WO2016013759A1 - Method for treating waste by using plasma pyrolysis - Google Patents

Method for treating waste by using plasma pyrolysis Download PDF

Info

Publication number
WO2016013759A1
WO2016013759A1 PCT/KR2015/005761 KR2015005761W WO2016013759A1 WO 2016013759 A1 WO2016013759 A1 WO 2016013759A1 KR 2015005761 W KR2015005761 W KR 2015005761W WO 2016013759 A1 WO2016013759 A1 WO 2016013759A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
treated
plasma
reaction
oxygen
Prior art date
Application number
PCT/KR2015/005761
Other languages
French (fr)
Korean (ko)
Inventor
박재형
Original Assignee
주식회사 창원이앤이
박재형
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 창원이앤이, 박재형 filed Critical 주식회사 창원이앤이
Publication of WO2016013759A1 publication Critical patent/WO2016013759A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches

Definitions

  • the present invention relates to a waste treatment method using plasma pyrolysis. More particularly, the present invention relates to a waste treatment method using plasma pyrolysis that can stably pyrolyze a material to be treated in a pyrolysis reaction chamber by applying a plasma and a specific gasification agent.
  • the thermal treatment method is used to treat the waste
  • the incineration method is the most used.
  • This type of incineration risks the release of toxic substances (dioxin, furan, chlorine, sulfuric acid and mercury) into the atmosphere due to the disadvantage that the incineration temperature cannot be raised too high due to environmental regulations and costs.
  • toxic substances dioxin, furan, chlorine, sulfuric acid and mercury
  • Recently, research on pyrolysis and melting system has been actively conducted to solve such problems. ought.
  • Plasma is a state of a material obtained at a high temperature of several thousand degrees or more by an electric discharge method, and means a state in which molecules or valent ions and electrons are separated. Since the plasma is an ionized gas state, particle acceleration by electric field or the like is easy, so that heating to a high temperature is easy and ultra-high temperatures of hundreds of millions or more can be obtained.
  • a plasma torch that generates plasma at atmospheric pressure is an apparatus that generates high-temperature plasma by ionizing gas at an arc or high frequency, and thus, a system using a plasma torch has to be treated among various pyrolysis melting systems. Since the amount of emitted gas is only one seventh of the existing incinerator, it is possible to drastically reduce the size of the facility.
  • the temperature inside the flame generated by the plasma torch is at least 10,000 ° C, and the temperature outside the flame is also at least about 3,000 ° C. Due to such a high temperature, a gas having a very high enthalpy is obtained, which is very effective for heating the pyrolysis reaction chamber, and is used for treating various wastes.
  • the pyrolysis gasification reaction chamber does not supply any oxygen source from the outside, oxygen contained in the target material inside the reaction chamber reacts with carbon, hydrogen, and other substances in the target material, thereby reducing carbon monoxide (CO) or water vapor (H 2 O). It is consumed as it is converted to lamps, and eventually depleted, leaving only carbon content. Therefore, an appropriate oxygen source is needed to prevent the phenomenon of charcoal and to induce a smooth gasification reaction.
  • the gasifier supplied from the outside is injected from the outside to act as an oxygen source.
  • oxygen As such an oxygen source, until now, the industry mainly uses air, steam (pyrolyzed and decomposed into H 2 and O 2 ), or oxygen. If oxygen is directly supplied, the target material of the reaction chamber is explosive or highly oxidizing. In the case of metal, serious safety problems may occur. If the object has a very high affinity with oxygen, it reacts with the metal before the carbon monoxide is formed and reacts with the metal before it is converted into metal oxide.
  • the Republic of Korea Patent Publication No. 2012-0033682 relates to a waste polymer insulator processing apparatus and method, according to the present invention is a device for thermal decomposition of the waste polymer insulator;
  • a plasma apparatus connected to the pyrolysis apparatus to supply plasma to the pyrolysis gas generated in the pyrolysis apparatus;
  • a gasification reaction device connected to the plasma apparatus to generate a gasification reaction of the pyrolysis gas;
  • a cooling device connected to the gasification reaction device to cool the gas obtained by the gasification reaction;
  • a cleaning device connected to the cooling device to purify the cooled gas;
  • a gas recovery device connected to the cleaning device to recover the purified gas.
  • An object of the present invention is to provide a waste disposal method using plasma pyrolysis, which is excellent in stability and can easily control the waste disposal rate.
  • Another object of the present invention is to provide a waste disposal method excellent in environmentally friendly effects.
  • Still another object of the present invention is to provide a waste treatment method using plasma pyrolysis capable of preventing oxidation of metal components contained in the waste.
  • Still another object of the present invention is to provide a waste treatment method using plasma pyrolysis having excellent recovery of metals contained in the waste.
  • the waste treatment method using plasma pyrolysis may include supplying a plasma heat source into a reaction chamber containing a material to be treated; Supplying a gasifying agent into the reaction chamber to generate carbon monoxide and oxygen; And pyrolyzing the generated oxygen and the material to be treated, wherein the material to be treated includes carbon, the internal temperature of the reaction chamber is maintained at about 950 ° C. or more, and the gasifier is carbon dioxide, And nitrogen and argon in a volume ratio of about 1: 0.1 to 1: 0.1 to 0.5.
  • the gasifier is supplied into the reaction chamber at a pressure of about 1 bar to about 50 bar and a flow rate of about 5 slpm to about 60 slpm (standard liters per minute).
  • the gasifier is supplied into the reaction chamber through a gasifier delivery pipe.
  • the carbon dioxide included in the gasification agent is characterized in that to reuse the carbon dioxide generated by the reaction of the carbon monoxide and oxygen in the reaction chamber in the thermal decomposition step.
  • the material to be treated further includes one or more of aluminum, magnesium, zinc, titanium, and oxides thereof.
  • the waste treatment method using the plasma pyrolysis according to the present invention When applying the waste treatment method using the plasma pyrolysis according to the present invention, it is excellent in stability by minimizing the risk that the material to be treated rapidly reacts with oxygen and explodes in the reaction chamber, and uses carbon dioxide as a gasifier, It is possible to recycle carbon dioxide generated in the waste treatment process, so it is excellent in eco-friendly effect, can easily control the waste disposal rate, prevents oxidation of the metal components included in the material to be treated, and has excellent recovery rate of metal contained in the waste. Excellent economic effect.
  • FIG. 1 shows a plasma pyrolysis apparatus according to an embodiment of the present invention.
  • the "subject material” may mean “waste”.
  • One aspect of the present invention relates to a waste treatment method using plasma pyrolysis.
  • the waste treatment method using the plasma pyrolysis (a) pretreatment step; (b) inflow of the substance to be treated; (c) a plasma heat source supplying step; (d) gasification reaction step; And (e) a pyrolysis step.
  • a waste treatment method using plasma pyrolysis may include supplying a plasma heat source into a reaction chamber containing a material to be treated; Supplying a gasifying agent into the reaction chamber to generate carbon monoxide and oxygen; And pyrolyzing the generated oxygen with the treatment target material.
  • the plasma pyrolysis apparatus 1000 includes an inlet 20 through which an object to be treated 40 is introduced, and an object to be introduced into the reaction chamber 30 through an inlet pipe 22; A reaction chamber 30 which thermally decomposes the treatment target material 40 introduced through the inlet pipe 22 using a plasma and a gasifier; A gasifier supply unit 50 for supplying a gasifier into the reaction chamber 30 through the gasifier supply pipe 52; And a gas collecting unit 60 collecting gas generated in the reaction chamber 30 during the thermal decomposition through a gas discharge pipe 62.
  • the reaction chamber 30 includes a plasma torch 10 for supplying plasma. ; A solid treatment material generated after the thermal decomposition treatment of the treatment target material 40 with the treatment material outlet 32; And a thermometer 34 measuring an internal temperature of the reaction chamber 30.
  • the step is a step of pretreating the material 40 to be treated before entering the inlet 20.
  • the pretreatment step includes the steps of: cleaning the material to be treated; Drying the cleaned material; And pulverizing the dried material to be treated.
  • the substance to be treated is introduced into a washing machine (not shown) to remove foreign substances using water and a detergent, and the substance to be removed is transferred to a dryer (not shown) and dried to remove moisture. Remove and transfer the dried object to a pulverizer (not shown) to pulverize (chop) it into a predetermined size and pretreat it to the inlet 20 and the pretreated treatment through the inlet pipe 22.
  • the target material may be introduced into the reaction chamber 30.
  • the treatment material may be ground to a size of about 0.1mm to about 5mm.
  • size of the material to be treated is defined as meaning “longest length”.
  • the material to be treated is introduced into the reaction chamber 30 included in the plasma pyrolysis apparatus 1000.
  • the material to be treated includes carbon, and the gasification agent to be described below is treated by reacting with oxygen generated by decomposition of the plasma in the reaction chamber.
  • the material to be treated may include at least one metal component among aluminum, magnesium, zinc, titanium, and oxides thereof.
  • a package including synthetic resin containing carbon, aluminum (Al), and aluminum oxide (Al 2 O 3 , Al 2 O 4 ) may be used as the material 40 to be treated.
  • the synthetic resin may include polypropylene (polyprophylene) and polyethylene (polyethylene).
  • the packaging material such as packaging for snacks and coffee mixes laminated aluminum of about 10 ⁇ m to about 50 ⁇ m thickness on a synthetic resin substrate such as polypropylene or polyethylene of about 100 ⁇ m to about 500 ⁇ m thick,
  • An oxide film, that is, an aluminum oxide (alumina) layer formed by contact with air is formed on the surface, and is formed by using a dense surface structure and an antioxidant layer.
  • the step is injecting a plasma heat source through the plasma torch 10 into the reaction chamber 30 containing the material to be treated 40.
  • the plasma torch 10 may be a conventional one.
  • the plasma torch 10 generates electrical energy as an arc and converts the thermal energy into thermal energy, thereby continuously supplying thermal energy into the reaction chamber 30 due to plasma generation, thereby raising the temperature inside the reaction chamber 30 to a temperature of about 950 ° C. or more. It serves to advance the pyrolysis reaction.
  • the gas supplied to the plasma torch 10 depends on the structure of the plasma torch forming the DC arc, but in one embodiment, one or more selected from inert gas, nitrogen, air and steam may be used. In other embodiments, one or more of helium and argon may be selected and used. When using helium and argon gas can generate a higher temperature.
  • the gasification agent is supplied into the reaction chamber 30 in which the treatment target material 40 is accommodated to generate carbon monoxide and oxygen.
  • the carbon dioxide included in the gasifier generates carbon monoxide and oxygen by a reaction as shown in Equation 1 below at a temperature of about 950 ° C. or higher:
  • the gasifier comprises carbon dioxide, nitrogen and argon in a volume ratio of about 1: 0.1 to 1: 0.1 to 0.5.
  • the volume ratio it is possible to easily control the reaction treatment speed, to maintain a stable inside the reaction chamber is more excellent in the stability during treatment, if the material to be treated with a highly oxidizing metal, to minimize the formation of metal oxide Therefore, the recovery rate of the metal may be excellent and the economic effect may be excellent.
  • the nitrogen when the nitrogen is contained in less than about 0.1 volume ratio relative to the carbon dioxide volume, the inside of the reaction chamber is unstable to increase the explosion risk, the nitrogen is greater than about 1 volume ratio relative to the carbon dioxide volume When included, the waste treatment reaction is difficult to proceed easily.
  • the argon when the argon is contained in less than about 0.1% by volume relative to the carbon dioxide volume, the inside of the reaction chamber is unstable to increase the explosion risk, the argon is about 0.5% by volume relative to the carbon dioxide volume When included in excess, the reaction chamber internal temperature is excessively increased so that the recovery rate may be lowered when the metal component is included.
  • the gasification agent may include carbon dioxide, nitrogen, and argon in a volume ratio of about 1: 0.5 to 1: 0.1 to 0.3.
  • the recovery rate of the metal may be excellent.
  • the reaction chamber 30 in which the waste treatment reaction of the present invention proceeds maintains the internal temperature at about 950 ° C. or more during the waste treatment reaction.
  • the reaction of Equation 1 does not occur.
  • the temperature inside the reaction chamber 30 may be maintained at about 950 ° C to about 1,900 ° C. In embodiments, it may be maintained from about 1,350 °C to about 1,800 °C.
  • Carbon monoxide and oxygen generated in the gasifier at the temperature range of the above range is generated by the reaction of the formula 1 to facilitate the pyrolysis reaction of the waste, the pyrolysis reaction containing the above-described carbon and metal components easily Can be done.
  • the reaction of Equation 1 does not occur.
  • the existing gasification agent mainly used oxygen and steam.
  • the initial reaction is performed when the material to be treated contains carbon and one or more oxidizing metal components among aluminum, magnesium, zinc and titanium. Since oxygen and metal components react to form metal oxides, the metal recovery rate contained in the material to be treated has been greatly reduced.
  • carbon dioxide is used as a gasification agent, oxygen and metal components do not react from the beginning of the reaction. It is possible to increase the metal recovery rate, so the stability and economic effect of the reaction are excellent.
  • the gasifier may be supplied at a temperature of about 350 ° C or more.
  • it may be supplied at a temperature of about 350 °C to about 800 °C.
  • the temperature it is possible to easily proceed with the pyrolysis reaction by preventing a sudden temperature drop inside the reaction chamber (30).
  • the gasifier may be supplied into the reaction chamber at a pressure of about 1 bar to about 50 bar and a flow rate of about 5 slpm to about 60 slpm (standard liters per minute).
  • a pressure of about 1 bar to about 50 bar and a flow rate of about 5 slpm to about 60 slpm (standard liters per minute).
  • the gasifier may further comprise one or more inert gases from nitrogen, argon and helium.
  • the gasifier may further comprise one or more inert gases from nitrogen, argon and helium.
  • the gasifier may further comprise helium.
  • carbon dioxide, carbon, nitrogen, argon, and helium may be included in a volume ratio of about 1: 0.1 to 1: 0.1 to 0.5: 0.01 to 0.1.
  • the volume ratio it is possible to easily control the reaction treatment rate, the reaction stability is more excellent, the recovery rate of the metal can be excellent and the economic effect can be excellent.
  • it may be included in a volume ratio of about 1: 0.5 to 1: 0.1 to 0.3: 0.01 to 0.5.
  • the gasifier is supplied from the gasifier supply unit 50, and may be supplied into the reaction chamber 30 through the gasifier transfer pipe 52. In another embodiment, the gasifier may be supplied into the reaction chamber 30 together with the plasma through the plasma torch 10.
  • the step is to thermally decompose the material to be treated in the reaction chamber using oxygen generated in the plasma and gasifier reaction steps.
  • the material 40 to be treated with carbon reacts with the generated oxygen as shown in Equation 2 to generate a partial combustion reaction to generate a gasification reaction, thereby pyrolyzing:
  • the injected treatment target material may be thermally decomposed by oxygen as in Equation 2 to generate a synthesis gas and a treatment material.
  • the treatment material may be in a liquid state or a solid state.
  • carbon-containing components eg, cellulose or olefin-based high molecular compounds
  • CO carbon monoxide
  • H 2 hydrogen
  • the generated syngas is transferred to a gas collecting unit 60 through a gas discharge pipe 62 and recovered, and the generated processed material remains at the lower end of the reaction chamber 30. It may be recovered through the treatment material outlet 32 located at the lower end of the reaction chamber (30).
  • the synthetic resin when the material to be treated includes synthetic resin, aluminum (Al) and aluminum oxide (Al 2 O 3 , Al 2 O 4 ), the synthetic resin is thermally decomposed to carbon monoxide (CO) and hydrogen (H 2 ), etc. Reducing syngas is produced.
  • the aluminum is thermally decomposed by the generated oxygen and disposed below the inside of the reaction chamber 30. That is, while the temperature of the reaction chamber 30 is maintained at a temperature of about 950 ° C. or more, for example, about 950 ° C. to about 1,900 ° C. by the continuous heat source, the aluminum is melted to the bottom of the reaction chamber 30. It is accommodated and discharged to the treatment material outlet 32 so that it can be easily recovered.
  • the aluminum oxide is formed by the synthesis gas, such as carbon monoxide (CO) and hydrogen (H 2 ) generated during the pyrolysis of the synthetic resin is formed in the reducing atmosphere in the reaction chamber 30, the plasma heat source is continuously supplied By the endothermic reaction is formed, it is reduced to aluminum through a reaction process such as the following Equation 3 or 4, to produce gases such as carbon dioxide (CO 2 ) and water vapor (H 2 O):
  • the synthesis gas such as carbon monoxide (CO) and hydrogen (H 2 ) generated during the pyrolysis of the synthetic resin
  • the reduction process of aluminum oxide under a predetermined reducing atmosphere may be performed and the thermal decomposition of aluminum oxide may be smoothly performed. .
  • the efficiency of resource recovery can be increased.
  • Synthetic gas such as CO 2 and H 2 O generated during thermal decomposition of the metal oxide such as aluminum oxide is also transferred to the gas collection unit 60 through the gas discharge pipe 62 and recovered as described above.
  • the treatment material including the remains at the lower end of the reaction chamber 30, it may be recovered through the treatment material outlet 32 located at the lower end of the reaction chamber (30).
  • the carbon dioxide (CO 2 ), water vapor (H 2 O), carbon monoxide (CO) and hydrogen (H 2 ) syngas may cool the temperature below about 200 ° C. before being used for gas engine or turbine power generation, and the like. . Cooling to this temperature allows, for example, the partially combusted components of carbon monoxide to be burned completely and efficiently.
  • a heat exchanger (not shown) connected to the gas collecting unit 60, if the heat of the syngas is transferred to another type of gas and cooled, the gas receiving the heat of the syngas May be used to heat a steam turbine or the like for additional power production.
  • the carbon dioxide included in the gasifier may reuse the carbon dioxide generated by the reaction of the carbon monoxide and oxygen present in the reaction chamber in the thermal decomposition step.
  • carbon monoxide included in the reaction chamber may react with the oxygen to generate carbon dioxide:
  • the carbon monoxide reacting with the oxygen may be generated from carbon dioxide included in the above-described gasification agent, or may be generated by reaction of carbon and oxygen during the thermal decomposition.
  • the carbon dioxide generated as shown in Equation 2 is transferred to the gas collecting unit 60 through the gas discharge pipe 62 and recovered as described above, and is purified by using a conventional method, and then the gasifier supply unit 50. Is transferred to the gasification feed pipe (52) to be fed back into the reaction chamber can be recycled. As described above, the economic effect of recycling carbon dioxide may be excellent.
  • Reaction chamber 30 includes a thermometer (34) for measuring the internal temperature; the reaction chamber 30 for thermally decomposing the treatment target material 40 introduced through the inlet pipe 22 using a plasma and gasifier
  • the pyrolysis reaction was performed using the plasma pyrolysis apparatus 1000 including the same.
  • 1 kg of a packaging material containing 30 wt% of aluminum (Al), 15 wt% of aluminum oxides (Al 2 O 3 and Al 2 O 4 ) and 55 wt% of polyethylene as the material 40 to be treated is introduced into the inlet 20.
  • Al aluminum
  • Al 2 O 3 and Al 2 O 4 aluminum oxides
  • polyethylene polyethylene
  • the internal temperature of the reaction chamber 30 is maintained at 1,600 ° C while controlling the internal temperature of carbon dioxide, nitrogen, and argon as a gasification agent.
  • the mixture was mixed at a volume ratio of: 0.3: 0.5 and supplied into the reaction chamber 30 at a temperature of 700 ° C., a pressure of 5 bar, and a flow rate of 30 slm.
  • the gasifier produced carbon monoxide and oxygen by the reaction of the following Equation 1:
  • the polyethylene component of the material to be treated was pyrolyzed to produce reducible syngas such as carbon monoxide (CO) and hydrogen (H 2 ).
  • reducible syngas such as carbon monoxide (CO) and hydrogen (H 2 ).
  • the aluminum included was thermally decomposed by the generated oxygen and accommodated in the bottom of the reaction chamber 30 to recover the treated material outlet 32.
  • the aluminum oxide is formed by a reducing atmosphere in the reaction chamber 30 formed by a synthesis gas such as carbon monoxide (CO) and hydrogen (H 2 ) generated during the pyrolysis of the synthetic resin, and a plasma heat source continuously supplied.
  • a synthesis gas such as carbon monoxide (CO) and hydrogen (H 2 ) generated during the pyrolysis of the synthetic resin
  • H 2 hydrogen
  • aluminum and gases such as CO 2 and H 2 O were generated through a reaction process as in Equation 3 or 4 below.
  • the aluminum was accommodated in the bottom of the reaction chamber 30 and recovered to the treatment material outlet 32.
  • the generated gases such as CO 2 , H 2 O were transferred to the gas collecting unit 60 through the gas discharge pipe 62:
  • the material to be treated was pyrolyzed in the same manner as in Example 1 except that carbon dioxide, nitrogen, and argon were used in a gas ratio of 1: 2: 0.5.
  • the material to be treated was pyrolyzed in the same manner as in Example 1 except that carbon dioxide, nitrogen, and argon were used in a volume ratio of 1: 0.3: 1 as the gasifier.
  • the material to be treated was pyrolyzed in the same manner as in Example 1 except that steam (H 2 0) was used as the gasifier.
  • the material to be treated was pyrolyzed in the same manner as in Example 1 except that oxygen (O 2 ) was used as the gasifier.
  • Recovered aluminum (g) The total weight of recovered aluminum (Al) in the pyrolyzed treatment target material was measured and shown in Table 1 below.
  • reaction stability was evaluated by observing the inside of the reaction chamber during the reaction. When the reaction chamber was stably generated in the reaction chamber during the pyrolysis reaction, it was evaluated as ⁇ , unstable ⁇ , and extremely unstable x.

Abstract

A method for treating waste by using plasma pyrolysis, of the present invention, comprises the steps of: supplying a plasma heat source into a reaction chamber in which a material to be treated is accommodated; generating carbon monoxide and oxygen by supplying a gasification agent into the reaction chamber; and pyrolyzing the generated oxygen and the material to be treated, wherein the material to be treated contains carbon, the inner temperature of the reaction chamber is maintained at approximately 950°C or higher, and the gasification agent comprises carbon dioxide, nitrogen and argon in a ratio of approximately 1 : 0.1-1 : 0.1-0.5 by volume.

Description

플라즈마 열분해를 이용한 폐기물 처리방법Waste treatment method using plasma pyrolysis
본 발명은 플라즈마 열분해를 이용한 폐기물 처리방법에 관한 것이다. 더욱 상세하게는 플라즈마 및 특정 가스화제를 적용하여 열분해 반응챔버 내부에서 처리대상물질을 안정적으로 열분해할 수 있는 플라즈마 열분해를 이용한 폐기물 처리방법에 관한 것이다.The present invention relates to a waste treatment method using plasma pyrolysis. More particularly, the present invention relates to a waste treatment method using plasma pyrolysis that can stably pyrolyze a material to be treated in a pyrolysis reaction chamber by applying a plasma and a specific gasification agent.
일반적으로 폐기물을 처리하는 데는 열적 처리방식이 사용되고 있으며, 그 중에서도 소각방식을 가장 많이 사용하고 있다. 이러한 소각방식은 환경규제 및 비용문제로 인하여 소각온도를 너무 높일 수 없는 단점 때문에 유독성 물질(다이옥신, 퓨란, 염소, 황산 및 수은 등)이 대기 중에 방출될 위험이 있다. 또한 불연소된 무기물 중에는 중금속 등 유해물질이 잔재해서 매립 처리 시 토양 및 지하수 등에 2차 오염을 야기시키는 문제를 가지고 있으며, 최근에는 이러한 문제점을 해결하기 위한 방안으로 열분해 용융시스템에 대한 연구가 활발히 이루어지고 있다.In general, the thermal treatment method is used to treat the waste, the incineration method is the most used. This type of incineration risks the release of toxic substances (dioxin, furan, chlorine, sulfuric acid and mercury) into the atmosphere due to the disadvantage that the incineration temperature cannot be raised too high due to environmental regulations and costs. In addition, there is a problem of causing secondary pollution in soil and groundwater during reclamation because harmful substances such as heavy metals remain among unburned inorganic materials. Recently, research on pyrolysis and melting system has been actively conducted to solve such problems. ought.
한편 플라즈마(Plasma)는 전기방전 등의 방법으로 수천 도 이상의 고온에서 얻어지는 물질의 상태로서, 분자 또는 원자가 이온과 전자로 분리되어 있는 상태를 의미한다. 이러한 플라즈마는 전리된 기체상태로서 전장 등에 의한 입자 가속이 용이하기 때문에, 고온으로의 가열이 용이하여 수억 도 이상의 초고온을 얻을 수도 있다. 특히, 대기압 조건에서 플라즈마를 발생시키는 플라즈마 토치(Plasms torch)는 아크나 고주파로 기체를 전리시켜 고온의 플라즈마를 만들어내는 장치로서, 이를 이용하여 다양한 열분해 용융시스템 중에서 특히 플라즈마 토치를 이용한 시스템은 처리해야 하는 배출가스의 양이 기존 소각로의 1/7에 불과하여 시설규모를 획기적으로 소형화하는 것이 가능한 장점이 있다. 상기 플라즈마 토치에서 발생하는 불꽃 내부의 온도는 10,000℃ 이상이며, 불꽃 외부의 온도도 약 3,000℃ 이상이다. 이러한 고온에 의하여 엔탈피가 매우 높은 기체가 얻어지기 때문에 열분해 반응챔버의 가열에 매우 효과적으로 알려져 있으며, 각종 폐기물 처리에 사용되고 있다. 한편, 열분해 가스화 반응챔버는 외부에서 산소원을 전혀 공급하지 않으면 반응챔버 내부 대상물질에 포함된 산소가 대상물질 내의 탄소, 수소 및 기타 물질들과 반응하여 일산화탄소(CO)나 수증기(H2O) 등으로 전환되면서 소모되고, 결국 고갈되어 최종적으로 탄소분만 남게 되어 숯이 되는 현상이 진행된다. 따라서 숯이 되는 현상을 막고 원활한 가스화 반응을 유도하기 위해 적당한 산소원이 필요하게 되는데 이때 외부에서 공급되는 가스화제가 산소원의 역할을 하도록 외부에서 주입하게 된다.Plasma is a state of a material obtained at a high temperature of several thousand degrees or more by an electric discharge method, and means a state in which molecules or valent ions and electrons are separated. Since the plasma is an ionized gas state, particle acceleration by electric field or the like is easy, so that heating to a high temperature is easy and ultra-high temperatures of hundreds of millions or more can be obtained. In particular, a plasma torch that generates plasma at atmospheric pressure is an apparatus that generates high-temperature plasma by ionizing gas at an arc or high frequency, and thus, a system using a plasma torch has to be treated among various pyrolysis melting systems. Since the amount of emitted gas is only one seventh of the existing incinerator, it is possible to drastically reduce the size of the facility. The temperature inside the flame generated by the plasma torch is at least 10,000 ° C, and the temperature outside the flame is also at least about 3,000 ° C. Due to such a high temperature, a gas having a very high enthalpy is obtained, which is very effective for heating the pyrolysis reaction chamber, and is used for treating various wastes. On the other hand, if the pyrolysis gasification reaction chamber does not supply any oxygen source from the outside, oxygen contained in the target material inside the reaction chamber reacts with carbon, hydrogen, and other substances in the target material, thereby reducing carbon monoxide (CO) or water vapor (H 2 O). It is consumed as it is converted to lamps, and eventually depleted, leaving only carbon content. Therefore, an appropriate oxygen source is needed to prevent the phenomenon of charcoal and to induce a smooth gasification reaction. At this time, the gasifier supplied from the outside is injected from the outside to act as an oxygen source.
이러한 산소원으로 지금까지는 산업계에서는 주로 공기나 스팀(열분해되어 H2와 O2로 분해), 또는 산소 등을 사용하는데 만약 산소를 직접 공급하는 경우에는 반응챔버의 대상물질에 폭발성이 있거나 산화성이 강한 금속일 경우에는 심각한 안전문제가 발생할 수 있으며 대상물이 산소와 친화성이 매우 강할 경우에는 대상물의 탄소와 반응하여 일산화탄소가 생성되기도 전에 금속과 먼저 반응하여 산화금속로 전환되어 버리기 때문이다.As such an oxygen source, until now, the industry mainly uses air, steam (pyrolyzed and decomposed into H 2 and O 2 ), or oxygen. If oxygen is directly supplied, the target material of the reaction chamber is explosive or highly oxidizing. In the case of metal, serious safety problems may occur. If the object has a very high affinity with oxygen, it reacts with the metal before the carbon monoxide is formed and reacts with the metal before it is converted into metal oxide.
한편 대한민국 공개특허 제2012-0033682호는 폐폴리머 절연물 처리장치 및 방법에 관한 것으로, 상기 발명에 따르면 폐폴리머 절연물의 열분해가 일어나는 장치; 열분해 장치와 연결되어 열분해 장치에서 생성된 열분해 가스에 플라즈마를 공급하는 플라즈마 장치; 플라즈마 장치와 연결되어 열분해 가스의 가스화 반응이 일어나는 가스화 반응장치; 가스화 반응장치와 연결되어 가스화 반응으로 얻어진 가스를 냉각시키는 냉각장치; 냉각장치와 연결되어 냉각된 가스를 정제하는 세정장치; 및 세정장치와 연결되어 정제된 가스를 회수하는 가스회수장치를 포함하는 폐폴리머 절연물 처리장치에 대하여 기재하고 있다.On the other hand, the Republic of Korea Patent Publication No. 2012-0033682 relates to a waste polymer insulator processing apparatus and method, according to the present invention is a device for thermal decomposition of the waste polymer insulator; A plasma apparatus connected to the pyrolysis apparatus to supply plasma to the pyrolysis gas generated in the pyrolysis apparatus; A gasification reaction device connected to the plasma apparatus to generate a gasification reaction of the pyrolysis gas; A cooling device connected to the gasification reaction device to cool the gas obtained by the gasification reaction; A cleaning device connected to the cooling device to purify the cooled gas; And a gas recovery device connected to the cleaning device to recover the purified gas.
본 발명의 목적은 안정성이 우수하고, 폐기물 처리속도를 용이하게 조절할 수 있는 플라즈마 열분해를 이용한 폐기물 처리방법을 제공하는 것이다.An object of the present invention is to provide a waste disposal method using plasma pyrolysis, which is excellent in stability and can easily control the waste disposal rate.
본 발명의 다른 목적은 친환경적 효과가 우수한 폐기물 처리방법을 제공하는 것이다.Another object of the present invention is to provide a waste disposal method excellent in environmentally friendly effects.
본 발명의 또 다른 목적은 폐기물에 포함된 금속성분의 산화를 방지할 수 있는 플라즈마 열분해를 이용한 폐기물 처리방법을 제공하는 것이다.Still another object of the present invention is to provide a waste treatment method using plasma pyrolysis capable of preventing oxidation of metal components contained in the waste.
본 발명의 또 다른 목적은 폐기물에 포함된 금속 회수율이 우수한 플라즈마 열분해를 이용한 폐기물 처리방법을 제공하는 것이다.Still another object of the present invention is to provide a waste treatment method using plasma pyrolysis having excellent recovery of metals contained in the waste.
본 발명의 하나의 관점은 플라즈마 열분해를 이용한 폐기물 처리방법에 관한 것이다. 구체에에서 상기 플라즈마 열분해를 이용한 폐기물 처리방법은 처리대상물질을 수용한 반응챔버 내부에 플라즈마 열원을 공급하는 단계; 상기 반응챔버 내부에 가스화제를 공급하여 일산화탄소 및 산소를 생성하는 단계; 및 상기 생성된 산소와 상기 처리대상물질을 열분해하는 단계;를 포함하며, 상기 처리대상물질은 탄소를 포함하며, 상기 반응챔버의 내부온도는 약 950℃ 이상으로 유지되고, 상기 가스화제는 이산화탄소, 질소 및 아르곤을 약 1:0.1~1:0.1~0.5의 부피비로 포함하는 것을 특징으로 한다.One aspect of the present invention relates to a waste treatment method using plasma pyrolysis. In the embodiment, the waste treatment method using plasma pyrolysis may include supplying a plasma heat source into a reaction chamber containing a material to be treated; Supplying a gasifying agent into the reaction chamber to generate carbon monoxide and oxygen; And pyrolyzing the generated oxygen and the material to be treated, wherein the material to be treated includes carbon, the internal temperature of the reaction chamber is maintained at about 950 ° C. or more, and the gasifier is carbon dioxide, And nitrogen and argon in a volume ratio of about 1: 0.1 to 1: 0.1 to 0.5.
한 구체예에서 상기 가스화제는 약 1 bar 내지 약 50 bar의 압력과, 약 5 slpm 내지 약 60 slpm(standard liters per minute)의 유량 조건으로 상기 반응챔버 내부에 공급되는 것을 특징으로 한다.In one embodiment, the gasifier is supplied into the reaction chamber at a pressure of about 1 bar to about 50 bar and a flow rate of about 5 slpm to about 60 slpm (standard liters per minute).
한 구체예에서 상기 가스화제는 가스화제 이송관을 통하여 상기 반응챔버 내부로 공급되는 것을 특징으로 한다.In one embodiment, the gasifier is supplied into the reaction chamber through a gasifier delivery pipe.
한 구체예에서 상기 가스화제에 포함되는 이산화탄소는, 상기 열분해하는 단계에서 상기 반응챔버 내부의 상기 일산화탄소와 산소가 반응하여 생성되는 이산화탄소를 재사용하는 것을 특징으로 한다.In one embodiment, the carbon dioxide included in the gasification agent is characterized in that to reuse the carbon dioxide generated by the reaction of the carbon monoxide and oxygen in the reaction chamber in the thermal decomposition step.
