WO2015141947A1 - Apparatus for manufacturing negative electrode active material for secondary battery - Google Patents

Apparatus for manufacturing negative electrode active material for secondary battery Download PDF

Info

Publication number
WO2015141947A1
WO2015141947A1 PCT/KR2015/001446 KR2015001446W WO2015141947A1 WO 2015141947 A1 WO2015141947 A1 WO 2015141947A1 KR 2015001446 W KR2015001446 W KR 2015001446W WO 2015141947 A1 WO2015141947 A1 WO 2015141947A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
active material
discharge tube
negative electrode
electrode active
Prior art date
Application number
PCT/KR2015/001446
Other languages
French (fr)
Korean (ko)
Inventor
구민
구동진
김대운
이상주
이봉주
Original Assignee
㈜그린사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜그린사이언스 filed Critical ㈜그린사이언스
Publication of WO2015141947A1 publication Critical patent/WO2015141947A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to an apparatus for manufacturing a negative electrode active material for a secondary battery, and more particularly, to an apparatus for manufacturing a negative electrode active material for a SiO x -based secondary battery.
  • lithium secondary batteries as power sources and power sources for portable telephones, portable personal digital assistants (PDAs), notebook computers, MP3 and the like, and electric vehicles is rapidly increasing. Accordingly, there is an increasing demand for higher capacity and longer cycle life of lithium secondary batteries.
  • metal silicon Si
  • metal-based electrode active materials such as silicon have a low coulombic efficiency in the initial charge / discharge (oxidation, reduction) cycle of lithium, and the irreversible reaction during the insertion and deinsertion of lithium increases with cycling, thereby increasing the volume of silicon.
  • inflating There was an issue of inflating.
  • a method for preparing a negative electrode active material for a SiO x based secondary battery which is prepared by mixing metal Si / SiO x powder and heating in a vacuum to collect vaporized SiO x vapor into a precipitation plate by thermo-phoresis.
  • Method, high purity (5N) monosilane, argon and oxygen gas are supplied to the reactor, and the mixed gas of monosilane and argon is blown from the reactor to the low temperature through the monosilane inlet tube and oxygen gas is reacted at the center of the reactor.
  • the cost of the starting material (5N monosilane) is high, a resistance heater with high power consumption is used to maintain the reaction temperature inside the reactor, and there are problems such as generation of by-product gas other than the product. . That is, the conventional negative electrode active material manufacturing method has a high manufacturing cost and had a complicated process structure, and thus a cheaper and simpler method of manufacturing a negative electrode active material was required.
  • Patent Document 1 United States Patent Application Publication No. 2007-0248525 (2007.10.25)
  • Embodiments of the present invention are to provide an apparatus for manufacturing a negative electrode active material for a secondary battery for manufacturing a negative electrode active material with high life stability and coulombic efficiency in a cheaper and more convenient way.
  • an electromagnetic wave oscillator for oscillating an electromagnetic wave of a specific frequency range; A discharge tube generating plasma from the electromagnetic wave and the plasma generating gas; A first gas supply unit supplying the plasma generating gas into the discharge tube; A silicon supply unit supplying a silicon precursor to the plasma generated inside the discharge tube; A reactor for producing a SiO x based (0 ⁇ X ⁇ 2) anode active material by a chemical reaction between the silicon precursor and the reactant gas; And a second gas supply unit configured to supply the reaction gas into the discharge tube or the reaction furnace.
  • the apparatus for manufacturing a negative electrode active material for a secondary battery may further include a swirl generator connected to the first gas supply unit and supplying the plasma generating gas to the inside of the discharge tube in a swirl form.
  • the swirl generating unit may include one or more gas supply pipes connected to the inside of the discharge tube so that the plasma generating gas supplied into the discharge tube is discharged in parallel with the inner circumferential surface of the discharge tube and rotates in a swirl form.
  • the plasma generating gas may include one or more of argon, helium, and nitrogen.
  • the silicon precursor may include one or more of silicon tetrachloride (SiCl 4 ) and silicon tetrafluoride (SiF 4 ).
  • the silicon precursor may be supplied to the plasma generated inside the discharge tube in the form of a mixed gas mixed with a transfer gas.
  • the transport gas may include one or more of argon, helium and nitrogen.
  • the reaction gas is a first reaction gas for dissociating silicon (Si) from the silicon precursor and a second reaction gas for chemically reacting with the dissociated silicon to generate a SiO x -based (0 ⁇ X ⁇ 2) anode active material. It may include one or more of.
  • the first reactant gas is supplied to the plasma generated inside the discharge tube through the silicon supply unit together with the silicon precursor, and the second reactant gas is supplied to the plasma through the first gas supply unit together with the plasma generating gas. It can be supplied internally.
  • the first reaction gas may include one or more of hydrogen (H 2 ) and steam (H 2 0).
  • the second reaction gas may include oxygen (O 2 ).
  • the x value of the SiO x based (0 ⁇ X ⁇ 2) anode active material may increase.
  • the generation of SiO x -based (0 ⁇ X ⁇ 2) anode active material may be promoted using plasma.
  • the dispersion of silicon (Si) in the produced SiOx-based (0 ⁇ X ⁇ 2) anode active material is evened, thereby improving the lifetime stability of the SiOx-based (0 ⁇ X ⁇ 2) anode active material and Coulomb efficiency can be increased.
  • the reaction gas for the production of SiO x-based (0 ⁇ X ⁇ 2) anode active material is supplied with the silicon precursor into the discharge tube or the reactor or the reaction gas and the plasma generating gas.
  • the inside of the discharge tube in the form of swirl it is possible to maximize the reactivity of the chemical reaction for the production of SiOx-based (0 ⁇ X ⁇ 2) negative electrode active material, thereby reducing the production time of the negative electrode active material.
  • FIG. 1 is a block diagram of an apparatus for manufacturing a negative active material for a secondary battery according to embodiments of the present invention.
  • FIG. 2 is a view showing a first embodiment of a vertical cross-sectional view showing a portion where a waveguide and a discharge tube are connected in an apparatus for manufacturing a negative active material for a secondary battery according to embodiments of the present disclosure.
  • FIG 3 is a view illustrating a second embodiment of a vertical cross-sectional view showing a portion where a waveguide and a discharge tube are connected in the apparatus for manufacturing a negative active material for a secondary battery according to embodiments of the present invention.
  • FIG. 4 is a view illustrating embodiments of a horizontal cross-sectional view of a swirl generator in the apparatus for manufacturing a negative active material for a secondary battery according to embodiments of the present disclosure.
  • FIG. 5 is a view for explaining the capacity maintenance and coulombic efficiency improvement effect of the negative electrode active material manufactured by the apparatus for manufacturing a negative electrode active material for a secondary battery according to embodiments of the present invention
  • the apparatus 100 for manufacturing a negative active material for a secondary battery according to a first exemplary embodiment of the present invention may include an electromagnetic wave supply unit 110, a discharge tube 112, a first gas supply unit 114, and a swirl generator. 116, a silicon supply 118, a second gas supply 120, a reactor 122, and a product outlet 124.
  • the electromagnetic wave supply unit 110 is an apparatus for oscillating an electromagnetic wave of a specific frequency and supplying it to the discharge tube 112.
  • the electromagnetic wave supply unit 110 includes an electromagnetic wave oscillator 102, a circulator 104, a tuner 106, and a waveguide 108.
  • the electromagnetic wave oscillator 102 oscillates electromagnetic waves for plasma generation.
  • the electromagnetic wave oscillator 102 is connected to a power supply unit (not shown) and receives power from the power supply unit to oscillate electromagnetic waves.
  • the electromagnetic wave oscillator 102 may be, for example, a magnetron.
  • the electromagnetic oscillator 102 may oscillate electromagnetic waves having a specific frequency range, for example, a frequency range of 2.45 GHz, 915 MHz, or 896 MHz.
  • the circulator 104 is connected to the electromagnetic wave oscillator 102 and protects the electromagnetic wave oscillator 102 by outputting electromagnetic waves oscillated by the electromagnetic wave oscillator 102 and dissipating electromagnetic energy reflected by impedance mismatch.
  • the tuner 106 adjusts the intensity of the incident wave and the reflected wave of the electromagnetic wave output from the circulator 104 to induce impedance matching so that the magnetic field induced by the electromagnetic wave is maximized in the discharge tube 112.
  • the waveguide 108 transmits the electromagnetic wave input from the tuner 106 to the discharge tube 112.
  • the discharge tube 112 generates a plasma from the electromagnetic wave received from the waveguide 108 and the plasma generating gas supplied through the first gas supply unit 114.
  • the discharge tube 112 may be connected to the swirl generator 116, and may receive the plasma generating gas through the swirl generator 116.
  • the swirl generator 116 may be connected to the first gas supplier 114 to supply the plasma generating gas to the inside of the discharge tube 112 in the form of a swirl.
  • the discharge tube 112 may be made of, for example, quartz having high dielectric constant and electromagnetic wave transmittance. However, the material of the discharge tube 112 is not limited thereto, and the discharge tube 112 may be made of various materials such as alumina and ceramic.
  • the first gas supply unit 114 supplies the plasma generating gas into the discharge tube 112.
  • the first gas supply unit 114 may be connected to the swirl generator 116, and the swirl generator 116 may supply the plasma generating gas into the discharge tube 112 in the form of a swirl.
  • the plasma generating gas can be, for example, an inert gas comprising one or more of argon, helium and nitrogen.
  • the swirl generator 116 supplies the plasma generating gas into the discharge tube 112 in the form of a swirl.
  • the swirl generator 116 may be connected to the first gas supplier 114.
  • the plasma generating gas forms a swirl in the discharge tube 112, and high temperature plasma is generated from the supplied plasma generating gas and the electromagnetic waves inside the discharge tube 112. As a result, the plasma flame is concentrated to the center of the discharge tube 112.
  • the discharge tube by generating a swirl in the discharge tube 112 through the swirl generating unit 116, the discharge tube (from the high temperature plasma flame while increasing the generation efficiency of the plasma and stabilizing the generated plasma) 112) It can protect the inner wall.
  • the plasma generated inside the discharge tube 112 promotes dissociation of the silicon precursor supplied into the discharge tube 112 or the reactor 122 through the silicon supply unit 118 which will be described later.
  • the silicon precursor is a material capable of obtaining SiOx through hydrolysis, and may be, for example, silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 ), or the like.
  • SiCl 4 silicon tetrachloride
  • SiF 4 silicon tetrafluoride
  • the generated plasma may be SiCl 4 and Helps Cl 4 and F 4 fall off quickly from SiF 4 .
  • the dissociated silicon may be chemically reacted with a reaction gas, which will be described later.
  • the SiOx-based (0 ⁇ X ⁇ 2) anode active material is generated through this process.
  • SiOx-based (0 ⁇ X ⁇ 2) anode active material using plasma, and in particular, through the generation of plasma by swirl, the produced SiOx-based (0 ⁇ X ⁇ 2)
  • the silicon (Si) dispersion in the negative electrode active material may be evened to increase the lifetime stability and the coulombic efficiency of the SiOx-based (0 ⁇ X ⁇ 2) negative electrode active material.
  • SiOx-based (0 ⁇ X ⁇ 2) negative electrode active materials have different characteristics depending on their size, it is very important to make them even during the manufacturing process.
  • the SiOx-based (0 ⁇ X ⁇ 2) negative electrode active material is manufactured through plasma generation by swirl, the size of the prepared negative electrode active material becomes uniform, and as a result, the characteristics and electrode efficiency of the negative electrode active material are increased.
  • the silicon supply unit 118 supplies the silicon precursor to the plasma generated inside the discharge tube 112.
  • the silicon precursor may be, for example, silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 ), or the like.
  • Silicon tetrachloride (SiCl 4 ) and silicon tetrafluoride (SiF 4 ) are low-purity materials and have low cost.
  • the silicon precursor is not limited thereto, and the silicon precursor may be various materials such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, (CH 3 ) 4 Si, and HSiCl 3 .
  • the silicon precursor has a low flow rate and a corrosive material
  • embodiments of the present invention allow the silicon precursor to be supplied into the discharge tube 112 together with the transfer gas.
  • the conveying gas can be, for example, an inert gas such as argon, helium, nitrogen or the like.
  • the silicon supply unit 118 supplies the silicon precursor to the inside of the discharge tube 112, but this is only an example, and the silicon supply unit 118 may supply silicon into the reactor 122. It is also possible to supply precursors.
  • the second gas supply unit 120 supplies the reaction gas into the discharge tube 112 or the reactor 122.
  • the reaction gas is at least one of a first reaction gas for dissociating silicon (Si) from the silicon precursor and a second reaction gas for chemically reacting with the dissociated silicon to generate a SiOx-based (0 ⁇ X ⁇ 2) anode active material. It may include.
  • the first reactant gas may include, for example, one or more of hydrogen (H 2 ) and steam (H 2 0), and the second reactant gas may include, for example, oxygen (O 2 ).
  • the first reactant gas may dissociate silicon from the silicon precursor by chemically reacting with the silicon precursor, and the second reactant gas may generate SiOx-based (0 ⁇ X ⁇ 2) anode active material by chemically reacting with the dissociated silicon. This is represented by the following formula.
  • the oxygen concentration of the second reaction gas may vary depending on the x value of the SiOx-based (0 ⁇ X ⁇ 2) anode active material to be manufactured. That is, increasing the oxygen concentration to supply increases the x value of the SiOx-based (0 ⁇ X ⁇ 2) anode active material, and decreasing the supply oxygen concentration decreases the x value of the SiOx-based (0 ⁇ X ⁇ 2) anode active material. .
  • the volume expansion of silicon can be suppressed by adjusting the oxygen concentration to be supplied.
  • a separate second gas supply unit 120 is formed to supply the reaction gas into the discharge tube 112 or the reactor 122, but the present invention is not limited thereto, and the second gas supply unit 120 is not limited thereto.
  • the first reactant gas may be supplied to the plasma generated inside the discharge tube 112 through the silicon supply unit 118 along with the silicon precursor
  • the second reactant gas may be supplied to the first gas supply unit together with the plasma generating gas.
  • the discharge tube 112 may be supplied into the discharge tube 112.
  • silicon (Si) may be dissociated from the silicon precursors (SiCl 4, SiF 4, etc.) by the first reactant gas.
  • dissociation of the silicon precursor may be further promoted by the plasma inside the discharge tube 112. Thereafter, the dissociated silicon may rapidly chemically react with the second reaction gas supplied through the first gas supply unit 114, and thus, a SiOx-based (0 ⁇ X ⁇ 2) anode active material is generated.
  • the reaction gas is supplied into the discharge tube 112 or the reactor 122 together with the silicon precursor or the reaction gas is swirled together with the plasma generating gas into the discharge tube 112.
  • the time point at which the silicon supply unit 118 supplies the silicon precursor and the first reaction gas into the discharge tube 112 or the reactor 122 may be after the plasma is generated in the discharge tube 112, but is not limited thereto.
  • the silicon supply unit 118 may supply the silicon precursor and the first reaction gas into the discharge tube 112 or the reactor 122 while the plasma is generated in the discharge tube 112.
  • the reactor 122 generates a SiO x based (0 ⁇ X ⁇ 2) anode active material by a chemical reaction between the silicon precursor and the reaction gas.
  • the silicon precursor is dissociated by the first reactant gas and the plasma, and the dissociated silicon is chemically reacted with the second reactant gas in the reactor 122 to generate a SiO x based (0 ⁇ X ⁇ 2) anode active material.
  • the reactor 122 may be formed at an upper end of the discharge tube 112 and connected to the discharge tube 112.
  • the product discharge part 124 discharges the SiOx-based (0 ⁇ X ⁇ 2) negative electrode active material generated in the reactor 122 to the outside.
  • the product outlet 124 may be formed, for example, on top of the reactor 122.
  • the product discharge unit 124 may collect the SiOx-based (0 ⁇ X ⁇ 2) negative electrode active material, and discharge it to the outside.
  • the product discharge unit 124 is a hydrochloric acid gas (HCl), hydrogen fluoride gas generated during the manufacturing process of the SiOx-based (0 ⁇ X ⁇ 2) negative electrode active material, before the SiOx-based (0 ⁇ X ⁇ 2) negative electrode active material is collected (HF) and the like can be collected.
  • HCl hydrochloric acid gas
  • HF hydrogen fluoride gas
  • FIG. 2 is a view showing a first embodiment of a vertical cross-sectional view showing a portion where the waveguide 108 and the discharge tube 112 are connected in the apparatus 100 for manufacturing a negative active material for a secondary battery according to embodiments of the present invention.
  • the second gas supply part 120 is assumed to be integrally formed with the first gas supply part 114 and the silicon supply part 118, respectively, and thus the illustration of the second gas supply part 120 is omitted.
  • the discharge tube 112 may have a cylindrical shape, and the waveguide 108 may be disposed at a point corresponding to between 1/8 and 1/2 of the wavelength in the waveguide 108 from the end of the waveguide 108. ) Can penetrate vertically.
  • the reactor 122 may be formed in a cylindrical shape having the same diameter as the discharge tube (112).
  • a discharge tube support 112a may be formed outside the waveguide 108, the discharge tube 112, and the swirl generator 116 to support them.
  • the discharge tube supporter 112a may be fastened or coupled to each of the waveguide 108, the discharge tube 112, and the swirl generator 116.
  • the discharge tube supporter 112a may support the discharge tube 112 so that the discharge tube 112 may be stably inserted and fixed inside the waveguide 108, and the swirl generator 116 may plasma into the discharge tube 112.
  • the swirl generator 116 may be supported to smoothly supply the generated gas.
  • the discharge tube supporter 112a may serve to shield a frequency flowing from the inside of the discharge tube 112 to the outside.
  • the first gas supply unit 114 may be formed under the discharge tube 112 and connected to the swirl generator 116, and the silicon supply unit 118 may be formed under the discharge tube 112 to form an interior of the discharge tube 112. Can be connected.
  • the first reaction gas may be supplied to the plasma generated inside the discharge tube 112 through the silicon supply unit 118 together with the silicon precursor, and the second reaction gas may be supplied to the first gas together with the plasma generating gas. It may be supplied into the discharge tube 112 through the supply unit 114.
  • Silicon (Si) may be dissociated from the silicon precursor (SiCl 4, SiF 4, etc.) in the process of supplying the first reaction gas into the discharge tube 112 together with the silicon precursor, and in particular, the plasma inside the discharge tube 112.
  • the dissociated silicon By dissociation of the silicon precursor can be promoted. Thereafter, the dissociated silicon may chemically react with the second reaction gas supplied through the first gas supply unit 114, and thus, a SiOx-based (0 ⁇ X ⁇ 2) anode active material may be generated.
  • FIG. 3 is a view showing a second embodiment of a vertical cross-sectional view showing a portion where the waveguide 108 and the discharge tube 112 are connected in the apparatus 100 for manufacturing a negative active material for a secondary battery according to embodiments of the present invention.
  • the silicon supply unit 118 may be formed at one side of the reactor 122.
  • the silicon supply unit 118 is more responsive than the silicon supply unit 118 is formed at one side of the reactor 122. Accordingly, the x value of SiOx may be larger.
  • each component of FIG. 3 uses the same reference numerals as in FIG. 2 because they perform the same functions as those illustrated in FIG. 2, and the description of each component has been described above in detail. do.
  • the swirl generator 116 includes one or more gas supply pipes 402.
  • the gas supply pipe 402 discharges the plasma generating gas (or a mixed gas in which the plasma generating gas and the second reactive gas are mixed) supplied into the discharge tube 112 in parallel with the inner circumferential surface of the discharge tube 112 (along the inner circumferential surface). And may be connected to the inside of the discharge tube 112 to rotate in a swirl form.
  • the traveling direction of the gas supply pipe 402 is configured to be parallel to the inner circumferential surface of the discharge tube 112, thereby supplying the plasma generating gas (or plasma generation).
  • the mixed gas mixed with the gas and the second reactant gas) has a swirl shape while rotating in one direction along the inner wall of the discharge tube 112.
  • the gas supply pipe 402 may be formed in various numbers inside the swirl generator 116.
  • 4A, 4B, and 4C show an embodiment in which two, four, six gas supply pipes 402 are formed inside the swirl generator 116, respectively.
  • the gas supply pipes 402 may be arranged at equal intervals in the swirl generator 116.
  • FIG. 5 is a view for explaining the capacity maintenance and coulombic efficiency (effect) of the negative electrode active material manufactured by the apparatus 100 for manufacturing a negative electrode active material for a secondary battery according to embodiments of the present invention.
  • the blue line in FIG. 5 represents the capacity retention degree and the coulombic efficiency of the negative electrode active material manufactured using the conventional vaporization method, and the red line is manufactured by the apparatus 100 for manufacturing a negative electrode active material for secondary batteries according to embodiments of the present invention.
  • Capacity retention degree and coulombic efficiency of the negative electrode active material is the thick line indicates the degree of capacity retention of the negative electrode active material, and the dotted line indicates the coulombic efficiency of the negative electrode active material.
  • the negative electrode active material prepared by using the existing vaporization method has a tendency to rapidly decrease the capacity during 100 cycles of charge and discharge.
  • the negative electrode active material manufactured using the conventional vaporization method was found to have a capacity of about 2350 mAh / g at an initial 1 cycle reduced to a capacity of about 500 mAh / g after 100 cycles. That is, it can be seen that the capacity retention rate (%) of the negative electrode active material prepared by the prior art is only about 21.27% during 100 cycles of charge and discharge.
  • the capacity of the negative electrode active material prepared by the prior art decreases rapidly as the charge / discharge cycling increases, the coulombic efficiency indicating the actual charge / discharge amount relative to the charge / discharge capacity is not significant, and it is analyzed that the lifetime stability is low.
  • the negative electrode active material manufactured by the apparatus 100 for manufacturing a negative electrode active material for a secondary battery according to embodiments of the present invention has a capacity of about 1264 mAh / g at an initial 1 cycle of about 1127 mAh / g after 100 cycles. It appears to be reduced to the dose of. That is, it can be seen that the capacity retention rate (%) of the negative active material prepared according to the embodiments of the present invention reached about 89.16% during 100 cycles of charge and discharge.
  • the negative electrode active material prepared according to the embodiments of the present invention shows a very large capacity retention rate compared to the negative electrode active material prepared by the prior art, and as a result, it can be seen that the life stability is greatly increased.
  • the negative electrode active material prepared according to the embodiments of the present invention shows a coulombic efficiency close to 100% during 100 cycles of charge and discharge. That is, the negative electrode active material prepared according to the embodiments of the present invention was found to have a very high charge and discharge efficiency (cycling efficiency) due to cycling compared to the negative electrode active material prepared by the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is an apparatus for manufacturing a negative electrode active material for a secondary battery. An apparatus for manufacturing a negative electrode active material for a secondary battery, according to an embodiment of the present invention, comprises: an electromagnetic wave oscillator for oscillating electromagnetic waves in a specific frequency range; a discharge tube for generating plasma from the electromagnetic waves and a plasma generating gas; a first gas supply unit for supplying the plasma generating gas into the discharge tube; a silicon supply unit for supplying a silicon precursor to the plasma generated in the discharge tube; a reaction furnace for generating a negative electrode active material based on SiOx (0 < x < 2) by a chemical reaction between the silicon precursor and a reaction gas; and a second gas supply unit for supplying the reaction gas into the discharge tube or the reaction furnace.

Description

이차 전지용 음극 활물질의 제조 장치Manufacturing apparatus of negative electrode active material for secondary batteries
본 발명의 실시예들은 이차 전지용 음극 활물질의 제조 장치에 관한 것으로서, 보다 상세하게는 SiOx계 이차 전지용 음극 활물질의 제조 장치에 관한 것이다.Embodiments of the present invention relate to an apparatus for manufacturing a negative electrode active material for a secondary battery, and more particularly, to an apparatus for manufacturing a negative electrode active material for a SiO x -based secondary battery.
휴대 전화, 휴대용 개인 정보 단말기(PDA), 노트북, MP3 등의 휴대용 소형 전자기기 및 전기 자동차 등의 전원 및 동력원으로서의 리튬 이차 전지의 수요가 급격히 늘어나고 있다. 이에 따라, 리튬 이차 전지의 고용량화와 사이클 수명 연장에 대한 요구도 증가하고 있다. The demand for lithium secondary batteries as power sources and power sources for portable telephones, portable personal digital assistants (PDAs), notebook computers, MP3 and the like, and electric vehicles is rapidly increasing. Accordingly, there is an increasing demand for higher capacity and longer cycle life of lithium secondary batteries.
최근에는 리튬 이차전지의 용량을 향상시키기 위해 금속 실리콘(Si)과 같은 고용량의 전극 활물질이 제안되고 있다. 그러나, 실리콘과 같은 금속계 전극 활물질은 리튬의 초기 충방전(산화, 환원) 사이클에서 쿨롱 효율이 낮고, 사이클링에 따라 리튬의 삽입, 탈삽입 과정 중 비가역 반응이 증가하게 되며, 이에 따라 실리콘의 부피가 팽창하는 문제점이 있었다.Recently, in order to improve the capacity of a lithium secondary battery, a high capacity electrode active material such as metal silicon (Si) has been proposed. However, metal-based electrode active materials such as silicon have a low coulombic efficiency in the initial charge / discharge (oxidation, reduction) cycle of lithium, and the irreversible reaction during the insertion and deinsertion of lithium increases with cycling, thereby increasing the volume of silicon. There was an issue of inflating.
종래 SiOx계 이차 전지용 음극 활물질의 제조 방법으로서, 금속 Si/SiOx 분말을 혼합한 후 진공 내에서 가열하여 기화된 SiOx 증기를 열영동(thermo-phoresis)에 의한 침전판으로 포집하여 제조하는 방식, 고순도(5N)의 모노실란, 아르곤, 산소 기체를 반응기에 공급한 후 모노실란과 아르곤의 혼합 가스를 모노실란 투입관을 통하여 반응기에서 저온으로 블로잉하고 산소 기체가 반응기의 중앙부에서 반응이 이루어질 수 있도록 산화기체 투입관을 고온으로 블로잉하는 방식 등이 사용되었다. 그러나, 종래 기술에 의하면 출발 물질(5N 모노실란)의 비용이 크고, 반응기 내부의 반응 온도를 유지시키기 위해 전력 소비가 높은 저항 가열기가 사용되며, 생성물 이외의 부산물 가스가 발생되는 등의 문제점이 있었다. 즉, 종래의 음극 활물질 제조 방법은 제조 단가가 높으며 복잡한 공정 구조를 가지고 있었는바, 보다 저렴하고 간단한 음극 활물질 제조 방법이 필요하였다.Conventionally, a method for preparing a negative electrode active material for a SiO x based secondary battery, which is prepared by mixing metal Si / SiO x powder and heating in a vacuum to collect vaporized SiO x vapor into a precipitation plate by thermo-phoresis. Method, high purity (5N) monosilane, argon and oxygen gas are supplied to the reactor, and the mixed gas of monosilane and argon is blown from the reactor to the low temperature through the monosilane inlet tube and oxygen gas is reacted at the center of the reactor. To blow the oxidizing gas inlet tube to a high temperature so as to be used. However, according to the prior art, the cost of the starting material (5N monosilane) is high, a resistance heater with high power consumption is used to maintain the reaction temperature inside the reactor, and there are problems such as generation of by-product gas other than the product. . That is, the conventional negative electrode active material manufacturing method has a high manufacturing cost and had a complicated process structure, and thus a cheaper and simpler method of manufacturing a negative electrode active material was required.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 미국 공개특허공보 2007-0248525(2007.10.25)(Patent Document 1) United States Patent Application Publication No. 2007-0248525 (2007.10.25)
본 발명의 실시예들은 수명 안정성 및 쿨롱 효율이 높은 음극 활물질을 보다 저렴하고 간편한 방법으로 제조하기 위한 이차 전지용 음극 활물질의 제조 장치를 제공하기 위한 것이다.Embodiments of the present invention are to provide an apparatus for manufacturing a negative electrode active material for a secondary battery for manufacturing a negative electrode active material with high life stability and coulombic efficiency in a cheaper and more convenient way.
본 발명의 일 측면에 따르면, 특정 주파수 범위의 전자파를 발진하는 전자파 발진기; 상기 전자파 및 플라즈마 발생가스로부터 플라즈마를 발생시키는 방전관; 상기 방전관의 내부로 상기 플라즈마 발생가스를 공급하는 제 1 가스 공급부; 상기 방전관의 내부에서 발생된 플라즈마에 실리콘 전구체를 공급하는 실리콘 공급부; 상기 실리콘 전구체 및 반응 가스 간의 화학 반응에 의하여 SiOx계(0<X<2) 음극 활물질을 생성하는 반응로; 및 상기 방전관 또는 상기 반응로의 내부로 상기 반응 가스를 공급하는 제 2 가스 공급부를 포함하는, 이차 전지용 음극 활물질의 제조 장치가 제공된다.According to an aspect of the present invention, an electromagnetic wave oscillator for oscillating an electromagnetic wave of a specific frequency range; A discharge tube generating plasma from the electromagnetic wave and the plasma generating gas; A first gas supply unit supplying the plasma generating gas into the discharge tube; A silicon supply unit supplying a silicon precursor to the plasma generated inside the discharge tube; A reactor for producing a SiO x based (0 <X <2) anode active material by a chemical reaction between the silicon precursor and the reactant gas; And a second gas supply unit configured to supply the reaction gas into the discharge tube or the reaction furnace.
상기 이차 전지용 음극 활물질의 제조 장치는, 상기 제 1 가스 공급부와 연결되어 상기 플라즈마 발생가스를 스월(swirl) 형태로 상기 방전관의 내부로 공급하는 스월 발생부를 더 포함할 수 있다.The apparatus for manufacturing a negative electrode active material for a secondary battery may further include a swirl generator connected to the first gas supply unit and supplying the plasma generating gas to the inside of the discharge tube in a swirl form.
상기 스월 발생부는, 상기 방전관의 내부로 공급되는 상기 플라즈마 발생가스가 상기 방전관의 내주면과 평행하게 배출되어 스월 형태로 회전하도록 상기 방전관의 내부와 연결되는 하나 이상의 가스 공급관을 포함할 수 있다.The swirl generating unit may include one or more gas supply pipes connected to the inside of the discharge tube so that the plasma generating gas supplied into the discharge tube is discharged in parallel with the inner circumferential surface of the discharge tube and rotates in a swirl form.
상기 플라즈마 발생가스는, 아르곤, 헬륨 및 질소 중 하나 이상을 포함할 수 있다.The plasma generating gas may include one or more of argon, helium, and nitrogen.
상기 실리콘 전구체는, 사염화실리콘(SiCl4) 및 사불화실리콘(SiF4) 중 하나 이상을 포함할 수 있다.The silicon precursor may include one or more of silicon tetrachloride (SiCl 4 ) and silicon tetrafluoride (SiF 4 ).
상기 실리콘 전구체는, 이송 가스와 혼합된 혼합 가스 형태로 상기 방전관의 내부에서 발생된 플라즈마에 공급될 수 있다.The silicon precursor may be supplied to the plasma generated inside the discharge tube in the form of a mixed gas mixed with a transfer gas.
상기 이송 가스는, 아르곤, 헬륨 및 질소 중 하나 이상을 포함할 수 있다.The transport gas may include one or more of argon, helium and nitrogen.
상기 반응 가스는, 상기 실리콘 전구체로부터 실리콘(Si)을 해리시키기 위한 제 1 반응 가스 및 해리된 상기 실리콘과 화학 반응하여 SiOx계(0<X<2) 음극 활물질을 생성하기 위한 제 2 반응 가스 중 하나 이상을 포함할 수 있다.The reaction gas is a first reaction gas for dissociating silicon (Si) from the silicon precursor and a second reaction gas for chemically reacting with the dissociated silicon to generate a SiO x -based (0 <X <2) anode active material. It may include one or more of.
상기 제 1 반응 가스는 상기 실리콘 전구체와 함께 상기 실리콘 공급부를 통해 상기 방전관의 내부에서 발생된 플라즈마에 공급되며, 상기 제 2 반응 가스는 상기 플라즈마 발생 가스와 함께 상기 제 1 가스 공급부를 통해 상기 방전관의 내부로 공급될 수 있다.The first reactant gas is supplied to the plasma generated inside the discharge tube through the silicon supply unit together with the silicon precursor, and the second reactant gas is supplied to the plasma through the first gas supply unit together with the plasma generating gas. It can be supplied internally.
상기 제 1 반응 가스는, 수소(H2) 및 스팀(H20) 중 하나 이상을 포함할 수 있다.The first reaction gas may include one or more of hydrogen (H 2 ) and steam (H 2 0).
상기 제 2 반응 가스는, 산소(O2)를 포함할 수 있다.The second reaction gas may include oxygen (O 2 ).
상기 제 2 반응 가스의 산소 농도가 증가할수록 상기 SiOx계(0<X<2) 음극 활물질의 x값이 증가할 수 있다.As the oxygen concentration of the second reaction gas increases, the x value of the SiO x based (0 <X <2) anode active material may increase.
본 발명의 실시예들에 따르면, 플라즈마를 이용하여 SiOx계(0<X<2) 음극 활물질의 생성을 촉진시킬 수 있다. 특히, 스월에 의한 플라즈마 발생을 통해, 제조된 SiOx계(0<X<2) 음극 활물질 내의 실리콘(Si) 분산(dispersion)을 고르게 하여 SiOx계(0<X<2) 음극 활물질의 수명 안정성 및 쿨롱 효율을 증가시킬 수 있다.According to embodiments of the present invention, the generation of SiO x -based (0 <X <2) anode active material may be promoted using plasma. In particular, through the generation of plasma by swirl, the dispersion of silicon (Si) in the produced SiOx-based (0 <X <2) anode active material is evened, thereby improving the lifetime stability of the SiOx-based (0 <X <2) anode active material and Coulomb efficiency can be increased.
또한, 본 발명의 실시예들에 따르면, SiOx계(0<X<2) 음극 활물질의 생성을 위한 반응 가스를 실리콘 전구체와 함께 방전관 또는 반응로 내부로 공급하거나 또는 상기 반응 가스를 플라즈마 발생가스와 함께 스월 형태로 방전관 내부로 공급함으로써, SiOx계(0<X<2) 음극 활물질의 생성을 위한 화학 반응의 반응성을 극대화시킬 수 있으며 이에 따라 음극 활물질의 생성 시간을 단축할 수 있다.In addition, according to embodiments of the present invention, the reaction gas for the production of SiO x-based (0 <X <2) anode active material is supplied with the silicon precursor into the discharge tube or the reactor or the reaction gas and the plasma generating gas In addition, by supplying the inside of the discharge tube in the form of swirl, it is possible to maximize the reactivity of the chemical reaction for the production of SiOx-based (0 <X <2) negative electrode active material, thereby reducing the production time of the negative electrode active material.
도 1은 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치의 블록 구성도1 is a block diagram of an apparatus for manufacturing a negative active material for a secondary battery according to embodiments of the present invention.
도 2는 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치에서, 도파관과 방전관이 연결되는 부분을 도시한 수직 단면도의 제 1 실시예를 나타낸 도면FIG. 2 is a view showing a first embodiment of a vertical cross-sectional view showing a portion where a waveguide and a discharge tube are connected in an apparatus for manufacturing a negative active material for a secondary battery according to embodiments of the present disclosure.
도 3은 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치에서, 도파관과 방전관이 연결되는 부분을 도시한 수직 단면도의 제 2 실시예를 나타낸 도면3 is a view illustrating a second embodiment of a vertical cross-sectional view showing a portion where a waveguide and a discharge tube are connected in the apparatus for manufacturing a negative active material for a secondary battery according to embodiments of the present invention.
도 4는 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치에서, 스월 발생부의 수평 단면도의 실시예들을 나타낸 도면4 is a view illustrating embodiments of a horizontal cross-sectional view of a swirl generator in the apparatus for manufacturing a negative active material for a secondary battery according to embodiments of the present disclosure.
도 5는 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치에 의해 제조된 음극 활물질의 용량 유지 및 쿨롱 효율 향상 효과를 설명하기 위한 도면5 is a view for explaining the capacity maintenance and coulombic efficiency improvement effect of the negative electrode active material manufactured by the apparatus for manufacturing a negative electrode active material for a secondary battery according to embodiments of the present invention;
이하, 도면을 참조하여 본 발명의 구체적인 실시예를 설명하기로 한다. 그러나 이는 예시적 실시예에 불과하며 본 발명은 이에 한정되지 않는다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, this is only an exemplary embodiment and the present invention is not limited thereto.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하 실시예는 진보적인 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 효율적으로 설명하기 위한 일 수단일 뿐이다.The technical spirit of the present invention is determined by the claims, and the following embodiments are merely means for effectively explaining the technical spirit of the present invention to those skilled in the art to which the present invention pertains.
도 1은 본 발명의 제 1 실시예에 따른 이차 전지용 음극 활물질의 제조 장치(100)의 상세 구성을 나타낸 도면이다. 도 1에 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 이차 전지용 음극 활물질의 제조 장치(100)는 전자파 공급부(110), 방전관(112), 제 1 가스 공급부(114), 스월 발생부(116), 실리콘 공급부(118), 제 2 가스 공급부(120), 반응로(122) 및 생성물 배출부(124)를 포함한다. 1 is a view showing a detailed configuration of an apparatus 100 for manufacturing a negative electrode active material for a secondary battery according to a first embodiment of the present invention. As shown in FIG. 1, the apparatus 100 for manufacturing a negative active material for a secondary battery according to a first exemplary embodiment of the present invention may include an electromagnetic wave supply unit 110, a discharge tube 112, a first gas supply unit 114, and a swirl generator. 116, a silicon supply 118, a second gas supply 120, a reactor 122, and a product outlet 124.
전자파 공급부(110)는 특정 주파수의 전자파를 발진시켜 방전관(112)으로 공급하기 위한 장치로서, 전자파 발진기(102), 순환기(104), 튜너(106) 및 도파관(108)을 포함한다.The electromagnetic wave supply unit 110 is an apparatus for oscillating an electromagnetic wave of a specific frequency and supplying it to the discharge tube 112. The electromagnetic wave supply unit 110 includes an electromagnetic wave oscillator 102, a circulator 104, a tuner 106, and a waveguide 108.
전자파 발진기(102)는 플라즈마 발생을 위한 전자파를 발진한다. 전자파 발진기(102)는 전원부(미도시)와 연결되며, 전원부로부터 전원을 공급받아 전자파를 발진한다. 전자파 발진기(102)는 예를 들어, 마그네트론(magnetron)일 수 있다. 전자파 발진기(102)는 특정 주파수 범위, 예를 들어 2.45GHz, 915MHz, 또는 896MHz의 주파수 범위를 갖는 전자파를 발진할 수 있다. The electromagnetic wave oscillator 102 oscillates electromagnetic waves for plasma generation. The electromagnetic wave oscillator 102 is connected to a power supply unit (not shown) and receives power from the power supply unit to oscillate electromagnetic waves. The electromagnetic wave oscillator 102 may be, for example, a magnetron. The electromagnetic oscillator 102 may oscillate electromagnetic waves having a specific frequency range, for example, a frequency range of 2.45 GHz, 915 MHz, or 896 MHz.
순환기(104)는 전자파 발진기(102)와 연결되며, 전자파 발진기(102)에서 발진된 전자파를 출력함과 동시에 임피던스 부정합으로 반사되는 전자파 에너지를 소멸시켜 전자파 발진기(102)를 보호한다.The circulator 104 is connected to the electromagnetic wave oscillator 102 and protects the electromagnetic wave oscillator 102 by outputting electromagnetic waves oscillated by the electromagnetic wave oscillator 102 and dissipating electromagnetic energy reflected by impedance mismatch.
튜너(106)는 순환기(104)로부터 출력된 전자파의 입사파와 반사파의 세기를 조절하여 임피던스 정합을 유도함으로써 전자파로 유도된 자기장이 방전관(112) 내에서 최대가 되도록 한다.The tuner 106 adjusts the intensity of the incident wave and the reflected wave of the electromagnetic wave output from the circulator 104 to induce impedance matching so that the magnetic field induced by the electromagnetic wave is maximized in the discharge tube 112.
도파관(108)은 튜너(106)로부터 입력되는 전자파를 방전관(112)으로 전달한다. The waveguide 108 transmits the electromagnetic wave input from the tuner 106 to the discharge tube 112.
방전관(112)은 도파관(108)으로부터 전달받은 전자파 및 제 1 가스 공급부(114)를 통해 공급되는 플라즈마 발생가스로부터 플라즈마를 발생시킨다. 이때, 방전관(112)은 스월 발생부(116)와 연결될 수 있으며, 스월 발생부(116)를 통해 플라즈마 발생가스를 공급받을 수 있다. 스월 발생부(116)는 제 1 가스 공급부(114)와 연결되어 플라즈마 발생가스를 스월(swirl) 형태로 방전관(112)의 내부로 공급할 수 있다. 방전관(112)은 예를 들어, 유전율 및 전자파 투과율이 높은 석영으로 이루어질 수 있다. 다만, 방전관(112)의 재질이 이에 한정되는 것은 아니며, 방전관(112)은 알루미나, 세라믹 등의 다양한 재질로 이루어질 수 있다. The discharge tube 112 generates a plasma from the electromagnetic wave received from the waveguide 108 and the plasma generating gas supplied through the first gas supply unit 114. In this case, the discharge tube 112 may be connected to the swirl generator 116, and may receive the plasma generating gas through the swirl generator 116. The swirl generator 116 may be connected to the first gas supplier 114 to supply the plasma generating gas to the inside of the discharge tube 112 in the form of a swirl. The discharge tube 112 may be made of, for example, quartz having high dielectric constant and electromagnetic wave transmittance. However, the material of the discharge tube 112 is not limited thereto, and the discharge tube 112 may be made of various materials such as alumina and ceramic.
제 1 가스 공급부(114)는 플라즈마 발생가스를 방전관(112) 내부로 공급한다. 이때, 제 1 가스 공급부(114)는 스월 발생부(116)와 연결될 수 있으며, 스월 발생부(116)는 플라즈마 발생가스를 스월(swirl) 형태로 방전관(112) 내부로 공급할 수 있다. 플라즈마 발생가스는 예를 들어, 아르곤, 헬륨 및 질소 중 하나 이상을 포함하는 불활성 가스일 수 있다. The first gas supply unit 114 supplies the plasma generating gas into the discharge tube 112. In this case, the first gas supply unit 114 may be connected to the swirl generator 116, and the swirl generator 116 may supply the plasma generating gas into the discharge tube 112 in the form of a swirl. The plasma generating gas can be, for example, an inert gas comprising one or more of argon, helium and nitrogen.
스월 발생부(116)는 플라즈마 발생가스를 스월(swirl) 형태로 방전관(112)의 내부로 공급한다. 상술한 바와 같이, 스월 발생부(116)는 제 1 가스 공급부(114)와 연결될 수 있다. 플라즈마 발생가스는 방전관(112)의 내부에서 스월을 형성하게 되며, 공급된 플라즈마 발생가스 및 방전관(112) 내부의 전자파로부터 고온의 플라즈마가 발생하게 된다. 이에 따라 플라즈마 화염이 방전관(112)의 내부의 중심으로 집중되게 된다. 본 발명의 실시예들에 따르면, 스월 발생부(116)를 통해 방전관(112)의 내부에 스월을 발생시킴으로써, 플라즈마의 발생 효율을 높이고 발생된 플라즈마를 안정화시킴과 동시에 고온의 플라즈마 화염으로부터 방전관(112) 내벽을 보호할 수 있다.The swirl generator 116 supplies the plasma generating gas into the discharge tube 112 in the form of a swirl. As described above, the swirl generator 116 may be connected to the first gas supplier 114. The plasma generating gas forms a swirl in the discharge tube 112, and high temperature plasma is generated from the supplied plasma generating gas and the electromagnetic waves inside the discharge tube 112. As a result, the plasma flame is concentrated to the center of the discharge tube 112. According to the embodiments of the present invention, by generating a swirl in the discharge tube 112 through the swirl generating unit 116, the discharge tube (from the high temperature plasma flame while increasing the generation efficiency of the plasma and stabilizing the generated plasma) 112) It can protect the inner wall.
한편, 방전관(112) 내부에서 발생된 플라즈마는 후술할 실리콘 공급부(118)를 통해 방전관(112) 또는 반응로(122) 내부로 공급된 실리콘 전구체의 해리를 촉진시킨다. 여기서, 실리콘 전구체란 가수 분해를 통해 SiOx를 얻을 수 있는 물질로서, 예를 들어 사염화실리콘(SiCl4), 사불화실리콘(SiF4) 등이 될 수 있다. 플라즈마 발생시 반응성이 큰 라디칼이 생성되며, 이러한 라디칼은 실리콘 전구체와 반응하여 실리콘 전구체의 해리를 촉진시킬 수 있다. 예를 들어, 발생된 플라즈마는 SiCl4 SiF4 로부터 Cl4 및 F4 가 빠르게 떨어져 나갈 수 있도록 도와준다. 이후, 해리된 실리콘이 후술할 반응 가스와 화학 반응할 수 있으며, 이와 같은 과정을 통해 SiOx계(0<X<2) 음극 활물질이 생성된다. On the other hand, the plasma generated inside the discharge tube 112 promotes dissociation of the silicon precursor supplied into the discharge tube 112 or the reactor 122 through the silicon supply unit 118 which will be described later. Here, the silicon precursor is a material capable of obtaining SiOx through hydrolysis, and may be, for example, silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 ), or the like. When plasma is generated, highly reactive radicals are generated, which can react with the silicon precursor to promote dissociation of the silicon precursor. For example, the generated plasma may be SiCl 4 and Helps Cl 4 and F 4 fall off quickly from SiF 4 . Thereafter, the dissociated silicon may be chemically reacted with a reaction gas, which will be described later. The SiOx-based (0 <X <2) anode active material is generated through this process.
본 발명의 실시예들에 따르면, 플라즈마를 이용하여 SiOx계(0<X<2) 음극 활물질의 생성을 촉진시킬 수 있으며, 특히 스월에 의한 플라즈마 발생을 통해, 제조된 SiOx계(0<X<2) 음극 활물질 내의 실리콘(Si) 분산(dispersion)을 고르게 하여 SiOx계(0<X<2) 음극 활물질의 수명 안정성 및 쿨롱 효율을 증가시킬 수 있다. SiOx계(0<X<2) 음극 활물질은 그 사이즈에 따라 특성 차이가 발생하게 되므로 제조 과정에서 이를 고르게 만드는 것이 매우 중요하다. 스월에 의한 플라즈마 발생을 통해 SiOx계(0<X<2) 음극 활물질이 제조되는 경우, 제조된 음극 활물질의 사이즈가 고르게 되며, 결과적으로 음극 활물질의 특성 및 전극 효율성이 높아지게 된다. According to embodiments of the present invention, it is possible to promote the generation of SiOx-based (0 <X <2) anode active material using plasma, and in particular, through the generation of plasma by swirl, the produced SiOx-based (0 <X < 2) The silicon (Si) dispersion in the negative electrode active material may be evened to increase the lifetime stability and the coulombic efficiency of the SiOx-based (0 <X <2) negative electrode active material. Since SiOx-based (0 <X <2) negative electrode active materials have different characteristics depending on their size, it is very important to make them even during the manufacturing process. When the SiOx-based (0 <X <2) negative electrode active material is manufactured through plasma generation by swirl, the size of the prepared negative electrode active material becomes uniform, and as a result, the characteristics and electrode efficiency of the negative electrode active material are increased.
실리콘 공급부(118)는 방전관(112)의 내부에서 발생된 플라즈마에 실리콘 전구체를 공급한다. 상술한 바와 같이, 실리콘 전구체는 예를 들어 사염화실리콘(SiCl4), 사불화실리콘(SiF4) 등이 될 수 있다. 사염화실리콘(SiCl4) 및 사불화실리콘(SiF4)은 저순도 물질로서 값이 저렴한 장점이 있다. 다만, 실리콘 전구체가 이에 한정되는 것은 아니며, 실리콘 전구체는 CH3SiCl3, (CH3)3SiCl, (CH3)4Si, HSiCl3 등 다양한 물질이 될 수 있다. 일반적으로, 실리콘 전구체는 유량이 작고 부식성 물질이므로, 본 발명의 실시예들은 이송 가스와 함께 실리콘 전구체를 방전관(112)의 내부로 공급시킬 수 있도록 하였다. 이송 가스는 예를 들어, 아르곤, 헬륨, 질소 등 불활성 가스가 될 수 있다. 한편, 도 1에서는 실리콘 공급부(118)가 방전관(112)의 내부로 실리콘 전구체를 공급하는 것으로 도시하였으나 이는 하나의 실시예에 불과하며, 실리콘 공급부(118)는 반응로(122)의 내부로 실리콘 전구체를 공급할 수도 있다.The silicon supply unit 118 supplies the silicon precursor to the plasma generated inside the discharge tube 112. As described above, the silicon precursor may be, for example, silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 ), or the like. Silicon tetrachloride (SiCl 4 ) and silicon tetrafluoride (SiF 4 ) are low-purity materials and have low cost. However, the silicon precursor is not limited thereto, and the silicon precursor may be various materials such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, (CH 3 ) 4 Si, and HSiCl 3 . In general, since the silicon precursor has a low flow rate and a corrosive material, embodiments of the present invention allow the silicon precursor to be supplied into the discharge tube 112 together with the transfer gas. The conveying gas can be, for example, an inert gas such as argon, helium, nitrogen or the like. Meanwhile, in FIG. 1, the silicon supply unit 118 supplies the silicon precursor to the inside of the discharge tube 112, but this is only an example, and the silicon supply unit 118 may supply silicon into the reactor 122. It is also possible to supply precursors.
제 2 가스 공급부(120)는 방전관(112) 또는 반응로(122)의 내부로 반응 가스를 공급한다. 여기서, 반응 가스는 실리콘 전구체로부터 실리콘(Si)을 해리시키기 위한 제 1 반응 가스 및 해리된 실리콘과 화학 반응하여 SiOx계(0<X<2) 음극 활물질을 생성하기 위한 제 2 반응 가스 중 하나 이상을 포함할 수 있다. 제 1 반응 가스는 예를 들어, 수소(H2) 및 스팀(H20) 중 하나 이상을 포함할 수 있으며, 제 2 반응 가스는 예를 들어, 산소(O2)를 포함할 수 있다. 제 1 반응 가스는 실리콘 전구체와 화학 반응함으로써 실리콘 전구체로부터 실리콘을 해리시킬 수 있으며, 제 2 반응 가스는 해리된 실리콘과 화학 반응함으로써 SiOx계(0<X<2) 음극 활물질을 생성할 수 있다. 이를 화학식으로 나타내면 다음과 같다.The second gas supply unit 120 supplies the reaction gas into the discharge tube 112 or the reactor 122. Here, the reaction gas is at least one of a first reaction gas for dissociating silicon (Si) from the silicon precursor and a second reaction gas for chemically reacting with the dissociated silicon to generate a SiOx-based (0 <X <2) anode active material. It may include. The first reactant gas may include, for example, one or more of hydrogen (H 2 ) and steam (H 2 0), and the second reactant gas may include, for example, oxygen (O 2 ). The first reactant gas may dissociate silicon from the silicon precursor by chemically reacting with the silicon precursor, and the second reactant gas may generate SiOx-based (0 <X <2) anode active material by chemically reacting with the dissociated silicon. This is represented by the following formula.
(1) 실리콘 해리(1) silicon dissociation
SiCl4 (실리콘 전구체) + 2H2 (제 1 반응 가스) => Si + 4HClSiCl 4 (silicon precursor) + 2H 2 (first reaction gas) => Si + 4HCl
(2) SiOx계(0<X<2) 음극 활물질의 생성(2) Production of SiOx-based (0 <X <2) anode active material
Si + aO2 (제 2 반응 가스) => SiOxSi + aO 2 (second reaction gas) => SiOx
여기서, 제 2 반응 가스의 산소 농도는, 제조하고자 하는 SiOx계(0<X<2) 음극 활물질의 x값에 따라 달라질 수 있다. 즉, 공급하는 산소 농도를 높이면 SiOx계(0<X<2) 음극 활물질의 x값이 증가하게 되며 공급하는 산소 농도를 낮추면 SiOx계(0<X<2) 음극 활물질의 x값이 감소하게 된다. 또한, 공급하는 산소 농도를 조절함으로써, 실리콘의 부피 팽창을 억제할 수 있다.Here, the oxygen concentration of the second reaction gas may vary depending on the x value of the SiOx-based (0 <X <2) anode active material to be manufactured. That is, increasing the oxygen concentration to supply increases the x value of the SiOx-based (0 <X <2) anode active material, and decreasing the supply oxygen concentration decreases the x value of the SiOx-based (0 <X <2) anode active material. . In addition, the volume expansion of silicon can be suppressed by adjusting the oxygen concentration to be supplied.
한편, 도 1에서는 별도의 제 2 가스 공급부(120)가 형성되어 반응 가스를 방전관(112) 또는 반응로(122)의 내부로 공급하는 것으로 도시하였으나 이에 한정되는 것은 아니며, 제 2 가스 공급부(120)는 제 1 가스 공급부(114) 및 실리콘 공급부(118)와 각각 일체로서 형성될 수도 있다. 예를 들어, 제 1 반응 가스는 실리콘 전구체와 함께 실리콘 공급부(118)를 통해 방전관(112)의 내부에서 발생된 플라즈마에 공급될 수 있으며, 제 2 반응 가스는 플라즈마 발생 가스와 함께 제 1 가스 공급부(114)를 통해 방전관(112)의 내부로 공급될 수 있다. 제 1 반응 가스가 실리콘 전구체와 함께 방전관(112)의 내부로 공급되는 경우, 제 1 반응 가스에 의해 실리콘 전구체(SiCl4, SiF4 등)로부터 실리콘(Si)이 해리될 수 있다. Meanwhile, in FIG. 1, a separate second gas supply unit 120 is formed to supply the reaction gas into the discharge tube 112 or the reactor 122, but the present invention is not limited thereto, and the second gas supply unit 120 is not limited thereto. ) May be integrally formed with the first gas supply 114 and the silicon supply 118, respectively. For example, the first reactant gas may be supplied to the plasma generated inside the discharge tube 112 through the silicon supply unit 118 along with the silicon precursor, and the second reactant gas may be supplied to the first gas supply unit together with the plasma generating gas. The discharge tube 112 may be supplied into the discharge tube 112. When the first reactant gas is supplied into the discharge tube 112 together with the silicon precursor , silicon (Si) may be dissociated from the silicon precursors (SiCl 4, SiF 4, etc.) by the first reactant gas.
SiCl4 (실리콘 전구체) + 2H2 (제 1 반응 가스) => Si + 4HClSiCl 4 (silicon precursor) + 2H 2 (first reaction gas) => Si + 4HCl
SiF4 (실리콘 전구체) + 2H2 (제 1 반응 가스) => Si + 4HFSiF 4 (silicon precursor) + 2H 2 (first reaction gas) => Si + 4HF
또한, 상술한 바와 같이, 실리콘 전구체의 해리는 방전관(112) 내부의 플라즈마에 의해 더욱 촉진될 수 있다. 이후, 해리된 실리콘은 제 1 가스 공급부(114)를 통해 공급된 제 2 반응 가스와 빠르게 화학 반응할 수 있으며, 이와 같은 과정을 통해 SiOx계(0<X<2) 음극 활물질이 생성된다. In addition, as described above, dissociation of the silicon precursor may be further promoted by the plasma inside the discharge tube 112. Thereafter, the dissociated silicon may rapidly chemically react with the second reaction gas supplied through the first gas supply unit 114, and thus, a SiOx-based (0 <X <2) anode active material is generated.
Si + aO2 (제 2 반응 가스) => SiOxSi + aO 2 (second reaction gas) => SiOx
즉, 본 발명의 실시예들에 따르면, 반응 가스를 실리콘 전구체와 함께 방전관(112) 또는 반응로(122) 내부로 공급하거나 또는 상기 반응 가스를 플라즈마 발생가스와 함께 스월 형태로 방전관(112) 내부로 공급함으로써, SiOx계(0<X<2) 음극 활물질의 생성을 위한 화학 반응의 반응성을 극대화시킬 수 있으며 이에 따라 음극 활물질의 생성 시간을 단축할 수 있다. 한편, 실리콘 공급부(118)가 실리콘 전구체 및 제 1 반응가스를 방전관(112) 또는 반응로(122) 내부로 공급하는 시점은 방전관(112) 내부에서 플라즈마가 발생된 이후일 수 있으나, 이에 한정되는 것은 아니며 실리콘 공급부(118)는 방전관(112) 내부에서 플라즈마가 발생되는 도중 실리콘 전구체 및 제 1 반응가스를 방전관(112) 또는 반응로(122) 내부로 공급할 수도 있다.That is, according to embodiments of the present invention, the reaction gas is supplied into the discharge tube 112 or the reactor 122 together with the silicon precursor or the reaction gas is swirled together with the plasma generating gas into the discharge tube 112. By supplying to, it is possible to maximize the reactivity of the chemical reaction for the production of SiOx-based (0 <X <2) negative electrode active material, thereby reducing the production time of the negative electrode active material. Meanwhile, the time point at which the silicon supply unit 118 supplies the silicon precursor and the first reaction gas into the discharge tube 112 or the reactor 122 may be after the plasma is generated in the discharge tube 112, but is not limited thereto. The silicon supply unit 118 may supply the silicon precursor and the first reaction gas into the discharge tube 112 or the reactor 122 while the plasma is generated in the discharge tube 112.
반응로(122)는 실리콘 전구체 및 반응 가스 간의 화학 반응에 의하여 SiOx계(0<X<2) 음극 활물질을 생성한다. 상술한 바와 같이, 실리콘 전구체는 제 1 반응 가스 및 플라즈마에 의해 해리되며, 해리된 실리콘는 반응로(122)에서 제 2 반응 가스와 화학 반응하여 SiOx계(0<X<2) 음극 활물질을 생성할 수 있다. 반응로(122)는 예를 들어, 방전관(112)의 상단에 형성되어 방전관(112)과 연결될 수 있다.The reactor 122 generates a SiO x based (0 <X <2) anode active material by a chemical reaction between the silicon precursor and the reaction gas. As described above, the silicon precursor is dissociated by the first reactant gas and the plasma, and the dissociated silicon is chemically reacted with the second reactant gas in the reactor 122 to generate a SiO x based (0 <X <2) anode active material. can do. For example, the reactor 122 may be formed at an upper end of the discharge tube 112 and connected to the discharge tube 112.
생성물 배출부(124)는 반응로(122)에서 생성된 SiOx계(0<X<2) 음극 활물질을 외부로 배출한다. 생성물 배출부(124)는 예를 들어, 반응로(122) 상단에 형성될 수 있다. 생성물 배출부(124)는 SiOx계(0<X<2) 음극 활물질을 채집할 수 있으며, 이를 외부로 배출할 수 있다. 또한, 생성물 배출부(124)는 SiOx계(0<X<2) 음극 활물질의 채집 전, SiOx계(0<X<2) 음극 활물질의 제조 과정 중 발생되는 염산 가스(HCl), 불화수소 가스(HF) 등을 포집할 수 있다.The product discharge part 124 discharges the SiOx-based (0 <X <2) negative electrode active material generated in the reactor 122 to the outside. The product outlet 124 may be formed, for example, on top of the reactor 122. The product discharge unit 124 may collect the SiOx-based (0 <X <2) negative electrode active material, and discharge it to the outside. In addition, the product discharge unit 124 is a hydrochloric acid gas (HCl), hydrogen fluoride gas generated during the manufacturing process of the SiOx-based (0 <X <2) negative electrode active material, before the SiOx-based (0 <X <2) negative electrode active material is collected (HF) and the like can be collected.
도 2는 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치(100)에서, 도파관(108)과 방전관(112)이 연결되는 부분을 도시한 수직 단면도의 제 1 실시예를 나타낸 도면이다. 도 2 및 도 3에서는 제 2 가스 공급부(120)가 제 1 가스 공급부(114) 및 실리콘 공급부(118)와 각각 일체로서 형성되는 것으로 가정하여, 제 2 가스 공급부(120)의 도시를 생략하였다.2 is a view showing a first embodiment of a vertical cross-sectional view showing a portion where the waveguide 108 and the discharge tube 112 are connected in the apparatus 100 for manufacturing a negative active material for a secondary battery according to embodiments of the present invention. . 2 and 3, the second gas supply part 120 is assumed to be integrally formed with the first gas supply part 114 and the silicon supply part 118, respectively, and thus the illustration of the second gas supply part 120 is omitted.
도 2에 도시된 바와 같이, 방전관(112)은 원통 형상으로 이루어질 수 있으며, 도파관(108)의 종단으로부터 도파관(108) 내 파장의 1/8~1/2 사이에 해당하는 지점에서 도파관(108)을 수직하게 관통할 수 있다. 또한, 반응로(122)는 방전관(112)과 동일한 직경을 갖는 원통 형상으로 이루어질 수 있다.As shown in FIG. 2, the discharge tube 112 may have a cylindrical shape, and the waveguide 108 may be disposed at a point corresponding to between 1/8 and 1/2 of the wavelength in the waveguide 108 from the end of the waveguide 108. ) Can penetrate vertically. In addition, the reactor 122 may be formed in a cylindrical shape having the same diameter as the discharge tube (112).
도파관(108), 방전관(112) 및 스월 발생부(116)의 외측에는 이들을 지지하기 위한 방전관 지지체(112a)가 형성될 수 있다. 방전관 지지체(112a)는 도파관(108), 방전관(112) 및 스월 발생부(116) 각각과 체결 또는 결합될 수 있다. 방전관 지지체(112a)는 방전관(112)이 도파관(108) 내부에 안정적으로 삽입되어 고정될 수 있도록 방전관(112)을 지지할 수 있으며, 스월 발생부(116)가 방전관(112)의 내부로 플라즈마 발생가스를 원활하게 공급할 수 있도록 스월 발생부(116)를 지지할 수 있다. 또한, 방전관 지지체(112a)는 방전관(112)의 내부에서 외부로 흘러나오는 주파수를 실드(shield)하는 역할을 수행할 수 있다.A discharge tube support 112a may be formed outside the waveguide 108, the discharge tube 112, and the swirl generator 116 to support them. The discharge tube supporter 112a may be fastened or coupled to each of the waveguide 108, the discharge tube 112, and the swirl generator 116. The discharge tube supporter 112a may support the discharge tube 112 so that the discharge tube 112 may be stably inserted and fixed inside the waveguide 108, and the swirl generator 116 may plasma into the discharge tube 112. The swirl generator 116 may be supported to smoothly supply the generated gas. In addition, the discharge tube supporter 112a may serve to shield a frequency flowing from the inside of the discharge tube 112 to the outside.
제 1 가스 공급부(114)는 방전관(112)의 하측에 형성되어 스월 발생부(116)와 연결될 수 있으며, 실리콘 공급부(118)는 방전관(112)의 하측에 형성되어 방전관(112)의 내부와 연결될 수 있다. 상술한 바와 같이, 제 1 반응 가스는 실리콘 전구체와 함께 실리콘 공급부(118)를 통해 방전관(112)의 내부에서 발생된 플라즈마에 공급될 수 있으며, 제 2 반응 가스는 플라즈마 발생 가스와 함께 제 1 가스 공급부(114)를 통해 방전관(112)의 내부로 공급될 수 있다. 제 1 반응 가스가 실리콘 전구체와 함께 방전관(112)의 내부로 공급되는 과정에서 실리콘 전구체(SiCl4, SiF4 등)로부터 실리콘(Si)이 해리될 수 있으며, 특히 방전관(112)의 내부의 플라즈마에 의해 실리콘 전구체의 해리가 촉진될 수 있다. 이후, 해리된 실리콘은 제 1 가스 공급부(114)를 통해 공급된 제 2 반응 가스와 화학 반응할 수 있으며, 이와 같은 과정을 통해 SiOx계(0<X<2) 음극 활물질이 생성될 수 있다. The first gas supply unit 114 may be formed under the discharge tube 112 and connected to the swirl generator 116, and the silicon supply unit 118 may be formed under the discharge tube 112 to form an interior of the discharge tube 112. Can be connected. As described above, the first reaction gas may be supplied to the plasma generated inside the discharge tube 112 through the silicon supply unit 118 together with the silicon precursor, and the second reaction gas may be supplied to the first gas together with the plasma generating gas. It may be supplied into the discharge tube 112 through the supply unit 114. Silicon (Si) may be dissociated from the silicon precursor (SiCl 4, SiF 4, etc.) in the process of supplying the first reaction gas into the discharge tube 112 together with the silicon precursor, and in particular, the plasma inside the discharge tube 112. By dissociation of the silicon precursor can be promoted. Thereafter, the dissociated silicon may chemically react with the second reaction gas supplied through the first gas supply unit 114, and thus, a SiOx-based (0 <X <2) anode active material may be generated.
도 3은 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치(100)에서, 도파관(108)과 방전관(112)이 연결되는 부분을 도시한 수직 단면도의 제 2 실시예를 나타낸 도면이다. 도 3에 도시된 바와 같이, 실리콘 공급부(118)는 반응로(122)의 일측에 형성될 수 있다. 도 2에 도시된 바와 같이 실리콘 공급부(118)가 방전관(112)의 하측에 형성되는 경우, 실리콘 공급부(118)가 반응로(122)의 일측에 형성되는 것과 비교하여 반응성이 좀 더 커지게 되며 이에 따라 SiOx 의 x 값이 더 커질 수 있다. 반응성이 지나치게 커지게 되면 SiO2 가 형성될 가능성이 있으므로, 본 발명의 실시예들은 실리콘 공급부(118)의 위치를 다양하게 구성함으로써, 음극 활물질 제조를 위한 물질들의 반응성을 조절하였다. 한편, 도 3의 각 구성들은 도 2에 도시된 각 구성들과 동일한 기능을 수행하므로 도 2에서와 동일한 도면 부호를 사용하였으며, 각 구성에 대한 설명은 앞에서 자세히 설명하였는바 여기서는 그 설명을 생략하도록 한다. 3 is a view showing a second embodiment of a vertical cross-sectional view showing a portion where the waveguide 108 and the discharge tube 112 are connected in the apparatus 100 for manufacturing a negative active material for a secondary battery according to embodiments of the present invention. . As shown in FIG. 3, the silicon supply unit 118 may be formed at one side of the reactor 122. As shown in FIG. 2, when the silicon supply unit 118 is formed at the lower side of the discharge tube 112, the silicon supply unit 118 is more responsive than the silicon supply unit 118 is formed at one side of the reactor 122. Accordingly, the x value of SiOx may be larger. Since SiO 2 may be formed when the reactivity becomes excessively large, embodiments of the present invention control the reactivity of the materials for manufacturing the negative active material by configuring the location of the silicon supply unit 118 in various ways. Meanwhile, each component of FIG. 3 uses the same reference numerals as in FIG. 2 because they perform the same functions as those illustrated in FIG. 2, and the description of each component has been described above in detail. do.
도 4은 본 발명의 실시예들에 따른 이차 전지용 음극 활물질(100)의 제조 장치에서, 스월 발생부(116)의 실시예들을 나타낸 도면이다. 도 4에 도시된 바와 같이, 본 발명의 실시예들에 따른 스월 발생부(116)는 하나 이상의 가스 공급관(402)을 포함한다. 가스 공급관(402)은 방전관(112)의 내부로 공급되는 플라즈마 발생가스(또는 플라즈마 발생가스와 제 2 반응 가스가 혼합된 혼합 가스)가 방전관(112)의 내주면과 평행하게(내주면을 따라) 배출되어 스월 형태로 회전하도록 방전관(112)의 내부와 연결될 수 있다. 방전관(112)의 내부와 연결되는 가스 공급관(402)의 일단 부근에서는 가스 공급관(402)의 진행 방향이 방전관(112)의 내주면과 평행하도록 구성되며, 이에 따라 공급되는 플라즈마 발생가스(또는 플라즈마 발생가스와 제 2 반응 가스가 혼합된 혼합 가스)는 방전관(112) 내벽을 따라 일 방향으로 회전하면서 스월 형태를 띄게 된다. 도 4에 도시된 바와 같이, 가스 공급관(402)은 스월 발생부(116)의 내부에 다양한 개수로 형성될 수 있다. 도 4의 (a), (b), (c)는 스월 발생부(116)의 내부에 2개, 4개, 6개의 가스 공급관(402)이 형성된 실시예를 각각 도시하고 있다. 가스 공급관(402)은 스월 발생부(116) 내에서 동일 간격으로 배치될 수 있다.4 is a view showing embodiments of the swirl generating unit 116 in the apparatus for manufacturing a negative electrode active material 100 for a secondary battery according to embodiments of the present invention. As shown in FIG. 4, the swirl generator 116 according to embodiments of the present invention includes one or more gas supply pipes 402. The gas supply pipe 402 discharges the plasma generating gas (or a mixed gas in which the plasma generating gas and the second reactive gas are mixed) supplied into the discharge tube 112 in parallel with the inner circumferential surface of the discharge tube 112 (along the inner circumferential surface). And may be connected to the inside of the discharge tube 112 to rotate in a swirl form. At one end of the gas supply pipe 402 connected to the inside of the discharge tube 112, the traveling direction of the gas supply pipe 402 is configured to be parallel to the inner circumferential surface of the discharge tube 112, thereby supplying the plasma generating gas (or plasma generation). The mixed gas mixed with the gas and the second reactant gas) has a swirl shape while rotating in one direction along the inner wall of the discharge tube 112. As shown in FIG. 4, the gas supply pipe 402 may be formed in various numbers inside the swirl generator 116. 4A, 4B, and 4C show an embodiment in which two, four, six gas supply pipes 402 are formed inside the swirl generator 116, respectively. The gas supply pipes 402 may be arranged at equal intervals in the swirl generator 116.
도 5는 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치(100)에 의해 제조된 음극 활물질의 용량(capacity) 유지 및 쿨롱 효율(coulombic efficiency) 향상 효과를 설명하기 위한 도면이다. 도 5의 푸른선은 기존 기화 방식을 이용하여 제조된 음극 활물질의 용량 유지 정도 및 쿨롱 효율을 나타내며, 붉은 선은 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치(100)에 의해 제조된 음극 활물질의 용량 유지 정도 및 쿨롱 효율을 나타낸다. 여기서, 굵은 선은 음극 활물질의 용량 유지 정도를 나타내며, 점선은 음극 활물질의 쿨롱 효율을 나타낸다. 5 is a view for explaining the capacity maintenance and coulombic efficiency (effect) of the negative electrode active material manufactured by the apparatus 100 for manufacturing a negative electrode active material for a secondary battery according to embodiments of the present invention. The blue line in FIG. 5 represents the capacity retention degree and the coulombic efficiency of the negative electrode active material manufactured using the conventional vaporization method, and the red line is manufactured by the apparatus 100 for manufacturing a negative electrode active material for secondary batteries according to embodiments of the present invention. Capacity retention degree and coulombic efficiency of the negative electrode active material. Here, the thick line indicates the degree of capacity retention of the negative electrode active material, and the dotted line indicates the coulombic efficiency of the negative electrode active material.
먼저, 기존 기화 방식을 이용하여 제조된 음극 활물질은 충방전 100 사이클링 동안 용량이 급격히 감소하는 경향을 보이고 있다. 도 5에 도시된 바와 같이, 기존 기화 방식을 이용하여 제조된 음극 활물질은, 초기 1 사이클에서의 약 2350 mAh/g 의 용량이 100사이클 이후 약 500 mAh/g 의 용량으로 감소되는 것으로 나타났다. 즉, 종래 기술에 의해 제조된 음극 활물질의 용량 유지율(%)은 충방전 100 사이클링 동안 약 21.27% 에 불과함을 알 수 있다. 종래 기술에 의하여 제조된 음극 활물질은 충방전 사이클링이 많아질수록 용량이 급격히 감소하기 때문에 충방전 용량 대비 실제 충방전 양을 나타내는 쿨롱 효율은 큰 의미가 없으며, 수명 안정성이 낮은 것으로 분석된다.First, the negative electrode active material prepared by using the existing vaporization method has a tendency to rapidly decrease the capacity during 100 cycles of charge and discharge. As shown in FIG. 5, the negative electrode active material manufactured using the conventional vaporization method was found to have a capacity of about 2350 mAh / g at an initial 1 cycle reduced to a capacity of about 500 mAh / g after 100 cycles. That is, it can be seen that the capacity retention rate (%) of the negative electrode active material prepared by the prior art is only about 21.27% during 100 cycles of charge and discharge. Since the capacity of the negative electrode active material prepared by the prior art decreases rapidly as the charge / discharge cycling increases, the coulombic efficiency indicating the actual charge / discharge amount relative to the charge / discharge capacity is not significant, and it is analyzed that the lifetime stability is low.
다음으로, 본 발명의 실시예들에 따른 이차 전지용 음극 활물질의 제조 장치(100)에 의해 제조된 음극 활물질은, 초기 1 사이클에서의 약 1264 mAh/g 의 용량이 100사이클 이후 약 1127 mAh/g 의 용량으로 감소되는 것으로 나타났다. 즉, 본 발명의 실시예들에 따라 제조된 음극 활물질의 용량 유지율(%)은 충방전 100 사이클링 동안 약 89.16% 에 달하는 것을 알 수 있다. 본 발명의 실시예들에 따라 제조된 음극 활물질은 종래 기술에 의해 제조된 음극 활물질과 비교하여 매우 큰 용량 유지율을 보이고 있으며, 결과적으로 수명 안정성이 크게 증가하였음을 알 수 있다. 이는, 스월에 의한 플라즈마 발생을 통해, 제조된 음극 활물질 내의 실리콘(Si) 분산(dispersion)이 고르게 된 결과이다. 또한, 도 5에 도시된 바와 같이, 본 발명의 실시예들에 따라 제조된 음극 활물질은 충방전 100 사이클링 동안 100% 에 가까운 쿨롱 효율을 보이고 있다. 즉, 본 발명의 실시예들에 따라 제조된 음극 활물질은 종래 기술에 의해 제조된 음극 활물질과 비교하여 사이클링에 따른 충방전 효율(사이클링 효율)이 매우 높은 것으로 나타났다. Next, the negative electrode active material manufactured by the apparatus 100 for manufacturing a negative electrode active material for a secondary battery according to embodiments of the present invention has a capacity of about 1264 mAh / g at an initial 1 cycle of about 1127 mAh / g after 100 cycles. It appears to be reduced to the dose of. That is, it can be seen that the capacity retention rate (%) of the negative active material prepared according to the embodiments of the present invention reached about 89.16% during 100 cycles of charge and discharge. The negative electrode active material prepared according to the embodiments of the present invention shows a very large capacity retention rate compared to the negative electrode active material prepared by the prior art, and as a result, it can be seen that the life stability is greatly increased. This is a result of uniformity of silicon (Si) dispersion in the prepared negative active material through plasma generation by swirl. In addition, as shown in Figure 5, the negative electrode active material prepared according to the embodiments of the present invention shows a coulombic efficiency close to 100% during 100 cycles of charge and discharge. That is, the negative electrode active material prepared according to the embodiments of the present invention was found to have a very high charge and discharge efficiency (cycling efficiency) due to cycling compared to the negative electrode active material prepared by the prior art.
이상에서 대표적인 실시예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Although the present invention has been described in detail with reference to exemplary embodiments above, those skilled in the art to which the present invention pertains can make various modifications to the above-described embodiments without departing from the scope of the present invention. I will understand. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.
[부호의 설명][Description of the code]
100 : 이차 전지용 음극 활물질의 제조 장치100: manufacturing apparatus of negative electrode active material for secondary batteries
102 : 전자파 발진기102: electromagnetic wave oscillator
104 : 순환기104: circulator
106 : 튜너106: Tuner
108 : 도파관108: waveguide
110 : 전자파 공급부110: electromagnetic wave supply unit
112 : 방전관112: discharge tube
112a : 방전관 지지체112a: discharge tube support
114 : 제 1 가스 공급부114: first gas supply unit
116 : 스월 발생부116: swirl generating unit
118 : 실리콘 공급부118 silicon supply
120 : 제 2 가스 공급부120: second gas supply unit
122 : 반응로122: reactor
124 : 생성물 배출부124: product outlet
402 : 가스 공급관402: gas supply pipe

Claims (12)

  1. 특정 주파수 범위의 전자파를 발진하는 전자파 발진기;An electromagnetic oscillator for oscillating electromagnetic waves in a specific frequency range;
    상기 전자파 및 플라즈마 발생가스로부터 플라즈마를 발생시키는 방전관;A discharge tube generating plasma from the electromagnetic wave and the plasma generating gas;
    상기 방전관의 내부로 상기 플라즈마 발생가스를 공급하는 제 1 가스 공급부;A first gas supply unit supplying the plasma generating gas into the discharge tube;
    상기 방전관의 내부에서 발생된 플라즈마에 실리콘 전구체를 공급하는 실리콘 공급부;A silicon supply unit supplying a silicon precursor to the plasma generated inside the discharge tube;
    상기 실리콘 전구체 및 반응 가스 간의 화학 반응에 의하여 SiOx계(0<X<2) 음극 활물질을 생성하는 반응로; 및A reactor for producing a SiO x based (0 <X <2) anode active material by a chemical reaction between the silicon precursor and the reactant gas; And
    상기 방전관 또는 상기 반응로의 내부로 상기 반응 가스를 공급하는 제 2 가스 공급부를 포함하는, 이차 전지용 음극 활물질의 제조 장치.And a second gas supply unit configured to supply the reaction gas into the discharge tube or the reaction furnace.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1 가스 공급부와 연결되어 상기 플라즈마 발생가스를 스월(swirl) 형태로 상기 방전관의 내부로 공급하는 스월 발생부를 더 포함하는, 이차 전지용 음극 활물질의 제조 장치.And a swirl generating unit connected to the first gas supply unit and supplying the plasma generating gas to the inside of the discharge tube in a swirl form.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 스월 발생부는, 상기 방전관의 내부로 공급되는 상기 플라즈마 발생가스가 상기 방전관의 내주면과 평행하게 배출되어 스월 형태로 회전하도록 상기 방전관의 내부와 연결되는 하나 이상의 가스 공급관을 포함하는, 이차 전지용 음극 활물질의 제조 장치.The swirl generating unit may include one or more gas supply pipes connected to the inside of the discharge tube such that the plasma generating gas supplied into the discharge tube is discharged in parallel with the inner circumferential surface of the discharge tube and rotates in a swirl form. Manufacturing apparatus.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 플라즈마 발생가스는, 아르곤, 헬륨 및 질소 중 하나 이상을 포함하는, 이차 전지용 음극 활물질의 제조 장치.The plasma generating gas, argon, helium and nitrogen, at least one of the negative electrode active material manufacturing apparatus for a secondary battery.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 실리콘 전구체는, 사염화실리콘(SiCl4) 및 사불화실리콘(SiF4) 중 하나 이상을 포함하는, 이차 전지용 음극 활물질의 제조 장치.The silicon precursor, at least one of silicon tetrachloride (SiCl 4 ) and silicon tetrafluoride (SiF 4 ), the manufacturing apparatus of the negative electrode active material for secondary batteries.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 실리콘 전구체는, 이송 가스와 혼합된 혼합 가스 형태로 상기 방전관의 내부에서 발생된 플라즈마에 공급되는, 이차 전지용 음극 활물질의 제조 장치. The silicon precursor is supplied to the plasma generated inside the discharge tube in the form of a mixed gas mixed with a transfer gas, the manufacturing apparatus of the negative electrode active material for secondary batteries.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 이송 가스는, 아르곤, 헬륨 및 질소 중 하나 이상을 포함하는, 이차 전지용 음극 활물질의 제조 장치.The transfer gas, the production apparatus of the negative electrode active material for secondary batteries, containing at least one of argon, helium and nitrogen.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 반응 가스는, 상기 실리콘 전구체로부터 실리콘(Si)을 해리시키기 위한 제 1 반응 가스 및 해리된 상기 실리콘과 화학 반응하여 SiOx계(0<X<2) 음극 활물질을 생성하기 위한 제 2 반응 가스 중 하나 이상을 포함하는, 이차 전지용 음극 활물질의 제조 장치.The reaction gas is a first reaction gas for dissociating silicon (Si) from the silicon precursor and a second reaction gas for chemically reacting with the dissociated silicon to generate a SiO x -based (0 <X <2) anode active material. The manufacturing apparatus of the negative electrode active material for secondary batteries containing one or more of.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 제 1 반응 가스는 상기 실리콘 전구체와 함께 상기 실리콘 공급부를 통해 상기 방전관의 내부에서 발생된 플라즈마에 공급되며, 상기 제 2 반응 가스는 상기 플라즈마 발생 가스와 함께 상기 제 1 가스 공급부를 통해 상기 방전관의 내부로 공급되는, 이차 전지용 음극 활물질의 제조 장치.The first reactant gas is supplied to the plasma generated inside the discharge tube through the silicon supply unit together with the silicon precursor, and the second reactant gas is supplied to the plasma through the first gas supply unit together with the plasma generating gas. The manufacturing apparatus of the negative electrode active material for secondary batteries supplied inside.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 제 1 반응 가스는, 수소(H2) 및 스팀(H20) 중 하나 이상을 포함하는, 이차 전지용 음극 활물질의 제조 장치.The first reaction gas, at least one of hydrogen (H 2 ) and steam (H 2 0), the manufacturing apparatus of the negative electrode active material for secondary batteries.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 제 2 반응 가스는, 산소(O2)를 포함하는, 이차 전지용 음극 활물질의 제조 장치.The second reaction gas are, apparatus for manufacturing a negative active material containing oxygen (O 2).
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 제 2 반응 가스의 산소 농도가 증가할수록 상기 SiOx계(0<X<2) 음극 활물질의 x값이 증가하는, 이차 전지용 음극 활물질의 제조 장치.The x value of the said SiO x type (0 <X <2) negative electrode active material increases as the oxygen concentration of the said 2nd reaction gas increases, The manufacturing apparatus of the negative electrode active material for secondary batteries.
PCT/KR2015/001446 2014-03-21 2015-02-13 Apparatus for manufacturing negative electrode active material for secondary battery WO2015141947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140033475A KR101649148B1 (en) 2014-03-21 2014-03-21 Apparatus of manufacturing anode active material for secondary battery
KR10-2014-0033475 2014-03-21

Publications (1)

Publication Number Publication Date
WO2015141947A1 true WO2015141947A1 (en) 2015-09-24

Family

ID=54144869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001446 WO2015141947A1 (en) 2014-03-21 2015-02-13 Apparatus for manufacturing negative electrode active material for secondary battery

Country Status (2)

Country Link
KR (1) KR101649148B1 (en)
WO (1) WO2015141947A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190120800A (en) * 2017-03-26 2019-10-24 인테셀스, 엘엘씨 Method for manufacturing anode components by atmospheric plasma deposition, anode components, and lithium ion cells and batteries containing components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050096624A (en) * 2004-03-31 2005-10-06 엄환섭 Carbon nanotubes composition apparatus using microwave plasma torch, and method thereof
KR20060062582A (en) * 2004-12-03 2006-06-12 엄환섭 Synthesis method of tio2 nano powder by microwave plasma torch
KR20080086583A (en) * 2007-03-23 2008-09-26 엄환섭 A pure steam torch powered by microwaves and its applications
JP2013086095A (en) * 2011-10-21 2013-05-13 Han Sup Uhm Silane gas removal device using plasma

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900573B2 (en) 2006-04-24 2012-03-21 信越化学工業株式会社 Method for producing silicon oxide powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050096624A (en) * 2004-03-31 2005-10-06 엄환섭 Carbon nanotubes composition apparatus using microwave plasma torch, and method thereof
KR20060062582A (en) * 2004-12-03 2006-06-12 엄환섭 Synthesis method of tio2 nano powder by microwave plasma torch
KR20080086583A (en) * 2007-03-23 2008-09-26 엄환섭 A pure steam torch powered by microwaves and its applications
JP2013086095A (en) * 2011-10-21 2013-05-13 Han Sup Uhm Silane gas removal device using plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190120800A (en) * 2017-03-26 2019-10-24 인테셀스, 엘엘씨 Method for manufacturing anode components by atmospheric plasma deposition, anode components, and lithium ion cells and batteries containing components
KR102350756B1 (en) 2017-03-26 2022-01-14 인테셀스, 인코포레이티드 Method for manufacturing anode components by atmospheric pressure plasma deposition, anode components, and lithium ion cells and batteries containing the components

Also Published As

Publication number Publication date
KR20150109914A (en) 2015-10-02
KR101649148B1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
US8399072B2 (en) Process for improved chemcial vapor deposition of polysilicon
EP2656372B1 (en) A microwave plasma reactor for manufacturing synthetic diamond material
RU2404287C2 (en) Installation of plasma-enhanced deposition and method for production of polycrystalline silicon
WO2013055056A1 (en) Plasma apparatus and substrate-processing apparatus
WO2015142091A1 (en) Electromagnetic wave plasma torch
CN102205967A (en) Energy-saving polysilicon reduction furnace and manufacturing method for polysilicon
WO2010005201A2 (en) Plasma reactor for decomposing waste gas and gas scrubber using same
WO2015141947A1 (en) Apparatus for manufacturing negative electrode active material for secondary battery
KR20140040229A (en) Apparatus and methods for conversion of silicon tetrachloride to trichlorosilane
KR101364444B1 (en) Hybride plasma reactor
CN101734666B (en) Method for preparing trichlorosilane and dichlorosilane by hydrogenating silicon tetrachloride through microwave plasma
WO2019231308A1 (en) Plasma generator with improved insulated section
WO2012157871A2 (en) Plasma hydrogenation apparatus
KR101545201B1 (en) Thermal plasma fluidized bed reactor and method for preparing polysilicon using the same
CN110255532A (en) A kind of magnanimity prepares the method and device of carbon silicon nano material
CA2902262C (en) Device and method for the removal of polycrystalline silicon rods from a reactor
CN216321849U (en) Powder preparation device
KR102359101B1 (en) Apparatus and method for synthesizing powder material using series multistage plasma
WO2014042410A1 (en) Jacket and reactor using same
WO2012036491A2 (en) Plasma treatment device using leakage current transformer
CN113603093A (en) Method and equipment for preparing micro silicon powder
JPS61161138A (en) Plasma-utilizing chemical reactor
KR101640286B1 (en) Apparatus and method for producing polysilicon using streamer discharge
KR101829935B1 (en) Method for making silicon oxide by steam plasma torch and the silicon oxide thereof
WO2022092433A1 (en) Apparatus for producing acetylene black using combination of plasma treatment and thermal decomposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765563

Country of ref document: EP

Kind code of ref document: A1