JPH0585601B2 - - Google Patents

Info

Publication number
JPH0585601B2
JPH0585601B2 JP63044854A JP4485488A JPH0585601B2 JP H0585601 B2 JPH0585601 B2 JP H0585601B2 JP 63044854 A JP63044854 A JP 63044854A JP 4485488 A JP4485488 A JP 4485488A JP H0585601 B2 JPH0585601 B2 JP H0585601B2
Authority
JP
Japan
Prior art keywords
gas
pressure
molten material
flow
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63044854A
Other languages
Japanese (ja)
Other versions
JPH01219109A (en
Inventor
Tadashi Fukuda
Mutsuo Nakanishi
Toshihiko Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4485488A priority Critical patent/JPH01219109A/en
Publication of JPH01219109A publication Critical patent/JPH01219109A/en
Publication of JPH0585601B2 publication Critical patent/JPH0585601B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、高温の溶融材料を棒状あるいは板状
に流下させ、これに高流速の気体を衝突させて微
粒化するガスアトマイズ法によつて微粉末を製造
する方法に関するものである。 (従来の技術) ガスアトマイズ法は、金属等の溶融材料を棒状
あるいは板状に流下させ、その溶融材料に対して
ある角度をもつて噴射させた気体ジエツトを噴き
付けて衝突させることにより溶融材料を粉砕し、
同時に冷却して金属または合金等の微細粉末を大
量に製造する方法である。 ところで、このガスアトマイズ法によつて微粒
子を得る方法として、非常に高圧のガスを噴射
して超高速のガス流を溶融金属流に衝突させて微
粉末を得る方法(特開昭61−266506号公報)、ま
たは50Kg/cm2程度までの通常の高圧ガスを用い
て高速のガス流を噴射し、金属の微粉を得る方法
(特公昭62−24481号公報)、あるいは超音波振
動するガス流を溶融金属流に衝突させて粉砕し、
粉末を得る方法(D.H.Ro and H.Sunwoo:
1983Annu.Powder Metall.Conf.Proc.(1984)
P.109〜124)、等が提案されている。 (発明が解決しようとする課題) しかしながら上記の特開昭61−266506号公報
に開示された方法は、非常に高圧のガスを取扱う
ために工業的には設備費用、保守管理費用及び運
転費ともに高額となることから実施には解決すべ
き問題点が多い。 またの特公昭62−24481号公報に開示された
方法は、大量のガス(約1Nm3ガス/1Kg材料)
を必要とし、かつ得られる粉末も粒度が平均50〜
100ミクロンと大きい。 更にの方法は、例えばAl合金について通常
のガスアトマイズ法と比較して、ガス流量と金属
流量の比と、325メツシユ以下の粉末量との関係
が一本の直線上にあるという結果が得られてお
り、超音波アトマイズの効果が現れていない。 本発明は、上記問題点に鑑みて成されたもので
あり、通常の圧力の高圧ガス(50Kg/cm2以下)を
用いるガスアトマイズ法によつて可及的小さな粒
径の球形微粉末を安価かつ大量に製造できる方法
を提供せんとするものである。 (課題を解決するための手段) 本発明者等は種々研究・実験の結果、末広が
りノズルチツプを用いて高圧のガスを低圧室へ噴
出させて超音速気流を得る場合、前記末広がりノ
ズルチツプの出口断面積とスロート部の断面積と
の比をガス圧力、ガス種に応じた所定値以下にす
ると、ノズルチツプ出口から圧力と流速が流れ方
向に振動する不足膨張噴流が得られること、そし
て、流下する溶融材料にこのような不足膨張噴
流を衝突させると、高速の気流によつて溶融材料
が粉砕されるとともに、気流の圧力の振動とそれ
に基づく流速の振動によつてさらに微粒化する効
果のあること、を知見した。 ここで、不足膨張噴流とは、末広がりノズルチ
ツプを用いて高圧のスを低圧室へ噴出させて超音
速気流を得る際に、適正膨張状態(ノズル内及び
ガス流れにおいて衝撃波が発生せず高速流を理想
的に生成できる状態)の生成域を越える高圧力の
ガスを噴射することにより、ノズル出口で背圧ま
で膨張しきれなくなつた状態(不足膨張状態)の
噴流のことである。 したがつて、このような不足膨張状態になる
と、超音速気流内に膨張波と圧縮波が生じ、上記
噴流の圧力と流速はこの膨張波と圧縮波により振
動する。この振動した状態で溶融材料と衝突する
と、噴流の圧力と流速の振動に応じた加速度が溶
融材料に加わる。 本発明はかかる知見に基づいて生成されたもの
であり、流下する溶融材料に高流速の気体を噴射
して衝突させることにより当該溶融材料を微粉化
するガスアトマイズ法において、前記流下する溶
融材料の周囲から不足膨張噴流を噴射して、衝突
領域で全圧を振動させることを要旨とするもので
ある。 (作 用) 本発明において、溶融材料との衝突領域におい
て全圧を振動させることとしたのは、本発明者等
の実験結果に基づくものである。すなわち、第3
図に示すようにかかる全圧振動を加え、かつ全圧
振動の全振幅が大きくなると生成する粒子の平均
径が急速に小さくなるからである。全圧振動の全
振幅は好ましくは15kPaであり、さらに好ましく
は50kPa以上である。 上記した本発明方法によれば、噴射する気体を
超音速の不足膨張噴流とすることにより、この噴
流の中心流速が音速になるまでの区間では、周囲
の雰囲気ガスの巻き込みが非常に少ないので、噴
流は高流速を保つたままノズル出口形状のままで
流れる。従つて、これを溶融材料の流れに衝突さ
せれば、高流速気流によつて微細に粉砕される。 また、噴流は音速以下に速度が減衰したあと、
周囲の雰囲気をまき込んで拡散して更に低流速化
するが、この場合も溶融材料の流れに近づいてか
ら拡散するので速度低下幅は小さく、従来の噴流
に比べれば高流速となつており、微粉化効果があ
る。 更に、高流速ガスの衝突による微粉化に加え
て、溶融材料との衝突域で噴流の圧力の振動と流
速が振動しているため、分裂させた粒子にガスの
圧力の振動と流速の振動に応じた加速度を加える
ことができるので、これによつて溶融粒子をさら
に分裂させ微粉末を得ることができる。 (実施例) 以下本発明を添付図面に基づいて説明する。 第1図は本発明方法を実施する装置の一実施例
を示す概略図であり、図中1は粉末回収タンクで
あつて、該粉末回収タンク1の上部にアトマイズ
ノズル本体2が設置されている。そして、このア
トマイズノズル本体2の例えば中心には、アトマ
イズノズル本体2の上方に設けられた溶融材料容
器3内の溶融材料4の流下注入用開孔5が設けら
れており、この開孔5を通つて前記溶融材料4が
粉末回収タンク1内に所要量宛流下供給されるの
である。 6はアトマイズノズル本体2の前記開孔5の周
囲例えば8等分位置に配設されたノズルチツプで
あり、これらノズルチツプ6は開口5を通つて粉
末回収タンク1内に流下注入せしめられる溶融材
料4に対して所要の交差角をもつて設置され、例
えばArガス等の高圧ガス7を前記溶融材料4に
噴射衝突せしめて溶融材料4を粉砕・冷却し、微
粉末を生成するのみである。なお、この微粉末は
固気分離器8にて噴射ガスと分離して回収され、
一方ガスは放出される。 ところで、本発明方法は、前記したノズルチツ
プ6として第2図に示すような末広がり状のもの
を使用し、第2図における左側の端部をアトマイ
ズノズル本体2に接続し、アトマイズノズル本体
2は図示しない高圧ガス供給室に接続してノズル
チツプ6の右側の端部から例えば供給室内圧力
4MPaのArの高圧ガス7を噴出させるのである。 そして、本発明ではこのノズルチツプ6から噴
出させる高圧ガス7を不足膨張噴流と成す必要が
ある為、ノズルチツプ6の出口端Bの断面積So
とノズルチツプ6内の流路9の最小断面積部Aの
断面積STとの比So/ST(以下「スロート比」とい
う)を適切に選ぶことが肝要である。 下記第1表は、第2図に示す末広がり状のノズ
ルチツプ6を用いた第1図に示む微粉末の製造装
置により微粉末を製造した場合の結果を示したも
のである。なお、ノズルチツプ6の各種寸法を第
2表に、また製造条件は第1表に併せて示してい
る。
(Industrial Application Field) The present invention relates to a method for producing fine powder by a gas atomization method, in which a high-temperature molten material is made to flow down in the shape of a rod or plate, and then collided with gas at a high velocity to atomize the material. It is. (Prior art) In the gas atomization method, a molten material such as a metal is made to flow down in the form of a rod or plate, and a gas jet is injected at a certain angle against the molten material to cause the material to collide with the molten material. crush,
This is a method for producing a large amount of fine powder of metal or alloy by cooling at the same time. By the way, as a method of obtaining fine particles by this gas atomization method, a method of obtaining fine powder by injecting extremely high-pressure gas and colliding an ultra-high velocity gas flow with a molten metal flow (Japanese Patent Laid-Open No. 61-266506) ), or a method of injecting a high-speed gas stream using ordinary high-pressure gas of up to about 50 kg/cm 2 to obtain fine metal powder (Japanese Patent Publication No. 1983-24481), or a method of melting a gas stream that vibrates ultrasonically. Shattered by colliding with metal flow,
How to get powder (DHRo and H.Sunwoo:
1983Annu.Powder Metall.Conf.Proc.(1984)
P.109-124), etc. have been proposed. (Problems to be Solved by the Invention) However, the method disclosed in the above-mentioned Japanese Patent Application Laid-open No. 61-266506 is industrially expensive in terms of equipment costs, maintenance management costs, and operating costs because it handles extremely high-pressure gas. Due to the high cost, there are many problems that need to be resolved before implementation. The method disclosed in Japanese Patent Publication No. 62-24481 uses a large amount of gas (approximately 1Nm 3 gas/1Kg material).
and the resulting powder also has an average particle size of 50~
It is large at 100 microns. Furthermore, compared to the normal gas atomization method for Al alloys, for example, the method has shown that the relationship between the ratio of gas flow rate to metal flow rate and the amount of powder of 325 mesh or less is on a straight line. Therefore, the effect of ultrasonic atomization is not apparent. The present invention was made in view of the above problems, and aims to produce spherical fine powder with the smallest possible particle size at low cost by a gas atomization method using high-pressure gas (50 kg/cm 2 or less) at