한 구체예에서 상기 처리대상물질은 알루미늄, 마그네슘, 아연, 티타늄 및 이들의 산화물 중에서 하나 이상을 더 포함하는 것을 특징으로 한다.In one embodiment, the material to be treated further includes one or more of aluminum, magnesium, zinc, titanium, and oxides thereof.
본 발명에 따른 플라즈마 열분해를 이용한 폐기물 처리방법을 적용시, 처리 대상 물질이 산소와 반응 초기에 급격히 반응하여 반응챔버 내부에서 폭발하는 위험성을 최소화하여 안정성이 우수하고, 이산화탄소를 가스화제로 사용하거나, 폐기물 처리 공정에서 발생한 이산화탄소를 재활용할 수 있어 친환경적 효과가 우수하고, 폐기물 처리속도를 용이하게 조절할 수 있으며, 처리 대상 물질에 포함된 금속성분의 산화를 방지하며, 폐기물에 포함된 금속 회수율이 우수하여 경제적 효과가 우수하다.When applying the waste treatment method using the plasma pyrolysis according to the present invention, it is excellent in stability by minimizing the risk that the material to be treated rapidly reacts with oxygen and explodes in the reaction chamber, and uses carbon dioxide as a gasifier, It is possible to recycle carbon dioxide generated in the waste treatment process, so it is excellent in eco-friendly effect, can easily control the waste disposal rate, prevents oxidation of the metal components included in the material to be treated, and has excellent recovery rate of metal contained in the waste. Excellent economic effect.
도 1은 본 발명의 한 구체예에 따른 플라즈마 열분해 장치를 나타낸 것이다.1 shows a plasma pyrolysis apparatus according to an embodiment of the present invention.
본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In the following description of the present invention, when it is determined that detailed descriptions of related well-known technologies or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.The terms to be described below are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators, and the definitions should be made based on the contents throughout the present specification for describing the present invention.
본 명세서에서 “처리대상물질”은 “폐기물”을 의미하는 것 일 수 있다.In the present specification, the "subject material" may mean "waste".
본 발명의 하나의 관점은 플라즈마 열분해를 이용한 폐기물 처리방법에 관한 것이다. 한 구체예에서 상기 플라즈마 열분해를 이용한 폐기물 처리방법은 (a) 전처리단계; (b) 처리대상물질 유입단계; (c) 플라즈마 열원 공급단계; (d) 가스화제 반응단계; 및 (e) 열분해단계;를 포함한다. One aspect of the present invention relates to a waste treatment method using plasma pyrolysis. In one embodiment the waste treatment method using the plasma pyrolysis (a) pretreatment step; (b) inflow of the substance to be treated; (c) a plasma heat source supplying step; (d) gasification reaction step; And (e) a pyrolysis step.
한 구체예에서 상기 플라즈마 열분해를 이용한 폐기물 처리방법은 처리대상물질을 수용한 반응챔버 내부에 플라즈마 열원을 공급하는 단계; 상기 반응챔버 내부에 가스화제를 공급하여 일산화탄소 및 산소를 생성하는 단계; 및 상기 생성된 산소와 상기 처리대상물질을 열분해하는 단계;를 포함할 수 있다.In one embodiment, a waste treatment method using plasma pyrolysis may include supplying a plasma heat source into a reaction chamber containing a material to be treated; Supplying a gasifying agent into the reaction chamber to generate carbon monoxide and oxygen; And pyrolyzing the generated oxygen with the treatment target material.
도 1은 본 발명의 한 구체예에 따른 플라즈마 열분해 장치를 나타낸 것이다. 상기 도 1을 참조하면 플라즈마 열분해 장치(1000)는 처리대상물질(40)이 유입되며, 유입관(22)을 통해 처리대상물질을 반응챔버(30)로 유입시키는 유입부(20); 유입관(22)을 통해 유입된 처리대상물질(40)을 플라즈마 및 가스화제를 이용하여 열분해하여 처리하는 반응챔버(30); 가스화제 공급관(52)을 통하여 가스화제를 반응챔버(30) 내부로 공급하는 가스화제 공급부(50); 및 가스 배출관(62)을 통하여 상기 열분해시 반응챔버(30) 내부에서 발생하는 가스를 수집하는 가스 수집부(60)를 포함하고, 상기 반응챔버(30)는 플라즈마를 공급하는 플라즈마 토치(10); 처리대상물질(40)의 열분해 처리후 생성된 고형의 처리물질을 처리물질 배출구(32); 반응챔버(30) 내부온도를 측정하는 온도계(34);를 포함할 수 있다.1 shows a plasma pyrolysis apparatus according to an embodiment of the present invention. Referring to FIG. 1, the plasma pyrolysis apparatus 1000 includes an inlet 20 through which an object to be treated 40 is introduced, and an object to be introduced into the reaction chamber 30 through an inlet pipe 22; A reaction chamber 30 which thermally decomposes the treatment target material 40 introduced through the inlet pipe 22 using a plasma and a gasifier; A gasifier supply unit 50 for supplying a gasifier into the reaction chamber 30 through the gasifier supply pipe 52; And a gas collecting unit 60 collecting gas generated in the reaction chamber 30 during the thermal decomposition through a gas discharge pipe 62. The reaction chamber 30 includes a plasma torch 10 for supplying plasma. ; A solid treatment material generated after the thermal decomposition treatment of the treatment target material 40 with the treatment material outlet 32; And a thermometer 34 measuring an internal temperature of the reaction chamber 30.
이하, 본 발명에 따른 플라즈마 열분해를 이용한 폐기물 처리방법을 단계별로 상세히 설명한다.Hereinafter, the waste treatment method using plasma pyrolysis according to the present invention will be described in detail step by step.
(a) 전처리단계(a) pretreatment step
상기 단계는 처리대상물질(40)을 유입부(20)로 유입하기 전에 전처리하는 단계이다. 구체예에서 상기 전처리 단계는 처리대상물질을 세정하는 단계; 상기 세정된 처리대상물질을 건조하는 단계; 및 상기 건조된 처리대상물질을 분쇄하는 단계;를 포함할 수 있다.The step is a step of pretreating the material 40 to be treated before entering the inlet 20. In embodiments, the pretreatment step includes the steps of: cleaning the material to be treated; Drying the cleaned material; And pulverizing the dried material to be treated.
구체예에서 상기 처리대상물질을 세정기(도시되지 않음)에 투입하여 물 및 세정제를 이용하여 이물질을 제거하고, 상기 이물질이 제거된 처리대상물질을 건조기(도시되지 않음)로 이송하여 건조하여 수분을 제거하고, 그리고 상기 건조된 처리대상물질을 분쇄기(도시되지 않음)로 이송하여 소정의 크기로 분쇄(초핑)하여 전처리 하여 유입부(20)에 투입하고 유입관(22)을 통하여 상기 전처리된 처리대상물질을 반응챔버(30) 내부로 유입시킬 수 있다.In an embodiment, the substance to be treated is introduced into a washing machine (not shown) to remove foreign substances using water and a detergent, and the substance to be removed is transferred to a dryer (not shown) and dried to remove moisture. Remove and transfer the dried object to a pulverizer (not shown) to pulverize (chop) it into a predetermined size and pretreat it to the inlet 20 and the pretreated treatment through the inlet pipe 22. The target material may be introduced into the reaction chamber 30.
구체예에서 상기 처리대상물질은 약 0.1mm 내지 약 5mm 크기로 분쇄될 수 있다. 본 명세서에서 상기 처리대상물질의 “크기”는“최장길이”를 의미하는 것으로 정의한다.In embodiments, the treatment material may be ground to a size of about 0.1mm to about 5mm. In the present specification, "size" of the material to be treated is defined as meaning "longest length".
상기와 같이 세정단계, 건조단계 및 분쇄단계를 포함하여 상기 처리대상물질을 전처리시 상기 처리대상물질에 포함된 이물질이 용이하게 제거되고, 상기 처리대상물질의 단위 체적당 중량을 증대시켜 보다 효율적인 폐기물 처리를 수행할 수 있다. 다른 구체예에서는 상기 유입부에서 자기력 또는 회전력을 이용하여 상기 처리대상물질에 부착된 이물을 제거할 수 있다.As described above, when pretreatment of the material to be treated, including the cleaning step, the drying step, and the crushing step, foreign substances contained in the material to be treated are easily removed, and the weight per unit volume of the material to be treated is more efficient. Processing can be performed. In another embodiment, foreign matter attached to the material to be treated may be removed using magnetic or rotational force at the inlet.
(b) 처리대상물질 유입단계(b) Inflow stage of treatment material
상기 단계는 플라즈마 열분해 장치(1000)에 포함된 반응챔버(30) 내부에 처리대상물질을 유입하여 수용시키는 단계이다.In this step, the material to be treated is introduced into the reaction chamber 30 included in the plasma pyrolysis apparatus 1000.
한 구체예에서 상기 처리대상물질은 탄소를 포함하여, 후술할 가스화제가 반응챔버 내부에서 플라즈마에 의해 분해되어 생성되는 산소와 반응하여 처리된다. 다른 구체예에서 상기 처리대상물질은 알루미늄, 마그네슘, 아연, 티타늄 및 이들의 산화물 중에서 하나 이상의 금속성분을 포함할 수 있다.In one embodiment, the material to be treated includes carbon, and the gasification agent to be described below is treated by reacting with oxygen generated by decomposition of the plasma in the reaction chamber. In another embodiment, the material to be treated may include at least one metal component among aluminum, magnesium, zinc, titanium, and oxides thereof.
상기와 같은 금속성분을 포함하는 처리대상물질(40)을 열분해 처리시, 반응 초기에 산소가 발생시키지 않아 반응챔버(30) 내부에서 처리대상물질(40)에 포함된 금속성분이 초기부터 산소와 반응하여 산화되는 현상을 방지할 수 있고, 탄소 및 산소가 반응하여 처리대상물질(40)의 열분해시 상기 금속성분을 용이하게 회수할 수 있어, 경제적 효과가 우수할 수 있다.When pyrolysis treatment of the treatment target material 40 including the metal component as described above, oxygen is not generated in the initial stage of the reaction, and thus the metal components included in the treatment target material 40 in the reaction chamber 30 are initially separated from oxygen. The reaction may be prevented from being oxidized, and carbon and oxygen may react to easily recover the metal component during thermal decomposition of the material 40 to be treated, and thus may have an excellent economic effect.
구체예에서는 처리대상물질(40)로서 탄소를 포함하는 합성수지, 알루미늄(Al) 및 산화알루미늄(Al2O3, Al2O4)을 포함하는 포장재를 적용할 수 있다. 상기 합성수지는 폴리프로필렌(polyprophylene) 및 폴리에틸렌(polyethylene) 등을 포함할 수 있다. 한편, 상기 포장재는 스낵류 및 커피믹스의 포장재와 같이 약 100㎛ 내지 약 500㎛ 두께의 폴리프로필렌 또는 폴리에틸렌과 같은 합성수지 기재상 약 10㎛ 내지 약 50㎛의 두께의 알루미늄을 적층하고, 상기 알루미늄 층의 표면에는 공기와의 접촉에 의한 산화막, 즉 산화알루미늄(알루미나) 층이 형성되어 치밀한 표면 구성 및 산화 방지층으로 형성되어 사용되고 있다.In a specific embodiment, a package including synthetic resin containing carbon, aluminum (Al), and aluminum oxide (Al 2 O 3 , Al 2 O 4 ) may be used as the material 40 to be treated. The synthetic resin may include polypropylene (polyprophylene) and polyethylene (polyethylene). On the other hand, the packaging material, such as packaging for snacks and coffee mixes laminated aluminum of about 10 ㎛ to about 50 ㎛ thickness on a synthetic resin substrate such as polypropylene or polyethylene of about 100 ㎛ to about 500 ㎛ thick, An oxide film, that is, an aluminum oxide (alumina) layer formed by contact with air is formed on the surface, and is formed by using a dense surface structure and an antioxidant layer.
(c) 플라즈마 열원 공급단계(c) plasma heat source supply step
상기 단계는 처리대상물질(40)을 수용한 반응챔버(30) 내부에 플라즈마 토치(10)를 통해 플라즈마 열원을 주입하는 단계이다. The step is injecting a plasma heat source through the plasma torch 10 into the reaction chamber 30 containing the material to be treated 40.
본 발명에서 플라즈마 토치(10)는 통상적인 것을 사용할 수 있다. 상기 플라즈마 토치(10)는 전기적 에너지를 아크로 발생하여 열에너지로 전환하여, 플라즈마 발생으로 인해 반응챔버(30) 내부에 지속적 열에너지를 공급하여, 반응챔버(30) 내부 온도를 약 950℃이상의 온도로 상승시켜 열분해 반응을 진행시키는 역할을 한다.In the present invention, the plasma torch 10 may be a conventional one. The plasma torch 10 generates electrical energy as an arc and converts the thermal energy into thermal energy, thereby continuously supplying thermal energy into the reaction chamber 30 due to plasma generation, thereby raising the temperature inside the reaction chamber 30 to a temperature of about 950 ° C. or more. It serves to advance the pyrolysis reaction.
플라즈마 토치(10)에 공급하는 가스는 DC 아크를 형성하는 플라즈마 토치의 구조에 따라 다르나, 한 구체예에서 불활성 가스인 질소와, 공기 및 스팀 중에서 하나 이상 선택하여 사용할 수 있다. 다른 구체예에서는 헬륨 및 아르곤 중에서 하나 이상 선택하여 사용할 수 있다. 상기 헬륨 및 아르곤 가스를 사용시 보다 고온을 발생시킬 수 있다.The gas supplied to the plasma torch 10 depends on the structure of the plasma torch forming the DC arc, but in one embodiment, one or more selected from inert gas, nitrogen, air and steam may be used. In other embodiments, one or more of helium and argon may be selected and used. When using helium and argon gas can generate a higher temperature.
(d) 가스화제 공급단계(d) gasifier supply stage
상기 단계는 처리대상물질(40)이 수용된 반응챔버(30) 내부에 가스화제를 공급하여 일산화탄소 및 산소를 생성하는 단계이다. 본 발명에서 상기 가스화제에 포함된 이산화탄소는 약 950℃ 이상의 조건에서 하기 식 1과 같은 반응에 의해 일산화탄소 및 산소를 생성한다:In this step, the gasification agent is supplied into the reaction chamber 30 in which the treatment target material 40 is accommodated to generate carbon monoxide and oxygen. In the present invention, the carbon dioxide included in the gasifier generates carbon monoxide and oxygen by a reaction as shown in Equation 1 below at a temperature of about 950 ° C. or higher:
[식 1][Equation 1]
Figure PCTKR2015005761-appb-I000001
Figure PCTKR2015005761-appb-I000001
본 발명에서 상기 가스화제는 이산화탄소, 질소 및 아르곤을 약 1:0.1~1:0.1~0.5의 부피비로 포함한다. 상기 부피비로 포함시 반응처리속도를 용이하게 조절할 수 있으며, 반응챔버 내부를 안정하게 유지하여 처리시 안정성이 더욱 우수하고, 처리대상물질에 산화성 강한 금속이 포함되는 경우, 산화금속이 형성되는 것을 최소화하여 금속의 회수율이 우수하여 경제적 효과가 우수할 수 있다. 상기 이산화탄소에 대하여, 상기 질소가 상기 이산화탄소 부피에 대하여, 약 0.1 부피비 미만으로 포함되는 경우, 상기 반응챔버 내부가 불안정해져 폭발위험성이 증가하며, 상기 질소가 상기 이산화탄소 부피에 대하여, 약 1 부피비를 초과하여 포함시, 폐기물 처리 반응이 용이하게 진행되기 어렵게 된다. 또한 상기 이산화탄소 부피에 대하여 상기 아르곤이 상기 이산화탄소 부피에 대하여, 약 0.1 부피비 미만으로 포함되는 경우, 상기 반응챔버 내부가 불안정해져 폭발위험성이 증가하며, 상기 아르곤이 상기 이산화탄소 부피에 대하여, 약 0.5 부피비를 초과하여 포함되는 경우 반응챔버 내부 온도가 지나치게 상승하게 되어 금속성분이 포함되는 경우 회수율이 저하될 수 있다.In the present invention, the gasifier comprises carbon dioxide, nitrogen and argon in a volume ratio of about 1: 0.1 to 1: 0.1 to 0.5. When included in the volume ratio, it is possible to easily control the reaction treatment speed, to maintain a stable inside the reaction chamber is more excellent in the stability during treatment, if the material to be treated with a highly oxidizing metal, to minimize the formation of metal oxide Therefore, the recovery rate of the metal may be excellent and the economic effect may be excellent. With respect to the carbon dioxide, when the nitrogen is contained in less than about 0.1 volume ratio relative to the carbon dioxide volume, the inside of the reaction chamber is unstable to increase the explosion risk, the nitrogen is greater than about 1 volume ratio relative to the carbon dioxide volume When included, the waste treatment reaction is difficult to proceed easily. In addition, when the argon is contained in less than about 0.1% by volume relative to the carbon dioxide volume, the inside of the reaction chamber is unstable to increase the explosion risk, the argon is about 0.5% by volume relative to the carbon dioxide volume When included in excess, the reaction chamber internal temperature is excessively increased so that the recovery rate may be lowered when the metal component is included.
예를 들면 상기 가스화제는 이산화탄소, 질소 및 아르곤을 약 1:0.5~1:0.1~0.3의 부피비로 포함할 수 있다. 상기 부피비로 포함시 반응챔버 내부를 안정하게 유지하며, 금속의 회수율이 우수할 수 있다.For example, the gasification agent may include carbon dioxide, nitrogen, and argon in a volume ratio of about 1: 0.5 to 1: 0.1 to 0.3. When included in the volume ratio to maintain a stable inside the reaction chamber, the recovery rate of the metal may be excellent.
본 발명의 폐기물 처리 반응이 진행되는 반응챔버(30)는, 상기 폐기물 처리 반응이 이루어지는 동안 약 950℃ 이상으로 내부온도를 유지한다. 상기 반응챔버(30) 내부 온도가 약 950℃ 미만인 경우, 상기 식 1의 반응이 발생하지 않게 된다. 예를 들면 상기 반응챔버(30) 내부 온도는 약 950℃ 내지 약 1,900℃를 유지할 수 있다. 구체예에서는 약 1,350℃ 내지 약 1,800℃를 유지할 수 있다. 상기 범위의 온도에서 상기 가스화제에 포함된 이산화탄소가 상기 식 1의 반응에 의해 일산화탄소 및 산소가 발생되어 폐기물의 열분해 반응이 용이하게 진행되며, 전술한 탄소 및 금속 성분이 포함된 열분해 반응이 용이하게 이루어질 수 있다. 상기 반응챔버(30) 내부 온도가 약 950℃ 미만인 경우, 상기 식 1의 반응이 발생하지 않게 된다.The reaction chamber 30 in which the waste treatment reaction of the present invention proceeds maintains the internal temperature at about 950 ° C. or more during the waste treatment reaction. When the internal temperature of the reaction chamber 30 is less than about 950 ° C, the reaction of Equation 1 does not occur. For example, the temperature inside the reaction chamber 30 may be maintained at about 950 ° C to about 1,900 ° C. In embodiments, it may be maintained from about 1,350 ℃ to about 1,800 ℃. Carbon monoxide and oxygen generated in the gasifier at the temperature range of the above range is generated by the reaction of the formula 1 to facilitate the pyrolysis reaction of the waste, the pyrolysis reaction containing the above-described carbon and metal components easily Can be done. When the internal temperature of the reaction chamber 30 is less than about 950 ° C, the reaction of Equation 1 does not occur.
상기와 같이 가스화제에 이산화탄소를 포함시, 열분해 반응 초기에 산소가 처리대상물질과 급격히 반응하여 폭발하는 현상을 방지할 수 있어, 특히 폭발성이 있는 처리대상물질의 열분해시 안정적으로 처리할 수 있다. 특히 기존의 가스화제는 주로 산소 및 스팀을 사용하였는데, 이와 같은 가스화제를 사용하는 경우 처리대상물질이 탄소와, 알루미늄, 마그네슘, 아연 및 티타늄 중에서 하나 이상의 산화성이 강한 금속성분을 포함하는 경우 반응 초기부터 산소와 금속성분이 반응하여 산화금속으로 되기 때문에, 처리대상물질에 포함된 금속회수율이 크게 저하되는 문제점이 있었으나 상기와 같은 이산화탄소를 가스화제로 적용시 산소와 금속성분이 반응 초기부터 반응하지 않아 금속 회수율을 높일 수 있어 반응의 안정서 및 경제적 효과가 동시에 우수하다.When carbon dioxide is included in the gasification agent as described above, oxygen may rapidly react with the material to be treated and explode at the initial stage of the pyrolysis reaction, and thus it may be stably treated during thermal decomposition of the material to be exploded. In particular, the existing gasification agent mainly used oxygen and steam. When using such a gasification agent, the initial reaction is performed when the material to be treated contains carbon and one or more oxidizing metal components among aluminum, magnesium, zinc and titanium. Since oxygen and metal components react to form metal oxides, the metal recovery rate contained in the material to be treated has been greatly reduced. However, when carbon dioxide is used as a gasification agent, oxygen and metal components do not react from the beginning of the reaction. It is possible to increase the metal recovery rate, so the stability and economic effect of the reaction are excellent.
한 구체예에서 상기 가스화제는 약 350℃ 이상의 온도로 공급될 수 있다. 예를 들면, 약 350℃ 내지 약 800℃의 온도로 공급될 수 있다. 상기 온도로 공급시, 반응챔버(30) 내부의 갑작스러운 온도저하를 방지하여 용이하게 열분해 반응을 진행할 수 있다.In one embodiment, the gasifier may be supplied at a temperature of about 350 ° C or more. For example, it may be supplied at a temperature of about 350 ℃ to about 800 ℃. When supplied at the temperature, it is possible to easily proceed with the pyrolysis reaction by preventing a sudden temperature drop inside the reaction chamber (30).
또한, 상기 가스화제는 약 1 bar 내지 약 50 bar의 압력과, 약 5 slpm 내지 약 60 slpm(standard liters per minute)의 유량 조건으로 상기 반응챔버 내부에 공급할 수 있다. 상기 압력 및 유량 조건으로 공급시 상기 가스화제가 상기 처리대상물질과 급격하게 반응하여 폭발하는 것을 방지하면서, 열분해 속도를 용이하게 조절할 수 있다.In addition, the gasifier may be supplied into the reaction chamber at a pressure of about 1 bar to about 50 bar and a flow rate of about 5 slpm to about 60 slpm (standard liters per minute). When the gasification agent is supplied under the pressure and flow rate conditions, it is possible to easily control the pyrolysis rate while preventing the gasification agent from rapidly reacting and exploding.
구체예에서 상기 가스화제는 질소, 아르곤 및 헬륨 중에서 하나 이상의 불활성 기체를 더 포함할 수 있다. 상기 종류의 기체를 더 포함하는 경우, 상기 가스화제의 이산화탄소로부터 발생하는 산소 및 처리대상물질(40)의 급격한 초기반응을 방지하고, 열분해 반응시의 안정성이 더욱 우수하며, 처리대상물질(40)과 산소의 열분해의 반응 속도 또한 용이하게 조절할 수 있다.In embodiments, the gasifier may further comprise one or more inert gases from nitrogen, argon and helium. When further comprising the gas of the kind, to prevent the rapid initial reaction of the oxygen and the target material 40 generated from the carbon dioxide of the gasifier, the stability during the pyrolysis reaction is more excellent, the target material 40 The reaction rate of pyrolysis of and oxygen can also be easily controlled.
다른 구체예에서 상기 가스화제는 헬륨을 더 포함할 수 있다. 구체예에서 이산화탄소, 탄소, 질소, 아르곤 및 헬륨을 약 1:0.1~1:0.1~0.5:0.01~0.1의 부피비로 포함할 수 있다. 상기 부피비로 포함시, 반응처리속도를 용이하게 조절할 수 있으며, 반응 안정성이 더욱 우수하고, 금속의 회수율이 우수하여 경제적 효과가 우수할 수 있다. 예를 들면 약 1:0.5~1:0.1~0.3:0.01~0.5의 부피비로 포함할 수 있다.In another embodiment the gasifier may further comprise helium. In embodiments, carbon dioxide, carbon, nitrogen, argon, and helium may be included in a volume ratio of about 1: 0.1 to 1: 0.1 to 0.5: 0.01 to 0.1. When included in the volume ratio, it is possible to easily control the reaction treatment rate, the reaction stability is more excellent, the recovery rate of the metal can be excellent and the economic effect can be excellent. For example, it may be included in a volume ratio of about 1: 0.5 to 1: 0.1 to 0.3: 0.01 to 0.5.
상기 도 1을 참조하면, 한 구체예에서 상기 가스화제는 가스화제 공급부(50)에서 공급되며, 가스화제 이송관(52)을 통하여 반응챔버(30) 내부로 공급될 수 있다. 다른 구체예에서 상기 가스화제는 플라즈마 토치(10)를 통해 상기 플라즈마와 함께 반응챔버(30) 내부로 공급될 수 있다.Referring to FIG. 1, in one embodiment, the gasifier is supplied from the gasifier supply unit 50, and may be supplied into the reaction chamber 30 through the gasifier transfer pipe 52. In another embodiment, the gasifier may be supplied into the reaction chamber 30 together with the plasma through the plasma torch 10.
(e) 열분해단계(e) pyrolysis step
상기 단계는 플라즈마 및 가스화제 반응단계에서 생성된 산소를 이용하여 상기 반응챔버 내부의 처리대상물질을 열분해하는 단계이다.The step is to thermally decompose the material to be treated in the reaction chamber using oxygen generated in the plasma and gasifier reaction steps.
구체예에서 탄소를 포함하는 처리대상물질(40)과 상기 생성된 산소가 하기 식 2와 같이 반응하여 부분 연소 반응이 이루어져 가스화 반응이 발생하여, 열분해된다:In an embodiment, the material 40 to be treated with carbon reacts with the generated oxygen as shown in Equation 2 to generate a partial combustion reaction to generate a gasification reaction, thereby pyrolyzing:
[식 2][Equation 2]
Figure PCTKR2015005761-appb-I000002
Figure PCTKR2015005761-appb-I000002
즉, 투입된 처리대상물질은 산소에 의해 상기 식 2와 같이 열분해되어, 합성가스 및 처리물질을 생성할 수 있다. 상기 처리물질은 액체상태 또는 고체상태 일 수 있다. 예를 들면, 처리대상물질 중에서 탄소를 포함하는 성분(예를 들면, 셀룰로오스나 올레핀계의 고분자 화합물)은 열분해에 의해 분자가 분해되어(molecular dissociation) 고온의 일산화탄소(CO) 및 수소(H2) 등을 포함하는 환원성 합성가스(syngas)와, 액체상 불순물 또는 고체상 불순물이 생성될 수 있다.That is, the injected treatment target material may be thermally decomposed by oxygen as in Equation 2 to generate a synthesis gas and a treatment material. The treatment material may be in a liquid state or a solid state. For example, carbon-containing components (eg, cellulose or olefin-based high molecular compounds) in the object to be treated are thermally decomposed to form molecules (molecular dissociation), and thus, carbon monoxide (CO) and hydrogen (H 2 ) at high temperatures. Reducing syngas, including the like, and liquid or solid impurities may be generated.
상기 도 1을 참조하면, 상기 생성된 합성가스는 가스 배출관(62)을 통해 가스 수집부(60)으로 이송되어 회수되며, 상기 생성된 처리물질은 반응챔버(30)의 하단부에 남아있게 되며, 반응챔버(30) 하단부에 위치하는 처리물질 배출구(32)를 통하여 회수될 수 있다.Referring to FIG. 1, the generated syngas is transferred to a gas collecting unit 60 through a gas discharge pipe 62 and recovered, and the generated processed material remains at the lower end of the reaction chamber 30. It may be recovered through the treatment material outlet 32 located at the lower end of the reaction chamber (30).
구체예에서, 상기 처리대상물질이 합성수지, 알루미늄(Al) 및 산화알루미늄(Al2O3, Al2O4)을 포함하는 경우, 상기 합성수지는 열분해되어 일산화탄소(CO) 및 수소(H2) 등의 환원성 합성가스가 생성된다. 상기 알루미늄은 상기 발생된 산소에 의해 열분해 되어 상기 반응챔버(30) 내부의 하부에 배치된다. 즉, 지속적인 열원에 의하여 상기 반응챔버(30)의 온도가 약 950℃이상, 예를 들면, 약 950℃ 내지 약 1,900℃의 온도로 유지되면서, 상기 알루미늄은 용융되어 반응챔버(30) 하부 바닥에 수용되어, 처리물질 배출구(32)로 배출되어 용이하게 회수할 수 있다.In embodiments, when the material to be treated includes synthetic resin, aluminum (Al) and aluminum oxide (Al 2 O 3 , Al 2 O 4 ), the synthetic resin is thermally decomposed to carbon monoxide (CO) and hydrogen (H 2 ), etc. Reducing syngas is produced. The aluminum is thermally decomposed by the generated oxygen and disposed below the inside of the reaction chamber 30. That is, while the temperature of the reaction chamber 30 is maintained at a temperature of about 950 ° C. or more, for example, about 950 ° C. to about 1,900 ° C. by the continuous heat source, the aluminum is melted to the bottom of the reaction chamber 30. It is accommodated and discharged to the treatment material outlet 32 so that it can be easily recovered.
또한, 상기 산화알루미늄은 상기 합성수지의 열분해 과정에서 생성된 일산화탄소(CO) 및 수소(H2) 등의 합성가스에 의하여 반응챔버(30) 내부의 환원 분위기가 형성되는데, 지속적으로 공급되는 플라즈마 열원에 의하여 흡열반응이 형성됨으로써, 하기 식 3 또는 식 4와 같은 반응 과정을 통하여 알루미늄으로 환원되며, 이산화탄소(CO2) 및 수증기(H2O) 등의 가스가 생성된다:In addition, the aluminum oxide is formed by the synthesis gas, such as carbon monoxide (CO) and hydrogen (H 2 ) generated during the pyrolysis of the synthetic resin is formed in the reducing atmosphere in the reaction chamber 30, the plasma heat source is continuously supplied By the endothermic reaction is formed, it is reduced to aluminum through a reaction process such as the following Equation 3 or 4, to produce gases such as carbon dioxide (CO 2 ) and water vapor (H 2 O):
[식 3][Equation 3]
Figure PCTKR2015005761-appb-I000003
Figure PCTKR2015005761-appb-I000003
[식 4][Equation 4]
Figure PCTKR2015005761-appb-I000004
Figure PCTKR2015005761-appb-I000004
상기와 같은 반응 과정은 모두 흡열반응으로서 각 물질의 생성엔탈피는 Al2O3=-387.1865Kcal/mol, Al2=0Kcal/mol, H2=0Kcal/mol, CO=-26.407Kcal/mol, CO2=-94.1kcal/mol, H2O=-57.8kcal/mol이고 Al2O3의 분자량은 101.96g/mol, Al2의 분자량은 53.96g/mol이므로, 상기 식 3의 E1=-193.98kcal/mol이고, 상기 식 4의 E2=-203.87kcal/mol이다. 상기 식 3 및 식 4로 표현되는 반응 과정은 일산화탄소(CO)와 수소(H2)의 농도에 따라 비례하는데, 동일 환경 하에서의 이들은 동일 내지 유사한 값을 가지므로 대략 50:50의 비율로 각각의 반응이 이루어진다고 볼 수 있다. 따라서, 이들 흡열 반응을 위하여 평균 E=-198.925kcal/mol로 산출될 수 있는데, 1 mol 당 산화알루미늄을 알루미늄으로 환원시키기 위하여 대략 198.925kcal의 에너지가 소요되므로 각각의 분자량을 고려할 경우 알루미나(Al2O3) 1kg 당 대략 2000kcal의 에너지가 요구되고 이로 인하여 약 0.529kg의 알루미늄(Al)을 회수할 수 있다. 즉, 처리대상물질에 포함된 플라즈마 열분해 가스화 과정을 통하여 생성된 CO 및 H2의 부피비를 적절하게 조절함으로써 소정의 환원 분위기 하에서의 산화알루미늄의 환원 과정이 수행되고 원활하게 산화알루미늄의 열분해가 이루어질 수 있다. 이와 같은 환원 용융과정을 통하여 과도하지 않은 에너지를 공급하면서도 알루미늄을 포함하는 포장재로부터의 알루미늄 회수율을 극대화시켜 자원 회수의 효율성을 증대시킬 수 있다.All of the above reaction processes are endothermic, and the enthalpy of formation of each material is Al 2 O 3 = -387.1865 Kcal / mol, Al 2 = 0 Kcal / mol, H 2 = 0 Kcal / mol, CO = -26.407 Kcal / mol, CO 2 = -94.1 kcal / mol, H 2 O = -57.8 kcal / mol, the molecular weight of Al 2 O 3 is 101.96 g / mol, the molecular weight of Al 2 is 53.96 g / mol, E1 = -193.98 kcal / mol, and E2 of the formula (4) is -203.87 kcal / mol. The reaction process represented by Equation 3 and Equation 4 is proportional to the concentrations of carbon monoxide (CO) and hydrogen (H 2 ), and under the same environment, each reaction is approximately 50:50 because they have the same to similar values. This can be seen as done. Therefore, for these endothermic reactions, an average E = -198.925 kcal / mol can be calculated, and an energy of approximately 198.925 kcal is required to reduce aluminum oxide to aluminum per mol, so considering the molecular weight of each alumina (Al 2 O 3 ) Approximately 2000 kcal of energy is required per kilogram, which can recover about 0.529 kg of aluminum (Al). That is, by appropriately adjusting the volume ratio of CO and H 2 generated through the plasma pyrolysis gasification process included in the material to be treated, the reduction process of aluminum oxide under a predetermined reducing atmosphere may be performed and the thermal decomposition of aluminum oxide may be smoothly performed. . Through such a reduction melting process, while maximizing the recovery of aluminum from the packaging material containing aluminum while supplying excessive energy, the efficiency of resource recovery can be increased.
상기 산화알루미늄 등의 산화 금속의 열분해시 발생하는 CO2 및 H2O 등의 합성가스 또한 전술한 바와 같이 가스 배출관(62)을 통해 가스 수집부(60)으로 이송되어 회수되며, 상기 생성된 알루미늄을 포함하는 처리물질은 반응챔버(30)의 하단부에 남아있게 되며, 반응챔버(30) 하단부에 위치하는 처리물질 배출구(32)를 통하여 회수될 수 있다.Synthetic gas such as CO 2 and H 2 O generated during thermal decomposition of the metal oxide such as aluminum oxide is also transferred to the gas collection unit 60 through the gas discharge pipe 62 and recovered as described above. The treatment material including the remains at the lower end of the reaction chamber 30, it may be recovered through the treatment material outlet 32 located at the lower end of the reaction chamber (30).
구체예에서 상기 이산화탄소(CO2), 수증기(H2O), 일산화탄소(CO) 및 수소(H2) 합성가스는 가스 엔진 또는 터빈 발전 등에 사용되기 전에 온도를 약 200℃ 미만으로 냉각시킬 수 있다. 상기 온도로 냉각시 예를 들어 일산화탄소의 부분적으로 연소되는 성분이 완전하고 효율적으로 연소되게 한다. 다른 구체예에서 가스 수집부(60)와 연결되는 열교환부(도시되지 않음)를 더 포함하여, 상기 합성가스의 열을 다른 종류의 가스로 전달하여 냉각된다면, 상기 합성가스의 열을 전달받은 가스는, 부가적 전력생산을 위한 스팀 터빈 등을 가열하는데 이용될 수도 있다.In embodiments, the carbon dioxide (CO 2 ), water vapor (H 2 O), carbon monoxide (CO) and hydrogen (H 2 ) syngas may cool the temperature below about 200 ° C. before being used for gas engine or turbine power generation, and the like. . Cooling to this temperature allows, for example, the partially combusted components of carbon monoxide to be burned completely and efficiently. In another embodiment, further comprising a heat exchanger (not shown) connected to the gas collecting unit 60, if the heat of the syngas is transferred to another type of gas and cooled, the gas receiving the heat of the syngas May be used to heat a steam turbine or the like for additional power production.
한편, 상기 가스화제에 포함되는 이산화탄소는, 상기 열분해하는 단계에서 상기 반응챔버 내부에 존재하는 상기 일산화탄소와 산소가 반응하여 생성되는 이산화탄소를 재사용할 수 있다.On the other hand, the carbon dioxide included in the gasifier may reuse the carbon dioxide generated by the reaction of the carbon monoxide and oxygen present in the reaction chamber in the thermal decomposition step.
상기 열분해단계에서 하기 식 5와 같은 반응에 의해, 상기 반응챔버 내부에 포함되는 일산화탄소는 상기 산소와 반응하여 이산화탄소를 생성할 수 있다:In the pyrolysis step, by the reaction as shown in Equation 5, carbon monoxide included in the reaction chamber may react with the oxygen to generate carbon dioxide:
[식 5][Equation 5]
Figure PCTKR2015005761-appb-I000005
Figure PCTKR2015005761-appb-I000005
이때, 상기 산소와 반응하는 일산화탄소는 전술한 가스화제에 포함된 이산화탄소로부터 생성되거나, 상기 열분해시 탄소 및 산소가 반응하여 생성된 것일 수 있다.In this case, the carbon monoxide reacting with the oxygen may be generated from carbon dioxide included in the above-described gasification agent, or may be generated by reaction of carbon and oxygen during the thermal decomposition.
상기 식 2와 같이 생성된 이산화탄소는 전술한 바와 같이 가스 배출관(62)을 통해 가스 수집부(60)으로 이송되어 회수되고, 통상적인 방법을 사용하여로 정제된 다음, 상기 가스화제 공급부(50)로 이송되어, 가스화제 이송관(52)을 통해 다시 반응챔버 내로 공급되어 재활용 될 수 있다. 상기와 같이 이산화탄소를 재활용시 경제적 효과가 우수할 수 있다.The carbon dioxide generated as shown in Equation 2 is transferred to the gas collecting unit 60 through the gas discharge pipe 62 and recovered as described above, and is purified by using a conventional method, and then the gasifier supply unit 50. Is transferred to the gasification feed pipe (52) to be fed back into the reaction chamber can be recycled. As described above, the economic effect of recycling carbon dioxide may be excellent.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
또한, 본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.In addition, simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.
실시예 및 비교예Examples and Comparative Examples
실시예Example
상기 도 1과 같이 처리대상물질(40)이 유입되며, 유입관(22)을 통해 처리대상물질을 반응챔버(30)로 유입시키는 유입부(20); 가스화제 공급관(52)을 통하여 가스화제를 반응챔버(30) 내부로 공급하는 가스화제 공급부(50); 가스 배출관(62)을 통하여 상기 열분해시 반응챔버(30) 내부에서 발생하는 가스를 수집하는 가스 수집부(60); 및 플라즈마를 공급하는 플라즈마 토치(10); 처리대상물질(40)의 열분해 처리후 생성된 고형의 처리물질을 처리물질 배출구(32); 반응챔버(30) 내부온도를 측정하는 온도계(34);를 포함하며, 유입관(22)을 통해 유입된 처리대상물질(40)을 플라즈마 및 가스화제를 이용하여 열분해하여 처리하는 반응챔버(30);를 포함하는 플라즈마 열분해 장치(1000)를 이용하여 열분해 반응을 진행하였다.The inlet 20 for introducing the treatment target material 40 as shown in FIG. 1 and introducing the treatment target material into the reaction chamber 30 through the inlet pipe 22; A gasifier supply unit 50 for supplying a gasifier into the reaction chamber 30 through the gasifier supply pipe 52; A gas collecting unit 60 collecting gas generated in the reaction chamber 30 during the thermal decomposition through a gas discharge pipe 62; And a plasma torch 10 for supplying plasma; A solid treatment material generated after the thermal decomposition treatment of the treatment target material 40 with the treatment material outlet 32; Reaction chamber 30 includes a thermometer (34) for measuring the internal temperature; the reaction chamber 30 for thermally decomposing the treatment target material 40 introduced through the inlet pipe 22 using a plasma and gasifier The pyrolysis reaction was performed using the plasma pyrolysis apparatus 1000 including the same.
처리대상물질(40)로서 알루미늄(Al) 30 중량%, 산화알루미늄(Al2O3 및 Al2O4) 15 중량% 및 폴리에틸렌 55 중량%를 포함하는 포장재 1kg을 유입부(20)에 투입하고, 유입관(22)을 통해 반응챔버(30) 내부에 위치하여 수용시켰다. 질소 가스를 DC 아크를 형성하는 플라즈마 토치(10)에 공급하여 발생된 플라즈마를 이용하여 반응챔버(30) 내부의 내부온도를 1,600℃로 유지하도록 제어하면서, 가스화제로 이산화탄소, 질소 및 아르곤을 1:0.3:0.5의 부피비로 혼합하여, 700℃의 온도, 5 bar의 압력 및 30slpm의 유량으로 반응챔버(30) 내부로 공급하였다. 반응챔버(30) 내부에서 가스화제는 하기 식 1의 반응에 의해 일산화탄소 및 산소를 생성하였다:1 kg of a packaging material containing 30 wt% of aluminum (Al), 15 wt% of aluminum oxides (Al 2 O 3 and Al 2 O 4 ) and 55 wt% of polyethylene as the material 40 to be treated is introduced into the inlet 20. , Was placed in the reaction chamber 30 through the inlet pipe 22 to accommodate. Using a plasma generated by supplying nitrogen gas to the plasma torch 10 forming the DC arc, the internal temperature of the reaction chamber 30 is maintained at 1,600 ° C while controlling the internal temperature of carbon dioxide, nitrogen, and argon as a gasification agent. The mixture was mixed at a volume ratio of: 0.3: 0.5 and supplied into the reaction chamber 30 at a temperature of 700 ° C., a pressure of 5 bar, and a flow rate of 30 slm. In the reaction chamber 30, the gasifier produced carbon monoxide and oxygen by the reaction of the following Equation 1:
[식 1][Equation 1]
Figure PCTKR2015005761-appb-I000006
Figure PCTKR2015005761-appb-I000006
상기 생성된 산소를 이용하여 하기 식 2에 의해 반응챔버(30) 내부에 수용된 처리대상물질(40)을 열분해하였다:By using the generated oxygen to thermally decompose the material to be treated 40 contained in the reaction chamber 30 by the following equation (2):
[식 2][Equation 2]
Figure PCTKR2015005761-appb-I000007
Figure PCTKR2015005761-appb-I000007
상기 처리대상물질중 폴리에틸렌 성분은 열분해되어 일산화탄소(CO) 및 수소(H2) 등의 환원성 합성가스가 생성하였다. 또한, 상기 포함된 알루미늄은 상기 발생된 산소에 의해 열분해되어 반응챔버(30) 하부 바닥에 수용되어, 처리물질 배출구(32)로 회수하였다. The polyethylene component of the material to be treated was pyrolyzed to produce reducible syngas such as carbon monoxide (CO) and hydrogen (H 2 ). In addition, the aluminum included was thermally decomposed by the generated oxygen and accommodated in the bottom of the reaction chamber 30 to recover the treated material outlet 32.
또한, 상기 산화알루미늄은 상기 합성수지의 열분해 과정에서 생성된 일산화탄소(CO) 및 수소(H2) 등의 합성가스에 의하여 형성된 반응챔버(30) 내부의 환원 분위기와, 지속적으로 공급되는 플라즈마 열원에 의하여 흡열반응이 형성됨으로써, 하기 식 3 또는 식 4와 같은 반응 과정을 통하여 알루미늄 및 CO2, H2O 등의 가스를 생성하였다. 상기 알루미늄은 반응챔버(30) 하부 바닥에 수용되어, 처리물질 배출구(32)로 회수하였다. 또한, 발생한 CO2, H2O 등의 가스는 가스 배출관(62)을 통해 가스 수집부(60)로 이송하였다:In addition, the aluminum oxide is formed by a reducing atmosphere in the reaction chamber 30 formed by a synthesis gas such as carbon monoxide (CO) and hydrogen (H 2 ) generated during the pyrolysis of the synthetic resin, and a plasma heat source continuously supplied. As the endothermic reaction was formed, aluminum and gases such as CO 2 and H 2 O were generated through a reaction process as in Equation 3 or 4 below. The aluminum was accommodated in the bottom of the reaction chamber 30 and recovered to the treatment material outlet 32. In addition, the generated gases such as CO 2 , H 2 O were transferred to the gas collecting unit 60 through the gas discharge pipe 62:
[식 3][Equation 3]
Figure PCTKR2015005761-appb-I000008
Figure PCTKR2015005761-appb-I000008
[식 4][Equation 4]
Figure PCTKR2015005761-appb-I000009
Figure PCTKR2015005761-appb-I000009
또한, 상기 열분해 과정에서 하기 5와 같은 반응에 의해, 반응챔버(30) 내부의 일산화탄소는 상기 반응챔버(30) 내부의 산소와 반응하여 이산화탄소를 생성하고 상기 이산화탄소는 가스 배출관(62)을 통해 가스 수집부(60)로 이송하여 회수하여 통상의 방법으로 정제하고, 다시 상기 가스화제 공급부(50)로 공급하여 가스화제 공급관(52)을 통해 반응챔버(30)로 유입하여 재사용하였다:In addition, in the pyrolysis process, carbon monoxide in the reaction chamber 30 reacts with oxygen in the reaction chamber 30 to generate carbon dioxide, and the carbon dioxide is gas through the gas discharge pipe 62. After transported to the collecting unit 60, the collected and purified in the usual manner, and again supplied to the gasifier supply unit 50 and introduced into the reaction chamber 30 through the gasifier supply pipe 52 and reused:
[식 5][Equation 5]
Figure PCTKR2015005761-appb-I000010
Figure PCTKR2015005761-appb-I000010
비교예 1Comparative Example 1
가스화제로 이산화탄소, 질소 및 아르곤을 1:2:0.5 부피비로 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 처리대상물질을 열분해하였다.The material to be treated was pyrolyzed in the same manner as in Example 1 except that carbon dioxide, nitrogen, and argon were used in a gas ratio of 1: 2: 0.5.
비교예 2Comparative Example 2
가스화제로 이산화탄소, 질소 및 아르곤을 1:0.3:1의 부피비로 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 처리대상물질을 열분해하였다.The material to be treated was pyrolyzed in the same manner as in Example 1 except that carbon dioxide, nitrogen, and argon were used in a volume ratio of 1: 0.3: 1 as the gasifier.
비교예 3Comparative Example 3
가스화제로 스팀(H20)을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 처리대상물질을 열분해하였다.The material to be treated was pyrolyzed in the same manner as in Example 1 except that steam (H 2 0) was used as the gasifier.
비교예 4Comparative Example 4
가스화제로 산소(O2)를 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 처리대상물질을 열분해하였다.The material to be treated was pyrolyzed in the same manner as in Example 1 except that oxygen (O 2 ) was used as the gasifier.
상기 실시예 및 비교예 1~4에서 열분해된 처리대상물질에 대하여 하기와 같이 평가하여 하기 표 1에 나타내었다.The material to be thermally decomposed in Examples and Comparative Examples 1 to 4 was evaluated as follows, and is shown in Table 1 below.
(1) 회수된 알루미늄(g): 열분해완료된 처리대상물질 중에서 회수된 알루미늄(Al)의 총 중량을 측정하여 하기 표 1에 나타내었다. (1) Recovered aluminum (g): The total weight of recovered aluminum (Al) in the pyrolyzed treatment target material was measured and shown in Table 1 below.
(2) 반응안정성: 반응중 반응챔버 내부를 관찰하여 반응안정성을 평가하였다. 열분해 반응시 반응챔버 내부가 안정적으로 반응이 발생하면 ○, 불안정하면 △, 극히 불안정하면 ×으로 평가하여 하기 표 1에 나타내었다.(2) Reaction stability: The reaction stability was evaluated by observing the inside of the reaction chamber during the reaction. When the reaction chamber was stably generated in the reaction chamber during the pyrolysis reaction, it was evaluated as ○, unstable △, and extremely unstable x.
표 1
구분  실시예 비교예
1 2 3 4
회수된 알루미늄(g) 193 131 134 138 139
반응안정성 × ×
Table 1
division Example Comparative example
One 2 3 4
Recovered Aluminum (g) 193 131 134 138 139
Reaction Stability × ×
상기 표 1을 참조하면, 본 발명의 혼합 부피비를 벗어난 가스화제를 적용하거나, 스팀 및 산소를 사용한 비교예 1~4의 경우, 본 발명의 실시예에 비하여 폐기물중 포함되는 금속 및 산화금속의 회수율이 저하되고, 열분해 반응진행시 반응챔버 내부가 불안정하여 폭발 위험성이 증가하는 것을 알 수 있었다.Referring to Table 1 above, in the case of Comparative Examples 1 to 4 using the gasifier outside the mixing volume ratio of the present invention or using steam and oxygen, the recovery rate of the metal and the metal oxide contained in the waste compared to the embodiment of the present invention It was found that the deterioration and the explosion risk increased due to the instability of the inside of the reaction chamber during the pyrolysis reaction.

Claims (5)

  1. 처리대상물질을 수용한 반응챔버 내부에 플라즈마 열원을 공급하는 단계; Supplying a plasma heat source into a reaction chamber containing a material to be treated;
    상기 반응챔버 내부에 가스화제를 공급하여 일산화탄소 및 산소를 생성하는 단계; 및 Supplying a gasifying agent into the reaction chamber to generate carbon monoxide and oxygen; And
    상기 생성된 산소와 상기 처리대상물질을 열분해하는 단계;를 포함하며,And pyrolyzing the generated oxygen with the treatment target material.
    상기 처리대상물질은 탄소를 포함하며,The material to be treated includes carbon,
    상기 반응챔버의 내부온도는 약 950℃ 이상으로 유지되고,The internal temperature of the reaction chamber is maintained at about 950 ℃ or more,
    상기 가스화제는 이산화탄소, 질소 및 아르곤을 약 1:0.1~1:0.1~0.5의 부피비로 포함하는 것을 특징으로 하는 플라즈마 열분해를 이용한 폐기물 처리방법.The gasification agent is a waste treatment method using plasma pyrolysis, characterized in that the carbon dioxide, nitrogen and argon in a volume ratio of about 1: 0.1 ~ 1: 0.1 ~ 0.5.
  2. 제1항에 있어서, 상기 가스화제는 약 1 bar 내지 약 50 bar의 압력 및 약 5 slpm 내지 약 60 slpm(standard liters per minute)의 유량 조건으로 상기 반응챔버 내부에 공급되는 것을 특징으로 하는 플라즈마 열분해를 이용한 폐기물 처리방법.The plasma pyrolysis of claim 1, wherein the gasifier is supplied into the reaction chamber at a pressure of about 1 bar to about 50 bar and a flow rate of about 5 slpm to about 60 slpm (standard liters per minute). Waste treatment method using.
  3. 제1항에 있어서, 상기 가스화제는 가스화제 이송관을 통하여 상기 반응챔버 내부로 공급되는 것을 특징으로 하는 플라즈마 열분해를 이용한 폐기물 처리방법.The method of claim 1, wherein the gasifier is supplied into the reaction chamber through a gasifier delivery tube.
  4. 제1항에 있어서, 상기 가스화제에 포함되는 이산화탄소는, 상기 열분해하는 단계에서 상기 반응챔버 내부의 일산화탄소와 산소가 반응하여 생성되는 이산화탄소를 재사용하는 것을 특징으로 하는 플라즈마 열분해를 이용한 폐기물 처리방법.The method of claim 1, wherein the carbon dioxide included in the gasification agent reuses carbon dioxide generated by reacting carbon monoxide and oxygen in the reaction chamber in the pyrolysis step.
  5. 제1항에 있어서, 상기 처리대상물질은 알루미늄, 마그네슘, 아연, 티타늄 및 이들의 산화물 중에서 하나 이상을 더 포함하는 것을 특징으로 하는 플라즈마 열분해를 이용한 폐기물 처리방법.The method of claim 1, wherein the treatment target material further comprises at least one of aluminum, magnesium, zinc, titanium, and oxides thereof.
PCT/KR2015/005761 2014-07-21 2015-06-09 Method for treating waste by using plasma pyrolysis WO2016013759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0092017 2014-07-21
KR1020140092017A KR101456258B1 (en) 2014-07-21 2014-07-21 Waste treatment mehtod using plasma pyrolysys

Publications (1)

Publication Number Publication Date
WO2016013759A1 true WO2016013759A1 (en) 2016-01-28

Family

ID=52289123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005761 WO2016013759A1 (en) 2014-07-21 2015-06-09 Method for treating waste by using plasma pyrolysis

Country Status (2)

Country Link
KR (1) KR101456258B1 (en)
WO (1) WO2016013759A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101562856B1 (en) * 2015-05-22 2015-10-27 주식회사 트리플 Plasma torch system and method for treatment of all municipal combustible and non-combustible waste or hospital waste
KR101796354B1 (en) 2015-08-19 2017-11-09 한국기초과학지원연구원 Waste dry and odor removal apparatus
KR102603054B1 (en) * 2021-11-25 2023-11-17 한국기계연구원 Organic waste and carbon dioxide pyrolysis apparatus using thermal plasma, and organic waste and carbon dioxide pyrolysis method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11515086A (en) * 1995-08-29 1999-12-21 プラズマ・テクノロジー・コーポレーション Plasma pyrolysis and vitrification of municipal waste
JP2000257826A (en) * 1999-03-02 2000-09-22 Toshiba Corp Method and device for plasma treatment
JP2007529711A (en) * 2004-03-19 2007-10-25 ピート インターナショナル, インコーポレイテッド Method and apparatus for treating waste
JP2013234835A (en) * 2012-05-04 2013-11-21 Gs Platech Co Ltd Gasification melting furnace and method for treating combustible material using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990066264A (en) * 1998-01-23 1999-08-16 이해규 Control Method of Waste Treatment Facility Using Plasma
US7658155B2 (en) * 2005-06-29 2010-02-09 Advanced Plasma Power Limited Waste treatment process and apparatus
NZ573217A (en) * 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
KR100910630B1 (en) * 2008-10-30 2009-08-05 (주)그룹오상 Method for recycling aluminium in package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11515086A (en) * 1995-08-29 1999-12-21 プラズマ・テクノロジー・コーポレーション Plasma pyrolysis and vitrification of municipal waste
JP2000257826A (en) * 1999-03-02 2000-09-22 Toshiba Corp Method and device for plasma treatment
JP2007529711A (en) * 2004-03-19 2007-10-25 ピート インターナショナル, インコーポレイテッド Method and apparatus for treating waste
JP2013234835A (en) * 2012-05-04 2013-11-21 Gs Platech Co Ltd Gasification melting furnace and method for treating combustible material using the same

Also Published As

Publication number Publication date
KR101456258B1 (en) 2014-11-04

Similar Documents

Publication Publication Date Title
US4886001A (en) Method and apparatus for plasma pyrolysis of liquid waste
US5108718A (en) Method for the destruction of toxic waste products and a plasma chemical reactor
JP2005524817A (en) Hazardous waste treatment method and apparatus
JPS6449816A (en) Waste thermal treatment equipment and method
WO2009136737A9 (en) Combustible waste pyrolysis system and pyrolysis method
WO2013106004A1 (en) Multi-ring plasma pyrolysis chamber
WO2016013759A1 (en) Method for treating waste by using plasma pyrolysis
CN1233478C (en) Method of treating waste matter using plasma electric arc technology and its device
WO2022173263A1 (en) Apparatus and method for producing hydrogen by reforming plastic waste by means of electromagnetic plasma torch
JP2756505B2 (en) Waste pyrolysis method and apparatus
KR20160065340A (en) Waste processing system for a printed circuit board
WO2016117736A1 (en) System for treating non-biodegradable harmful gases
US6074623A (en) Process for thermal destruction of spent potliners
JP2004059754A (en) Method for treating waste material and method for manufacturing raw material of cement
JP2961030B2 (en) Decomposition method of toxic substances generated during removal of organic waste components
JP2000288510A (en) Method and apparatus for decomposing hazardous substance
EP0863216B1 (en) Method of treating metal/plastic composite waste material by heat decomposition
WO2022231384A1 (en) Sludge treatment process
KR100471344B1 (en) Hazardous material removing system which removes material such as Dioxin, Furan etc. for an chemical waste material incinerator.
Zhu et al. Development and Application of Plasma Technology for POPs Waste Treatment in China
KR0139224B1 (en) Apparatus of treating poisonous dust by using plasma
JP3519622B2 (en) Multi-stage treatment of charge
WO2022191632A1 (en) Apparatus and method for producing syngas by reforming diesel through an electromagnetic wave plasma torch
CN211176810U (en) Gasification reaction furnace with furnace body wall surface heat available
JPH11270823A (en) Equipment and method for waste disposal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15825339

Country of ref document: EP

Kind code of ref document: A1