아세틸렌을 아세틸렌 블랙으로 제조할 수 있다. 여기서 제2 기설정반응도는 열분해의 온도가 기설정 온도인 경우의 반응도일 수 있으며, 일례로 섭씨 1,500도 내지 2,200도일 수 있다. 즉, 열분해의 온도가 섭씨 1,500도 내지 섭씨 2,200도인 경우의 반응도일 수 있다.The thermal decomposition unit 30 may receive acetylene reacted with the plasma from the plasma unit 20 and thermally decompose it in a second preset reactivity to manufacture acetylene into acetylene black. Here, the second preset reactivity may be a reactivity when the temperature of thermal decomposition is a preset temperature, and may be, for example, 1,500 to 2,200 degrees Celsius. That is, it may be a reactivity when the temperature of the thermal decomposition is 1,500 degrees Celsius to 2,200 degrees Celsius.
한편, 아세틸렌은 대략 섭씨 1,400도 내지 1,500도에서부터 부분 분해가 시작되어 핵이 생성(1단계)되고, 이렇게 생성된 핵은 서로 충돌하여 사슬 구조를 형성(2단계)하며, 최종적으로 결정층을 형성(3단계)하여 아세틸렌 블랙이 생성된다. 이러한 아세틸렌 블랙의 생성 과정을 고려하면 아세틸렌 블랙의 성장 과정 시간은 반응로의 길이가 중요 변수이며, 아세틸렌 가스의 양에 따른 분해 효율은 반응로의 내경이 중요한 변수이다. On the other hand, partial decomposition of acetylene starts at approximately 1,400 to 1,500 degrees Celsius to generate nuclei (step 1), and the nuclei generated in this way collide with each other to form a chain structure (step 2), and finally form a crystal layer (Step 3) to produce acetylene black. Considering the production process of acetylene black, the length of the reactor is an important variable for the growth process time of acetylene black, and the inner diameter of the reactor is an important variable for the decomposition efficiency according to the amount of acetylene gas.
그러므로, 본 발명에서는 1차로 플라즈마부(20) 그리고 2차로 열분해부(30)가 직렬 연결로 구성되도록 하여, 플라즈마 반응 챔버(22)는, 내경이 50mm 내지 180mm 길이가 500mm 내지 1800mm이고, 열분해 반응 챔버(33)는, 내경이 50mm 내지 100mm 길이가 500mm 내지 1000mm로 형성하여, 미분해된 아세틸렌 가스 발생을 최소화하고 챔버 내의 균일한 온도 유지가 가능해져 동일한 특성의 아세틸렌 블랙의 생성이 가능해지는 효과를 발생시킨다. Therefore, in the present invention, the first plasma unit 20 and the second thermal decomposition unit 30 are configured in series connection, the plasma reaction chamber 22, the inner diameter is 50mm to 180mm, the length is 500mm to 1800mm, the pyrolysis reaction The chamber 33 is formed to have an inner diameter of 50 mm to 100 mm and a length of 500 mm to 1000 mm, thereby minimizing the generation of undecomposed acetylene gas and maintaining a uniform temperature in the chamber, resulting in the generation of acetylene black having the same characteristics. generate
냉각부(40)는, 열분해부(30)의 하측에 배치될 수 있으며, 열분해부(30)에서 열분해되어 제조된 아세틸렌 블랙을 냉각할 수 있다. The cooling unit 40 may be disposed below the thermal decomposition unit 30 , and may cool the acetylene black produced by thermal decomposition in the thermal decomposition unit 30 .
냉각부(40)는, 일례로 진공을 공급받아, 열분해부(30)에서 열분해되어 제조된 아세틸렌 블랙을 냉각시킬 수 있으며, 진공을 형성하는 진공부(부호 도시하지 않음)가 측면에 연결될 수 있다. The cooling unit 40 may receive vacuum, for example, to cool the acetylene black produced by thermal decomposition in the pyrolysis unit 30, and a vacuum unit (not shown) for forming a vacuum may be connected to the side. .
포집부(50)는, 냉각부(40)의 하측에 배치될 수 있으며, 냉각부(40)에서 냉각 처리된 아세틸렌 블랙을 포집할 수 있다. The collecting unit 50 may be disposed below the cooling unit 40 , and may collect the acetylene black cooled by the cooling unit 40 .
포집부(50)는, 상기 플라즈마부(20) 및 열분해부(30)에서 생산된 아세틸렌 블랙을 최종적으로 포집할 수 있으며, 포집된 아세틸렌 블랙은 별도의 저장소(도시하지 않음)으로 공급되어 저장되어 최종 제품으로 처리될 수 있다. The collecting unit 50 may finally collect the acetylene black produced in the plasma unit 20 and the thermal decomposition unit 30, and the collected acetylene black is supplied to and stored in a separate storage (not shown). It can be processed into the final product.
이와 같이, 본 발명의 실시 예에 따른 아세틸렌 블랙 제조장치(1)는, 플라즈마 처리 공정과 열분해 공정을 직렬로 2단 구성하여, 아세틸렌 가스의 분해 효율이 향상됨에 따라 생산성이 극대화되는 효과가 있다. As such, in the acetylene black manufacturing apparatus 1 according to an embodiment of the present invention, the plasma treatment process and the thermal decomposition process are configured in two stages in series, and as the decomposition efficiency of acetylene gas is improved, productivity is maximized.
또한, 본 발명의 실시 예에 따른 아세틸렌 블랙 제조장치(1)는, 상단의 플라즈마 처리 공정을 통해 아세틸렌 가스의 분해 후 발생되는 고온의 열을 하단의 열분해 공정에서 이용할 수 있어, 열분해 공정에서의 고온 유지가 효율적으로 가능하게 되므로, 전력 소비를 획기적으로 줄일 수 있는 효과가 있고, 또한 별도의 예열부를 구축할 필요가 없어 설비 규모를 최소화할 수 있어, 구축 비용이 절감되는 효과가 있다. In addition, in the acetylene black manufacturing apparatus 1 according to an embodiment of the present invention, high-temperature heat generated after decomposition of acetylene gas through the plasma treatment process at the top can be used in the pyrolysis process at the bottom, so that the high temperature in the pyrolysis process Since maintenance is efficiently possible, there is an effect of remarkably reducing power consumption, and also, it is not necessary to construct a separate preheating unit, so the size of the facility can be minimized, thereby reducing the construction cost.
이상 본 발명을 구체적인 실시 예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.Although the present invention has been described in detail through specific examples, this is for the purpose of describing the present invention in detail, and the present invention is not limited thereto. It will be clear that the transformation or improvement is possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications or changes of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be made clear by the appended claims.