normal pressure. The purpose is to provide a method that allows mass production. (Means for Solving the Problems) As a result of various research and experiments, the present inventors have found that when a supersonic airflow is obtained by ejecting high-pressure gas into a low-pressure chamber using a flared nozzle tip, the exit cross-sectional area of the flared nozzle tip is When the ratio of the cross-sectional area of the throat section to the cross-sectional area of the throat section is set below a predetermined value depending on the gas pressure and gas type, an underexpanded jet in which the pressure and flow velocity oscillate in the flow direction from the nozzle tip exit can be obtained, and the molten material flowing down can be When such an underexpanded jet collides with the material, the molten material is pulverized by the high-speed airflow, and the vibration of the pressure of the airflow and the resulting vibration of the flow velocity have the effect of further atomizing the material. I found out. Here, an underexpanded jet is a jet flow that is properly expanded (no shock waves are generated in the nozzle or gas flow, and a high-speed flow is generated when a high-pressure gas is ejected into a low-pressure chamber using a widening nozzle tip to obtain a supersonic airflow). This is a jet flow that is no longer able to expand to the back pressure at the nozzle exit (underexpansion state) due to the injection of high-pressure gas that exceeds the production range (ideally possible state). Therefore, when such an underexpansion state occurs, expansion waves and compression waves occur in the supersonic airflow, and the pressure and flow velocity of the jet flow oscillate due to the expansion waves and compression waves. When it collides with the molten material in this vibrating state, acceleration corresponding to the vibration of the pressure and flow velocity of the jet is applied to the molten material. The present invention was created based on this knowledge, and in the gas atomization method, in which the molten material is pulverized by injecting and colliding a high-velocity gas with the flowing molten material, the surroundings of the flowing molten material are The gist of this is to inject an underexpanded jet from the collision area to oscillate the total pressure in the collision area. (Function) In the present invention, the reason why the total pressure is oscillated in the region of collision with the molten material is based on the experimental results of the present inventors. That is, the third
This is because, as shown in the figure, when such total pressure vibrations are applied and the total amplitude of the total pressure vibrations increases, the average diameter of the generated particles rapidly decreases. The total amplitude of the total pressure vibration is preferably 15 kPa, more preferably 50 kPa or more. According to the method of the present invention described above, by making the injected gas into a supersonic underexpanded jet, there is very little entrainment of surrounding atmospheric gas in the section until the center flow velocity of this jet reaches the sonic velocity. The jet flows while maintaining the nozzle exit shape while maintaining a high flow velocity. Therefore, if this material is made to collide with the flow of molten material, it will be finely pulverized by the high-velocity air flow. In addition, after the jet velocity attenuates below the speed of sound,
The flow rate is further reduced by incorporating the surrounding atmosphere and diffusing, but in this case as well, the speed decrease is small because it diffuses after getting close to the flow of molten material, and the flow rate is high compared to conventional jets. Has a pulverization effect. Furthermore, in addition to the pulverization caused by the collision of high-velocity gas, the pressure and flow velocity of the jet oscillate in the region of collision with the molten material, so that the split particles are affected by the oscillations of gas pressure and flow velocity. Since a corresponding acceleration can be applied, it is possible to further split the molten particles and obtain a fine powder. (Example) The present invention will be described below based on the accompanying drawings. FIG. 1 is a schematic diagram showing an embodiment of an apparatus for carrying out the method of the present invention. In the figure, 1 is a powder recovery tank, and an atomizing nozzle main body 2 is installed in the upper part of the powder recovery tank 1. . For example, in the center of this atomizing nozzle main body 2, an opening 5 for flowing down injection of the molten material 4 in the molten material container 3 provided above the atomizing nozzle main body 2 is provided. Through this, the molten material 4 is fed into the powder recovery tank 1 in the required amount. Reference numeral 6 denotes nozzle chips disposed around the aperture 5 of the atomizing nozzle body 2, for example, at eight equal parts. The molten material 4 is simply pulverized and cooled by injecting high-pressure gas 7 such as Ar gas and colliding with the molten material 4 to produce fine powder. Note that this fine powder is separated from the injection gas and recovered in the solid-gas separator 8,
Meanwhile, gas is released. By the way, in the method of the present invention, the nozzle tip 6 used is one with a flared shape as shown in FIG. 2, and the left end in FIG. 2 is connected to the atomizing nozzle body 2. For example, from the right end of the nozzle tip 6, connect the high pressure gas supply chamber to the high pressure gas supply chamber.
A high pressure gas 7 of Ar of 4 MPa is spouted out. In the present invention, it is necessary to form the high-pressure gas 7 ejected from the nozzle tip 6 into an underexpanded jet, so the cross-sectional area of the outlet end B of the nozzle tip 6 is So
It is important to appropriately select the ratio So/S T (hereinafter referred to as "throat ratio") of the cross-sectional area ST of the minimum cross-sectional area A of the flow path 9 in the nozzle tip 6. Table 1 below shows the results when fine powder was manufactured using the fine powder manufacturing apparatus shown in FIG. 1 using the flared nozzle tip 6 shown in FIG. The various dimensions of the nozzle tip 6 are shown in Table 2, and the manufacturing conditions are also shown in Table 1.

【表】【table】

【表】 ノズルチツプ6は上記第2表に示すように全て
最小部Aの径がφ1mmとなるよう製作し、同一圧
力で噴射した場合にガス流量は同一となるように
している。なお幾何学的焦点10(第1図ロ参
照)とノズルチツプ6の出口端Bとの距離は25mm
である。 第1表に示すとおり、本発明方法によるガス噴
射を行つた場合に生成する粉末粒子径は従来の方
法(従来例1、2)による場合に比べて1/3〜1/4
に小さくなる。 第4図は上記第2図及び第2表に示すノズルチ
ツプ6を第1図に示すアトマイズノズル本体2に
取り付け、第1表に示す条件で高圧ガス7を噴射
して、ノズルチツプ中心軸に沿う全圧を測定した
結果である。幾何学的焦点10の上下約5mmで溶
融材料4の大部分の粉化が進行することが別の写
真撮影等によつて分かつているので、ノズルチツ
プ6の中心軸上で圧力振動を測定し、かつ幾何学
的焦点10の上下5mmの領域の圧力振動の全振幅
を測定した。 また、中心軸上での圧力振動の全振幅と生成粉
末粒子径との関係は前記した第3図に示すとおり
であり、粉化領域で圧力の振動があると微粉化し
て効果があることが判明した。 すなわち、本発明方法のようにノズルチツプ6
のスロート比SO/STを適切に選ぶことによつてノ
ズルチツプ6から噴出せしめる高圧ガス7を不足
膨張噴流と成すことで、該噴流が拡散せず高流速
を保つ長さが長くなつて、溶融材料4を微細に粉
砕することができるようになる。加えて本発明で
は溶融材料4との衝突域で噴流の圧力の振動と、
流速の振動があることにより、更に溶融材料4を
微細に粉砕できる。 (発明の効果) 以上説明したように本発明方法によれば、噴射
する気体を超音速の不足膨張噴流とすることによ
り、この噴流の中心流速が音速になるまでの区間
では、周囲の雰囲気ガスの巻き込みが非常に少な
いので、噴流は高流速を保つたままノズル形状の
ままで流れる。従つて、これを溶融材料の流れに
衝突させれば、高流速気流によつて微細に粉砕さ
れる。 また、噴流は音速以下に速度が減衰したあと、
周囲の雰囲気をまき込んで拡散して更に低流速化
するが、この場合も溶融材料の流れに近づいてか
ら拡散するので速度低下幅は小さく、従来の噴流
に比べれば高流速となつており、微粉化効果があ
る。 更に、高流速ガスの衝突による微粉化に加え
て、溶融材料との衝突域で噴流の圧力の振動と、
流速の振動があるため、分裂させた粒子にガスの
圧力、流速変動に応じた加速度を加えることがで
きるので、これによつて溶融粒子をさらに分裂さ
せ微粉末を得ることができる。 すなわち、本発明によれば通常の工業用装置を
用いて発生できる高圧ガスを用いて微細な球状粉
を安価・大量に製造できる。従つて、射出成形用
粉末、焼結助剤などとして供給することができ
る。
[Table] As shown in Table 2 above, all nozzle tips 6 are manufactured so that the diameter of the smallest part A is φ1 mm, so that the gas flow rate is the same when injecting at the same pressure. The distance between the geometric focal point 10 (see Figure 1 B) and the exit end B of the nozzle tip 6 is 25 mm.
It is. As shown in Table 1, the diameter of powder particles produced when gas injection is performed using the method of the present invention is 1/3 to 1/4 of that when using conventional methods (Conventional Examples 1 and 2).
becomes smaller. FIG. 4 shows the nozzle tip 6 shown in FIG. 2 and Table 2 above attached to the atomizing nozzle body 2 shown in FIG. This is the result of measuring pressure. Since it is known from other photography that most of the molten material 4 is powdered approximately 5 mm above and below the geometric focal point 10, the pressure vibration was measured on the central axis of the nozzle tip 6. In addition, the total amplitude of pressure vibrations in a region 5 mm above and below the geometric focal point 10 was measured. In addition, the relationship between the total amplitude of pressure vibration on the central axis and the diameter of the produced powder particles is as shown in Figure 3 above, and if there is pressure vibration in the pulverization region, pulverization is effective. found. That is, as in the method of the present invention, the nozzle tip 6
By appropriately selecting the throat ratio S O /S T , the high pressure gas 7 ejected from the nozzle tip 6 can be made into an underexpanded jet, which increases the length of the jet where it does not spread and maintains a high flow velocity. The molten material 4 can now be finely pulverized. In addition, in the present invention, the vibration of the pressure of the jet in the collision area with the molten material 4,
Due to the vibration of the flow velocity, the molten material 4 can be further finely pulverized. (Effects of the Invention) As explained above, according to the method of the present invention, by making the injected gas into a supersonic underexpanded jet, in the section until the center flow velocity of this jet reaches the sonic velocity, the surrounding atmospheric gas Since there is very little entrainment, the jet flows in the same nozzle shape while maintaining a high flow velocity. Therefore, if this material is made to collide with the flow of molten material, it will be finely pulverized by the high-velocity air flow. In addition, after the jet velocity attenuates below the speed of sound,
The flow rate is further reduced by incorporating the surrounding atmosphere and diffusing, but in this case as well, the speed decrease is small because it diffuses after getting close to the flow of molten material, and the flow rate is high compared to conventional jets. Has a pulverization effect. Furthermore, in addition to pulverization due to collision of high-velocity gas, vibrations in the pressure of the jet flow in the collision area with the molten material,
Since the flow velocity is oscillated, it is possible to apply acceleration according to gas pressure and flow velocity fluctuations to the split particles, thereby making it possible to further split the molten particles and obtain fine powder. That is, according to the present invention, fine spherical powder can be produced in large quantities at low cost using high pressure gas that can be generated using ordinary industrial equipment. Therefore, it can be supplied as an injection molding powder, a sintering aid, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イは本発明方法に使用するガスアトマイ
ズ装置の概略説明図、ロはアトマイズノズル本体
の拡大図、第2図はノズルチツプの拡大縦断面
図、第3図は全圧振動の全振幅と生成粒子の平均
径との関係を示す図、第4図はノズルチツプ出口
からの距離と噴流中心軸上の全圧との関係を示す
図である。 4は溶融材料、6はノズルチツプ、7は高圧ガ
ス。
Fig. 1 A is a schematic explanatory diagram of the gas atomization device used in the method of the present invention, B is an enlarged view of the atomizing nozzle body, Fig. 2 is an enlarged longitudinal sectional view of the nozzle tip, and Fig. 3 is the total amplitude and generation of total pressure vibration. FIG. 4 is a diagram showing the relationship between the average diameter of particles and the relationship between the distance from the nozzle tip outlet and the total pressure on the central axis of the jet stream. 4 is a molten material, 6 is a nozzle tip, and 7 is a high pressure gas.

Claims (1)

【特許請求の範囲】[Claims] 1 流下する溶融材料に高流速の気体を噴射して
衝突させることにより当該溶融材料を微粒化する
ガスアトマイズ法において、前記流下する溶融材
料の周囲から不足膨張噴流を噴射して、衝突領域
で全圧を振動させることを特徴とするガスアトマ
イズ法による微粉末の製造方法。
1 In the gas atomization method, which atomizes the flowing molten material by injecting and colliding it with high-velocity gas, an underexpanded jet is injected from around the flowing molten material to reduce the total pressure in the collision area. A method for producing fine powder using a gas atomization method characterized by vibrating.
JP4485488A 1988-02-26 1988-02-26 Production of fine powder by gas atomization Granted JPH01219109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4485488A JPH01219109A (en) 1988-02-26 1988-02-26 Production of fine powder by gas atomization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4485488A JPH01219109A (en) 1988-02-26 1988-02-26 Production of fine powder by gas atomization

Publications (2)

Publication Number Publication Date
JPH01219109A JPH01219109A (en) 1989-09-01
JPH0585601B2 true JPH0585601B2 (en) 1993-12-08

Family

ID=12703070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4485488A Granted JPH01219109A (en) 1988-02-26 1988-02-26 Production of fine powder by gas atomization

Country Status (1)

Country Link
JP (1) JPH01219109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012157733A1 (en) * 2011-05-18 2014-07-31 株式会社 東北テクノアーチ Metal powder manufacturing method and metal powder manufacturing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168554A (en) * 1984-02-13 1985-09-02 Sugino Mach:Kk Jet nozzle in liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168554A (en) * 1984-02-13 1985-09-02 Sugino Mach:Kk Jet nozzle in liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012157733A1 (en) * 2011-05-18 2014-07-31 株式会社 東北テクノアーチ Metal powder manufacturing method and metal powder manufacturing apparatus

Also Published As

Publication number Publication date
JPH01219109A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
KR101512772B1 (en) Method and atomizer apparatus for manufacturing metal powder
WO2012157733A1 (en) Metallic powder production method and metallic powder production device
JPH0751219B2 (en) Method for producing powder by gas atomization
JP6906631B2 (en) Metal powder manufacturing equipment and its gas injectors and crucibles
US11298746B2 (en) Metal powder producing apparatus and gas jet device for same
JPH01224063A (en) Liquid spray apparatus
JPH0585601B2 (en)
CN1986121A (en) Metal powder production apparatus
US4780130A (en) Process to increase yield of fines in gas atomized metal powder using melt overpressure
JP2703378B2 (en) Method and apparatus for atomizing a liquid, preferably a melt
JP2004107740A (en) Method and apparatus for producing metal powder by water atomization method, metal powder, and part
JPH05148514A (en) Spraying device for molten metal
JP2580616B2 (en) Method for producing spherical metal powder
JP2001064702A (en) Prodution of fine spherical metal powder
US11235390B2 (en) Apparatus for producing metal powder and method of producing metal powder
JPS58110604A (en) Method and device for manufacturing spherical metal powder
JPH0649512A (en) Device for producing gas-atomized metal powder
JP2897650B2 (en) Metal fine powder production equipment
JP6854008B2 (en) Metal powder manufacturing equipment
JPH0232323B2 (en)
JPH04160106A (en) Production of metal fine powder
KR102437500B1 (en) atomizer device
JPH06346115A (en) Method for producing metal powder and device
JP2823972B2 (en) Molten metal outflow nozzle and method for producing metal powder
Mane et al. Computational study on the effect of gas nozzle expansion configurations on the gas flow field for supersonic gas-atomization process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees