WO2012157733A1 - Metallic powder production method and metallic powder production device - Google Patents

Metallic powder production method and metallic powder production device Download PDF

Info

Publication number
WO2012157733A1
WO2012157733A1 PCT/JP2012/062736 JP2012062736W WO2012157733A1 WO 2012157733 A1 WO2012157733 A1 WO 2012157733A1 JP 2012062736 W JP2012062736 W JP 2012062736W WO 2012157733 A1 WO2012157733 A1 WO 2012157733A1
Authority
WO
WIPO (PCT)
Prior art keywords
jet
metal
molten metal
metal powder
frame
Prior art date
Application number
PCT/JP2012/062736
Other languages
French (fr)
Japanese (ja)
Inventor
横山 嘉彦
琢一 山形
虎雄 山形
Original Assignee
株式会社東北テクノアーチ
ハード工業有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東北テクノアーチ, ハード工業有限会社 filed Critical 株式会社東北テクノアーチ
Priority to EP12786542.6A priority Critical patent/EP2711111A4/en
Priority to US14/118,446 priority patent/US20140202286A1/en
Priority to CN201280022257.6A priority patent/CN103635273A/en
Priority to JP2013515210A priority patent/JPWO2012157733A1/en
Publication of WO2012157733A1 publication Critical patent/WO2012157733A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Definitions

  • the present invention relates to a metal powder manufacturing method and a metal powder manufacturing apparatus.
  • the atomizing method has been widely used as a method for producing metal powder (see, for example, Non-Patent Document 1).
  • a typical atomizing method there are a water atomizing method and a gas atomizing method in which powder is produced by injecting water or gas into a molten metal (molten metal) to pulverize the molten metal and solidify it as droplets (for example, (See Patent Documents 1 to 3).
  • the molten metal is dropped on a rotating disk and crushed by applying a shearing force in the tangential direction, and plasma that makes fine wires such as Ti particles by the heat and kinetic energy of the plasma.
  • a shearing force in the tangential direction
  • the water atomization method has a problem in that the equipment cost increases because a high-pressure pump for injecting water at high speed is expensive. There is also a problem that the powder to be produced has an irregular shape.
  • the gas atomization method since a high-pressure gas is used, a high-pressure gas production facility is necessary, and the gas to be used is also expensive, so that there is a problem that costs such as material costs and facility costs increase.
  • the disk atomization method in order to produce fine metal powder, it is necessary to increase the number of revolutions of the disk. There was a problem that the limit was reached.
  • the plasma atomization method has a problem that the plasma torch is expensive. Moreover, since the plasma torch is used, there is a problem that the apparatus becomes large.
  • the present invention has been made paying attention to such a problem, and can reduce the size of the apparatus, reduce the cost, and provide a metal powder manufacturing method and metal capable of obtaining a spherical metal powder. It aims at providing the manufacturing apparatus of powder.
  • the method for producing a metal powder according to the present invention is characterized in that the metal powder is obtained by spraying a frame jet onto a molten metal or a metal wire.
  • An apparatus for producing a metal powder according to the present invention has a supply means for supplying molten metal or a metal wire, and a jet burner for injecting a frame jet to the molten metal or the metal wire supplied by the supply means. This is a feature.
  • the metal powder production apparatus can suitably carry out the metal powder production method according to the present invention.
  • the metal powder manufacturing method and metal powder manufacturing apparatus according to the present invention can obtain metal powder by utilizing the principle of the atomizing method.
  • the molten metal can be pulverized by injecting a high-temperature flame jet against the molten metal.
  • the molten metal can be pulverized while melting the metal wire by injecting a high-temperature frame jet onto the metal wire.
  • the flame jet is at a higher temperature than the high pressure water of the water atomization method or the high pressure gas of the gas atomization method, the flow velocity of the sprayed fluid can be increased as compared with the water atomization method or the gas atomization method.
  • the molten metal can be finely pulverized.
  • the molten metal thus pulverized can be vitrified by being statically cooled while falling or scattering in the atmosphere, and a fine metal powder can be easily obtained.
  • a finer metal powder can be obtained as compared with the water atomization method and the gas atomization method.
  • a spherical metal powder can be obtained.
  • the metal powder production method and metal powder production apparatus according to the present invention are compared with the high pressure pump used in the water atomization method, the high pressure gas production equipment used in the gas atomization method, the plasma torch used in the plasma atomization method, etc. Since a relatively inexpensive and small jet burner can be used, the apparatus can be miniaturized and costs such as equipment costs and material costs can be reduced.
  • the metal powder manufacturing method and the metal powder manufacturing apparatus according to the present invention are preferably configured to inject a frame jet onto molten metal or a metal wire at a speed higher than the speed of sound.
  • the molten metal can be finely pulverized by the shock wave generated by the frame jet, and a fine metal powder can be obtained.
  • the atomizing method for the molten metal or the metal wire may be a free fall type or a confined type.
  • the method for producing a metal powder according to the present invention is such that the flame jet collides with the molten metal or the metal wire with a substantially uniform jet pressure without a gap along the outer periphery of the molten metal or the metal wire. It is preferable that the frame jet is jetted from around the metal or the metal wire.
  • the jet burner is configured such that the frame jet collides with the molten metal or the metal wire with a substantially uniform jet pressure without a gap along the outer periphery of the molten metal or the metal wire. It is preferable to inject the flame jet from the periphery of the molten metal or the metal wire.
  • the method for producing metal powder according to the present invention includes an annular injection port for injecting the frame jet, and the molten metal or the metal wire is disposed inside the frame jet injected from the injection port. Then, the flame jet may be ejected.
  • the jet burner has an annular injection port for injecting the frame jet, and the molten metal is disposed inside the frame jet injected from the injection port. Or you may provide so that the said metal wire may be arrange
  • the frame jet can be made to collide with the molten metal or the metal wire with a substantially uniform jet pressure without a gap along the outer periphery of the molten metal or the metal wire, relatively easily. Since only one jet burner and one combustion chamber are sufficient, the apparatus can be further reduced in size, and the manufacturing cost can be reduced.
  • a plurality of frame jets may be sprayed onto the molten metal or the metal wire from a rotationally symmetric position with respect to the molten metal or the metal wire.
  • the jet burner includes a plurality of jet burners that are provided to inject the molten metal or the metal wire from the rotationally symmetrical positions with respect to the molten metal or the metal wire. May be.
  • the molten metal can be finely pulverized by the collision of a plurality of frame jets, and a fine metal powder can be obtained.
  • each jet burner has an elongated injection port for injecting the frame jet, and the major axis direction of the injection port is the outer periphery of the molten metal or the metal wire It may be arranged along.
  • the flame jet ejected from the ejection port of the jet burner can be spread in a planar shape along the major axis direction of the ejection port or can be dispersed in a plurality. For this reason, uniform atomization is possible with respect to a molten metal or a metal wire by injecting a frame jet from a plurality of jet burners so as to surround the molten metal or the metal wire.
  • the number of jet burners is preferably three or more so as to surround the molten metal or the metal wire.
  • the jet burner has a heat-resistant nozzle at a tip, the heat-resistant nozzle has a through-hole through which the molten metal or the metal wire is passed, and passes through the through-hole.
  • the flame jet may be provided so as to be able to be ejected to the molten metal or the metal wire.
  • metal powder can be obtained with one jet burner.
  • the heat-resistant nozzle may divide the frame jet into a plurality of nozzles, and inject the flame jet into the molten metal or metal wire from positions that are rotationally symmetric with respect to the molten metal or metal wire passing through the through hole.
  • the heat-resistant nozzle may be made of any material as long as it is heat-resistant, such as carbon or water-cooled copper.
  • the present invention it is possible to provide a metal powder manufacturing method and a metal powder manufacturing apparatus capable of reducing the size of the apparatus, reducing the cost, and obtaining a spherical metal powder.
  • FIG. 6A is a front view showing an injection port of the metal powder manufacturing apparatus shown in FIG. 5, and FIG. 6B is a side view showing the shape of an injected frame jet.
  • A The expanded side view which shows the injection state of the flame jet of the manufacturing apparatus of the metal powder shown to Fig.1 (a),
  • B The molten metal of the manufacturing apparatus of the metal powder shown to Fig.1 (a) was used.
  • C obtained from an Fe—Si—B-based molten metal by the metal powder manufacturing apparatus shown in FIG. 1 (a), showing the state at the time of atomization.
  • FIG. 3 is an electron micrograph of (a) 200 times magnification and (b) 1200 times magnification of a metal powder obtained from a metal wire made of SUS420 alloy by the metal powder manufacturing apparatus shown in FIG. 2.
  • a metal powder production apparatus shown in FIG. 1 (a) a metal powder production apparatus shown in FIG. 1
  • a metal powder production apparatus shown in FIG. 4 (c) FIG. It is a graph which shows the particle size distribution of the metal powder manufactured by injecting a frame jet by the metal powder manufacturing apparatus shown in FIG.
  • the metal powder manufacturing apparatus 10 includes a supply unit 11 and a plurality of jet burners 12.
  • the free fall type shown in FIG. 1A will be mainly described.
  • the supply means 11 is composed of a container for storing molten metal.
  • the supply means 11 has a pouring nozzle 11a communicating with the inside at the center of the bottom surface.
  • the supply means 11 is configured to allow the molten metal stored therein to flow downward from the pouring nozzle 11a.
  • the plurality of jet burners 12 can inject the frame jet 12a at a speed faster than the speed of sound.
  • Each jet burner 12 is arranged below the supply means 11 so that the frame jet 12a can be jetted obliquely downward.
  • Each jet burner 12 is provided so as to be injected obliquely at the same angle to the downstream 1 from a rotationally symmetric position with respect to the downstream 1 of the molten metal from the pouring nozzle 11a. Thereby, each jet burner 12 concentrates and jets the flame jet 12a at one point of the downstream 1.
  • the jet burner 12 is a small-sized jet burner manufactured by HARD INDUSTRY CO., LTD. Capable of injecting the frame jet 12a at a speed higher than the speed of sound.
  • the jet burner 12 is composed of three units, and is disposed at the same distance from the downstream 1 with a central angle of 120 degrees with respect to the downstream 1 of the molten metal as a central axis. Injection is performed at an angle of 45 degrees.
  • each jet burner 12 injects the flame jet 12a with the same pressure and speed.
  • the metal powder production apparatus 10 can suitably carry out the metal powder production method of the first embodiment of the present invention.
  • the metal powder manufacturing apparatus 10 can obtain metal powder using the principle of the atomizing method.
  • the molten metal can be pulverized by injecting a high-temperature flame jet 12a onto the downstream 1 of the molten metal.
  • the flame jet 12a is hotter than the high pressure water of the water atomization method or the high pressure gas of the gas atomization method, the flow velocity of the sprayed fluid can be increased as compared with the water atomization method or the gas atomization method.
  • it since it is high temperature, it can atomize, without cooling a molten metal, and it is not necessary to make the temperature of a molten metal higher than necessary.
  • the temperature of the molten metal can be set lower by about 50 to 100 ° C. than the conventional water atomization method or gas atomization method. For this reason, the molten metal can be finely pulverized under conditions that make it more amorphous.
  • the molten metal thus pulverized can be vitrified by being statically cooled while falling or scattering in the atmosphere, and a fine metal powder can be easily obtained.
  • a finer metal powder can be obtained as compared with the water atomization method and the gas atomization method.
  • each jet burner 12 injects the flame jet 12a at a speed higher than the sound speed
  • the metal powder manufacturing apparatus 10 can finely pulverize the molten metal by the shock wave generated by the flame jet 12a.
  • each jet burner 12 concentrates on one point of the downstream 1 at the same angle from a rotationally symmetrical position with respect to the downstream 1 of the molten metal, a plurality of frame jets are injected.
  • the molten metal can be pulverized more finely, and a finer metal powder can be obtained.
  • the obtained metal powder can be easily recovered by providing a container or a chamber below the supply means 11 so as to cover the periphery and the lower part of each frame jet 12a.
  • the metal powder manufacturing apparatus 10 is a relatively inexpensive and small jet compared to a high pressure pump used in the water atomizing method, a high pressure gas manufacturing facility used in the gas atomizing method, a plasma torch used in the plasma atomizing method, and the like.
  • the burner 12 can be used, the apparatus can be miniaturized, and costs such as equipment costs and material costs can be reduced.
  • the metal powder production apparatus 10 may be a confined type as shown in FIG.
  • the confined type not only the same effect as the free fall type can be obtained, but also the molten metal can be supplied directly to the atomizing zone, so that the kinetic energy of the flame jet 12a of each jet burner 12 can be efficiently reduced. Atomization can be performed.
  • the conventional gas atomization or the like has a problem that the pouring nozzle 11a is cooled by the injection gas or the like, the molten metal is solidified, and the pouring nozzle 11a is easily blocked.
  • the metal powder manufacturing apparatus 10 shown in FIG. 1 (b) since the high-temperature flame jet 12a is injected from each jet burner 12, the pouring nozzle 11a is not cooled, and solidification of molten metal or pouring is performed. It is possible to prevent the nozzle 11a from being blocked.
  • the metal powder manufacturing apparatus 10 is provided such that the supply means 11 can continuously supply the metal wire 2 downward, and each jet burner 12 is connected to the metal wire 2. You may provide so that the flame jet 12a may be injected. In this case, the molten metal can be pulverized while the metal wire 2 is melted by injecting the high-temperature frame jet 12 a onto the metal wire 2.
  • the material of the metal wire 2 is, for example, stainless steel or SUS420 alloy.
  • the metal powder manufacturing apparatus 10 includes a single jet burner 12 having a heat-resistant nozzle at the tip, the heat-resistant nozzle having a through-hole through which molten metal or metal wire is passed, and a flame jet inside. 12a may be divided into a plurality of portions, and the molten metal or metal wire may be sprayed at the same angle from a rotationally symmetric position with respect to the molten metal or metal wire passing through the through hole. In this case, metal powder can be obtained with one jet burner 12.
  • the heat-resistant nozzle may be composed of a nozzle used in a water atomizing method or a gas atomizing method formed of a heat-resistant material such as carbon or water-cooled copper.
  • the metal powder manufacturing apparatus 10 is configured so that the jet direction of the frame jet 12 a forms a predetermined angle with respect to the length direction of the main body 12 b of the jet burner 12.
  • the injection nozzle 12c may be bent.
  • the injection nozzle 12c and the pouring nozzle 11a of the supply means 11 can be easily brought close to each other. This is particularly effective when the metal powder manufacturing apparatus 10 is a confined type.
  • FIG. 4 shows a metal powder production apparatus and a metal powder production method according to the second embodiment of the present invention.
  • the metal powder manufacturing apparatus 20 is a confined type, and has a supply means 11 and a jet burner 12.
  • the same components as those in the metal powder manufacturing apparatus 10 according to the first embodiment of the present invention are denoted by the same reference numerals, and redundant description is omitted.
  • the supply means 11 has a container 21 for storing molten metal, and has a supply port 21 a communicating with the outside at the center of the bottom of the container 21. Moreover, the supply means 11 has the hot_water
  • the pouring nozzle 11a has a tapered shape in which the outer shape of the tip gradually narrows downward.
  • the supply means 11 can supply the molten metal stored in the container 21 from the pouring nozzle 11a.
  • the jet burner 12 has one combustion chamber (not shown) and an annular injection port 24 for injecting a flame jet.
  • the jet burner 12 is attached to the lower part of the container 21 of the supply means 11 so that the pouring nozzle 11 a is disposed inside the injection port 24.
  • the jet burner 12 is formed so that the injection port 24 follows the tapered shape of the tip of the pouring nozzle 11a.
  • the jet burner 12 is configured to be able to inject a frame jet without any gap along the circumference of the injection port 24 from the injection port 24 toward the front inner side.
  • the jet burner 12 is capable of injecting a flame jet from a periphery of the molten metal supplied from the pouring nozzle 11a so as to be concentrated at one location of the molten metal so as to be oblique to the flow direction of the molten metal. It has become.
  • the jet burner 12 is configured such that the flame jet can collide with the molten metal with almost uniform jet pressure without any gap along the outer periphery of the molten metal supplied from the pouring nozzle 11a.
  • the jet burner 12 has a water cooling part 25 for circulating the water around the injection port 24 to cool the injection port 24.
  • the jet burner 12 can eject the frame jet at a speed higher than the speed of sound.
  • the jet burner 12 injects the molten metal supplied downward from the pouring nozzle 11a at an angle of about 40 degrees obliquely from above.
  • the metal powder manufacturing method according to the second embodiment of the present invention is preferably implemented by the metal powder manufacturing apparatus 20.
  • the flame jet injected from the periphery of the molten metal is substantially uniform with no gap along the outer periphery of the molten metal. Since it collides with the molten metal with pressure, it is possible to prevent the molten metal from scattering so as to escape from the frame jet at the collision position. For this reason, uniform atomization with respect to a molten metal is possible, and a fine and uniform spherical metal powder can be obtained. In addition, the production efficiency of the metal powder can be increased. In a specific example, the diameter of the manufactured metal powder was about 5 ⁇ m.
  • the metal powder manufacturing apparatus 20 and the metal powder manufacturing method of the second embodiment of the present invention only one jet burner 12 and one combustion chamber are required, so that the apparatus can be further downsized. The manufacturing cost can be further reduced.
  • the metal powder manufacturing apparatus 20 and the metal powder manufacturing method according to the second embodiment of the present invention may inject a high-temperature frame jet onto the metal wire instead of the molten metal.
  • the metal powder manufacturing apparatus 30 includes a supply unit 11 and a jet burner 12.
  • the same components as those of the metal powder manufacturing apparatus 10 according to the first embodiment of the present invention and the metal powder manufacturing apparatus 20 according to the second embodiment of the present invention are denoted by the same reference numerals. In addition, overlapping explanation is omitted.
  • the metal powder manufacturing apparatus 30 includes three jet burners 12 each having an elongated injection port 24 for injecting the frame jet 12a.
  • Each jet burner 12 is arranged so that the major axis direction of the injection port 24 is along the outer periphery of the drooping downstream 1 of the molten metal.
  • Each jet burner 12 is provided so as to be able to inject the frame jet 12a at the same pressure and speed so as to collide with the downstream 1 from the rotationally symmetrical position with respect to the downstream 1 at the same angle.
  • the injection port 24 has a gourd shape in which two circles are connected. Further, each jet burner 12 is disposed at the same distance from the downstream 1 with a central angle of 120 degrees with respect to the downstream 1 of the molten metal as a central axis. It is designed to spray at an angle of degrees.
  • the metal powder production method according to the third embodiment of the present invention is preferably implemented by the metal powder production apparatus 30.
  • the metal powder manufacturing apparatus 30 and the metal powder manufacturing method according to the third embodiment of the present invention as shown in FIG. 6 (b), uses a flame jet 12a injected from the injection port 24 of the jet burner 12, It can be spread in a planar shape along the major axis direction of the injection port 24 or can be dispersed in a plurality. For this reason, by injecting flame jets 12a from the jet burners 12 so as to surround the downstream 1 of the molten metal, there is no gap along the outer periphery of the downstream 1 of the molten metal, and the molten metal with a substantially uniform jet pressure. It can be made to collide with the downstream 1 of this.
  • the metal powder manufacturing apparatus 30 and the metal powder manufacturing method according to the third embodiment of the present invention may inject the high-temperature frame jet 12a onto the metal wire instead of the molten metal.
  • FIG. 7A shows a state when the frame jet 12a is injected by the metal powder manufacturing apparatus 10 shown in FIG. As shown in FIG. 7A, it can be confirmed that a plurality of frame jets converges to one.
  • a fine spherical Fe 75 Si 10 B 15 amorphous powder is obtained by injecting a flame jet 12a onto an Fe—Si—B based molten metal. It was.
  • FIGS. 7B to 7D show the state in the vicinity of the injection position of the frame jet 12a and the electron micrographs of the obtained powder.
  • a fine spherical metal powder was obtained by spraying the frame jet 12a onto the metal wire 2 made of stainless steel SUS420 using the metal powder manufacturing apparatus 10 shown in FIG. An electron micrograph of the obtained metal powder is shown in FIG.
  • a fine spherical metal powder is obtained by injecting the frame jet 12a onto the metal wire 2 of the TIG welding rod TGS50 (manufactured by Kobe Steel). It was. An electron micrograph of the obtained metal powder is shown in FIG.
  • a fine spherical metal powder was obtained by spraying the frame jet 12a onto the metal wire 2 made of SUS420 alloy using the metal powder manufacturing apparatus 10 shown in FIG. An electron micrograph of the obtained metal powder is shown in FIG.
  • the particle size distribution of the metal powder produced by each apparatus is shown in FIG.
  • the combustion parameters per jet burner 12 are 700 L / min for the air amount and 130 mL / min for the fuel (kerosene).
  • the combustion parameters in the metal powder production apparatus 20 shown in FIG. 4 are an air amount of 3000 L / min and a fuel (kerosene) of 550 mL / min.
  • the combustion parameters of the Laval nozzle type are 3000 L / min for the air amount and 550 mL / min for the fuel (kerosene).
  • the metal powder produced by the metal powder production apparatus 10 shown in FIG. 1A and the metal powder production apparatus 20 shown in FIG. The largest number was 40 to 70 ⁇ m, and most was 100 ⁇ m or less. Moreover, most of the metal powders manufactured with the Laval nozzle type were those having a diameter of 50 ⁇ m or less. From these results, it was confirmed that fine powder could be obtained by injection of flame jet. Moreover, since the diameter of the metal powder to be manufactured is smaller in the Laval nozzle type, it can be said that the diameter of the metal powder to be manufactured decreases as the speed of the frame jet increases.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Nozzles (AREA)

Abstract

The present invention provides a metallic powder production method and a metallic powder production device, by which reductions in device size and cost can be achieved and spherical metallic powder can be obtained. In the present invention, a supply means (11) supplies a downward flow (1) of a molten metal, and a plurality of jet burners (12) each emit a flame jet (12a) to the downward flow (1) of the molten metal supplied from the supply means (11). The jet burners (12) are provided so as to emit the flame jet (12a) to the downward flow (1) at the same angle from positions rotationally symmetric with respect to the downward flow (1) of the molten metal.

Description

金属粉末の製造方法および金属粉末の製造装置Metal powder manufacturing method and metal powder manufacturing apparatus
 本発明は、金属粉末の製造方法および金属粉末の製造装置に関する。 The present invention relates to a metal powder manufacturing method and a metal powder manufacturing apparatus.
 従来、金属粉末を製造する方法として、アトマイズ法が広く用いられている(例えば、非特許文献1参照)。代表的なアトマイズ法としては、溶融金属(金属溶湯)に水やガスを噴射して溶融金属を粉砕し、液滴として凝固させることにより粉末を製造する水アトマイズ法やガスアトマイズ法がある(例えば、特許文献1乃至3参照)。また、溶融金属を回転するディスク上に落下させ、接線方向にせん断力を加えて破砕し、粉末を製造するディスクアトマイズ法や、プラズマの熱および運動エネルギーにより、Ti等の細線を粒子にするプラズマアトマイズ法もある。 Conventionally, the atomizing method has been widely used as a method for producing metal powder (see, for example, Non-Patent Document 1). As a typical atomizing method, there are a water atomizing method and a gas atomizing method in which powder is produced by injecting water or gas into a molten metal (molten metal) to pulverize the molten metal and solidify it as droplets (for example, (See Patent Documents 1 to 3). In addition, the molten metal is dropped on a rotating disk and crushed by applying a shearing force in the tangential direction, and plasma that makes fine wires such as Ti particles by the heat and kinetic energy of the plasma. There is also an atomizing method.
特開2006-63357号公報JP 2006-63357 A 特開2005-139471号公報JP 2005-139471 A 特開2004-183049号公報JP 2004-183049 A
 しかしながら、水アトマイズ法では、高速で水を噴射するための高圧ポンプが高価であるため、設備費が嵩むという課題があった。また、製造される粉末が不規則な形状を成しているという課題もあった。ガスアトマイズ法では、高圧ガスを使用するため高圧ガス製造設備が必要であり、使用するガスも高価であるため、材料費や設備費などのコストが嵩むという課題があった。ディスクアトマイズ法では、微細な金属粉末を製造するためにはディスクの回転数を上げる必要があり、そのための設備費が嵩むという課題とともに、そもそもディスクの回転数を上げるにしても、既に技術的に限界に達しているという課題があった。プラズマアトマイズ法では、プラズマトーチが高価であるという課題があった。また、プラズマトーチを使用するため、装置が大型化してしまうという課題もあった。 However, the water atomization method has a problem in that the equipment cost increases because a high-pressure pump for injecting water at high speed is expensive. There is also a problem that the powder to be produced has an irregular shape. In the gas atomization method, since a high-pressure gas is used, a high-pressure gas production facility is necessary, and the gas to be used is also expensive, so that there is a problem that costs such as material costs and facility costs increase. In the disk atomization method, in order to produce fine metal powder, it is necessary to increase the number of revolutions of the disk. There was a problem that the limit was reached. The plasma atomization method has a problem that the plasma torch is expensive. Moreover, since the plasma torch is used, there is a problem that the apparatus becomes large.
 本発明は、このような課題に着目してなされたもので、装置の小型化が可能で、コストの低減を図ることができ、球状の金属粉末を得ることができる金属粉末の製造方法および金属粉末の製造装置を提供することを目的としている。 The present invention has been made paying attention to such a problem, and can reduce the size of the apparatus, reduce the cost, and provide a metal powder manufacturing method and metal capable of obtaining a spherical metal powder. It aims at providing the manufacturing apparatus of powder.
 上記目的を達成するために、本発明に係る金属粉末の製造方法は、溶融金属または金属線材に対してフレームジェットを噴射することにより金属粉末を得ることを、特徴とする。 In order to achieve the above object, the method for producing a metal powder according to the present invention is characterized in that the metal powder is obtained by spraying a frame jet onto a molten metal or a metal wire.
 本発明に係る金属粉末の製造装置は、溶融金属または金属線材を供給する供給手段と、前記供給手段により供給される前記溶融金属または前記金属線材に対してフレームジェットを噴射するジェットバーナーとを有することを、特徴とする。 An apparatus for producing a metal powder according to the present invention has a supply means for supplying molten metal or a metal wire, and a jet burner for injecting a frame jet to the molten metal or the metal wire supplied by the supply means. This is a feature.
 本発明に係る金属粉末の製造装置は、本発明に係る金属粉末の製造方法を好適に実施することができる。本発明に係る金属粉末の製造方法および金属粉末の製造装置は、アトマイズ法の原理を利用して、金属粉末を得ることができる。溶融金属に対して高温のフレームジェットを噴射することにより、溶融金属を粉砕することができる。また、金属線材に対して高温のフレームジェットを噴射することにより、金属線材を溶かしつつ、その溶融金属を粉砕することができる。このとき、フレームジェットが水アトマイズ法の高圧水やガスアトマイズ法の高圧ガスより高温であるため、水アトマイズ法やガスアトマイズ法に比べて、吹き付ける流体の流速を上げることが可能になる。また、高温であるため、溶融金属を冷却することなくアトマイズすることができ、必要以上に溶融金属の温度を高くしておく必要もない。このため、溶融金属を細かく粉砕することができる。こうして粉砕された溶融金属を、雰囲気中を落下または飛散するうちに静的に過冷却させてガラス化させることが可能になるとともに、微細な金属粉末を容易に得ることができる。また、水アトマイズ法やガスアトマイズ法に比べて、より微細な金属粉末を得ることができる。 The metal powder production apparatus according to the present invention can suitably carry out the metal powder production method according to the present invention. The metal powder manufacturing method and metal powder manufacturing apparatus according to the present invention can obtain metal powder by utilizing the principle of the atomizing method. The molten metal can be pulverized by injecting a high-temperature flame jet against the molten metal. Moreover, the molten metal can be pulverized while melting the metal wire by injecting a high-temperature frame jet onto the metal wire. At this time, since the flame jet is at a higher temperature than the high pressure water of the water atomization method or the high pressure gas of the gas atomization method, the flow velocity of the sprayed fluid can be increased as compared with the water atomization method or the gas atomization method. Moreover, since it is high temperature, it can atomize, without cooling a molten metal, and it is not necessary to make the temperature of a molten metal higher than necessary. For this reason, the molten metal can be finely pulverized. The molten metal thus pulverized can be vitrified by being statically cooled while falling or scattering in the atmosphere, and a fine metal powder can be easily obtained. In addition, a finer metal powder can be obtained as compared with the water atomization method and the gas atomization method.
 また、本発明に係る金属粉末の製造方法および金属粉末の製造装置によれば、球状の金属粉末を得ることができる。本発明に係る金属粉末の製造方法および金属粉末の製造装置は、水アトマイズ法で使用される高圧ポンプやガスアトマイズ法で使用される高圧ガス製造設備、プラズマアトマイズ法で使用されるプラズマトーチ等と比べて、比較的安価で小型のジェットバーナーを使用可能であるため、装置の小型化が可能で、設備費や材料費などのコストの低減を図ることができる。 Also, according to the metal powder manufacturing method and metal powder manufacturing apparatus of the present invention, a spherical metal powder can be obtained. The metal powder production method and metal powder production apparatus according to the present invention are compared with the high pressure pump used in the water atomization method, the high pressure gas production equipment used in the gas atomization method, the plasma torch used in the plasma atomization method, etc. Since a relatively inexpensive and small jet burner can be used, the apparatus can be miniaturized and costs such as equipment costs and material costs can be reduced.
 本発明に係る金属粉末の製造方法および金属粉末の製造装置は、フレームジェットを音速よりも速い速度で溶融金属または金属線材に噴射するよう構成されていることが好ましい。この場合、フレームジェットの発する衝撃波により、溶融金属を細かく粉砕することができ、微細な金属粉末を得ることができる。また、本発明に係る金属粉末の製造方法および金属粉末の製造装置で、溶融金属または金属線材に対するアトマイズ方式は、フリーフォール型であってもコンファインド型であってもよい。本発明に係る金属粉末の製造方法および金属粉末の製造装置は、溶融金属の流れ方向または金属線材の伸長方向に対して斜交するよう、フレームジェットを噴射することが好ましい。この場合、効率良く微細な金属粉末を製造することができる。 The metal powder manufacturing method and the metal powder manufacturing apparatus according to the present invention are preferably configured to inject a frame jet onto molten metal or a metal wire at a speed higher than the speed of sound. In this case, the molten metal can be finely pulverized by the shock wave generated by the frame jet, and a fine metal powder can be obtained. In the metal powder manufacturing method and metal powder manufacturing apparatus according to the present invention, the atomizing method for the molten metal or the metal wire may be a free fall type or a confined type. In the metal powder manufacturing method and the metal powder manufacturing apparatus according to the present invention, it is preferable to inject a frame jet so as to be oblique to the flow direction of the molten metal or the extension direction of the metal wire. In this case, a fine metal powder can be produced efficiently.
 本発明に係る金属粉末の製造方法は、前記フレームジェットが前記溶融金属または前記金属線材の外周に沿って隙間なく、ほぼ均等なジェット圧で前記溶融金属または前記金属線材に衝突するよう、前記溶融金属または前記金属線材の周囲から前記フレームジェットを噴射することが好ましい。本発明に係る金属粉末の製造装置で、前記ジェットバーナーは、前記フレームジェットが前記溶融金属または前記金属線材の外周に沿って隙間なく、ほぼ均等なジェット圧で前記溶融金属または前記金属線材に衝突するよう、前記溶融金属または前記金属線材の周囲から前記フレームジェットを噴射することが好ましい。この場合、フレームジェットが溶融金属または金属線材に衝突する位置で、溶融金属または金属線材がフレームジェットから逃れるように飛散するのを防ぐことができる。このため、溶融金属または金属線材に対して均一なアトマイズが可能であり、微細で均一な球状の金属粉末を得ることができる。また、金属粉末の製造効率を高めることもできる。 The method for producing a metal powder according to the present invention is such that the flame jet collides with the molten metal or the metal wire with a substantially uniform jet pressure without a gap along the outer periphery of the molten metal or the metal wire. It is preferable that the frame jet is jetted from around the metal or the metal wire. In the apparatus for producing metal powder according to the present invention, the jet burner is configured such that the frame jet collides with the molten metal or the metal wire with a substantially uniform jet pressure without a gap along the outer periphery of the molten metal or the metal wire. It is preferable to inject the flame jet from the periphery of the molten metal or the metal wire. In this case, it is possible to prevent the molten metal or metal wire from being scattered so as to escape from the frame jet at a position where the frame jet collides with the molten metal or metal wire. For this reason, uniform atomization is possible with respect to a molten metal or a metal wire, and a fine and uniform spherical metal powder can be obtained. In addition, the production efficiency of the metal powder can be increased.
 本発明に係る金属粉末の製造方法は、前記フレームジェットを噴射するための円環状の噴射口を有し、前記噴射口から噴射される前記フレームジェットの内側に前記溶融金属または前記金属線材を配置して、前記フレームジェットを噴射してもよい。本発明に係る金属粉末の製造装置で、前記ジェットバーナーは、前記フレームジェットを噴射するための円環状の噴射口を有し、前記噴射口から噴射される前記フレームジェットの内側に、前記溶融金属または前記金属線材が配置されるよう設けられていてもよい。この場合、比較的容易に、フレームジェットを溶融金属または金属線材の外周に沿って隙間なく、ほぼ均等なジェット圧で溶融金属または金属線材に衝突させることができる。ジェットバーナーが1台で、燃焼室も1つで足りるため、さらなる装置の小型化が可能で、製造コストを低減することができる。 The method for producing metal powder according to the present invention includes an annular injection port for injecting the frame jet, and the molten metal or the metal wire is disposed inside the frame jet injected from the injection port. Then, the flame jet may be ejected. In the metal powder manufacturing apparatus according to the present invention, the jet burner has an annular injection port for injecting the frame jet, and the molten metal is disposed inside the frame jet injected from the injection port. Or you may provide so that the said metal wire may be arrange | positioned. In this case, the frame jet can be made to collide with the molten metal or the metal wire with a substantially uniform jet pressure without a gap along the outer periphery of the molten metal or the metal wire, relatively easily. Since only one jet burner and one combustion chamber are sufficient, the apparatus can be further reduced in size, and the manufacturing cost can be reduced.
 本発明に係る金属粉末の製造方法は、複数のフレームジェットを、前記溶融金属または前記金属線材に対して互いに回転対称の位置から、前記溶融金属または前記金属線材に噴射してもよい。本発明に係る金属粉末の製造装置で、前記ジェットバーナーは複数から成り、前記溶融金属または前記金属線材に対して互いに回転対称の位置から、前記溶融金属または前記金属線材に噴射するよう設けられていてもよい。この場合、複数のフレームジェットの衝突により、溶融金属を細かく粉砕することができ、微細な金属粉末を得ることができる。 In the method for producing metal powder according to the present invention, a plurality of frame jets may be sprayed onto the molten metal or the metal wire from a rotationally symmetric position with respect to the molten metal or the metal wire. In the metal powder manufacturing apparatus according to the present invention, the jet burner includes a plurality of jet burners that are provided to inject the molten metal or the metal wire from the rotationally symmetrical positions with respect to the molten metal or the metal wire. May be. In this case, the molten metal can be finely pulverized by the collision of a plurality of frame jets, and a fine metal powder can be obtained.
 また、この複数のジェットバーナーを有する場合、各ジェットバーナーは、それぞれ前記フレームジェットを噴射するための細長い形状の噴射口を有し、前記噴射口の長径方向が前記溶融金属または前記金属線材の外周に沿うよう配置されていてもよい。この場合、ジェットバーナーの噴射口から噴射されるフレームジェットを、噴射口の長径方向に沿って面状に拡げたり、複数に分散させたりすることができる。このため、溶融金属または金属線材を囲うように、複数のジェットバーナーからフレームジェットを噴射することにより、溶融金属または金属線材に対して均一なアトマイズが可能である。ジェットバーナーは、溶融金属または金属線材を囲えるよう、3台以上であることが好ましい。 Further, in the case of having the plurality of jet burners, each jet burner has an elongated injection port for injecting the frame jet, and the major axis direction of the injection port is the outer periphery of the molten metal or the metal wire It may be arranged along. In this case, the flame jet ejected from the ejection port of the jet burner can be spread in a planar shape along the major axis direction of the ejection port or can be dispersed in a plurality. For this reason, uniform atomization is possible with respect to a molten metal or a metal wire by injecting a frame jet from a plurality of jet burners so as to surround the molten metal or the metal wire. The number of jet burners is preferably three or more so as to surround the molten metal or the metal wire.
 本発明に係る金属粉末の製造装置で、前記ジェットバーナーは先端に耐熱ノズルを有し、前記耐熱ノズルは内部に前記溶融金属または前記金属線材を通す通孔を有し、前記通孔を通る前記溶融金属または前記金属線材に対して前記フレームジェットを噴射可能に設けられていてもよい。この場合、1台のジェットバーナーで金属粉末を得ることができる。耐熱ノズルは、その内部でフレームジェットを複数に分けて、通孔を通る溶融金属または金属線材に対して互いに回転対称の位置から、溶融金属または金属線材に噴射するようになっていてもよい。耐熱ノズルは、カーボン製や水冷銅製など、耐熱性であればいかなる材質から成っていてもよい。 In the metal powder manufacturing apparatus according to the present invention, the jet burner has a heat-resistant nozzle at a tip, the heat-resistant nozzle has a through-hole through which the molten metal or the metal wire is passed, and passes through the through-hole. The flame jet may be provided so as to be able to be ejected to the molten metal or the metal wire. In this case, metal powder can be obtained with one jet burner. The heat-resistant nozzle may divide the frame jet into a plurality of nozzles, and inject the flame jet into the molten metal or metal wire from positions that are rotationally symmetric with respect to the molten metal or metal wire passing through the through hole. The heat-resistant nozzle may be made of any material as long as it is heat-resistant, such as carbon or water-cooled copper.
 本発明によれば、装置の小型化が可能で、コストの低減を図ることができ、球状の金属粉末を得ることができる金属粉末の製造方法および金属粉末の製造装置を提供することができる。 According to the present invention, it is possible to provide a metal powder manufacturing method and a metal powder manufacturing apparatus capable of reducing the size of the apparatus, reducing the cost, and obtaining a spherical metal powder.
本発明の第1の実施の形態の金属粉末の製造装置の(a)フリーフォール型、(b)コンファインド型での使用状態を示す側面図である。It is a side view which shows the use condition by the (a) free fall type | mold of the metal powder manufacturing apparatus of the 1st Embodiment of this invention, and the (b) confined type | mold. 本発明の第1の実施の形態の金属粉末の製造装置の、金属線材を使用する変形例を示す側面図である。It is a side view which shows the modification which uses the metal wire of the manufacturing apparatus of the metal powder of the 1st Embodiment of this invention. 本発明の第1の実施の形態の金属粉末の製造装置の、ジェットバーナーの変形例を示す側面図である。It is a side view which shows the modification of a jet burner of the manufacturing apparatus of the metal powder of the 1st Embodiment of this invention. 本発明の第2の実施の形態の金属粉末の製造装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the manufacturing apparatus of the metal powder of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の金属粉末の製造装置を示す(a)斜視図、(b)使用状態の斜視図である。It is (a) perspective view which shows the manufacturing apparatus of the metal powder of the 3rd Embodiment of this invention, (b) It is a perspective view of the use condition. 図5に示す金属粉末の製造装置の(a)噴射口を示す正面図、(b)噴射したフレームジェットの形状を示す側面図である。6A is a front view showing an injection port of the metal powder manufacturing apparatus shown in FIG. 5, and FIG. 6B is a side view showing the shape of an injected frame jet. (a)図1(a)に示す金属粉末の製造装置の、フレームジェットの噴射状態を示す拡大側面図、(b)図1(a)に示す金属粉末の製造装置の、溶融金属を用いたときのアトマイズ時の状態を示す、フレームジェットの噴射位置付近の拡大側面図、(c)図1(a)に示す金属粉末の製造装置により、Fe-Si-B系の溶融金属から得られたFe75Si1015非晶質粉末の電子顕微鏡写真、(d)その粉末粒子をさらに拡大した電子顕微鏡写真である。(A) The expanded side view which shows the injection state of the flame jet of the manufacturing apparatus of the metal powder shown to Fig.1 (a), (b) The molten metal of the manufacturing apparatus of the metal powder shown to Fig.1 (a) was used. (C) obtained from an Fe—Si—B-based molten metal by the metal powder manufacturing apparatus shown in FIG. 1 (a), showing the state at the time of atomization. Fe 75 Si 10 B 15 amorphous powder electron micrograph of a (d) an electron micrograph further enlarged the powder particles. 図2に示す金属粉末の製造装置により、ステンレス鋼SUS420の金属線材から得られた金属粉末の(a)倍率150倍、(b)倍率1000倍の電子顕微鏡写真である。It is an electron micrograph of (a) magnification 150 times and (b) magnification 1000 times of the metal powder obtained from the metal wire rod of stainless steel SUS420 by the metal powder manufacturing apparatus shown in FIG. 図2に示す金属粉末の製造装置により、TIG溶接棒の金属線材(株式会社神戸製鋼所製TGS50)から得られた金属粉末の(a)倍率1500倍、(b)倍率2500倍の電子顕微鏡写真である。Electron micrographs of (a) 1500 times magnification and (b) 2500 times magnification of metal powder obtained from TIG welding rod metal wire (TGS50 manufactured by Kobe Steel, Ltd.) using the metal powder manufacturing apparatus shown in FIG. It is. 図2に示す金属粉末の製造装置により、SUS420合金から成る金属線材から得られた金属粉末の(a)倍率200倍、(b)倍率1200倍電子顕微鏡写真である。FIG. 3 is an electron micrograph of (a) 200 times magnification and (b) 1200 times magnification of a metal powder obtained from a metal wire made of SUS420 alloy by the metal powder manufacturing apparatus shown in FIG. 2. Fe-Si10-B15合金の溶融金属に対して、(a)図1(a)に示す金属粉末の製造装置、(b)図4に示す金属粉末の製造装置、(c)図4に示す金属粉末の製造装置で噴射口がラバールノズル型のものにより、フレームジェットを噴射して製造した金属粉末の粒度分布を示すグラフである。For the molten metal of the Fe—Si 10 —B 15 alloy, (a) a metal powder production apparatus shown in FIG. 1 (a), (b) a metal powder production apparatus shown in FIG. 4, and (c) FIG. It is a graph which shows the particle size distribution of the metal powder manufactured by injecting a frame jet by the metal powder manufacturing apparatus shown in FIG.
 以下、図面に基づき、本発明の実施の形態について説明する。
 図1および図3は、本発明の第1の実施の形態の金属粉末の製造装置を示している。
 図1に示すように、金属粉末の製造装置10は、供給手段11と複数のジェットバーナー12とを有している。なお、以下の説明では、主に、図1(a)に示すフリーフォール型について説明を行う。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 3 show an apparatus for producing metal powder according to a first embodiment of the present invention.
As shown in FIG. 1, the metal powder manufacturing apparatus 10 includes a supply unit 11 and a plurality of jet burners 12. In the following description, the free fall type shown in FIG. 1A will be mainly described.
 図1(a)に示すように、供給手段11は、溶融金属を収納する容器から成っている。供給手段11は、底面の中央に、内部に連通する注湯ノズル11aを有している。供給手段11は、内部に収納した溶融金属を、注湯ノズル11aから下方に流出可能に構成されている。 As shown in FIG. 1 (a), the supply means 11 is composed of a container for storing molten metal. The supply means 11 has a pouring nozzle 11a communicating with the inside at the center of the bottom surface. The supply means 11 is configured to allow the molten metal stored therein to flow downward from the pouring nozzle 11a.
 複数のジェットバーナー12は、音速よりも速い速度でフレームジェット12aを噴射可能になっている。各ジェットバーナー12は、供給手段11の下方で、フレームジェット12aを斜め下方に向かって噴射可能に配置されている。各ジェットバーナー12は、注湯ノズル11aからの溶融金属の垂下流1に対して互いに回転対称の位置から、垂下流1に同じ角度で斜交して噴射するよう設けられている。これにより、各ジェットバーナー12は、垂下流1の1点にフレームジェット12aを集中して噴射するようになっている。 The plurality of jet burners 12 can inject the frame jet 12a at a speed faster than the speed of sound. Each jet burner 12 is arranged below the supply means 11 so that the frame jet 12a can be jetted obliquely downward. Each jet burner 12 is provided so as to be injected obliquely at the same angle to the downstream 1 from a rotationally symmetric position with respect to the downstream 1 of the molten metal from the pouring nozzle 11a. Thereby, each jet burner 12 concentrates and jets the flame jet 12a at one point of the downstream 1.
 なお、具体的な一例では、ジェットバーナー12は、小型で、音速よりも速い速度でフレームジェット12aを噴射可能なハード工業有限会社製のジェットバーナーから成っている。ジェットバーナー12は3台から成り、溶融金属の垂下流1を中心軸として中心角度が120度の間隔で、垂下流1から同じ距離の位置に配置され、垂下流1に対して斜め上方から約45度の角度で噴射するようになっている。また、各ジェットバーナー12は、同じ圧力および速度でフレームジェット12aを噴射するようになっている。 In a specific example, the jet burner 12 is a small-sized jet burner manufactured by HARD INDUSTRY CO., LTD. Capable of injecting the frame jet 12a at a speed higher than the speed of sound. The jet burner 12 is composed of three units, and is disposed at the same distance from the downstream 1 with a central angle of 120 degrees with respect to the downstream 1 of the molten metal as a central axis. Injection is performed at an angle of 45 degrees. Moreover, each jet burner 12 injects the flame jet 12a with the same pressure and speed.
 金属粉末の製造装置10は、本発明の第1の実施の形態の金属粉末の製造方法を好適に実施することができる。金属粉末の製造装置10は、アトマイズ法の原理を利用して、金属粉末を得ることができる。溶融金属の垂下流1に対して高温のフレームジェット12aを噴射することにより、溶融金属を粉砕することができる。このとき、フレームジェット12aが水アトマイズ法の高圧水やガスアトマイズ法の高圧ガスより高温であるため、水アトマイズ法やガスアトマイズ法に比べて、吹き付ける流体の流速を上げることが可能になる。また、高温であるため、溶融金属を冷却することなくアトマイズすることができ、必要以上に溶融金属の温度を高くしておく必要もない。例えば、従来の水アトマイズ法やガスアトマイズ法と比べて、溶融金属の温度を50~100℃程度低めに設定しておくことができる。このため、よりアモルファス化しやすい条件で溶融金属を細かく粉砕することができる。こうして粉砕された溶融金属を、雰囲気中を落下または飛散するうちに静的に過冷却させてガラス化させることが可能になるとともに、微細な金属粉末を容易に得ることができる。また、水アトマイズ法やガスアトマイズ法に比べて、より微細な金属粉末を得ることができる。 The metal powder production apparatus 10 can suitably carry out the metal powder production method of the first embodiment of the present invention. The metal powder manufacturing apparatus 10 can obtain metal powder using the principle of the atomizing method. The molten metal can be pulverized by injecting a high-temperature flame jet 12a onto the downstream 1 of the molten metal. At this time, since the flame jet 12a is hotter than the high pressure water of the water atomization method or the high pressure gas of the gas atomization method, the flow velocity of the sprayed fluid can be increased as compared with the water atomization method or the gas atomization method. Moreover, since it is high temperature, it can atomize, without cooling a molten metal, and it is not necessary to make the temperature of a molten metal higher than necessary. For example, the temperature of the molten metal can be set lower by about 50 to 100 ° C. than the conventional water atomization method or gas atomization method. For this reason, the molten metal can be finely pulverized under conditions that make it more amorphous. The molten metal thus pulverized can be vitrified by being statically cooled while falling or scattering in the atmosphere, and a fine metal powder can be easily obtained. In addition, a finer metal powder can be obtained as compared with the water atomization method and the gas atomization method.
 また、金属粉末の製造装置10は、各ジェットバーナー12が音速よりも速い速度でフレームジェット12aを噴射した場合には、フレームジェット12aの発する衝撃波により、溶融金属を細かく粉砕することができる。さらに、各ジェットバーナー12が、溶融金属の垂下流1に対して互いに回転対称の位置から、同じ角度で、垂下流1の1点に集中してフレームジェット12aを噴射するため、複数のフレームジェット12aの衝突により、溶融金属をより細かく粉砕することができ、より微細な金属粉末を得ることができる。なお、各フレームジェット12aの周囲および下方を覆うよう、供給手段11の下方に容器やチャンバーを設けることにより、得られた金属粉末を容易に回収することができる。 Further, when each jet burner 12 injects the flame jet 12a at a speed higher than the sound speed, the metal powder manufacturing apparatus 10 can finely pulverize the molten metal by the shock wave generated by the flame jet 12a. Furthermore, since each jet burner 12 concentrates on one point of the downstream 1 at the same angle from a rotationally symmetrical position with respect to the downstream 1 of the molten metal, a plurality of frame jets are injected. By the collision of 12a, the molten metal can be pulverized more finely, and a finer metal powder can be obtained. The obtained metal powder can be easily recovered by providing a container or a chamber below the supply means 11 so as to cover the periphery and the lower part of each frame jet 12a.
 金属粉末の製造装置10は、水アトマイズ法で使用される高圧ポンプやガスアトマイズ法で使用される高圧ガス製造設備、プラズマアトマイズ法で使用されるプラズマトーチ等と比べて、比較的安価で小型のジェットバーナー12を使用することができ、装置の小型化が可能で、設備費や材料費などのコストの低減を図ることができる。 The metal powder manufacturing apparatus 10 is a relatively inexpensive and small jet compared to a high pressure pump used in the water atomizing method, a high pressure gas manufacturing facility used in the gas atomizing method, a plasma torch used in the plasma atomizing method, and the like. The burner 12 can be used, the apparatus can be miniaturized, and costs such as equipment costs and material costs can be reduced.
 なお、金属粉末の製造装置10は、図1(b)に示すコンファインド型であってもよい。コンファインド型の場合、フリーフォール型と同様の効果が得られるだけでなく、アトマイズゾーンへ直接溶融金属を供給できるため、各ジェットバーナー12のフレームジェット12aの運動エネルギーが減衰しない状態で効率的にアトマイズを行うことができる。また、コンファインド型の場合、従来のガスアトマイズ等では、噴射ガス等により注湯ノズル11aが冷却されて溶融金属が凝固し、注湯ノズル11aを閉塞しやすいという問題があった。これに対し、図1(b)に示す金属粉末の製造装置10では、各ジェットバーナー12から高温のフレームジェット12aを噴射するため、注湯ノズル11aが冷却されず、溶融金属の凝固や注湯ノズル11aの閉塞が発生するのを防止することができる。 The metal powder production apparatus 10 may be a confined type as shown in FIG. In the case of the confined type, not only the same effect as the free fall type can be obtained, but also the molten metal can be supplied directly to the atomizing zone, so that the kinetic energy of the flame jet 12a of each jet burner 12 can be efficiently reduced. Atomization can be performed. Further, in the case of the confined type, the conventional gas atomization or the like has a problem that the pouring nozzle 11a is cooled by the injection gas or the like, the molten metal is solidified, and the pouring nozzle 11a is easily blocked. On the other hand, in the metal powder manufacturing apparatus 10 shown in FIG. 1 (b), since the high-temperature flame jet 12a is injected from each jet burner 12, the pouring nozzle 11a is not cooled, and solidification of molten metal or pouring is performed. It is possible to prevent the nozzle 11a from being blocked.
 また、図2に示すように、金属粉末の製造装置10は、供給手段11が下方に向かって金属線材2を連続的に供給可能に設けられ、各ジェットバーナー12が、金属線材2に対してフレームジェット12aを噴射するよう設けられていてもよい。この場合、金属線材2に対して高温のフレームジェット12aを噴射することにより、金属線材2を溶かしつつ、その溶融した金属を粉砕することができる。金属線材2の材質は、例えば、ステンレス鋼、SUS420合金である。 As shown in FIG. 2, the metal powder manufacturing apparatus 10 is provided such that the supply means 11 can continuously supply the metal wire 2 downward, and each jet burner 12 is connected to the metal wire 2. You may provide so that the flame jet 12a may be injected. In this case, the molten metal can be pulverized while the metal wire 2 is melted by injecting the high-temperature frame jet 12 a onto the metal wire 2. The material of the metal wire 2 is, for example, stainless steel or SUS420 alloy.
 また、金属粉末の製造装置10で、ジェットバーナー12が1台から成り、先端に耐熱ノズルを有し、耐熱ノズルは、内部に溶融金属または金属線材を通す通孔を有し、内部でフレームジェット12aを複数に分けて、通孔を通る溶融金属または金属線材に対して互いに回転対称の位置から、溶融金属または金属線材に同じ角度で噴射可能に設けられていてもよい。この場合、1台のジェットバーナー12で金属粉末を得ることができる。耐熱ノズルは、水アトマイズ法やガスアトマイズ法で使用されるノズルを、カーボンまたは水冷銅などの耐熱性の素材で形成したものから成っていてもよい。 Further, the metal powder manufacturing apparatus 10 includes a single jet burner 12 having a heat-resistant nozzle at the tip, the heat-resistant nozzle having a through-hole through which molten metal or metal wire is passed, and a flame jet inside. 12a may be divided into a plurality of portions, and the molten metal or metal wire may be sprayed at the same angle from a rotationally symmetric position with respect to the molten metal or metal wire passing through the through hole. In this case, metal powder can be obtained with one jet burner 12. The heat-resistant nozzle may be composed of a nozzle used in a water atomizing method or a gas atomizing method formed of a heat-resistant material such as carbon or water-cooled copper.
 また、図3に示すように、金属粉末の製造装置10は、フレームジェット12aの噴射方向が、ジェットバーナー12の本体12bの長さ方向に対して所定の角度を成すよう、各ジェットバーナー12の噴射ノズル12cが折り曲げられていてもよい。この場合、噴射ノズル12cと供給手段11の注湯ノズル11aとを容易に近接させることができる。特に、金属粉末の製造装置10がコンファインド型の場合に効果的である。 As shown in FIG. 3, the metal powder manufacturing apparatus 10 is configured so that the jet direction of the frame jet 12 a forms a predetermined angle with respect to the length direction of the main body 12 b of the jet burner 12. The injection nozzle 12c may be bent. In this case, the injection nozzle 12c and the pouring nozzle 11a of the supply means 11 can be easily brought close to each other. This is particularly effective when the metal powder manufacturing apparatus 10 is a confined type.
 図4は、本発明の第2の実施の形態の金属粉末の製造装置および金属粉末の製造方法を示している。
 図4に示すように、金属粉末の製造装置20は、コンファインド型であり、供給手段11とジェットバーナー12とを有している。
 なお、以下の説明では、本発明の第1の実施の形態の金属粉末の製造装置10と同一の構成には同一の符号を付して、重複する説明を省略する。
FIG. 4 shows a metal powder production apparatus and a metal powder production method according to the second embodiment of the present invention.
As shown in FIG. 4, the metal powder manufacturing apparatus 20 is a confined type, and has a supply means 11 and a jet burner 12.
In the following description, the same components as those in the metal powder manufacturing apparatus 10 according to the first embodiment of the present invention are denoted by the same reference numerals, and redundant description is omitted.
 供給手段11は、溶融金属を収納する容器21を有し、容器21の底部中央に外部に連通した供給口21aを有している。また、供給手段11は、供給口21aに連通し、容器21の底面の中央に断熱板22(例、アルミナ板)を介して取り付けられた注湯ノズル11aを有している。注湯ノズル11aは、先端の外形が下方に向かって徐々に細くなるテーパー状を成している。供給手段11は、容器21の内部に収納した溶融金属を、注湯ノズル11aから供給可能になっている。 The supply means 11 has a container 21 for storing molten metal, and has a supply port 21 a communicating with the outside at the center of the bottom of the container 21. Moreover, the supply means 11 has the hot_water | molten_metal nozzle 11a attached to the center of the bottom face of the container 21 via the heat insulation board 22 (for example, an alumina board) in communication with the supply port 21a. The pouring nozzle 11a has a tapered shape in which the outer shape of the tip gradually narrows downward. The supply means 11 can supply the molten metal stored in the container 21 from the pouring nozzle 11a.
 ジェットバーナー12は、1つの燃焼室(図示せず)と、フレームジェットを噴射するための円環状の噴射口24とを有している。ジェットバーナー12は、噴射口24の内側に注湯ノズル11aが配置されるよう、供給手段11の容器21の下部に取り付けられている。ジェットバーナー12は、噴射口24が注湯ノズル11aの先端のテーパー形状に沿うよう形成されている。 The jet burner 12 has one combustion chamber (not shown) and an annular injection port 24 for injecting a flame jet. The jet burner 12 is attached to the lower part of the container 21 of the supply means 11 so that the pouring nozzle 11 a is disposed inside the injection port 24. The jet burner 12 is formed so that the injection port 24 follows the tapered shape of the tip of the pouring nozzle 11a.
 ジェットバーナー12は、噴射口24から前方内側に向かって、噴射口24の円周に沿って隙間なく、フレームジェットを噴射可能に構成されている。これにより、ジェットバーナー12は、注湯ノズル11aから供給される溶融金属の周囲から、溶融金属の流れ方向に対して斜交するよう、溶融金属の一箇所に集中してフレームジェットを噴射可能になっている。また、ジェットバーナー12は、注湯ノズル11aから供給される溶融金属の外周に沿って隙間なく、ほぼ均等なジェット圧で、フレームジェットが溶融金属に衝突可能になっている。 The jet burner 12 is configured to be able to inject a frame jet without any gap along the circumference of the injection port 24 from the injection port 24 toward the front inner side. As a result, the jet burner 12 is capable of injecting a flame jet from a periphery of the molten metal supplied from the pouring nozzle 11a so as to be concentrated at one location of the molten metal so as to be oblique to the flow direction of the molten metal. It has become. In addition, the jet burner 12 is configured such that the flame jet can collide with the molten metal with almost uniform jet pressure without any gap along the outer periphery of the molten metal supplied from the pouring nozzle 11a.
 また、ジェットバーナー12は、噴射口24の周囲に、水を循環させて噴射口24を冷却するための水冷部25を有している。なお、ジェットバーナー12は、音速よりも速い速度でもフレームジェットを噴射可能になっている。また、具体的な一例では、ジェットバーナー12は、注湯ノズル11aから下方に供給される溶融金属に対して、斜め上方から約40度の角度で噴射するようになっている。 Further, the jet burner 12 has a water cooling part 25 for circulating the water around the injection port 24 to cool the injection port 24. The jet burner 12 can eject the frame jet at a speed higher than the speed of sound. In a specific example, the jet burner 12 injects the molten metal supplied downward from the pouring nozzle 11a at an angle of about 40 degrees obliquely from above.
 本発明の第2の実施の形態の金属粉末の製造方法は、金属粉末の製造装置20により好適に実施される。本発明の第2の実施の形態の金属粉末の製造装置20および金属粉末の製造方法は、溶融金属の周囲から噴射されたフレームジェットが、溶融金属の外周に沿って隙間なく、ほぼ均等なジェット圧で溶融金属に衝突するため、その衝突位置で、溶融金属がフレームジェットから逃れるように飛散するのを防ぐことができる。このため、溶融金属に対して均一なアトマイズが可能であり、微細で均一な球状の金属粉末を得ることができる。また、金属粉末の製造効率を高めることもできる。なお、具体的な一例では、製造された金属粉末の直径は、約5μmであった。 The metal powder manufacturing method according to the second embodiment of the present invention is preferably implemented by the metal powder manufacturing apparatus 20. In the metal powder manufacturing apparatus 20 and the metal powder manufacturing method according to the second embodiment of the present invention, the flame jet injected from the periphery of the molten metal is substantially uniform with no gap along the outer periphery of the molten metal. Since it collides with the molten metal with pressure, it is possible to prevent the molten metal from scattering so as to escape from the frame jet at the collision position. For this reason, uniform atomization with respect to a molten metal is possible, and a fine and uniform spherical metal powder can be obtained. In addition, the production efficiency of the metal powder can be increased. In a specific example, the diameter of the manufactured metal powder was about 5 μm.
 本発明の第2の実施の形態の金属粉末の製造装置20および金属粉末の製造方法は、ジェットバーナー12が1台で、燃焼室も1つで足りるため、さらなる装置の小型化が可能で、製造コストもさらに低減することができる。なお、本発明の第2の実施の形態の金属粉末の製造装置20および金属粉末の製造方法は、溶融金属でなく、金属線材に対して高温のフレームジェットを噴射してもよい。 In the metal powder manufacturing apparatus 20 and the metal powder manufacturing method of the second embodiment of the present invention, only one jet burner 12 and one combustion chamber are required, so that the apparatus can be further downsized. The manufacturing cost can be further reduced. In addition, the metal powder manufacturing apparatus 20 and the metal powder manufacturing method according to the second embodiment of the present invention may inject a high-temperature frame jet onto the metal wire instead of the molten metal.
 図5および図6は、本発明の第3の実施の形態の金属粉末の製造装置および金属粉末の製造方法を示している。
 図5および図6に示すように、金属粉末の製造装置30は、供給手段11とジェットバーナー12とを有している。
 なお、以下の説明では、本発明の第1の実施の形態の金属粉末の製造装置10および本発明の第2の実施の形態の金属粉末の製造装置20と同一の構成には同一の符号を付して、重複する説明を省略する。
5 and 6 show a metal powder manufacturing apparatus and a metal powder manufacturing method according to a third embodiment of the present invention.
As shown in FIGS. 5 and 6, the metal powder manufacturing apparatus 30 includes a supply unit 11 and a jet burner 12.
In the following description, the same components as those of the metal powder manufacturing apparatus 10 according to the first embodiment of the present invention and the metal powder manufacturing apparatus 20 according to the second embodiment of the present invention are denoted by the same reference numerals. In addition, overlapping explanation is omitted.
 金属粉末の製造装置30は、ジェットバーナー12が3台から成り、それぞれフレームジェット12aを噴射するための細長い形状の噴射口24を有している。各ジェットバーナー12は、噴射口24の長径方向が溶融金属の垂下流1の外周に沿うよう配置されている。各ジェットバーナー12は、垂下流1に対して互いに回転対称の位置から、垂下流1に同じ角度で衝突するよう、同じ圧力および速度でフレームジェット12aを噴射可能に設けられている。 The metal powder manufacturing apparatus 30 includes three jet burners 12 each having an elongated injection port 24 for injecting the frame jet 12a. Each jet burner 12 is arranged so that the major axis direction of the injection port 24 is along the outer periphery of the drooping downstream 1 of the molten metal. Each jet burner 12 is provided so as to be able to inject the frame jet 12a at the same pressure and speed so as to collide with the downstream 1 from the rotationally symmetrical position with respect to the downstream 1 at the same angle.
 図5および図6に示す具体的な一例では、噴射口24は、2つの円を接続したひょうたん型の形状を成している。また、各ジェットバーナー12は、溶融金属の垂下流1を中心軸として中心角度が120度の間隔で、垂下流1から同じ距離の位置に配置され、垂下流1に対して斜め上方から約40度の角度で噴射するようになっている。 In the specific example shown in FIG. 5 and FIG. 6, the injection port 24 has a gourd shape in which two circles are connected. Further, each jet burner 12 is disposed at the same distance from the downstream 1 with a central angle of 120 degrees with respect to the downstream 1 of the molten metal as a central axis. It is designed to spray at an angle of degrees.
 本発明の第3の実施の形態の金属粉末の製造方法は、金属粉末の製造装置30により好適に実施される。本発明の第3の実施の形態の金属粉末の製造装置30および金属粉末の製造方法は、図6(b)に示すように、ジェットバーナー12の噴射口24から噴射されるフレームジェット12aを、噴射口24の長径方向に沿って面状に拡げたり、複数に分散させたりすることができる。このため、溶融金属の垂下流1を囲うように、各ジェットバーナー12からフレームジェット12aを噴射することにより、溶融金属の垂下流1の外周に沿って隙間なく、ほぼ均等なジェット圧で溶融金属の垂下流1に衝突させることができる。また、その衝突位置で、溶融金属がフレームジェット12aから逃れるように飛散するのを防ぐことができる。このため、溶融金属に対して均一なアトマイズが可能であり、微細で均一な球状の金属粉末を得ることができる。また、金属粉末の製造効率を高めることもできる。 The metal powder production method according to the third embodiment of the present invention is preferably implemented by the metal powder production apparatus 30. The metal powder manufacturing apparatus 30 and the metal powder manufacturing method according to the third embodiment of the present invention, as shown in FIG. 6 (b), uses a flame jet 12a injected from the injection port 24 of the jet burner 12, It can be spread in a planar shape along the major axis direction of the injection port 24 or can be dispersed in a plurality. For this reason, by injecting flame jets 12a from the jet burners 12 so as to surround the downstream 1 of the molten metal, there is no gap along the outer periphery of the downstream 1 of the molten metal, and the molten metal with a substantially uniform jet pressure. It can be made to collide with the downstream 1 of this. Further, it is possible to prevent the molten metal from being scattered so as to escape from the frame jet 12a at the collision position. For this reason, uniform atomization with respect to a molten metal is possible, and a fine and uniform spherical metal powder can be obtained. In addition, the production efficiency of the metal powder can be increased.
 なお、本発明の第3の実施の形態の金属粉末の製造装置30および金属粉末の製造方法は、溶融金属でなく、金属線材に対して高温のフレームジェット12aを噴射してもよい。 In addition, the metal powder manufacturing apparatus 30 and the metal powder manufacturing method according to the third embodiment of the present invention may inject the high-temperature frame jet 12a onto the metal wire instead of the molten metal.
 図1(a)に示す金属粉末の製造装置10によりフレームジェット12aを噴射したときの状態を、図7(a)に示す。図7(a)に示すように、複数のフレームジェットが1つに収束していることが確認できる。この金属粉末の製造装置10を用いて、Fe-Si-B系の溶融金属に対して、フレームジェット12aを噴射することにより、微細な球状のFe75Si1015非晶質粉末が得られた。このときのフレームジェット12aの噴射位置付近の様子、および、得られた粉末の電子顕微鏡写真を図7(b)乃至(d)に示す。 FIG. 7A shows a state when the frame jet 12a is injected by the metal powder manufacturing apparatus 10 shown in FIG. As shown in FIG. 7A, it can be confirmed that a plurality of frame jets converges to one. Using this metal powder production apparatus 10, a fine spherical Fe 75 Si 10 B 15 amorphous powder is obtained by injecting a flame jet 12a onto an Fe—Si—B based molten metal. It was. FIGS. 7B to 7D show the state in the vicinity of the injection position of the frame jet 12a and the electron micrographs of the obtained powder.
 図2に示す金属粉末の製造装置10を用いて、ステンレス鋼SUS420の金属線材2に対してフレームジェット12aを噴射することにより、微細な球状の金属粉末が得られた。得られた金属粉末の電子顕微鏡写真を図8に示す。 A fine spherical metal powder was obtained by spraying the frame jet 12a onto the metal wire 2 made of stainless steel SUS420 using the metal powder manufacturing apparatus 10 shown in FIG. An electron micrograph of the obtained metal powder is shown in FIG.
 図2に示す金属粉末の製造装置10を用いて、TIG溶接棒TGS50(株式会社神戸製鋼所製)の金属線材2に対してフレームジェット12aを噴射することにより、微細な球状の金属粉末が得られた。得られた金属粉末の電子顕微鏡写真を図9に示す。 By using the metal powder production apparatus 10 shown in FIG. 2, a fine spherical metal powder is obtained by injecting the frame jet 12a onto the metal wire 2 of the TIG welding rod TGS50 (manufactured by Kobe Steel). It was. An electron micrograph of the obtained metal powder is shown in FIG.
 図2に示す金属粉末の製造装置10を用いて、SUS420合金から成る金属線材2に対してフレームジェット12aを噴射することにより、微細な球状の金属粉末が得られた。得られた金属粉末の電子顕微鏡写真を図10に示す。 A fine spherical metal powder was obtained by spraying the frame jet 12a onto the metal wire 2 made of SUS420 alloy using the metal powder manufacturing apparatus 10 shown in FIG. An electron micrograph of the obtained metal powder is shown in FIG.
 Fe-Si10-B15合金の溶融金属に対して、図1(a)に示す金属粉末の製造装置10、図4に示す金属粉末の製造装置20、および図4に示す金属粉末の製造装置20で噴射口24がラバールノズル型のものにより、それぞれフレームジェットを噴射して金属粉末を製造した。各装置で製造された金属粉末の粒度分布を、図11に示す。 With respect to the molten metal of the Fe—Si 10 —B 15 alloy, the metal powder production apparatus 10 shown in FIG. 1 (a), the metal powder production apparatus 20 shown in FIG. 4, and the metal powder production apparatus shown in FIG. 20, each of which has a jet nozzle 24 of a Laval nozzle type, and jetted flame jets to produce metal powder. The particle size distribution of the metal powder produced by each apparatus is shown in FIG.
 なお、図1(a)に示す金属粉末の製造装置10では、4台のジェットバーナー12を、溶融金属の垂下流1を中心軸として中心角度が90度の間隔で配置し、垂下流1に対してそれぞれ斜め上方から約15度の角度(頂角30度)でフレームジェットを噴射した。また、ジェットバーナー12の1台あたりの燃焼パラメーターは、空気量が700L/min、燃料(灯油)が130mL/minである。図4に示す金属粉末の製造装置20での燃焼パラメーターは、空気量が3000L/min、燃料(灯油)が550mL/minである。ラバールノズル型のものの燃焼パラメーターは、空気量が3000L/min、燃料(灯油)が550mL/minである。 In addition, in the metal powder manufacturing apparatus 10 shown in FIG. 1A, four jet burners 12 are arranged at intervals of 90 degrees with the central angle of the molten metal hanging downstream 1 as the central axis. On the other hand, the flame jet was jetted at an angle of about 15 degrees (vertical angle 30 degrees) from diagonally above. The combustion parameters per jet burner 12 are 700 L / min for the air amount and 130 mL / min for the fuel (kerosene). The combustion parameters in the metal powder production apparatus 20 shown in FIG. 4 are an air amount of 3000 L / min and a fuel (kerosene) of 550 mL / min. The combustion parameters of the Laval nozzle type are 3000 L / min for the air amount and 550 mL / min for the fuel (kerosene).
 図11(a)および(b)に示すように、図1(a)に示す金属粉末の製造装置10、および、図4に示す金属粉末の製造装置20で製造された金属粉末は、直径が40~70μmのものが最も多く、ほとんどが100μm以下であった。また、ラバールノズル型のもので製造された金属粉末は、直径が50μm以下のものがほとんどであった。これらの結果から、フレームジェットの噴射により、微細な粉末が得られることが確認された。また、ラバールノズル型のものの方が、製造される金属粉末の径が小さくなっていることから、フレームジェットの速度が大きいほど、製造される金属粉末の径が小さくなるといえる。 As shown in FIGS. 11A and 11B, the metal powder produced by the metal powder production apparatus 10 shown in FIG. 1A and the metal powder production apparatus 20 shown in FIG. The largest number was 40 to 70 μm, and most was 100 μm or less. Moreover, most of the metal powders manufactured with the Laval nozzle type were those having a diameter of 50 μm or less. From these results, it was confirmed that fine powder could be obtained by injection of flame jet. Moreover, since the diameter of the metal powder to be manufactured is smaller in the Laval nozzle type, it can be said that the diameter of the metal powder to be manufactured decreases as the speed of the frame jet increases.
  1 垂下流
  2 金属線材
 10 金属粉末の製造装置
 11 供給手段
  11a 注湯ノズル
 12 ジェットバーナー
  12a フレームジェット
 
DESCRIPTION OF SYMBOLS 1 Downstream 2 Metal wire 10 Metal powder manufacturing apparatus 11 Supply means 11a Pouring nozzle 12 Jet burner 12a Flame jet

Claims (10)

  1.  溶融金属または金属線材に対してフレームジェットを噴射することにより金属粉末を得ることを特徴とする金属粉末の製造方法。 A method for producing a metal powder, characterized in that a metal powder is obtained by spraying a frame jet against molten metal or a metal wire.
  2.  前記フレームジェットが前記溶融金属または前記金属線材の外周に沿って隙間なく、ほぼ均等なジェット圧で前記溶融金属または前記金属線材に衝突するよう、前記溶融金属または前記金属線材の周囲から前記フレームジェットを噴射することを特徴とする請求項1記載の金属粉末の製造方法。 The frame jet from the periphery of the molten metal or the metal wire so that the frame jet collides with the molten metal or the metal wire with a substantially uniform jet pressure without a gap along the outer periphery of the molten metal or the metal wire. The method for producing a metal powder according to claim 1, wherein:
  3.  前記フレームジェットを噴射するための円環状の噴射口を有し、前記噴射口から噴射される前記フレームジェットの内側に前記溶融金属または前記金属線材を配置して、前記フレームジェットを噴射することを特徴とする請求項1または2記載の金属粉末の製造方法。 Having an annular injection port for injecting the frame jet, disposing the molten metal or the metal wire inside the frame jet injected from the injection port, and injecting the frame jet The method for producing a metal powder according to claim 1 or 2, characterized in that:
  4.  複数のフレームジェットを、前記溶融金属または前記金属線材に対して互いに回転対称の位置から、前記溶融金属または前記金属線材に噴射することを特徴とする請求項1または2記載の金属粉末の製造方法。 3. The method for producing metal powder according to claim 1, wherein a plurality of frame jets are sprayed onto the molten metal or the metal wire from a rotationally symmetric position with respect to the molten metal or the metal wire. .
  5.  溶融金属または金属線材を供給する供給手段と、
     前記供給手段により供給される前記溶融金属または前記金属線材に対してフレームジェットを噴射するジェットバーナーとを、
     有することを特徴とする金属粉末の製造装置。
    Supply means for supplying molten metal or metal wire;
    A jet burner for injecting a frame jet to the molten metal or the metal wire supplied by the supply means;
    An apparatus for producing metal powder, comprising:
  6.  前記ジェットバーナーは、前記フレームジェットが前記溶融金属または前記金属線材の外周に沿って隙間なく、ほぼ均等なジェット圧で前記溶融金属または前記金属線材に衝突するよう、前記溶融金属または前記金属線材の周囲から前記フレームジェットを噴射することを特徴とする請求項5記載の金属粉末の製造装置。 The jet burner is configured so that the flame jet collides with the molten metal or the metal wire with a substantially uniform jet pressure without a gap along the outer periphery of the molten metal or the metal wire. 6. The apparatus for producing metal powder according to claim 5, wherein the flame jet is jetted from the periphery.
  7.  前記ジェットバーナーは、前記フレームジェットを噴射するための円環状の噴射口を有し、前記噴射口から噴射される前記フレームジェットの内側に、前記溶融金属または前記金属線材が配置されるよう設けられていることを特徴とする請求項5または6記載の金属粉末の製造装置。 The jet burner has an annular injection port for injecting the frame jet, and is provided so that the molten metal or the metal wire is arranged inside the frame jet injected from the injection port. The apparatus for producing metal powder according to claim 5 or 6, wherein
  8.  前記ジェットバーナーは複数から成り、前記溶融金属または前記金属線材に対して互いに回転対称の位置から、前記溶融金属または前記金属線材に噴射するよう設けられていることを特徴とする請求項5または6記載の金属粉末の製造装置。 The jet burner includes a plurality of jet burners, and is provided so as to inject the molten metal or the metal wire from a rotationally symmetric position with respect to the molten metal or the metal wire. The manufacturing apparatus of the metal powder of description.
  9.  各ジェットバーナーは、それぞれ前記フレームジェットを噴射するための細長い形状の噴射口を有し、前記噴射口の長径方向が前記溶融金属または前記金属線材の外周に沿うよう配置されていることを特徴とする請求項8記載の金属粉末の製造装置。 Each jet burner has an elongated injection port for injecting the frame jet, and is arranged such that the major axis direction of the injection port is along the outer periphery of the molten metal or the metal wire. The apparatus for producing metal powder according to claim 8.
  10.  前記ジェットバーナーは先端に耐熱ノズルを有し、前記耐熱ノズルは内部に前記溶融金属または前記金属線材を通す通孔を有し、前記通孔を通る前記溶融金属または前記金属線材に対して前記フレームジェットを噴射可能に設けられていることを特徴とする請求項5または6記載の金属粉末の製造装置。
     
    The jet burner has a heat-resistant nozzle at a tip, the heat-resistant nozzle has a through-hole through which the molten metal or the metal wire passes, and the frame with respect to the molten metal or the metal wire through the through-hole. The apparatus for producing metal powder according to claim 5 or 6, characterized in that the jet is jettable.
PCT/JP2012/062736 2011-05-18 2012-05-18 Metallic powder production method and metallic powder production device WO2012157733A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12786542.6A EP2711111A4 (en) 2011-05-18 2012-05-18 Metallic powder production method and metallic powder production device
US14/118,446 US20140202286A1 (en) 2011-05-18 2012-05-18 Metal powder production method and metal powder production device
CN201280022257.6A CN103635273A (en) 2011-05-18 2012-05-18 Metallic powder production method and metallic powder production device
JP2013515210A JPWO2012157733A1 (en) 2011-05-18 2012-05-18 Metal powder manufacturing method and metal powder manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-110904 2011-05-18
JP2011110904 2011-05-18

Publications (1)

Publication Number Publication Date
WO2012157733A1 true WO2012157733A1 (en) 2012-11-22

Family

ID=47177047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062736 WO2012157733A1 (en) 2011-05-18 2012-05-18 Metallic powder production method and metallic powder production device

Country Status (5)

Country Link
US (1) US20140202286A1 (en)
EP (1) EP2711111A4 (en)
JP (1) JPWO2012157733A1 (en)
CN (1) CN103635273A (en)
WO (1) WO2012157733A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136807A (en) * 2013-01-15 2014-07-28 Tohoku Techno Arch Co Ltd Apparatus and method for producing metal powder
JP2016204718A (en) * 2015-04-27 2016-12-08 ハード工業有限会社 Powder manufacturing apparatus
JP2017155341A (en) * 2017-05-01 2017-09-07 ハード工業有限会社 Metal powder production device and method for producing metal powder
JP2019214786A (en) * 2018-06-08 2019-12-19 Dowaエレクトロニクス株式会社 Manufacturing method and manufacturing apparatus of metal powder
WO2020085355A1 (en) 2018-10-25 2020-04-30 三菱重工業株式会社 Atomizer nozzle, atomizing device, metal powder manufacturing method, and metal powder
US11059099B1 (en) 2014-03-11 2021-07-13 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
JP2022046880A (en) * 2020-09-11 2022-03-24 三菱重工業株式会社 Metal powder producing apparatus and gas jet device therefor
CN114367668A (en) * 2022-01-14 2022-04-19 中航迈特粉冶科技(固安)有限公司 3D printing spherical metal powder processing nozzle, method and manufacturing device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
HUE065423T2 (en) 2015-12-16 2024-05-28 6K Inc Method of producing spheroidal dehydrogenated titanium alloy particles
US10443385B2 (en) * 2016-02-03 2019-10-15 General Electric Company In situ gas turbine prevention of crack growth progression via laser welding
US10247002B2 (en) * 2016-02-03 2019-04-02 General Electric Company In situ gas turbine prevention of crack growth progression
CN108237220B (en) * 2016-12-27 2020-01-14 中国科学院宁波材料技术与工程研究所 Composite powder and preparation method and application thereof
WO2019049865A1 (en) * 2017-09-07 2019-03-14 ハード工業有限会社 Metal powder manufacturing device and metal powder manufacturing method
EP3710180A4 (en) * 2017-11-14 2021-03-31 Pyrogenesis Canada Inc. Method and apparatus for producing fine spherical powders from coarse and angular powder feed material
WO2019160154A1 (en) * 2018-02-19 2019-08-22 ハード工業有限会社 Metal powder manufacturing device and method for manufacturing metal powder
AU2019239776A1 (en) * 2018-03-17 2020-10-29 Pyrogenesis Canada Inc. Method and apparatus for the production of high purity spherical metallic powders from a molten feedstock
CN112654444A (en) 2018-06-19 2021-04-13 6K有限公司 Method for producing spheroidized powder from raw material
JP6982015B2 (en) * 2019-02-04 2021-12-17 三菱パワー株式会社 Metal powder manufacturing equipment and its gas injector
WO2020161884A1 (en) * 2019-02-08 2020-08-13 三菱日立パワーシステムズ株式会社 Metal powder manufacturing device, and crucible apparatus and molten metal nozzle for same
CA3134573A1 (en) 2019-04-30 2020-11-05 Sunil Bhalchandra BADWE Mechanically alloyed powder feedstock
EP3962862A4 (en) 2019-04-30 2023-05-31 6K Inc. Lithium lanthanum zirconium oxide (llzo) powder
CA3153254A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
WO2021263273A1 (en) 2020-06-25 2021-12-30 6K Inc. Microcomposite alloy structure
CN116547068A (en) 2020-09-24 2023-08-04 6K有限公司 System, apparatus and method for starting plasma
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders
JP2024515034A (en) 2021-03-31 2024-04-04 シックスケー インコーポレイテッド Systems and methods for additive manufacturing of metal nitride ceramics
CN114632941B (en) * 2022-05-18 2022-09-09 西安欧中材料科技有限公司 Equipment and method for improving batch stability of nickel-based metal spherical powder components
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
CN115283683B (en) * 2022-07-01 2023-08-01 南京尚吉增材制造研究院有限公司 Preparation method and system of high sphericity and low oxygen increment titanium alloy powder
US12094688B2 (en) 2022-08-25 2024-09-17 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211005A (en) * 1984-02-29 1985-10-23 ゼネラル・エレクトリツク・カンパニイ Apparatus and method for spraying unstable molten liquid stream
JPH05271719A (en) * 1992-03-27 1993-10-19 Teikoku Piston Ring Co Ltd Production of metal powder
JPH10176206A (en) * 1996-12-17 1998-06-30 Akihisa Inoue Production of metallic powder from molten metal
JPH11257615A (en) * 1998-03-10 1999-09-21 Daioo:Kk Burner for manufacturing spherical grain
JP2003530679A (en) * 2000-04-10 2003-10-14 テトロニクス リミテッド Twin plasma torch device
JP2004183049A (en) 2002-12-03 2004-07-02 Dowa Mining Co Ltd Method and apparatus for producing fine metal powder by gas atomization method
JP2005139471A (en) 2003-11-04 2005-06-02 Daido Steel Co Ltd Gas atomizing nozzle, and metal melting/atomizing apparatus using the same
JP2006063357A (en) 2004-08-24 2006-03-09 Daido Steel Co Ltd Method for manufacturing metallic powder with water atomization method
JP2006241562A (en) * 2005-03-07 2006-09-14 Daido Steel Co Ltd Continuous atomization device for molten metal

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU367898A1 (en) * 1968-06-25 1973-01-26 INSTALLATION FOR RECEIVING METAL SPRAY POWDERS
JPS5524974A (en) * 1978-08-11 1980-02-22 Fukuda Kinzoku Hakufun Kogyo Kk Producing metal grain and equipment therefor
JPS56142803A (en) * 1980-04-03 1981-11-07 Tanaka Kikinzoku Kogyo Kk Preparation of composite powder
JPS5947001B2 (en) * 1980-09-04 1984-11-16 住友金属工業株式会社 Metal powder manufacturing method
DE3533964C1 (en) * 1985-09-24 1987-01-15 Alfred Prof Dipl-Ing Dr-I Walz Method and device for producing fine powder in spherical form
JPS62278208A (en) * 1986-05-27 1987-12-03 Fukuda Metal Foil & Powder Co Ltd Ring nozzle for producing metallic powder
JP2580616B2 (en) * 1987-09-09 1997-02-12 大同特殊鋼株式会社 Method for producing spherical metal powder
JPH01219109A (en) * 1988-02-26 1989-09-01 Sumitomo Metal Ind Ltd Production of fine powder by gas atomization
JPH0474809A (en) * 1990-07-16 1992-03-10 Mitsubishi Materials Corp Method and apparatus for manufacturing spherical metal particles
GB9316522D0 (en) * 1993-08-09 1993-09-22 Hopkins William Apparatus for and methods of producing a particulate spray
JPH08143915A (en) * 1994-11-28 1996-06-04 Tanaka Kikinzoku Kogyo Kk Production of powder for strengthened platinum material and strengthened platinum material
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
RU2281812C2 (en) * 2004-07-13 2006-08-20 Тольяттинский государственный университет Supersonic nozzle assembly for gas flame burner
JP4304221B2 (en) * 2007-07-23 2009-07-29 大陽日酸株式会社 Method for producing metal ultrafine powder
JP5859719B2 (en) * 2009-06-23 2016-02-10 大陽日酸株式会社 Method and apparatus for producing ultrafine metal powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211005A (en) * 1984-02-29 1985-10-23 ゼネラル・エレクトリツク・カンパニイ Apparatus and method for spraying unstable molten liquid stream
JPH05271719A (en) * 1992-03-27 1993-10-19 Teikoku Piston Ring Co Ltd Production of metal powder
JPH10176206A (en) * 1996-12-17 1998-06-30 Akihisa Inoue Production of metallic powder from molten metal
JPH11257615A (en) * 1998-03-10 1999-09-21 Daioo:Kk Burner for manufacturing spherical grain
JP2003530679A (en) * 2000-04-10 2003-10-14 テトロニクス リミテッド Twin plasma torch device
JP2004183049A (en) 2002-12-03 2004-07-02 Dowa Mining Co Ltd Method and apparatus for producing fine metal powder by gas atomization method
JP2005139471A (en) 2003-11-04 2005-06-02 Daido Steel Co Ltd Gas atomizing nozzle, and metal melting/atomizing apparatus using the same
JP2006063357A (en) 2004-08-24 2006-03-09 Daido Steel Co Ltd Method for manufacturing metallic powder with water atomization method
JP2006241562A (en) * 2005-03-07 2006-09-14 Daido Steel Co Ltd Continuous atomization device for molten metal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MURAKAMI, YOTARO, METHOD FOR PRODUCING HIGH-QUALITY METAL POWDER, September 2003 (2003-09-01)
OSAKA SCIENCE & TECHNOLOGY CENTER, 17 January 2011 (2011-01-17), Retrieved from the Internet <URL:Hwww.ostec.or.jp/nmc/TOP/nmc-news.htm>
See also references of EP2711111A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136807A (en) * 2013-01-15 2014-07-28 Tohoku Techno Arch Co Ltd Apparatus and method for producing metal powder
US11565319B2 (en) 2014-03-11 2023-01-31 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US11638958B2 (en) 2014-03-11 2023-05-02 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US11951549B2 (en) 2014-03-11 2024-04-09 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US11110515B2 (en) 2014-03-11 2021-09-07 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US11059099B1 (en) 2014-03-11 2021-07-13 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
JP2016204718A (en) * 2015-04-27 2016-12-08 ハード工業有限会社 Powder manufacturing apparatus
JP2017155341A (en) * 2017-05-01 2017-09-07 ハード工業有限会社 Metal powder production device and method for producing metal powder
JP7328796B2 (en) 2018-06-08 2023-08-17 Dowaエレクトロニクス株式会社 METHOD AND APPARATUS FOR MANUFACTURING METAL POWDER
JP2019214786A (en) * 2018-06-08 2019-12-19 Dowaエレクトロニクス株式会社 Manufacturing method and manufacturing apparatus of metal powder
WO2020085355A1 (en) 2018-10-25 2020-04-30 三菱重工業株式会社 Atomizer nozzle, atomizing device, metal powder manufacturing method, and metal powder
US12090555B2 (en) 2018-10-25 2024-09-17 Mitsubishi Heavy Industries, Ltd. Atomizer nozzle, atomizing device, method for producing metal powder, and metal powder
JP2022046880A (en) * 2020-09-11 2022-03-24 三菱重工業株式会社 Metal powder producing apparatus and gas jet device therefor
JP7218335B2 (en) 2020-09-11 2023-02-06 三菱重工業株式会社 Metal powder production equipment and its gas injector
CN114367668A (en) * 2022-01-14 2022-04-19 中航迈特粉冶科技(固安)有限公司 3D printing spherical metal powder processing nozzle, method and manufacturing device

Also Published As

Publication number Publication date
EP2711111A4 (en) 2015-05-20
CN103635273A (en) 2014-03-12
EP2711111A1 (en) 2014-03-26
US20140202286A1 (en) 2014-07-24
JPWO2012157733A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2012157733A1 (en) Metallic powder production method and metallic powder production device
JP6178575B2 (en) Metal powder manufacturing apparatus and metal powder manufacturing method
JP6205442B2 (en) Metal powder production equipment
KR101512772B1 (en) Method and atomizer apparatus for manufacturing metal powder
CN106735273A (en) A kind of precinct laser fusion shaping Inconel718 Co-based alloy powders and preparation method thereof
CN113993642B (en) Method for discharging powder produced by ultrasonic atomization and device for carrying out said method
JP2009001891A (en) Nozzle for cold spray, and cold spray device using nozzle for cold spray
US20200180034A1 (en) Method for cost-effective production of ultrafine spherical powders at large scale using thruster-assisted plasma atomization
KR20200007911A (en) Metal Powder Manufacturing Equipment And Its Gas Injector And Crucible
JP7231159B2 (en) METAL POWDER MANUFACTURING DEVICE AND METHOD FOR MANUFACTURING METAL POWDER
JP6298794B2 (en) Powder production equipment
KR20200096403A (en) Metal powder producing apparatus and gas jet device for same
KR101536454B1 (en) Powder producing device and powder producing method
CN105436509A (en) Metal atomization double-layer restrictive nozzle with electromagnetic field assisting function
KR20180046652A (en) Cone-shaped water atomizing variable nozzle for producing metal powder
JP6854008B2 (en) Metal powder manufacturing equipment
JP2015000997A (en) Soft magnetic metal powder production device
WO2015114838A1 (en) Method for producing metal powder and apparatus for producing metal powder
JP7328796B2 (en) METHOD AND APPARATUS FOR MANUFACTURING METAL POWDER
EP3680045B1 (en) Device and method for manfacturing metal powder
JP2017155341A (en) Metal powder production device and method for producing metal powder
JPH0649512A (en) Device for producing gas-atomized metal powder
JP2021130865A (en) Apparatus and method for producing metal powder
JPH08199207A (en) Production of metallic powder and device therefor
TW201916934A (en) Molten metal conveying conduit and alloy powder manufacturing equipment using the same to increase the length of gas-liquid interaction region to achieve better performance in particle size of the alloy powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786542

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013515210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012786542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14118446

Country of ref document: US