Claims (8)

  1. 아세틸렌을 주입하는 주입부;an injection unit for injecting acetylene;
    플라즈마를 형성시키되, 상기 주입부를 통해 공급되는 아세틸렌이 상기 플라즈마와 반응하도록 구성되는 플라즈마부; 및a plasma unit configured to form a plasma so that acetylene supplied through the injection unit reacts with the plasma; and
    상기 플라즈마부에서 플라즈마와 반응한 아세틸렌을 공급받아 열분해하는 열분해부를 포함하고, and a thermal decomposition unit receiving acetylene reacted with plasma from the plasma unit and thermally decomposing it,
    상기 열분해부는,The thermal decomposition unit,
    상기 플라즈마부와 직렬로 구성되되, 상기 플라즈마부에 후속하여 배치되는 것을 특징으로 하는 아세틸렌 블랙 제조장치 . Doedoe configured in series with the plasma unit, acetylene black manufacturing apparatus characterized in that it is disposed following the plasma unit .
  2. 제 1 항에 있어서, 상기 열분해부는, According to claim 1, wherein the thermal decomposition unit,
    상기 플라즈마부보다 하측에 배치되어, 상기 플라즈마부에서 처리된 아세틸렌을 중력을 통해 공급받아 상기 아세틸렌을 아세틸렌 블랙으로 제조하는 것을 특징으로 하는 아세틸렌 블랙 제조장치 . An acetylene black manufacturing apparatus, which is disposed below the plasma unit, receives acetylene processed in the plasma unit through gravity, and manufactures the acetylene as acetylene black .
  3. 제 2 항에 있어서, 상기 플라즈마부는, According to claim 2, wherein the plasma unit,
    상기 플라즈마가 상기 아세틸렌을 제1 기설정 반응도로만 플라즈마 처리한 후 상기 열분해부로 상기 아세틸렌을 공급하도록 구성되는 것을 특징으로 하는 아세틸렌 블랙 제조장치 . Acetylene black manufacturing apparatus, characterized in that the plasma is configured to supply the acetylene to the thermal decomposition unit after plasma-treating the acetylene only with a first preset reaction rate .
  4. 제 3 항에 있어서, 상기 제1 기설정 반응도는, According to claim 3, The first preset reactivity,
    상기 플라즈마의 세기가 적용 압력이 0.05 내지 50 torr에서 전력 10 Kw 내지 50Kw 및 주파수 60Hz인 경우에서 발생되는 세기이며, 플라즈마 온도가 섭씨 1,000도 내지 섭씨 3,000도인 경우의 반응도인 것을 특징으로 하는 아세틸렌 블랙 제조장치.The intensity of the plasma is the intensity generated when the applied pressure is 0.05 to 50 torr, the power is 10 Kw to 50Kw, and the frequency is 60 Hz, and the plasma temperature is 1,000 degrees Celsius to 3,000 degrees Celsius. Acetylene black production, characterized in that Device.
  5. 제 3 항에 있어서, 상기 열분해부는, According to claim 3, The thermal decomposition unit,
    상기 플라즈마부에서 상기 플라즈마와 반응한 아세틸렌을 공급받아 제2 기설정 반응도로 열분해 처리하여 상기 아세틸렌을 아세틸렌 블랙으로 제조하는 것을 특징으로 하는 아세틸렌 블랙 제조장치.Acetylene black manufacturing apparatus, characterized in that by receiving the acetylene reacted with the plasma from the plasma unit and thermally decomposing it to a second preset reactivity to produce the acetylene as acetylene black.
  6. 제 5 항에 있어서, 상기 제2 기설정 반응도는, According to claim 5, The second preset reactivity,
    열분해의 온도가 섭씨 1,500도 내지 섭씨 2,200도인 경우의 반응도인 것을 특징으로 하는 아세틸렌 블랙 제조장치.Acetylene black manufacturing apparatus, characterized in that the reactivity when the temperature of the thermal decomposition is 1,500 degrees Celsius to 2,200 degrees Celsius.
  7. 제 1 항에 있어서, 상기 플라즈마부는,According to claim 1, wherein the plasma unit,
    체적이 상기 열분해부의 체적 대비 기설정비율을 가지는 것을 특징으로 하는 아세틸렌 블랙 제조장치. Acetylene black manufacturing apparatus, characterized in that the volume has a predetermined ratio to the volume of the pyrolysis unit.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 주입부는, 상기 아세틸렌을 상기 플라즈마부에 공급하는 아세틸렌 공급기를 포함하고,The injection unit includes an acetylene supplier for supplying the acetylene to the plasma unit,
    상기 플라즈마부는, The plasma unit,
    플라즈마 스트림을 발생시키는 세 개의 플라즈마 토치; 상기 플라즈마와 상기 아세틸렌이 반응하도록 온도와 압력을 제공하는 플라즈마 반응 챔버; 및 불활성 가스를 공급하는 불활성 가스 공급기를 포함하고,three plasma torches generating a plasma stream; a plasma reaction chamber providing temperature and pressure to react the plasma with the acetylene; and an inert gas supply for supplying an inert gas,
    상기 열분해부는, The thermal decomposition unit,
    상기 플라즈마부로부터 플라즈마와 반응한 아세틸렌을 공급하는 반응 아세틸렌 주입기; 발열 반응을 발생시키는 재료를 공급하는 반응 원료 주입기; 및 상기 반응 원료에 의해 발생하는 열을 통해 아세틸렌이 열분해되도록 압력을 제공하는 열분해 반응 챔버를 포함하며,a reactive acetylene injector for supplying acetylene reacted with plasma from the plasma unit; a reaction raw material injector for supplying a material for generating an exothermic reaction; and a pyrolysis reaction chamber that provides pressure to pyrolyze acetylene through heat generated by the reaction raw material,
    상기 플라즈마 반응 챔버는, The plasma reaction chamber,
    내경이 50mm 내지 180mm이고, 길이는 500mm 내지 1,800mm이며, The inner diameter is 50mm to 180mm, the length is 500mm to 1800mm,
    상기 열분해 반응 챔버는, The pyrolysis reaction chamber,
    내경이 50mm 내지 100mm이고, 길이는 500mm 내지 1,000mm인 것을 특징으로 하는 아세틸렌 블랙 제조장치.Acetylene black manufacturing apparatus, characterized in that the inner diameter is 50mm to 100mm, and the length is 500mm to 1,000mm.
PCT/KR2020/018824 2020-11-02 2020-12-21 Apparatus for producing acetylene black using combination of plasma treatment and thermal decomposition WO2022092433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200144722A KR102508756B1 (en) 2020-11-02 2020-11-02 Device for producing acetylene black using complexing a plasma treatment and a thermal decomposition
KR10-2020-0144722 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022092433A1 true WO2022092433A1 (en) 2022-05-05

Family

ID=81382763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018824 WO2022092433A1 (en) 2020-11-02 2020-12-21 Apparatus for producing acetylene black using combination of plasma treatment and thermal decomposition

Country Status (2)

Country Link
KR (1) KR102508756B1 (en)
WO (1) WO2022092433A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228796A (en) * 1994-02-22 1995-08-29 Denki Kagaku Kogyo Kk Carbon black and its production and use
KR20010013476A (en) * 1997-06-06 2001-02-26 이반 쉬포프 Method and device for producing fullerenes
KR20030046455A (en) * 2000-09-19 2003-06-12 에라켐 유럽 에스.에이. Device and method for converting carbon containing feedstock into carbon containing materials, having a defined nanostructure
KR20140089526A (en) * 2011-09-30 2014-07-15 피피지 인더스트리즈 오하이오 인코포레이티드 Production of graphenic carbon particles utilizing hydrocarbon precursor materials
KR20170129713A (en) * 2015-02-03 2017-11-27 모놀리스 머티어리얼스 인코포레이티드 Carbon Black Generation System

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO175718C (en) 1991-12-12 1994-11-23 Kvaerner Eng Process for cleavage of hydrocarbons and apparatus for use in the process
NO176522C (en) * 1992-04-07 1995-04-19 Kvaerner Eng Process for the production of carbon with defined physical properties and apparatus for carrying out the process
EP3718964B1 (en) 2019-04-02 2021-12-01 Uniper Kraftwerke GmbH Device and process for the production of hydrogen and solid carbon from c1- to c4-alkane-containing gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228796A (en) * 1994-02-22 1995-08-29 Denki Kagaku Kogyo Kk Carbon black and its production and use
KR20010013476A (en) * 1997-06-06 2001-02-26 이반 쉬포프 Method and device for producing fullerenes
KR20030046455A (en) * 2000-09-19 2003-06-12 에라켐 유럽 에스.에이. Device and method for converting carbon containing feedstock into carbon containing materials, having a defined nanostructure
KR20140089526A (en) * 2011-09-30 2014-07-15 피피지 인더스트리즈 오하이오 인코포레이티드 Production of graphenic carbon particles utilizing hydrocarbon precursor materials
KR20170129713A (en) * 2015-02-03 2017-11-27 모놀리스 머티어리얼스 인코포레이티드 Carbon Black Generation System

Also Published As

Publication number Publication date
KR20220060041A (en) 2022-05-11
KR102508756B1 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
US8399072B2 (en) Process for improved chemcial vapor deposition of polysilicon
RU2163247C2 (en) Heat treatment of carbon materials
WO2013097533A1 (en) Externally heated microwave plasma gasifier and synthesis gas production method
WO2022173263A1 (en) Apparatus and method for producing hydrogen by reforming plastic waste by means of electromagnetic plasma torch
WO2022092433A1 (en) Apparatus for producing acetylene black using combination of plasma treatment and thermal decomposition
WO2022092435A1 (en) Apparatus for producing acetylene black having improved inflow structure for raw reaction material
WO2022092434A1 (en) Apparatus for producing acetylene black using reactor having temperature gradient
KR101545201B1 (en) Thermal plasma fluidized bed reactor and method for preparing polysilicon using the same
WO2012157871A2 (en) Plasma hydrogenation apparatus
CN101759184A (en) System for making polysilicon with assistant of hydrogen plasmas and method therefor
CN106495165A (en) A kind of device and method for preparing trichlorosilane with silicon tetrachloride
WO2011014005A2 (en) Method for preparing a silicon compound from rice hulls or rice straw
WO2016013759A1 (en) Method for treating waste by using plasma pyrolysis
KR20220090608A (en) Carbon materials producing device that can be implemented simultaneously with conductive carbon materials production and post-treatment
KR20130064996A (en) Fluidized bed reactor including reaction gas supplying nozzle
KR100893183B1 (en) Apparatus and method of manufacturing polysilicon using laser induced chemical vapor deposition
CN216321849U (en) Powder preparation device
CN202046891U (en) Energy-saving polysilicon reduction furnace with heat shield
CN210885896U (en) Plasma reactor for preparing carbon material by countercurrent cracking of gaseous hydrocarbon
CN111925827A (en) Synthetic gas component and heat value adjusting method for plasma gasification melting furnace
WO2018225980A1 (en) High-frequency induction pyrolysis apparatus for nitrous oxide-containing gaseous compound
CN103241726B (en) Method for preparing nano conductive carbon by cracking organic compound through hybrid plasma technology
WO2022191632A1 (en) Apparatus and method for producing syngas by reforming diesel through an electromagnetic wave plasma torch
WO2020262780A1 (en) Composition for preparing highly expanded graphite, highly expanded graphite, and method for preparing same
WO2019194467A1 (en) Microwave plasma torch for manufacturing metal powder or metal alloy, and method for treating metal compound or metal compound-containing material and metal powder by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960049

Country of ref document: EP

Kind code of ref document: A1