JPH01219109A - Production of fine powder by gas atomization - Google Patents

Production of fine powder by gas atomization

Info

Publication number
JPH01219109A
JPH01219109A JP4485488A JP4485488A JPH01219109A JP H01219109 A JPH01219109 A JP H01219109A JP 4485488 A JP4485488 A JP 4485488A JP 4485488 A JP4485488 A JP 4485488A JP H01219109 A JPH01219109 A JP H01219109A
Authority
JP
Japan
Prior art keywords
gas
molten material
pressure
nozzle
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4485488A
Other languages
Japanese (ja)
Other versions
JPH0585601B2 (en
Inventor
Tadashi Fukuda
匡 福田
Mutsuo Nakanishi
中西 睦夫
Toshihiko Kubo
敏彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4485488A priority Critical patent/JPH01219109A/en
Publication of JPH01219109A publication Critical patent/JPH01219109A/en
Publication of JPH0585601B2 publication Critical patent/JPH0585601B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently atomize a molten material by spouting gas on the molten material flowing down from a vessel as insufficiently expanded jets and by causing the vibration of pressure in the collision region. CONSTITUTION:High pressure gas 7 is spouted from the nozzle tips 6 of the body 2 of an atomizing nozzle at a high speed and collided against a molten material 4 flowing down from the opening 5 of a vessel 3. By the collision, the molten material is atomized and cooled to form fine powder. At this time, nozzle tips widened toward the ends are used as the nozzle tips 6 and the ratio So/Sr (throat ratio) of the cross-sectional area So of the outlet end B of each of the tips 6 to that Sr of the narrowest part A of the passage 9 in each of the tips 6 is properly selected. The gas 7 is spouted as insufficiently expanded jets and these jets do not diffuse, maintain the high speed and atomize the molten material 4. In the collision region, the material 4 is further atomized by the vibration of the pressure of the jets and the vibration of the speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温の溶融材料を棒状あるいは板状に流下さ
せ、これに高流速の気体を衝突させて微粒化す、るガス
アトマイズ法によって微粉末を製造する方法に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention produces fine powder using a gas atomization method, in which a high-temperature molten material is made to flow down in the form of a rod or plate, and then a high-velocity gas collides with the material to atomize it. The present invention relates to a method for manufacturing.

(従来の技術) ガスアトマイズ法は、金属等の溶融材料を棒状あるいは
板状に流下させ、その溶融材料流に対しである角度をも
って噴射させた気体ジェットを噴き付けて衝突させるこ
とにより?9融材料を粉砕し、同時に冷却して金属また
は合金等の微細粉末を大量に製造する方法である。
(Prior art) The gas atomization method involves making a molten material such as metal flow down in the form of a rod or plate, and colliding it with a gas jet sprayed at a certain angle against the flow of the molten material. This is a method for producing a large amount of fine powder of metal or alloy by pulverizing a molten material and cooling it at the same time.

ところで、このガスアトマイズ法によって微粒子を得る
方法として、■非常に高圧のガスを噴射して超高速のガ
ス流を溶融金属流に衝突させて微粉末を得る方法(特開
昭61−266506号公報)、または■50kg10
4程度までの通常の高圧ガスを用いて高速のガス流を噴
射し、金属の微粉を得る方法(特公昭62−24481
号公1)1あるいは■超音波振動するガス流を溶融金属
流に衝突させて粉砕し、粉末を得る方法(D、H,Ro
 andH,Sunwoo :1983 Annu、P
owder Metall、Conf、Proc。
By the way, as a method of obtaining fine particles by this gas atomization method, there is a method of obtaining fine powder by injecting extremely high-pressure gas and colliding the ultrahigh-speed gas flow with a molten metal flow (Japanese Patent Laid-Open No. 61-266506). , or■50kg10
A method of obtaining fine metal powder by injecting a high-speed gas flow using ordinary high-pressure gas of up to 4 degrees (Japanese Patent Publication No. 62-24481)
No. 1) 1 or ■ A method of colliding an ultrasonically vibrating gas flow with a molten metal flow to pulverize it to obtain powder (D, H, Ro
and H, Sunwoo: 1983 Annu, P.
oder Metal, Conf, Proc.

(1984) P、 109〜124)、等が提案され
ている。
(1984) P, 109-124), etc. have been proposed.

(発明が解決しようとする課題) しかしながら上記■の特開昭61−266506号公報
に開示された方法は、非常に高圧のガスを取扱うために
工業的には設備費用、保守管理費用及び運転費ともに畜
類となることから実施には解決すべき問題点が多い。
(Problem to be Solved by the Invention) However, the method disclosed in Japanese Patent Application Laid-open No. 61-266506 mentioned above (1) deals with very high pressure gas, so it is industrially difficult to use equipment costs, maintenance management costs, and operating costs. Since both are livestock, there are many problems that need to be resolved in implementation.

また■の特公昭62−24481号公報に開示された方
法は、大量のガス(約INn?ガス/ 1 kg材料)
を必要とし、かつ得られる粉末も粒度が平均50〜10
0メツシユと大きい。
In addition, the method disclosed in Japanese Patent Publication No. 62-24481 (■) uses a large amount of gas (about INn? gas/1 kg material).
and the resulting powder also has an average particle size of 50 to 10
It's as big as 0 meshes.

更に■の方法は、例えばA1合金について通常のガスア
トマイズ法と比較して、ガス流量と金属流量の比と、3
25メンシユ以下の粉末量との関係が一本の直線上にあ
るという結果が得られており、超音波アトマイズの効果
が現れていない。
Furthermore, the method (2) has a higher ratio of gas flow rate to metal flow rate, 3.
The result was that the relationship with the powder amount of 25 mensius or less was on a straight line, and the effect of ultrasonic atomization was not apparent.

本発明は、上記問題点に鑑みて成されたものであり、通
常の圧力の高圧ガス(50kg/cd以下)を用いるガ
スアトマイズ法によって可及的小さな粒径の球形微粉末
を安価かつ大量に製造できる方法を提供せんとするもの
である。
The present invention was made in view of the above-mentioned problems, and aims to produce spherical fine powder with the smallest possible particle size at low cost and in large quantities by a gas atomization method using high-pressure gas at normal pressure (50 kg/cd or less). The aim is to provide a method that can be used.

(課題を解決するための手段) 本発明者等は種々研究・実験の結果、■末広がりノズル
チップを用いて高圧のガスを低圧室へ噴出させて超音速
気流を得る場合、前記末広がりノズルチップの出口断面
積とスロート部の断面積との比をガス圧力、ガス種に応
じた所定値以下にすると、ノズルチップ出口から圧力と
流速が流れ方向に振動する不足膨張噴流が得られること
、そして、■流下する溶融材料にこのような不足膨張噴
流を衝突させるとこ高速の気流によって溶融材料が粉砕
されるとともに、気流の圧力の振動とそれに基づく流速
の振動によってさらに微粒化する効果のあること、を知
見した。
(Means for Solving the Problems) As a result of various research and experiments, the present inventors found that: (1) When ejecting high-pressure gas into a low-pressure chamber using a flared-out nozzle tip to obtain a supersonic airflow, the flared-out nozzle tip When the ratio of the cross-sectional area of the outlet to the cross-sectional area of the throat portion is set to a predetermined value or less depending on the gas pressure and gas type, an underexpanded jet in which the pressure and flow velocity oscillate in the flow direction from the nozzle tip exit can be obtained; ■When such an underexpanded jet collides with the flowing molten material, the molten material is pulverized by the high-speed airflow, and the oscillation of the pressure of the airflow and the resulting oscillation of the flow velocity have the effect of further atomizing the material. I found out.

本発明はかかる知見に基づいて成されたものであり、流
下する溶融材料に高流速の気体を噴射して衝突させるこ
とにより当該溶融材料を微粉化するガスアトマイズ法に
おいて、前記流下する溶融材料の周囲から不足膨張噴流
を噴射して、衝突領域で全圧を振動させることを要旨と
するものである。
The present invention has been made based on this knowledge, and in the gas atomization method in which the flowing molten material is pulverized by injecting high-velocity gas and colliding with the molten material, the surroundings of the flowing molten material are The gist of this is to inject an underexpanded jet from the collision area to oscillate the total pressure in the collision area.

(作  用) 本発明において、溶融材料との衝突領域において全圧を
振動させることとしたのは、本発明者等の実験結果に基
づくものである。すなわち、第3図に示すようにかかる
全圧振動を加え、かつ全圧振動の全振幅が大きくなると
生成する粒子の平均径が急速に小さくなるからである。
(Function) In the present invention, the reason why the total pressure is oscillated in the region of collision with the molten material is based on the experimental results of the present inventors. That is, as shown in FIG. 3, when such total pressure vibrations are applied and the total amplitude of the total pressure vibrations increases, the average diameter of the generated particles rapidly decreases.

全圧振動の全振幅は好ましくは15kPaであり、さら
に好ましくは50kPa以上である。
The total amplitude of the total pressure vibration is preferably 15 kPa, more preferably 50 kPa or more.

上記した本発明方法によれば、噴射する気体を超音速の
不足膨張噴流とすることにより、この噴流の中心流速が
音速になるまでの区間では、周囲の雰囲気ガスの巻き込
みが非常に少ないので、噴流は高流速を保ったままノズ
ル出口形状のままで流れる。従って、これを溶融材料の
流れに衝突させれば、高流速気流によって微細に粉砕さ
れる。
According to the method of the present invention described above, by making the injected gas into a supersonic underexpanded jet, there is very little entrainment of surrounding atmospheric gas in the section until the center flow velocity of this jet reaches the sonic velocity. The jet flow maintains a high velocity and maintains the shape of the nozzle exit. Therefore, if this material is made to collide with the flow of molten material, it will be finely pulverized by the high velocity air flow.

また、噴流は音速以下に速度が減衰したあと、周囲の雰
囲気をまき込んで拡散して更に低流速化するが、この場
合も熔融材料の流れに近づいてから拡散するので速度低
下幅は小さく、従来の噴流に比べれば高流速となってお
り、微粉化効果がある。
In addition, after the jet velocity attenuates below the speed of sound, the jet flow spreads by incorporating the surrounding atmosphere and the flow velocity decreases further, but in this case as well, the velocity decreases only small because it diffuses after approaching the flow of the molten material. The flow rate is higher than that of conventional jet flow, and it has a pulverization effect.

更に、高流速ガスの衝突による微粉化に加えて、溶融材
料との衝突域で噴流の圧力の振動と流速が振動している
ため、分裂させた粒子にガスの圧力の振動と流速の振動
に応じた加速度を加えることができるので、これによっ
て溶融粒子をさらに分裂させ微粉末を得ることができる
Furthermore, in addition to the pulverization caused by the collision of high-velocity gas, the pressure and flow velocity of the jet oscillate in the region of collision with the molten material, so the split particles are affected by the oscillations of gas pressure and flow velocity. Since a corresponding acceleration can be applied, it is possible to further split the molten particles and obtain a fine powder.

(実 施 例) 、・ 以下本発明方法を添付図面に基づいて説明する。(Example) ,・The method of the present invention will be explained below based on the attached drawings.

第1図は本発明方法を実施する装置の一実施例を示す概
略図であり、図中1は粉末回収タンクであって、該粉末
回収タンク1の上部に7トマイズノズル本体2が設置さ
れている。そして、このアトマイズノズル本体2の例え
ば中心には、アトマイズノズル本体2の上方に設けられ
た溶融材料容器3内の溶融材料4の流下注入用開孔5が
設けられており、この開孔5を通って前記溶融材料4が
粉末回収タンク1内に所要量宛流下供給されるのである
FIG. 1 is a schematic diagram showing an embodiment of an apparatus for carrying out the method of the present invention. In the figure, 1 is a powder recovery tank, and a 7 Tomize nozzle main body 2 is installed in the upper part of the powder recovery tank 1. There is. For example, at the center of the atomizing nozzle body 2, an opening 5 for flowing down the molten material 4 in the molten material container 3 provided above the atomizing nozzle body 2 is provided. Through this, the molten material 4 is fed into the powder recovery tank 1 in the required amount.

6はアトマイズノズル本体2の前記開孔5の周囲例えば
8等分位置に配設されたノズルチップであり、これらノ
ズルチンプロは開口5を通って粉末回収タンクl内に流
下注入せしめられる溶融材料4に対して所要の交差角を
もって設置され、例えばArガス等の高圧ガス7を前記
溶融材料4に噴耐衝突せしめて溶融材料4を粉砕・冷却
し、微粉末を生成するのである。なお、この微粉末は固
気分離器8にて噴射ガスと分離して回収され、一方ガス
は放出される。
Reference numeral 6 denotes nozzle chips disposed around the aperture 5 of the atomizing nozzle body 2, for example, at 8 equal parts, and these nozzle tips are used to collect the molten material that is injected into the powder recovery tank l through the atomization nozzle body 2. The molten material 4 is pulverized and cooled by blowing high-pressure gas 7 such as Ar gas against collision with the molten material 4 to produce fine powder. Note that this fine powder is separated from the injection gas and recovered in the solid-gas separator 8, while the gas is released.

ところで、本発明方法は、前記したノズルチップ6とし
て第2図に示すような末広がり状のものを使用し、第2
図における左側の端部をアトマイズノズル本体2に接続
し、アトマイズノズル本体2は図示しない高圧ガス供給
室に接続してノズルチップ6の右側の端部から例えば供
給室内圧力4MPaのArの高圧ガス7を噴出させるの
である。
By the way, in the method of the present invention, the nozzle chip 6 used is one with a flared shape as shown in FIG.
The left end in the figure is connected to the atomizing nozzle main body 2, and the atomizing nozzle main body 2 is connected to a high-pressure gas supply chamber (not shown), and the right end of the nozzle chip 6 is supplied with a high-pressure gas 7 of Ar at a supply chamber pressure of 4 MPa, for example. It erupts.

そして、本発明ではこのノズルチップ6から噴出させる
高圧ガス7を不足膨張噴流と成す必要がある為、ノズル
チップ6の出口端Bの断面積Soとノズルチップ6内の
流路9の最小断面積部Aの断面積S、との比So/St
(以下「スロート比」という)を適切に選ぶことが肝要
である。
In the present invention, the high-pressure gas 7 ejected from the nozzle chip 6 needs to be an underexpanded jet, so the cross-sectional area So of the outlet end B of the nozzle chip 6 and the minimum cross-sectional area of the flow path 9 in the nozzle chip 6 The ratio of the cross-sectional area S of part A to So/St
(hereinafter referred to as "throat ratio") is important.

下記第1表は、第2図に示す末広がり状のノズルチップ
6を用いた第1図に示す微粉末の製造装置により微粉末
を製造した場合の結果を示したものである。なお、ノズ
ルチップ6の各種寸法を第2表に、また製造条件は第1
表に併せて示している。
Table 1 below shows the results when fine powder was manufactured by the fine powder manufacturing apparatus shown in FIG. 1 using the flared nozzle tip 6 shown in FIG. 2. The various dimensions of the nozzle tip 6 are shown in Table 2, and the manufacturing conditions are shown in Table 1.
It is also shown in the table.

第2表 ノズルチンプロは上記第2表に示すように全て最小部A
の径がφ1■lとなるよう製作し、同一圧力で噴射した
場合にガス流量は同一となるようにしている。なお幾何
学的焦点10(第1図(ロ)参照)とノズルチップ6の
出口端Bとの距離は25mである。
Table 2 Nozzle chin pros are all minimum part A as shown in Table 2 above.
They are manufactured so that the diameter of the tubes is φ1■l, so that when injected at the same pressure, the gas flow rate is the same. Note that the distance between the geometric focal point 10 (see FIG. 1 (b)) and the exit end B of the nozzle tip 6 is 25 m.

第1表に示すとおり、本発明方法によるガス噴射を行っ
た場合に生成する粉末粒子径は従来の方法(従来例1.
2)による場合に比べて1/3〜1/4に小さくなる。
As shown in Table 1, the diameter of the powder particles produced when gas injection is performed using the method of the present invention is the same as that of the conventional method (Conventional Example 1.
It is 1/3 to 1/4 smaller than the case of 2).

第4図は上記第2図及び第2表に示すノズルチンプロを
第1図に示すアトマイズノズル本体2に取り付け、第1
表に示す条件で高圧ガス7を噴射して、ノズルチップ中
心軸に沿う全圧を測定した結果である。幾何学的焦点1
0の上下約51で溶融材料4の大部分の粉化が進行する
ことが別の写真逼影等によって分かっているので、ノズ
ルチップ6の中心軸上で圧力振動を測定し、かつ幾何学
的焦点10の上下5龍の領域の圧力振動の全振幅を測定
した。
Figure 4 shows that the nozzle tip shown in Figure 2 and Table 2 above is attached to the atomizing nozzle main body 2 shown in Figure 1, and the
These are the results of measuring the total pressure along the central axis of the nozzle tip by injecting high-pressure gas 7 under the conditions shown in the table. geometric focus 1
It is known from other photographs that most of the molten material 4 is powdered at approximately 51 points above and below 0, so we measured the pressure vibration on the central axis of the nozzle tip 6, and The total amplitude of pressure oscillations in the five regions above and below the focal point 10 was measured.

また、中心軸上での圧力振動の全振幅と生成粉末粒子径
との関係は前記した第3図に示すとおりであり、粉化$
■域で圧力の振動があると微粉化して効果があることが
判明した。
In addition, the relationship between the total amplitude of pressure vibration on the central axis and the diameter of the produced powder particles is as shown in Figure 3 above.
It has been found that pressure vibrations in the area (3) are effective in pulverizing the powder.

すなわち、本発明方法のようにノズルチップ6のスロー
ト比So/Stを適切に選ぶことによってノズルチップ
6から噴出せしめる高圧ガス7を不足膨張噴流と成すこ
とで、該噴流が拡散せず高流速を保つ長さが長くなって
、溶融材料4を微細に粉砕することができるようになる
。加えて本発明では溶融材料4との衝突域で噴流の圧力
の振動と、流速の振動があることにより、更に溶融材料
4を微細に粉砕できる。
That is, by appropriately selecting the throat ratio So/St of the nozzle tip 6 as in the method of the present invention, the high-pressure gas 7 ejected from the nozzle tip 6 is formed into an underexpanded jet, thereby preventing the jet from diffusing and achieving a high flow velocity. The holding length becomes longer, and the molten material 4 can be finely pulverized. In addition, in the present invention, the molten material 4 can be further finely pulverized due to the vibration of the jet pressure and the vibration of the flow velocity in the collision area with the molten material 4.

(発明の効果) 以上説明したように本発明方法によれば、噴射する気体
を超音速の不足膨張噴流とすることにより、この噴流の
中心流速が音速になるまでの区間では、周囲の雰囲気ガ
スの巻き込みが非常に少ないので、噴流は高流速を保っ
たままノズル形状のままで流れる。従って、これを溶融
材料の流れに衝突させれば、高流速気流によって微細に
粉砕される。
(Effects of the Invention) As explained above, according to the method of the present invention, by making the injected gas into a supersonic underexpanded jet, in the section until the center flow velocity of this jet reaches the sonic velocity, the surrounding atmospheric gas Since there is very little entrainment, the jet flows in the same nozzle shape while maintaining a high flow velocity. Therefore, if this material is made to collide with the flow of molten material, it will be finely pulverized by the high velocity air flow.

また、噴流は音速以下に速度が減衰したあと、周囲の雰
囲気をまき込んで拡散して更に低流速化するが、この場
合も溶融材料の流れに近づいてから拡散するので速度低
下幅は小さく、従来の噴流に比べれば高流速となってお
り、微粉化効果がある。
In addition, after the jet velocity attenuates below the speed of sound, the jet flow spreads by incorporating the surrounding atmosphere and further reduces the flow velocity, but in this case as well, the speed decrease is small because it diffuses after approaching the flow of molten material. The flow rate is higher than that of conventional jet flow, and it has a pulverization effect.

更に、高流速ガスの衝突による微粉化に加えて、溶融材
料との衝突域で噴流の圧力の振動と、流速の振動がある
ため、分裂させた粒子にガスの圧力、流速変動に応じた
加速度を加えることができるので、これによって溶融粒
子をさらに分裂させ微粉末を得ることができる。
Furthermore, in addition to the pulverization due to the collision of high-velocity gas, there are oscillations in the pressure of the jet and oscillations in the flow velocity in the region of collision with the molten material, so the split particles have an acceleration that corresponds to the gas pressure and flow velocity fluctuations. can be added, thereby further splitting the molten particles to obtain fine powder.

すなわち、本発明によれば通常の工業用装置を用いて発
生できる高圧ガスを用いて微細な球状粉を安価・大量に
製造できる。従って、射出成形用粉末、焼結助剤などと
して供給することができる。
That is, according to the present invention, fine spherical powder can be produced in large quantities at low cost using high pressure gas that can be generated using ordinary industrial equipment. Therefore, it can be supplied as injection molding powder, sintering aid, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は不発明方法に使用するガスアトマイズ装
=の概略説明図、(ロ)はアトマイズノズル本体の拡大
図、第2図はノズルチップの拡大縦断面図、第3図は全
圧振動の全振幅と生成粒子の平均径との関係を示す図、
第4図はノズルチップ出口からの距離と噴流中心軸上の
全圧との関係を示す図である。 4は溶融材料、6はノズルチップ、7は高圧ガス。 第3@ 第4図
Figure 1 (a) is a schematic explanatory diagram of the gas atomizing device used in the uninvented method, (b) is an enlarged view of the atomizing nozzle body, Figure 2 is an enlarged vertical cross-sectional view of the nozzle tip, and Figure 3 is the total pressure A diagram showing the relationship between the total amplitude of vibration and the average diameter of generated particles,
FIG. 4 is a diagram showing the relationship between the distance from the nozzle tip outlet and the total pressure on the jet center axis. 4 is a molten material, 6 is a nozzle tip, and 7 is a high pressure gas. Figure 3 @ Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)流下する溶融材料に高流速の気体を噴射して衝突
させることにより当該溶融材料を微粒化するガスアトマ
イズ法において、前記流下する溶融材料の周囲から不足
膨張噴流を噴射して、衝突領域で全圧を振動させること
を特徴とするガスアトマイズ法による微粉末の製造方法
(1) In the gas atomization method, which atomizes the flowing molten material by injecting high-velocity gas and causing the material to collide, an underexpanded jet is injected from around the flowing molten material to reach the collision area. A method for producing fine powder using a gas atomization method characterized by oscillating the total pressure.
JP4485488A 1988-02-26 1988-02-26 Production of fine powder by gas atomization Granted JPH01219109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4485488A JPH01219109A (en) 1988-02-26 1988-02-26 Production of fine powder by gas atomization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4485488A JPH01219109A (en) 1988-02-26 1988-02-26 Production of fine powder by gas atomization

Publications (2)

Publication Number Publication Date
JPH01219109A true JPH01219109A (en) 1989-09-01
JPH0585601B2 JPH0585601B2 (en) 1993-12-08

Family

ID=12703070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4485488A Granted JPH01219109A (en) 1988-02-26 1988-02-26 Production of fine powder by gas atomization

Country Status (1)

Country Link
JP (1) JPH01219109A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012157733A1 (en) * 2011-05-18 2014-07-31 株式会社 東北テクノアーチ Metal powder manufacturing method and metal powder manufacturing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168554A (en) * 1984-02-13 1985-09-02 Sugino Mach:Kk Jet nozzle in liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168554A (en) * 1984-02-13 1985-09-02 Sugino Mach:Kk Jet nozzle in liquid

Also Published As

Publication number Publication date
JPH0585601B2 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
US11298746B2 (en) Metal powder producing apparatus and gas jet device for same
JP6906631B2 (en) Metal powder manufacturing equipment and its gas injectors and crucibles
JPH0751219B2 (en) Method for producing powder by gas atomization
CN105728219B (en) A kind of hit adds self-oscillatory highly viscous fluid two-phase nozzle
US20220080503A1 (en) Metal powder producing apparatus and gas jet device therefor
CN1986121A (en) Metal powder production apparatus
JPH01219109A (en) Production of fine powder by gas atomization
JPH05148514A (en) Spraying device for molten metal
JP2004107740A (en) Method and apparatus for producing metal powder by water atomization method, metal powder, and part
JPS6350404A (en) Spray nozzle for producing metallic powder
JPH0649512A (en) Device for producing gas-atomized metal powder
JP2580616B2 (en) Method for producing spherical metal powder
JP2816110B2 (en) Method and apparatus for producing metal powder
JP2020131120A (en) Jet mill and crushing material crushing method using jet mill
CS231153B2 (en) Method of molten metal spraying in making metal powder and device to perform the method
CN111050959A (en) Metal powder manufacturing device and metal powder manufacturing method
JPH04160106A (en) Production of metal fine powder
JPS6037164B2 (en) Metal powder manufacturing method and device
JPS62192506A (en) Method and apparatus for pulverizing molten material
JPH06226149A (en) Liquid fine pulvelizing device
US20240066594A1 (en) Device and method for powder production
JPH04173906A (en) Atomizing nozzle device
JP2002129209A (en) Atomizing nozzle device for metal powder manufacture
JPH02236206A (en) Method and apparatus for manufacturing spherical fine powder
Mane et al. Computational study on the effect of gas nozzle expansion configurations on the gas flow field for supersonic gas-atomization process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees